
Modelling Parliamentary Workflows
a Case Study in Belgian Parliaments

Christophe Ponsard1, Gaetan Deberdt2, and Joël Tournemenne3

1 CETIC Research Center, Charleroi (Belgium) - cp@cetic.be
2 Parlement de la Communauté Française (Belgium) - gaetan.deberdt@pcf.be
3 Parlement Francophone Bruxellois (Belgium) - jtournemenne@pfb.irisnet.be

Abstract. Parliament work is regulated by a number of democratic
rules about the way laws are proposed, discussed and finally voted. De-
spite a number variations, most parliaments share the same kind of work-
flow supported by one or two assemblies. Such workflows are most of the
time described by a regulation stated in natural language and gener-
ally approved by the assemblies themselves. This document is subject to
some interpretation, especially by the administration responsible of the
day to day management. Currently this management is also on-going
strong electronification with even a direct exposure of the parliamentary
work on the internet for better transparency and control by the citizen.
In this paper we report about our work of modelling the parliamentary
workflows, starting from the official documents and in-place systems. The
aim of this work is multiple: first, discover potential ambiguities and in-
consistencies, then compare how similar are a number of parliaments and
finally see how those models can be translated in the computer systems,
especially in the perspective of the open-sourcing and mutualisation of
such systems among different parliaments. Our practical experience of
applying various modelling techniques is reported and discussed using
two of the seven (!) parliaments running in Belgium. This comparison
work relies both on a set of modelling requirements for such systems and
on the SEQUAL reference framework for assessing the quality of models.

Key words: e-government, parliament, modelling, workflow, mutuali-
sation

1 Introduction

All democratic countries of the world run some kind of parliamentary system
whose main functions are to make law and control the work of the executive
power, following the principle of separation of powers. Parliaments may consist of
chambers or houses, and are usually either bicameral or unicameral. In bicameral
systems, the lower house is almost always the originator of legislation, while the
upper house is usually the body that offers the ”second look” and decides whether
to veto or approve the bills [23].

Law making also follows a general common process, starting from a bill either
proposed by the executive or legislative body, then discussed by the assemblies.



26 Proceedings of ReMoD 2008

After preliminary readings, it is generally sent to specialised committees which
will work on it. This will result in a number of amendments and finally a vote.
In case of adoption, the law is then promulgated by being officially signed by
the authority (e.g the President or the King) and finally published. It is then
generally followed by executive laws to enforce it. The following figure show this
process for the Australian (bicameral) parliament.

Fig. 1. Typically Parliamentary Workflow [15]

With the raise of ICT, e-democracy is on its way and is present at various lev-
els: e-voting, e-forms, e-referendum... and among them e-legislation which is the
part we are interested in here. The electronification process has already started in
the 90’s at the data and document level (scanning, OCR, meta-data, automated
generation of documents, diffusion on web-site). More recently it is reaching the
legislative processes themselves. After initial phases of incertainty and eupho-
ria, this evolution is now reaching some maturity and being ”institutionalised”
[4][19]. The main goals identified in this process are to improve:

– the procedural quality: better modelling (less complex, less operational), sup-
porting evolution and re-engineering;



Proceedings of ReMoD 2008 27

– the output quality: drafting systems for improving the formal quality of legis-
lation and regulatory impact assessment for improving the material quality
of legislation;

– the participatory quality: introducing new communication tools into the rep-
resentative system or even more visionary concepts for new democracy mod-
els.

Most parliaments have now a strong ICT department in charge of this work.
As parliaments have the same business, this also means that they need the same
kind of solution. Rather than reinventing the wheel, some assemblies have started
to collaborate and mutualise their efforts, this is especially true in Belgium
which has a complex organisation with many assemblies at region, community
and federal levels. This effort also requires to be able to know precisely the
commonalities and differences between those assemblies and thus to model them
precisely.

This paper reports about a practical case-study done in two regional as-
semblies of Belgium in the context of mutualising their development with the
longer term goal to open-source the resulting more generic software [7]. Those
assemblies are the Parliament of the French Community (PCF in short) and the
French Parliament of Brussels (PFB in short), which are respectively a medium-
size and a smaller size parliament. The first step of this study was to precisely
model those two assemblies, starting from the existing situation as documented
in the regulation issued by the assemblies themselves and as observed on the
field [16].

