
A UML Profile as Support for Transformation of
Business Process Models at Enterprise Level

Reyes Grangel1, Michel Bigand2, and Jean-Pierre Bourey2

1 Grupo de Investigación en Integración y Re-Ingenieŕıa de Sistemas (IRIS), Dept. de
Llenguatges i Sistemes Informàtics, Universitat Jaume I, 12071 Castelló, Spain

grangel@uji.es
2 Laboratoire de Génie Industriel de Lille, Ecole Centrale de Lille, 59561 Villeneuve

d’Ascq Cedex, France
michel.bigand@ec-lille.fr,jean-pierre.bourey@ec-lille.fr

Abstract. The work presented in this paper was initiated in the con-
text of the Task Group 2 (TG2) of the INTEROP Network of Excellence.
TG2 has worked on Model-driven based solutions for achieving interoper-
ability. Its objective was to analyse and propose guidelines and methods
to contribute solving the interoperability problems of Enterprise Soft-
ware Applications (ESA) starting out from the enterprise models level
and using an Model Driven-based approach. This method called Model
Driven Interoperability (MDI) tackles both the vertical and horizontal
interoperability problems.

In this context, this paper mainly focuses on top levels of the MDI ap-
proach and more precisely on transformations of business process models
at the Enterprise Modelling level. This kind of transformation is one com-
ponent of a more general model-driven approach to contribute solving
business process integration problems or, more widely, interoperability
problems. A UML R© Profile definition is proposed to transform GRAI
Extended Actigrams into UML Activity Diagrams, as a mechanism to
avoid the semantic losses generated by transformations. The implemen-
tation of this Profile with the Atlas Transformation Language (ATL) is
finally presented.

Key words: Model Transformation, Business Process Model, GRAI Ex-
tended Actigrams, UML Profile, ATL

1 Introduction

Interoperability is considered to be achieved when interactions are actual at
all layers of enterprises, that is the business, knowledge, and ICT levels, and
when semantics can also be used to accomplish a common understanding among
collaborative enterprises [1, 2].

On the other hand, model-driven approaches for generating software pro-
vide many advantages by improving portability, interoperability and reusability
through the architectural separation of concerns. In this way, Model Driven



74 Proceedings of MDISIS 2008

Architecture R©1 (MDA R©), which was defined and adopted by the Object Man-
agement Group

TM
(OMG

TM
) in 2003 [3], intends to promote the use of models

as a fundamental way of designing and implementing different kinds of systems
by means of performing successively model transformations as automatically as
possible. This architecture thus defines a hierarchy of models from three differ-
ent points of view: the Computation Independent Model (CIM), the Platform
Independent Model (PIM), and the Platform Specific Model (PSM). An addi-
tional point of view deals with the platform description: the Platform Description
Model (PDM) used as input for the transformation of PIM into PSM [3].

Therefore the Task Group 2 (TG2) of the INTEROP NoE [4] has worked
on Model-driven based solutions for achieving interoperability: TG2 aims at
analysing and proposing guidelines and methods to contribute solving the in-
teroperability problems of Enterprise Software Applications (ESA) starting out
from the enterprise models level and using an MDA-based approach. This method
is called Model Driven Interoperability (MDI) [5]. TG2’s works focused first on
the models and transformations to be performed at the CIM level from theo-
retical point of view. At this level the GRAI2 method [6, 7] has been chosen
for capturing the enterprise models and UML as an interface between enterprise
models and IT models. More precisely TG2 worked first on an initial model map-
ping from GRAI Extended Actigrams to standard UML Activity Diagrams [8]
and a transformation tool was used to implement and validate the proposed
mapping. The results presented in this paper deal with the definition of a UML
Profile and its use with a transformation language to perform a transformation
without semantic loss.

The paper is organised as follows. Section 2 defines the context of the study.
Section 3 gives an overview on model transformation concepts. In Section 4, the
basic constructs of GRAI Extended Actigrams are presented and a first mapping
with semantic losses is described and discussed. Then, a UML profile is defined
in Section 5 and implemented within a transformation tool presented in Section
6. Finally, Section 7 outlines the main conclusions.

