
Regulating Organizations:
The ALIVE Approach?

Huib Aldewereld, Loris Penserini, Frank Dignum, and Virginia Dignum

Institute of Information and Computing Sciences
Universiteit Utrecht

P.O.Box 80089, 3508 TB Utrecht
The Netherlands

Abstract. Regulating organizations requires a fine balance between cen-
tral control and (local) adaptability. In this paper we report on our ap-
proach using explicit organization and coordination models based on
the research performed within the European FP7 project alive. One of
the principal aims of alive is to combine coordination and organization
mechanisms in order to provide a flexible, high-level means to model
the structure of interactions between services in the environment. Our
main focus is on the implementation and integration of organizational
structures and on the translation of (abstract) norms (e.g., laws and
regulations) into (concrete) software systems. Such a way of abstracting
from low level system complexity by the use of human- and social- ori-
ented system requirements is very promising to cope with requirements
changes, e.g., useful to develop adaptive (service-based) systems.

Key words: Organizations, implementation, norms

1 Introduction

The deployment of regulations in human societies and in information systems
show remarkable resemblances. Both fields need to cope with relating the ab-
stract level of the regulations with the concrete practice (either the “work floor”
of the human organization or the “low-level” software implementation, e.g., us-
ing service-based systems). A common tendency when relating the regulations
to the practice is to directly connect the top (abstract) level with the concrete
implementation, but in this paper we argue that the use of intermediate level(s)
allows for a greater flexibility and, at the same time, an increased robustness of
the system. This new source of (human- and social- oriented) system require-
ments pave the way for new challenges in software engineering. That is, recent
software engineering approaches have dealt with how to endow single (agent-
based) systems with the ability to cope with context changes, without taking
? This work has been performed in the framework of the FP7 project ALIVE IST-

215890, which is funded by the European Community. The author(s) would like
to acknowledge the contributions of his (their) colleagues from ALIVE Consortium
(http://www.ist-alive.eu)



38 Proceedings of ReMoD 2008

into account that such adaptivity properties can be easier and better studied and
handled at organizational level, as often it happens in real life. A challenging
aim of this paper is to bridge adaptivity at organizational level.

The research presented in this paper is part of the European FP7 project
alive, which aims to create a framework for software and service engineering,
based on combinations of coordination and organization mechanisms [1, 3, 13,
14] (providing a flexible, high-level means to model the structure of interactions
between services in the environment) and Model Driven Design (providing for
automated transformations from models into multiple platforms). Although the
main goal of the alive project is to enhance the development and deployment
of service-based (information) systems, we will show that the same approach can
be applied to the deployment of regulations in human organizations.

The approach taken in the alive project is to gradually translate the reg-
ulations from the abstract level of organizational regulations into a system de-
scription at the concrete level of service-based implementations. First, the ab-
stract regulations are translated into operational norms and structures, which
are more concrete than the regulations themselves. This translation is done by
adding operational information to the regulations (i.e., how a given regulation
can be achieved in a given context/domain). These operational artifacts [10],
however, still abstract from the specific choices needed for the implementation
(e.g., different checks to be made, specific system calls, etc.). The use of such
an intermediate level is advantageous, because it, in essence, specifies the global
objective of the organization in concrete terms, while still describing a family
of implementations (i.e., the intermediate level allows for a flexible implemen-
tation). This means that this intermediate level contains enough information to
make implementational changes without having to go back to the most abstract
level of the organizational regulations (i.e., you change the implementation by
choosing a different member of the family of implementations that is specified
at the operational level).

One way of deploying regulations in an organization is by regimenting the
participants of the organization and constrain them in such manners that they
can only perform behaviour which the organization considers legal. That means,
all possible actions are a priori defined by the organization. While, at first glance,
this appears to be a fruitful approach, it has the major disadvantage that the
system loses much of its flexibility and robustness. If, however, the participants
are allowed to perform actions that are not described as allowed (such actions
could be illegal, but could also be not considered a priori), the participants can
(e.g., through exploration) come up with more effective ways of doing things and
react to unexpected situations which were not taking into consideration when
the organizational regulations were recorded. In this case, however, the safety
of the system has to be guaranteed by sanctioning participants for doing illegal
actions.