This paper is structured as follows. In section 2, we will discuss about the re-
quirements on the adequate language to capture parliamentary workflow. Then,
in section 3, we will see how a number of candidate languages fit those require-
ments by showing selected parts of our case studies. Section 4 will compare those
models based both on the previous requirements and on a reference framework
for assessing model quality. Based on this, a number of important lessons learned
from those models will be discussed. Finally, section 5 will draw some conclusions
and perspectives.

2 Requirements on the Modelling Language

The main requirements discovered during the study were the following:

– [BEHAV] Ability to capture behaviors. The language must be able to capture
the dynamic nature of the parliamentary workflows.

– [RESPO] Ability to capture responsibilities. The language should be able to
describe the various agents playing some role in the system and their respon-
sibilities. More precisely what they control and under which circumstances.

– [GOAL] Ability to capture the goals. The language should be able to cap-
ture underlying goals of some operational construct. Goals can be either
functional or non-functional (such as security, reliability, etc.)



28 Proceedings of ReMoD 2008

– [PRECISE] Precise language. The language should be precise and unam-
biguous.

– [UNDER] Easy to understand. The language should be accessible to non spe-
cialist for validation purposes. Languages should preferably have a graphical
semantics associated with it.

– [TOOLS] Tool support. The language should be supported by tools at mod-
elling level and at run-time level, either directly or through some model
transformation.

3 Study of Selected Languages

This section reports about various modelling techniques used to model parlia-
mentary work. It does not claim to present all relevant techniques in an exhaus-
tive way. A useful reference for this is [24].

3.1 Use Cases and Sequence Diagrams

A use case is a description of a system’s behaviour as it responds to a request that
originates from outside of that system. Use cases, stated simply, allow description
of sequences of events that, taken together, lead to a system doing something
useful.[2] Each use case describes how the actor will interact with the system to
achieve a specific goal. One or more scenarios may be generated from each use
case, corresponding to the detail of each possible way of achieving that goal (or
possible exception/failure).

Fig. 2. UC Context Model of a Parliament Management System.

Notations for Use Case include UML Use Case (graphical) [11] and template-
based descriptions (textual) [5]. They are usefully complemented by sequence



Proceedings of ReMoD 2008 29

diagrams for graphically describing the generated scenarios with a very compre-
hensive view of the system with the time on the vertical dimension and the in-
teraction between agents structured horizontally. Note while UML 1.X sequence
diagrams were limited to rough traces, UML 2.X supports many structuring
operators like conditionals, options, even loops, with the danger to capture too
much complexity in a single scenario.

Fig. 3. Sequence Diagram for some procedure.

UML Use Cases diagrams have a good capacity to capture the context of
the system and the general responsibilities but lacks the capacity to reflect the
dynamic behavior. Textual templates can describe some part of the behavior
but not very precisely. Sequence diagrams used together enable a more precise
capture of behaviours but generally partial and at instance level. Goals can be
captured using methods like [5] however generally mainly at functional level.

3.2 Goal Models

From [22], a goal is an objective the system under consideration should achieve.
Goal formulations thus refer to intended properties to be ensured; they are op-
tative statements as opposed to indicative ones, and bounded by the subject
matter. Goals may be formulated at different levels of abstraction, ranging from
high-level, strategic concerns (such as ”Efficient Management of Parliamentary
Work”) to low-level, technical concerns (such as ”Publishing of Voted Laws on
Parliamentary Website”). Goals also cover different types of concerns: functional
concerns associated with the services to be provided, and nonfunctional concerns
associated with quality of service - such as safety, security, accuracy, perfor-
mance, and so forth. Within the scope of this paper, we will use the KAOS
goal-oriented language [8].



30 Proceedings of ReMoD 2008

Fig. 4. Goal Model of the Parliament Administration.

Goal models enable to capture, structure and reason about system proper-
ties and agent responsibilities. Languages like KAOS have precise semantics.
The goal level is defined using temporal logics [14], semantics refinements and
operations are also precisely defined [9][13]. Not however that the operational
level is not very practical to use especially to describe workflows as the language
is not designed for this level.