2 Context of the Study

Enterprise Modelling is achieved through using Enterprise Modelling Languages.
Several formalisms, methodologies, frameworks and architectures dealing with
Enterprise Modelling have been proposed, such as GRAI [6, 7], CIMOSA [9],
PERA [10], IDEF [11], and so forth. The GRAI Methodology is a well-known
Enterprise Modelling Methodology. One of the strengths of this Enterprise Mod-
elling Methodology is that it takes into account both the decisional and the
functional aspect together, as well as the informational and business process
aspects. All these aspects are taken into account from both a general and a
1 Model Driven Architecture, MDA, Object Management Group, OMG, UML and

XMI are either registered trademarks or trademarks of Object Management Group,
Inc. in the United States and/or other countries.

2 Graph with Results and Activities Interrelated



Proceedings of MDISIS 2008 75

local point of view. GRAI Grids are defined to model the overall functional
and decisional aspects and GRAI Nets are used for local modelling of decision
processes. GRAI Extended Actigram are dedicated to Business Process Mod-
elling. However, one the main weaknesses of Enterprise Modelling Languages is
the difficulty in establishing strong links between enterprise models and software
development [12]. This paper addresses one part of this issue and more precisely
the Business Process Modelling aspects by defining a transformation of GRAI
Extended Actigram.

On the other hand, UML [13], which has been successfully used to model
and develop information systems in different domains, can also be useful in
the context of Enterprise Modelling [14, 15]. It is the most widely known OMG
specification, as an object-oriented modelling and specification language used to
model applications in the context of Software Engineering. Numerous revisions
have enabled UML to mature significantly from UML 1.1 up to UML 2.1.1,
which is the current OMG adopted specification [13]. For these reasons, UML is
a good candidate to establish links between the context of Enterprise Modelling
and Software Engineering, and therefore, to bridge the gap between these two
contexts.

Therefore, the two main problems we have to address at this level are, first,
that the enterprises may use different formalisms to express their process models
and, second, that the gap between business models and models used in the IT
domain must be filled.

For solving the first kind of problems, point to point model transformations
can be developed for each couple of used formalisms. Another more effective
way, is to use a neutral formalism, framework or architecture supporting inte-
gration [16]. This last solution was presented for example in [17] where CIMOSA
was used as integration framework. This work focused more on the mapping of
UML Use Cases or Data Flow Diagrams onto CIMOSA partial models to perform
enterprise integration.

For solving the second kind of problems, MDA-based approach can be used.
Within this kind of approach different levels of abstractions are defined from
business level (enterprise level) down to code. The transition from one level to
another is supported by transformations.

The common point of these approaches is that they are both model- and
transformation-based for solving what can be called horizontal or vertical inter-
operability.

3 Model Transformations

The objective is to transform a source model ’Ma’ into a target model ’Mb’.
One of the most commonly used techniques for model transformation is known
as the ’MetaModel Approach’ [3] based on the Model Transformation Pat-
tern shown in Fig. 1. In this approach, the first step consists in defining source
and target metamodels (resp. ’MMa’ and ’MMb’) defining the languages used
for the model descriptions (resp. ’Ma’ and ’Mb’). Each model conforms to its



76 Proceedings of MDISIS 2008

metamodel. Then a mapping (’Tab’) between the metamodels is built. It con-
sists in establishing correspondences between constructs of each metamodel. This
mapping can be defined as a simple table showing the construct matching. For
example in [17] a table for the mapping of UML use cases or DFD onto CIMOSA
can be found. This kind of table can be used as specification to be implemented
by using a more formal and executable language (like XSL, general programming
languages or languages dedicated transformation such ATL [18]). In this case
the used language conforms to its metamodel ’MMt’. By using an executable lan-
guage it is possible to perform the transformation ’Tab’ from any input model
’Ma’ conforming to ’MMa’ to generate the corresponding target model ’Mb’
conforming to ’MMb’.