Throughout this paper we will use a generic, simple example based on a sim-
ple regulation to regulate the temperature of the building at a comfortable level
without wasting energy. This can be seen or described as the regulation or norm



Proceedings of ReMoD 2008 39

that the organization has to comply to; namely, the thermostat is obliged to
keep a comfortable level of heat in the building without wasting energy. Before
we translate this regulation into service specifications, combining the services
needed to achieve this objective, we first create an operational description of the
general objective. That is to say, we give an operational meaning to the regu-
lation, which is informing the organization, still on an abstract level but more
concrete than the norm/regulation itself, how the objective is to be reached.
There are alternative mappings to operational descriptions possible for this ex-
ample regulation. For now, let us assume that the operational meaning of the
regulation is that the temperature in the building needs to be 18 ◦C whenever
there are people around. Finally, this operational description of the regulation is
used to combine the services (at the implementation level) in such a way that
the regulation of the organization can be fulfilled. In this case, this might mean
the combination of the following services:

– a service to get the day of the week;
– a service to get the time of day;
– services to get the temperature of every room in the building;
– a service to translate temperatures in ◦Fahrenheit to ◦Celsius;
– a service to regulate the heater/air-conditioner of the building.

The services for the time of day and day of the week are needed to determine
whether there are people in the building (i.e., the system does not need to use the
heater/air-conditioner during evenings and weekends). The translation service
from ◦F to ◦C is only needed if not all services (that measure the temperature
or regulate the heater/air-conditioner) are speaking the same “language”.

In this paper we compare the approach of alive, based on previous research
done [1, 3, 13, 14], to the regulation of organizations in general. In the next section
we give a broad overview of the alive project. In section 3, we explain how the
use of intermediate levels helps the deployment of regulations. We present our
ideas about how the transition of regulations from an abstract organizational
point of view can be made to the concrete practice. Moreover, we present our
ideas about how to cope with adaptivity and how this affects organizational
structures. We end the paper with some conclusions.

2 The ALIVE approach

New generations of networked applications based on the notion of software ser-
vices that can be dynamically deployed, adjusted and composed will make it pos-
sible to create radically new types of software systems. In turn, this will require
profound changes in the way in which software systems are designed, deployed
and managed – exchanging existing, primarily top-down “design in isolation”
engineering, to new approaches which are based on integrating new function-
alities and behaviours into existing running systems already active, distributed
and interdependent processes.



40 Proceedings of ReMoD 2008

  

role

rolerole role

actor

actor

actor

actor

Organisational level

Coordination level

Service level

SD

SD

SD

SD

SD

SD

WS

WS

WS

WS

WS

WS

F
o

rm
a
l F

ra
m

e
w

o
rk

M
o
d

e
l-D

riv
e
n

 E
n

g
in

e
e

rin
g

Fig. 1. The alive framework for software and service engineering.

The alive project is based around the central idea that many strategies
used today to organize the vastly complex interdependencies found in human
social, economic behaviour will be essential to structuring future service-based
software systems. More specifically, the project aims to combine cutting edge
Coordination and Organization mechanisms and Model Driven Design to create
a framework for software and service engineering for “live” open systems of active
services.

The project extends current trends in service-oriented engineering by adding
three extra layers (see Figure 1).

– The Service Layer augments and extends existing service models with se-
mantic descriptions (SD) to make components aware of their social context
and of the rules of engagement with other web services (WS).

– The Coordination layer provides the means to specify, at a high level, the
patterns of interaction between services, using a variety of powerful coordi-
nation techniques from recent European research in the area.

– The Organization Layer provides context for the other levels – specifying the
organizational rules that govern interaction and using recent developments
in organizational dynamics to allow the structural adaptation of distributed
systems over time.