3.3 Final State Machines and State Diagrams

A finite state machine (FSM) is a model of behavior composed of a finite number
of states, transitions between those states, and actions. FSM have been extended
by Harel to statecharts to allow the modeling of superstates, concurrent states,
and activities as part of a state. This notation is now standardised in UML State
Diagrams [11].

State Diagrams are very popular. They are very easy to understand and thus
to use to validate a behavior even with non-experts. The hierarchical structure
allows also the system to be nicely described at progressive levels of details.
There are precise semantics although several alternative semantics have been
defined, leaving possible ambiguities but generally for specific cases. Goals can
be associated with a FSM for example as invariant or obligation an FSM should
enforce. This can be verified using model-checking tools.

FSM are also supported by tools for simulating the system or generating
the behavioral part of the code (e.g. Rhapsody [21]). It is also easy to design
such a generator. In our case study, the company responsible of the system
development has such a framework, called XOooF which is now open-source
[20]. The framework supports the partial generation of the application code



Proceedings of ReMoD 2008 31

Fig. 5. Final State Machine for the Journey of a Bill.

from XML-based description of state machines. Some aspects not covered are
persistency, advanced transactions and graphical user interfaces. Several target
languages such as VB/COM, C#, Java and Python are supported.

3.4 Business Process Oriented Languages

Many notations have developed for modelling business processes, with different
coverages (activities, products, decisions, context), specification levels (organi-
sation, orchestration, web-services) and underlying semantics. To leverage this,
BPMN (Business Process Modelling Notation) is a current standardisation ef-
fort aiming at unifying the expression of basic business process concepts (e.g.,
public and private processes, choreographies) as well as advanced modelling con-
cepts (e.g., exception handling, transaction compensation) [1]. The connection
of BPMN with more operational standard such as BPEL (Business Process Ex-
ecution Language) is however not entirely solved as discussed in [17] but seems
to be evolving favorably.

UML - more software-oriented - also support this kind of modelling through
the activity diagram which can represents business and operational step-by-step
workflows of components in a system. Activity diagrams can be unstructured
or organised using swimlanes (somehow similar to sequence diagram lifelines)
which enable a better capture of the action responsibilities. Figure 6 shows a
typical process model of the parliament work using those notations.

At semantic level, BPMN remains semi-formal although quite complete.
Some attempts have been made to more deeply formalise parts of it [3]. Back
to our example described with UML, the semantics were changed between UML



32 Proceedings of ReMoD 2008

Fig. 6. Activity Diagram for the Journey of a Bill.

1.x w (variation of the UML State Diagram) and UML 2.x (semantics based on
Petri nets) [18]. This is a good evolution as Petri nets have better mechanisms
for controlling concurrency and synchronisation which is important in workflow
management. Petri nets are frequently used as formal underlying model and are
also supported by tools (e.g. Flexo was considered for the Belgian case study
[10]).

4 Lessons Learned

In this section, we will first compare the qualities of the previous models w.r.t.
the requirements described in section 2. This discussion will also rely on the
SEQUAL reference framework for assessing the quality of models [12]. The rest
of the section will put those conclusions in a wider perspective by going back to
the e-government goals defined by Schefbeck [19].

4.1 Comparison Table of Modelling Languages

Table 1 summarises our comparative work based on our requirements described
in section 2.



Proceedings of ReMoD 2008 33

Model Use Cases Goal Trees State Diagrams Business Pro-
cess Models

Behaviour through se-
quence dia-
grams

partially very good, hi-
erarchical, scal-
able

very good

Responsibility at context level very good poor through swim-
lanes

Precision semi-formal formal (KAOS) formal (FSM) formal (petri-
nets)

Understand. good good very good very good

Tools UML tools Objectiver UML tools,
Rhapsody

BPEL tools,
some UML
tools...

Table 1. Modelling Languages Comparison Table (domain requirements)

To consolidate this comparison, we used the SEQUAL reference framework
which defines a number of model qualities: empirical, syntactical, semantical,
pragmatic, societal, knowledge and language [12]. Those quality factors are com-
pared in table 2. Some of those qualities are already addressed in our require-
ments: empirical is understandability, semantical is precision. The organisational
quality is defined as how well the goals of modeling are reached by the model.
This is exactly the purpose of table 1, so this factor is a synthesis of that table.