In our study ’MMa’ is the Grai Extented Actigram metamodel. It will be
described in the following section. ’MMb’ is the UML metamodel which is com-
pletely defined in [13]. A first mapping from ’MMa’ to ’MMb’ is presented in
section 4.2. Since this mapping introduces semantic losses, the target UML meta-
model is extended that means that the extension mechanism of UML is used to
define a dedicated Profile presented is section 5.

Fig. 1. Model Transformation Pattern from [19]

4 First Transformation from GRAI Extended Actigram
to UML Activity Diagram

GRAI Extended Actigrams (noted ’GRAI EA’ in the following) are one of the
three main formalisms that can be used within the framework of the GRAI
Methodology. This formalism is used to model business processes. It is an exten-
sion of IDEF0 Diagrams [11]. The main concepts of GRAI EA and their relations
are represented on the Metamodel shown in Fig. 2 and 3 and described more
in detail hereafter. A more complete GRAI EA Metamodel description can be
found in [7, 20].



Proceedings of MDISIS 2008 77

Fig. 2. GRAI Extended Actigram metamodel: structure

4.1 GRAI Extended Actigram

A GRAI Extented Actigram is composed of:

– Process: set of extended activities that are logically inter-related and trig-
gered by flows and eventually by using operators.

– Activity: this represents a transformation or a production (output flow).
Due to the hierarchical structure of an Extended Actigram, an activity can
be broken down into several activities. In this case, from here on, the activity
will be called a Structured Activity. An activity that has not been broken
down will be called a Leaf Activity. Structured Activity and Leaf Activity
are not directly represented as primary constructs of the metamodel but are
derived from the fact an Activity which is a kind of process is broken down
or not.

– Resource: human or material mean used by a process to support one or
several activities.

– Connector: used to represent the origin or the destination of a flow when
the origin or the destination is outside the current diagram. Possible roles
are: process connector, internal connector, external connector.

– Flow: used to link Activities. A flow is directed and can be an input, output,
control or resource of an activity. A flow can also be used to link Connectors
to other diagram elements.

– Logical Operator: this represents a convergence or a divergence of multiple
flows and their timing. There are three different kinds of process logical
operators: synchronous AND (sAND), asynchronous AND (aAND) and OR.

Fig. 4 shows an excerpt of a GRAI EA describing an order management
process of a real case study.

4.2 First Mapping

In [20] the authors have proposed and implemented a first transformation from
GRAI EA to standard UML AD using the basic UML constructs defined in [13].



78 Proceedings of MDISIS 2008

Fig. 3. GRAI Extended Actigram metamodel: flow connections

Fig. 4. Excerpt of a GRAI Extended Actigram

This mapping is synthetised in Fig. 5. This table is made of three columns.
The first one describes the source constructs of GRAI EA. The second one
describes, when mentioned, the conditions to be checked out in order to select
the corresponding target construct of UML AD described in the third column.

Fig. 5. Simple mapping of GRAI EA to UML AD



Proceedings of MDISIS 2008 79

4.3 Application and Discussion

The implementation of a transformation in conformance to this first mapping of
the GRAI EA to UML AD leads to some semantic losses which are:

1. Connectors and Resources. Since these two source constructs are mapped
onto the same target elements, it is impossible to determine on the obtained
model if the ActivityParameterNode is related to a resource or to a connector.
Moreover, for this source construct, its type (internal, external, process) is
not preserved.

2. Synchronism features of AND operator. This information is not preserved
during the transformation of the source model.

3. Type of incoming flows of the obtained activities: it is impossible to
determine if these flows are input, control or resource flows as they appear
in the source model. The type of flow (product or information) is also lost.
At last the type of GRAI Resources (human or material) is not preserved
by the transformation.

All these semantic losses make it impossible to have a complete traceability
between the source and the target model. It is also impossible to build up a
reverse transformation from the obtained UML AD to a GRAI EA.