In the following sections we focus mainly on the connections between the
organizational level (where the regulations reside) and the service level by using



Proceedings of ReMoD 2008 41

an intermediate level. We show how the ideas of alive relate to the deployment
of regulations in human organizations and allow for flexible adaptation.

  

Regulation

Normative ontology

System ontology

Abstract normative

specification

Operational norms

Landmarks

Interaction structures

Electronic organisation

system interactions

practice

procedural

information

Fig. 2. From laws to electronic organizations.

3 From Abstract Regulation to Implementation

The deployment of regulations in the alive approach consists of a gradual tran-
sition from the organizational level to the service-based implementation (the
bottom two levels of the model in Figure 1). Given that organizations are char-
acterized by their rules and conventions [1, 3], this process of implementing or-
ganizational regulations is then as proposed in Figure 2.

First, a formal representation of the regulations is created, giving an ab-
stract normative specification of the allowed interactions in the organization
(e.g., in deontic logic). Given our example, this means a formalization like, e.g.,
Othermo(temperature(comfortable)) and Fthermo(waste(energy)). Which states
that thermo is obliged to make sure that the temperature is comfortable and
thermo is forbidden to waste energy. The creation of a formal representation
of the regulations also creates a basis for the ontology that is needed (we call
this basis the normative ontology). The normative ontology is built from: 1) the
concepts and relations used in the formalization step, and 2) information taken



42 Proceedings of ReMoD 2008

from the ontological definitions in the regulations themselves. In our example, the
normative ontology contains the concepts of comfortable, temperature, energy,
etc. The normative ontology and the formal representation of the regulations can
be seen as the organizational level of Figure 1.

The normative specification is also used as the basis of the implementation of
the regulations. The process from normative specification to implemented norms
is as follows: 1) the abstract norms are translated to concrete operational norms
(although these are only useable for a certain context, i.e., this particular or-
ganization, and less expressive than abstract norms, concrete norms are a lot
easier to implement); 2) the operational norms are translated into constraints
and procedures that will see to it that the norm is enforced in the organization.
In our example, the operational norm is the temperature in the building needs
to be 18 ◦C whenever there is people around. The design of interaction struc-
tures that can be used in the organization consists of the following steps: 1) the
important characteristics of the norms that express how interactions should be
in the organization are extracted from the norms to create a prototypical in-
teraction structure on a high level of abstraction (we call these important steps
derived from the norms landmarks, and the structure that expresses the ordering
over these landmarks a landmark pattern); 2) by using procedural information
and the expected capabilities of the system components an interaction struc-
ture is created to give a default manner for achieving certain objectives in the
organization. For our example we can create an interaction structure by using
landmarks (e.g., L1 =check temperature and L2 =adjust heater, with the tempo-
ral ordering that L1 < L2): if(today = normal weekday) then temperature :=
requestTemperature(servicetemp); if(temperature ≤ 18) then turnHeaterOn.
The operational norms and landmark patterns provide the intermediate level of
the transition from organizational regulations to a implementation. This level
can be seen as the coordination level as shown in Figure 1.

Finally, the system ontology, which contains all concepts used in the norms as
well as those used in the implementation is build from the normative ontology.
The normative ontology is extended with the concepts and relations that follow
from the operational and procedural information that was added to create the
operational norms and the interaction structures. Moreover, concepts describing
the system states and actions need to be added and linked as well.

As shown in Figure 2, the following four elements are of prime importance
when implementing regulations in organizations:

– A common ontology, defining the meaning of concepts, the roles used in
the organization and the relations between different contexts.

– A normative specification of the allowed interactions in the organization.
– Interaction structures to specify conventions in procedure mechanisms,

giving a typical interaction profile which should work in any circumstance.
– An active enforcement mechanism to make sure that the participants of

the organization adhere to the normative specification.