Model Use Cases Goal Trees State Diagrams Business Pro-
cess Models

Empirical Poor-to-
medium (de-
pending on
template used)

medium-to-
good (depend-
ing on refine-
ment checking
strategy)

medium (diffi-
cult to struc-
ture)

good (control
flow)

Semantical semi-formal formal (KAOS) formal (FSM) formal (petri-
nets)

Pragmatic good good very good very good

Knowledge good (cap-
ture of sce-
nario/functions)

very good (cap-
ture of system
goals)

poor
(states/transition
not directly
linked to do-
main)

good (business
process level)

Organisational medium medium medium good

Language generic generic generic more specific

Table 2. Modelling Languages Comparison Table (SEQUAL)

The main lessons learned from those tables is that a single language does
not fit all our requirements. Activity diagrams seem the most adapted for our
purpose given the current evolution of methods and tools while in the past, state
machines were more the reference framework.

Other notations are useful to use in a complementary matter. Especially in
the reengineering, and comparative study it is important to make sure the goals



34 Proceedings of ReMoD 2008

are fully aligned because variation in goals will inevitably result in variation at
the workflow level and it is important to understand if some variation is a design
decision or more fundamentally bound to a goal.

4.2 Procedural Quality

The use of modelling techniques helped greatly in the process of understanding
the way the assemblies are working, their commonalities and differences.

During the elicitation phase in the first assembly (PCF), the various models
were built from a number of sources of domain knowledge: the official regula-
tion of each parliament, interviews with the staff and the documentation of the
existing system. Building those models allowed us to have guidelines for com-
pleteness (e.g. asking about missing transitions) and for conflict identification
(e.g. different actions reported by different sources). It allowed us to discover a
number of undocumented choices left open by the regulation and to understand
the rationale behind those choices. This resulted in an improvement of the doc-
umentation of the procedures, which are not only meant for developing a new
system but also helpful as training material for new collaborators.

The work in the second assembly (PFB) did not start from scratch but was
carried out based on the models from the first assembly (PCF), assuming their
would be only few differences. This assumption was confirmed with the following
main differences:

– Syntactic variations in the vocabulary used (e.g. the term for a law, for the
board of presidents...)

– Small behavioral differences, typically variations in some transitions. Those
are easily implemented at specification level and propagated to the imple-
mentation by regenerating the impacted code.

– A more fundamental difference is the distribution of roles: as PFB is smaller,
the same people would typically handle a several tasks. As the model was
built using roles, this has however no impact on our models.

4.3 Output Quality

Prior to our study, a strong model-based approach was already in place in PCF
(based on finite state machines) and partially at PFB (based on a document
management workflow).

The impact on the output quality was especially visible at PCF with a chain
of model-based tools supporting the whole parliamentary process, from the gath-
ering of minutes to the diffusion of the reports on the website.

The traceability of the parliamentary process is also excellent based on the
accumulation of state traces in the system.

4.4 Maintainability and Reusability

The long term goal initiated by the case study is to eventually be able to share
common code between assemblies and even to open-source such code. The cur-
rent closed source model has a number of limits, especially when a number of



Proceedings of ReMoD 2008 35

assemblies share common needs and have to develop their own solutions sep-
arately and at high cost. This process has already started under the Tabellio
project [7]. A number of generic enough modules have been open-sourced to-
gether with the XOoof FSM-based framework.

For the process to be successful, the code quality should however be improved
prior to its open-sourcing and this is currently on-going. A major evolution is
the transition to a workflow management systems which is not based on code
generation as before but on a workflow engine, based on the Plone framework
and in coordination with other e-Government initiatives such as PloneGov [6].
Here again, the underlying model proves fundamental has it will drive the con-
figuration of the new system and the definition of the data migration procedure
between repositories.

5 Conclusions and Perspectives

In this paper, we explored various way to model parliamentary workflows using
different languages. The comparison was driven by a real-world case study and
performed using both specific requirements and the SEQUAL reference frame-
work. As expected, a single language cannot fit all requirements and qualities.
However business process models seem the most adapted for the needs of mod-
elling parliamentary workflows. Other notations such as goal models allow the
analyst to have a deeper insight of the system and to better understand varia-
tions between different assemblies and better manage the evolution of a given
system.