The question is then, how to preserve the semantics of the source model
after the transformation? Two main approaches for solving this problem can be
investigated. The first one consists in enriching the set of constructs of the target
modelling language and then in keeping additional information in the target
model. The second one consists in keeping the additional semantics ’outside’ the
target model, for example, by storing applied transformation rules into a log file
or by using a third linked model capturing the semantic gaps. In this paper, only
the first approach is investigated through the definition of a UML profile, which
is presented in the next section.

5 UML Profile Definition

A profile is a specific version of UML. Generally, a profile is first defined by means
of a domain model which represents the new concepts and their relationships as
well as a description of their semantics. Then the mapping of these new concepts
onto UML constructs is defined through a set of extension elements applied to
the UML basic constructs. Therefore a UML Profile can be considered as a
lightweight extension mechanism that adapts a UML Metamodel [13] to one
Specific Modelling Domain. A typical UML Profile is made up of stereotypes,
tagged values and constraints [13]:

– Stereotypes: these are specialisations of the metaclass Class; they define
how an existing metaclass may be extended. Each stereotype may extend
one or more metaclasses of the UML Metamodel.

– Tagged Values: these are properties of a stereotype and are standard
metaattributes.



80 Proceedings of MDISIS 2008

– Constraints: these are conditions or restrictions expressed in natural lan-
guage text or, better, in a machine readable language such as OCL [21].

The profile definition presented in this section is only applies to the GRAI
EA transformation. It is a part of a more general on-going work that aims at
defining a complete specialisation of UML for bridging all the GRAI formalisms
(Extended Actigram, Grids and Nets) with UML. Since the objective is both to
transform GRAI EA and to define a UML profile, the starting domain model
for the profile definition is the GRAI EA metamodel presented in Section 4.1.
As mentioned, one of the main problems of model transformations is the loss
of information. In this section, an approach based on the definition of a UML
Profile called ’UML Profile for GEA2UAD’ is presented.

5.1 Flows

GRAI defines four types of flows: Control Flow, Resource Flow, Input Flow and
Output Flow. This definition of types of flow is given from an activity point of
view. Another type of flow can be introduced. It deals with flows which establish
connections between two operators or between one operator and one connector.
This kind of flow will be named Intermediate Flow in the following.

To keep this distinction between different flow types, five main stereotypes
are defined as illustrated in Fig. 6 and are called graiInputFlow, graiControlFlow
and graiResourceFlow, graiOutputFlow and graiIntermediateFlow.

All these stereotypes are specialisations of the abstract stereotype graiFlow,
which has been introduced to factorise the common property graiFlowNature in-
troduced to characterise the type of flow (information or product). The abstract
stereotype graiFlow is an extension of both UML ControlFlow and ObjectFlow
because one GRAI Flow can be transformed either into a UML ControlFlow or
ObjectFlow depending on the nature of the GRAI elements it links. Actually, the
transformation result must conform to the UML Metamodel and especially to
its connection rules: a UML ObjectNode is only connected to other nodes using
an ObjectFlow. Therefore if a GRAI Flow connects a resource or a connector
which are both mapped onto UML ActivityParameterNode (as explained in sec-
tion 5.3) which is a specialisation of UML ObjectNodes, then the GRAI Flow
must be transformed into a UML ObjectFlow. In the other case, GRAI Flow are
transformed into a UML ControlFlow.

Fig. 6 also shows the definition of the enumeration GraiFlowNatureType con-
taining two literals (information and product) used to type the property grai-
FlowNature.

5.2 Synchronous and Asynchronous Operators

As illustrated in Fig. 7, UML JoinNode and ForkNode were extended using two
different stereotypes: graiSynchronous and graiAsynchronous. The use of these
stereotypes make it possible to keep in the obtained UML model information
depending on the nature of the source GRAI Logical Operator (Synchronous or
Asynchronous) [7].



Proceedings of MDISIS 2008 81

Fig. 6. Stereotypes extending UML ControlFlow and ObjectFlow

Fig. 7. Stereotypes extending UML JoinNode and ForkNode

5.3 Connectors and Resources

The third type of extension defined is related to the UML ActivityParameterNode
Metaclass. ActivityParameterNodes are ObjectNodes used to accept inputs to an
activity and provide outputs.