The ontology is needed to specify how the participants interact, defining the
communicative propositions that are used, and defining the roles and role hi-



Proceedings of ReMoD 2008 43

erarchy that is used throughout the norms. The normative specification is the
basis of the organization, specifying the legal and illegal actions in the environ-
ment. Denoted in a formal language, this specification can be used to derive the
last two elements of the framework. The interaction structures define standard
ways in which the legal interactions can take place in the organization. They
provide a means for non-norm aware participants to perform their task in the
organization, or provide a guideline for norm-aware participants to follow (to
show how things can be done, though are not necessarily the only way to do
it, and can be deviated from if need arises). The norm enforcement is necessary
to guarantee the safety of the system. Since we do not restrict the participants
of the organization to only perform the allowed actions, the organization is re-
quired to check and enforce the proper ways of acting upon the participants in
the organization. Much like in the real-world, instead of equipping all cars with
speed-limiting devices, one specifies that speeding is illegal, and checks whether
everyone adheres to that norm (even if one would opt for the regimented option
of installing speed-limiting devices in cars, one would still have to check that no
one tampers with the device and violates the norm).

An important step of this deployment process is the addition of operational
information (taken from practice or procedures) to create an intermediate level
(in Figure 2; the operational norms and the landmarks) that tries to capture the
essence of the organizational level, but brings it closer to the actual implemen-
tation. Let us look at the addition of such information in more detail.

Adding Operational Information

The translation from organizational regulations from natural language to a for-
mal representation (the abstract normative specification) is only the first step
of the process of implementing the regulations. Usually the regulations are ex-
pressed at a high level of abstraction, to allow the regulation to cover a wide
variety of situations and to be used for an extensive period of time without the
need for modifications, it is hard to link these regulations to the concrete situa-
tions that arise in the practice. To make the normative specification useful in the
deployment of the organization, an interpretation of the norm is needed, which
should contain concrete (organizational) meanings of the vague and abstract
terms used in the norm and which possibly contains procedural information that
can be used to simplify the enforcement of the norm. This process of interpreting
the norms to make them useable for a single context, i.e., the organization, is
referred to as contextualization [1].

The contextualization process is meant to give a link between the abstract
terms and concepts used in the abstract normative specification and the con-
crete situations and concepts that exist in the practice. Where norms contain
terms such as ‘fair’ and talk about actions like ‘discriminating’, these concepts
have no clear meaning in the implementation. There are, however, states and
(sequences of) action(s) in the implementation that can be classified as an inter-
pretation of one of these vague concepts in the context of the organization. These
interpretations are highly context dependent and can differ from organization



44 Proceedings of ReMoD 2008

to organization. For example, in accordance with the example described in the
introduction, the abstract norm regulate the heat of the building at a comfortable
level without wasting energy is contextualized (e.g., based on the preferences of
the people that work in the buildings) to the temperature in the building needs to
be 18 ◦C whenever there are people around. In another implementation, however,
it could be something different, e.g., the heater should be turned off at night or
when the temperature is above 68 ◦F.

Although norms that result from the contextualization process are concrete
and contain only concepts that are meaningful in the organization, these norms
still require further explicification before they can be implemented. Norms only
have a declarative meaning, i.e., how things should be, while abstracting from
operational meanings, which expresses how it should be achieved. Moreover,
there is more than one way to enforce a single norm and procedural information
(which is not part of the norm) will have to be used to decide how the norm is best
implemented. This second translation process of adding additional operational
and procedural information to the norms is referred to as operationalisation [1].

In the next section, taking advantage of recent results from adaptive system
engineering approaches, we show our vision about how to cope with adaptivity
requirements at the organizational level.

4 Introducing Adaptivity in organizations

Implementing regulations for organizations that are completely static is quite
straightforward. The real challenge comes when the circumstances change and
the organization needs to adapt to the new situation while still trying to abide
by the regulations. In this section, we focus on those features of the proposed or-
ganization framework to effectively deal with context changes, namely, how the
organizational models for the intended (service-based) system adapts to different
kinds of changes. Before going into detail how our approach achieves adaptiv-
ity qualities, let us first look at how adaptivity is handled in other (recent)
approaches.