Among the other lessons learned, the use of adequate models greatly helped
in the understanding of the way each assembly was working and how similar they
were. Models are also fundamental to deploy tool support. Firstly, in a model-
driven architecture perspective, models greatly ease the development of solutions
by removing the need to write and test substantial part of the system. Secondly,
in a mutualisation perspective, those tools can even be shared together with
some representative models and guidelines on how to adapt them. The reuse is
then maximal, reducing maintenance costs and allowing easy tuning to the need
of other assemblies, especially those of developing countries. This also opens a
number of interesting perspectives to further improve the way democracy works:
speeding the process, introducing more transparency, etc.

At the methodological level, there is room for many improvements. The com-
parison work done here is very coarse grained. In order to draw more conclusions
about the models and the way to use them, more precise metrics have to be de-
fined and measured together with the reference quality framework. This work
will be considered in the current re-engineering phase of the workflow system.

Acknowledgements

This work was financially supported by the Walloon Region and European Union
(ERDF and ESF). We also warmly thanks the staff of the respective parliaments.



36 Proceedings of ReMoD 2008

References

1. Object Management Group/Business Process Management Initiative,
http://www.bpmn.org/.

2. Kurt Bittnera and Ian Spence, Use Case Modeling, Addison Wesley Professional,
2002.

3. M. Brambilla, LTL Formalization of BPML Semantics and Visual Notation for
Linear Temporal Logic, Tech. report, January 2005.

4. Daniel Brassard, How can information technology transform the way parliament
works ?, Parliamentary Information and Research Service - Library of Parliamen-
tarians of Canada, 2005.

5. Alistair Cockburn, Writing Effective Use Cases, Addison-Wesley, 2001.
6. PloneGov Consortium, The PloneGov Project, http://www.plonegov.org.
7. Tabellio Consortium, Tabellio : an Open Source Collaboration for Assemblies,

http://www.tabellio.org.
8. A. Dardenne, A. van Lamsweerde, and Stephen Fickas, Goal-Directed Requirements

Acquisition, Science of Computer Programming 20 (1993), no. 1-2, 3–50.
9. R. Darimont and A. van Lamsweerde, Formal refinement patterns for goal-driven

requirements elaboration, 4th FSE ACM Symposium, San Francisco, 1996.
10. Denali, FlexoBPM, http://www.denali.be.
11. Martin Fowler, UML Distilled - Third Edition, Addison-Wesley, 2004.
12. J. Krogstie and A. Solvberg, Information Systems Engineering: Conceptual Mod-

elling in a Quality Perspective, Kompendiumforlaget, Trondheim, 2003.
13. E. Letier and A. van Lamsweerde, Deriving Operational Software Specifications

from System Goals, FSE’10, Charleston, November 2002.
14. Z. Manna and A. Pnueli, The Reactive Behavior of Reactive and Concurrent Sys-

tem, Springer-Verlag, 1992.
15. Australian National Audit Office, Managing Parliamentary Workflow - Best Prac-

tice Guide, April 2003.
16. C. Ponsard, A Comparative Analysis of the French Community

Parliament and the French Parliament of Brussels (in French),
http://www.tabellio.org/documentation/manual/analyse-comparative-pcf-pfb-
cetic, 2005.

17. J. Recker and J. Mendling, On the Translation between BPMN and BPEL: Concep-
tual Mismatch between Process Modeling Languages, Proc. of 11th Int. Workshop
on Exploring Modeling Methods in Systems Analysis and Design, June 2006.

18. W. Reisig, Petri Nets: An Introduction, Springer-Verlag New York, Inc., New York,
NY, 1985.

19. Gunther Schefbeck, E-Parliament: Legislative Standards and Good Practice, Pro-
ceedings of International Workshop on E-Parliament: Managing Innovation,
Geneva, Switzerland, 2007.

20. SoftwareAG, XOooF, http://xooof.sourceforge.net, 2006.
21. Telelogic, Rhapsody, http://www.telelogic.com/products/rhapsody.
22. A. van Lamsweerde, Goal-Oriented Requirements Engineering: A Guided Tour,

Invited minitutorial, Proc. RE’01, August 2001.
23. Wikipedia, Parliament, http://en.wikipedia.org/wiki/Parliament, 2008.
24. Michael zur Muehlen, Workflow-based Process Controlling: Foundation, Design,

and Application of Workflow-driven Process Information Systems, Logos Verlag,
2004.