As illustrated in Fig. 8, four stereotypes are defined as extensions of Activ-
ityParameterNodes: three of them correspond to each type of GRAI connector
(graiExternalConnector, graiInternalConnector and graiProcessConnector) and
the fourth deals with the mapping of GRAI resources. A property is added to
the stereotype graiResource in order to specify the type of resource (material or
human).

Fig. 8. Stereotypes extending UML ActivityParameterNode



82 Proceedings of MDISIS 2008

5.4 Application

The proposed profile described in the previous sections is used to define a new
mapping presented in Fig. 9. Compared to Fig. 5, two columns have been added
on the left part.

1. The first defines the stereotypes to use according to the source element and
the condition. For example, the GRAI Connector is mapped onto a UML Ac-
tivityParameterNode stereotyped by graiProcess, graiInternal, graiExternal
according to the condition depending on the type of the GRAI Connector.

2. The second gives the different values to be given to stereotype properties
when needed. For example, for the mapping of GRAI Resource it is possible
to specify for an ActivityParameterNode stereotyped by graiResource if it
corresponds to a material or human resource.

Fig. 9. Definition of a mapping using the proposed UML Profile

6 Implementation with a Model Transformation Tool

In order to demonstrate the feasibility of the implementation of the proposal, this
section shortly presents a model transformation language. Then, the application
of the defined UML Profile is described.



Proceedings of MDISIS 2008 83

6.1 ATL Overview

Atlas Transformation Language (ATL) [18] is a hybrid of declarative and
imperative transformation languages based on OCL [21]. The preferred style
of transformation writing is declarative, which means that mappings can be
expressed rules. However, imperative constructs are provided so that some map-
pings too complex to be declaratively handled can still be specified inside rules
or by means of helpers.

A rule describes the transformation from a source model to a target model
by relating metamodels. It is introduced by the keyword ’rule’ followed by
the rule’s name. In the source pattern, rules declare which element type of
the source model has to be transformed. It consists of the keyword ’from’, a
source variable declaration and an optional precondition. This precondition is
expressed using an OCL expression that restricts the rule triggering to elements
of the source model that satisfy this precondition. A first optional section
introduced by the keyword ’using’ can be used to declare local variables. In the
target pattern, rules declare element(s) of the target model the source pattern
has to be transformed into. It may contain one or several target pattern elements.
A target pattern element starts with the keyword ’to’ and consists of a variable
declaration and a sequence of bindings (assignments). A second optional sec-
tion of an ATL rule is the ’do’ section. This section specifies a sequence of ATL
imperative statements that will be executed once the initialisation of the target
model elements generated by the rule has been completed. This section will be
used below to apply stereotype to a target element. The general structure of a
rule is shown in the following code.
rule <ruleName> {

from <sourceVariable> : <sourceMetaModel>!<sourceElement>
[(<precondition>)]

[using <local variable declaration>]
to <targetVariable> : <targetMetaModel>!<targetElement>

(<assignments>)
[do {<imperative statements>}]
} -- end of the rule

The first rule presented deals with the transformation of a GRAI Resource
to a UML ActivityParameterNode without using the proposed Profile.
rule GraiResource2UmlActivityParameterNode {
from source_GraiResource : GraiExtendedActigramMetaModel!Resource
to target_UmlAPN : UML2!ActivityParameterNode (

-- The name is the same
name <- source_GraiResource.name ,
-- Outgoing flows of a UmlActivityParameterNode are the output flows of a GRAI Resource
outgoing <- source_GraiResource.resourceFlows ,

-- Connect to the UML ’parent’
activity <- source_GraiResource.process

)--end of ’to’ section
}

This rule simply copies both the name and the output flows of the source
GRAI Resource to the target UML ActivityParameterNode. Then, according to
the UML Metamodel, the generated ActivityParameterNode is connected to its
UML parent Activity. This activity is the target element of the transformation
of the GRAI Process the source GRAI Resource belongs to.