A very compelling research topic within the area of software engineering
regards methods, architectures, algorithms, techniques, and tools that can be
used to support the development of adaptive systems. That is, software engineers
are looking for techniques to model important requirements for adaptive software
systems such as the ability to cope with changes of stakeholders’ needs, changes
in the operational environment, and resource variability. On one hand, a quite
recent and interesting example of adaptive systems is IBM’s work on autonomic
software systems [5, 7]. Such a software type is characterised by properties of
being able to automatically re-configure itself when new components come into
or are removed from the system (self-configuration); being able to continually
tune its parameters for optimisation (self-optimisation); being able to monitor,
analyse, and recover from faults and failures when they occur (self-healing); and
being able to protect itself from malicious attacks (self-protection).



Proceedings of ReMoD 2008 45

On the other hand, promising software engineering approaches have recently
adopted goal-oriented methodologies with an extensive use of goal models (GM s),
which have been initially proposed in Distributed Artificial Intelligence as a
means for capturing agent intentions and guiding agent coordination [6, 8] within
dynamic environments. Within such methodologies, requirements are elicited,
specified, and elaborated using the concept of goal, which can be used to model
stakeholder and organizational objectives, but also an agent goal. In other words,
the goal concept allows designer to represent high-level (strategic) concerns.

In [9, 11], GM s allow a designer to represent and reason about stakeholder
objectives and agent goals in a given application domain in order to derive
requirements for adaptive software. According to these approaches, GM s give
support in exploring and evaluating alternative solutions which can meet stake-
holders expectations (objectives) and in detecting conflicts that may arise from
multiple viewpoints (see also [12]).

The above approaches identify several crucial components that a develop-
ment framework should take into account to effectively deal with software adap-
tivity. Nevertheless, how such requirements affect organizational structures has
not been completely addressed. Finally, in [2, 4] interesting approaches to cope
with reorganization issues have been presented. The principal aim in [2, 4] has
been to develop a modelling language to describe organizational structures, and
how their objectives are related to changes in the environment. Specifically, a
simulator framework, where agents play modeled organizational roles having
different objectives, has been adopted to test reorganization behaviours to cope
with changes.

Adaptivity within organizations

Results from the above approaches, related to specifying the system adaptivity,
are useful to properly interpret and reflect such requirements at the organiza-
tional level. Specifically, we aim at illustrating by simple example scenarios that
our framework (see Figure 1) can distribute the complexity –to handle context
changes– among its different layers. This latter property is important to improve
the flexibility and robustness of the (service-based) system. Adaptations on the
lower level might violate specific procedural interpretations of a regulation, but
still comply to the more abstract regulation specified on a higher level. When
such a situation occurs one can now change the operationalizaion of the regula-
tion such that the new practices conform to these procedures, while preserving
the same regulation at an abstract level.

Principal sources/causes of dynamic changes in the context can be described
as follows.
Stakeholder needs. Changes in the stakeholder needs happen frequently in
open organizations where new roles may be added and old ones are detached
in order to better reflect the market changes. In other words, stakeholder needs
have to be strictly related with organizational objectives to effectively deal with
changes of needs, e.g., re-adapting to new organization market strategies. Ac-