84 Proceedings of MDISIS 2008

6.2 Applying UML Profiles

ATL makes it possible to use UML Profiles. The method to use profile with ATL
is made up of four steps:

1. The first one consists in defining the profile with an UML tool.
2. In the second step, the profile is applied to the generated UML model. For

example, in order to apply the profile called ’UML Profile for GEA2UAD’
to a target UML Model, the following statement must be added in the ’do’
section of the rule creating the UML Model :

target_UmlModel.applyProfile(UML2!Profile.allInstances()->
select(e | e.name = ’UML_Profile_for_GEA2UAD’).first());

3. The third step consists in applying stereotypes to the elements of the UML
target model for which we want to keep additional semantics coming from
the source model. The ’applyStereotype’ method is invoked on the target
element with an instance of the metaclass Stereotype as parameter. To get
it, the ’getApplicableStereotype’ method is invoked with the name of the
stereotype to apply.

4. Finally, for target elements, tagged values of stereotyped UML model ele-
ments are set using the ’setValue’ method. This method is invoked on a
UML element through the use of three parameters: (1) the stereotype, (2)
the name of the tagged value and (3) its value.

The next rule shows the complete code to transform a GRAI Resource into a
UML ActivityParameterNode including both the application of the stereotype
and the assignment of its tagged value (see the ’do’ part of the rule).

rule GraiResource2UmlActivityParameterNode {
from source_GraiResource : GraiExtendedActigramMetaModel!Resource
to target_UmlAPN : UML2!ActivityParameterNode (

-- Copy the name
name <- source_GraiResource.name ,
-- Outgoing flows of a UmlActivityParameterNode are the output
-- flows of a GRAI Resource
outgoing <- source_GraiResource.resourceFlows ,
-- Connect to the UML ’parent’
activity <- source_GraiResource.process

) --end of ’to’ section
do {
-- Third Step: Apply Stereotype
target_UmlAPN.applyStereotype(

target_UmlAPN.getApplicableStereotype(’UML_Profile_for_GEA2UAD::graiResource’));

-- Fourth Step: Set Tagged Values (Stereotype Properties)
if source_GraiResource.type = #human
then target_UmlAPN.setValue(

target_UmlAPN.getAppliedStereotype(’UML_Profile_for_GEA2UAD::graiResource’),
’graiResourceNature’,
’human’)

else target_UmlAPN.setValue(
target_UmlAPN.getAppliedStereotype(’UML_Profile_for_GEA2UAD::graiResource’),

’graiResourceNature’,
’material’)

endif;
} --end of ’do’ section
} -- end of the rule



Proceedings of MDISIS 2008 85

6.3 Discussion

To date, 19 ATL rules have been written to implement the complete mapping
and Fig. 10 shows the result obtained after the transformation of the GRAI EA
shown in Fig. 4. This screen capture was obtained after importing directly the
generated model into a UML modelling tool. It shows the model explorer on
the upper left part of the screen, the model outline on the lower right part, the
diagram on the upper right part and, on the lower right part, the properties tab
showing information about the model element selected in the graphical area. The
defined UML Profile has been used and Fig. 10 shows especially the stereotypes
used for Flows and ActivityParameterNodes. These kind of semantic annotations
labelling UML model elements can be used for reverse transformation purposes
as well as traceability information for lower levels of abstraction.

Fig. 10. UML Activity Diagram using the profile

This experiment has shown how it was possible to define a UML profile to
fill in the semantic gap between GRAI EA and UML AD and to implement the
profile-based mapping using a transformation language. This approach which
is not limited to GRAI EA makes it possible to establish a bridge between
dedicated Enterprise Modelling Languages and UML keeping semantics of the
source concepts by using stereotypes and tagged values. It can be used within a
vertical MDA approach to link together CIM and PIM levels.