46 Proceedings of ReMoD 2008

cording to our example, let us assume an enterprise 1 has to pursue the objective
make employees comfortable and to do that it depends on the work and quality
of thermostat devices of all departments provided by a thermostat organization.
Then, let us consider that because of the market strategy, the area-manager
changes her needs, delegating to each department-manager the objective min-
imise heating costs to pursue too, which requires reorganising its internal service
providing structure. This change may result in selecting another service to play
the role thermostat that is cheaper, by e.g. auctioning a new offer. Notice that,
according to Figure 1, this change is sensed at organizational level but handled
at coordination level.
Environment conditions. Depending on the kind of application domain, such
requirements have to reflect real life situations into the organizational behaviour,
e.g., symptoms to be forecasted (at design-time) and then anticipated (at run-
time) to avoid failures in pursuing objectives. Moreover, such requirements deal
also with how norms can affect and are related to organization objectives. Ac-
cording to our example, let us assume that the thermostat has a digital power
meter (services to get the temperature of every room in the building) in order
to maintain its objective regulate the heat of the building to a comfortable level
without wasting energy. This service periodically verifies whether the consumed
energy in each building correctly stays into a specific range. Let us also assume
that, during the winter time, a couple of employees went on holiday but forgot
to close their office windows. This environment change (symptom) could cause
the failure of the previous objective (expressed in the normative specification)
if no countermeasures (enforcement mechanisms) have been considered in ad-
vance to properly handle such a fault symptom. The enforcement has to trigger
another objective achievement, e.g., asking to the building attendant to check
all the windows, therefore such a change mainly affects the coordination level
of Figure 1. Moreover, to get such a process completely automated, the rea-
soning mechanisms have to be supported by (domain) ontologies that describe
symptoms, faults, recovery objectives, and roles along their relationships.
System functionalities. Although the modelling of the organizational knowl-
edge level has a key role within the whole framework, role and objective concepts
need to be properly grounded into specific system functionalities (agent capa-
bilities and/or service functionalities) in order to really affect and sense the
environment. In other words, changes in environment and in stakeholder needs
(discussed above) inherently are reflected in the orchestration process of the ser-
vice level of Figure 1, following an implicit top-down approach (see Figure 2). In
the other hand, changes in system functionalities deal with a bottom-up prop-
agation, namely, several dynamic issues can arise from the service-level and,
consequently, need to be related and handled by the organizational and coor-
dination levels. Let us consider the example sketched in Section 1, where the
thermostat has to maintain the regulation the temperature in the building needs

1 According to the example of Section 1, this enterprise acts as the committer for the
thermostat organization (supplier), i.e., roles commonly played within any organi-
zation.



Proceedings of ReMoD 2008 47

to be 18 ◦C whenever there are people around (O1). To achieve this objective,
the information system has to orchestrate different services and then combine
their results collected every time, e.g., get the day of the week (sO1

1 ), get the time
of day (sO1

2 ), translate temperatures from ◦Fahrenheit to ◦Celsius (sO1
3 ) because

the thermostat device works in ◦Fahrenheit, calculate whether the sensed tem-
perature is in the established range (sO1

4 ), and sense the environment for people
presence (sO1

5 ). Now, let us assume that at the time O1 had to be achieved, the
system recognizes that sO1

3 is not available. Where and how to handle this sensed
change? Maybe the service level (the where) has been provided with some sim-
ple recovery function (the how) such as searching for an equivalent service. But,
the most compelling scenario arises when the service level brings about some
important failure (e.g. no other equivalent service available), propagating it to
the next-up level. Again using different levels of abstraction in the specification
now allows for different solutions using different types of knowledge present at
those levels.

5 Conclusions and Future Work

In this paper we presented how the alive approach can be used for the deploy-
ment of regulations and the reorganization of both human societies and infor-
mation systems. The alive project aims to create a framework that combines
coordination and organization mechanisms in order to provide flexible, high-level
models to assist software and service engineering. A main element of the alive
approach is to distribute the design of coordination and organization of service-
based implementations over different levels of abstraction. At the highest level of
abstraction (the organizational level) the context is defined in terms of abstract
regulations and objectives. These abstract norms are operationalized in the next
level of abstraction (the coordination level), where operational and contextual
information is added taken from procedures and practice. The lowest level of ab-
straction (the service level) then deploys the operational norms and structures
defined on the coordination level to create a service-based implementation.

The process of translating the abstract regulation to an implementation has
been illustrated. In this process, the main elements are 1) an abstract normative
specification, 2) a common system ontology, 3) a set of interaction structures
describing default interactions, and 4) mechanisms for enforcing the norms to
guarantee safety in the system. Moreover, we have shown that the translation
or regulations to an implementation in practice is not a straight-forward, one-
step process. The organizational regulations have to be contextualized and op-
erationalized before they can be implemented. That is, the abstract regulations
need to be translated into more concrete regulations which use only concrete con-
cepts and relations (which are context dependent) and operational information,
to express how the regulation is to be achieved/maintained, has to be added.

This paper also reports on how the proposed framework naturally fits for
the modelling of context (requirements) changes to better reflect real organiza-
tion behaviours. Moreover, taking advantage from system specification of self-



48 Proceedings of ReMoD 2008

adaptive systems, we have shown how the framework can handle such require-
ments at organizational and coordination levels.

As future work, we are interesting to investigate how the organizational
framework should behave to deal with context changes that are not within the
organization knowledge, e.g., new objectives, roles, and relationships not de-
scribed in the domain ontology. This challenging research aspect is very related
to both the evolutionary design and the evolutionary qualities of agent systems,
namely, how to automatically update organization models from new knowledge
that emerges from the service level.

References

1. H. Aldewereld. Autonomy vs. Conformity: an Institutional Perspective on Norms
and Protocols. PhD thesis, Universiteit Utrecht, June 2007.

2. F. Dignum, V. Dignum, and L. SonenBerg. Exploring congruence between organi-
zational structure and task performance: a simulation approach. In Coordination,
Organisation, Instiutions and Norms in Agent Systems I, LNAI 3913, 2006.

3. V. Dignum. A Model for Organizational Interaction: based on Agents, founded in
Logic. PhD thesis, Universiteit Utrecht, 2004.

4. V. Dignum and C. Tick. Agent-based Analysis of Organizations: Performance and
Adaptation. In 2004 IEEE/WIC/ACM International Conference on Intelligent
Agent Technology (IAT 2007), California, USA, 2007. IEEE CS Press.

5. A. G. Ganek and T. A. Corbi. The dawning of the autonomic computing era. IBM
Systems Journal, 42(1):5–18, 2003.

6. N. Jennings. Foundations of Distributed Artificial Intelligence, chapter Coordina-
tion Techniques for Distributed Artificial Intelligence. Wiley-IEEE, 1996.

7. J. O. Kephart and D. M. Chess. The vision of autonomic computing. Computer,
IEEE Computer Society Press, 36(1):41–50, 2003.

8. V. Lesser. A retrospective view of fa/c distributed problem solving. In Systems,
Man and Cybernetics, IEEE Transactions on, volume 21, pages 1347–1362. 1991.

9. M. Morandini, L. Penserini, and A. Perini. Towards Goal-Oriented Development
of Self-Adaptive Systems. In Software Engineering for Adaptive and Self-Managing
Systems (SEAMS 2008). ACM and IEEE digital libraries, to appear, 2008.

10. A. Omicini, A. Ricci, M. Viroli, C. Castelfranchi, and L. Tummolini. Coordination
artifacts: Environment-based coordination for intelligent agents. In Proc. of the
3rd Int. Joint Conf. on Autonomous Agents and Multi-Agent Systems (AAMAS
2004), pages 286–293. ACM Press, 2004.

11. L. Penserini, A. Perini, A. Susi, and J. Mylopoulos. High Variability Design for
Software Agents: Extending Tropos. ACM Transactions on Autonomous and Adap-
tive Systems (TAAS), 2(4), 2007.

12. A. van Lamsweerde and E. Letier. Handling obstacles in goal-oriented require-
ments engineering. IEEE Transactions on Software Engineering, Special Issue on
Exception Handling, 26(10), 2000.

13. J. Vázquez-Salceda. The Role of Norms and Electronic Institutions in Multi-Agent
Systems. The HARMONIA framework. Whitestein Series in Software Agent Tech-
nology. Birkhäuser Verlag, 2004.

14. J. Vázquez-Salceda, V. Dignum, and F. Dignum. Organising multiagent systems.
JAAMAS, 11(3):307–360, November 2005.