86 Proceedings of MDISIS 2008

7 Conclusion

This paper is focused on the transformation from GRAI EA to UML AD, and
particularly on a specialisation of UML AD through a profile definition which
is the first part of the contribution. This profile makes it possible to define a
complete mapping without semantic losses between the two modelling languages
used for business process modelling. That is the reason why this mapping is more
adapted to contribute solving horizontal interoperability problems at CIM level.
The second contribution is related to the implementation of the defined mapping.
A transformation language has been presented and used both to show how a
profile can be implemented and to validate the mapping by experimentation.
The study developed within the framework of the project tends to demonstrate
the feasibility of an overall proposal for improving the interoperability and the
cooperation in a Business Process Management context.

The profile discussed in the paper is a part of a more general UML special-
isation dedicated to the transformation of all the GRAI formalisms into UML.
Two other profiles are under development for the transformation of GRAI Grids
and GRAI Nets used for decision making processes modelling. About interoper-
ability problem solving, the main interest of this kind of transformations is, first,
to bridge the gap between the business process modelling domain that uses spe-
cific methodologies such as GRAI, and the software development domain using
UML. More generally, this proposal can be considered as a translation from one
formalism to another one, and therefore, it can be used to achieve an horizontal
interoperability between two enterprises that use two different business process
modelling languages at the same level of abstraction.

Acknowledgments. This work was funded by the EC within the 6th FP, IN-
TEROP NoE [4]. The authors were indebted to TG2. It was also partially sup-
ported by DPI2006-14708.

References

1. Vernadat, F.B.: Enterprise Modeling and Integration: Principles and Applications.
Chapman and Hall (1996)

2. Chen, D., Doumeingts, G.: European initiatives to develop interoperability of
enterprise applications-basic concepts, framework and roadmap. Annual Reviews
in Control 27 (2003) 153–162

3. OMG: MDA Guide Version 1.0.1. Object Management Group. Document number:
omg/2003-06-01 edn. (2003)

4. INTEROP: Interoperability Research for Networked Enterprises Applicationsand
Software NoE (IST-2003-508011) (2007)

5. Grangel, R., Bourey, J.P., Berre, A.: Solving Problems in the Parametrisation of
ERPs using a Model-DrivenApproach. In Doumeingts, G., Muller, J., Morel, G.,
Vallespir, B., eds.: Enterprise Interoperability. New Challenges and Approaches,
Interoperability for Enterprise Software and Applications Conference(I-ESA’06),
Spinger (2006) 91–101 ISBN 978-1-84628-713-8.



Proceedings of MDISIS 2008 87

6. Doumeingts, G., Chen, D., Vallespir, B., Fénié, P., Marcotte, F.: GIM (GRAI
Integrated Methodology) and its Evolutions - a Methodology to Design and Spec-
ify Advanced Manufacturing Systems. In Yoshikawa, H., Goossenaerts, J., eds.:
DIISM ’93: Proceedings of the JSPE/IFIP TC5/WG5.3 Workshop on the Design
of Information Infrastructure Systems for Manufacturing. Volume B-14 of IFIP
Transactions., North-Holland (1993) 101–120

7. Berio, G.: Project UEML, WP3, Deliverable D3.3, Requirements Analysis: initial
core constructs and architecture, Annex2.2, GRAI metamodelling v2.5. Technical
report (2003)

8. Bourey, J.P., Grangel, R., Doumeingts, G., Berre, A.: INTEROP NoE: Deliverable
DTG2.2: Report on Model Interoperability (2006)

9. Berio, G., Vernadat, F.B.: New developments in enterprise modelling using
CIMOSA. Comput. Ind. 40 (1999) 99–114

10. Williams, T.J.: The Purdue Enterprise Reference Architecture. In: Proceedings of
the Workshop on Design of Information Infrastructure Systems for Manufacturing,
Elsevier (1993)

11. IDEF: Integrated DEFinition Methods (2007)
12. Grangel, R., Chalmeta, R., Campos, C., Coltell, O.: Enterprise Modelling, an

overview focused on software generation. In Panetto, H., ed.: Interoperability of
Enterprise Software and Applications Workshops of the INTEROP-ESA Interna-
tional Conference EI2N, WSI, ISIDI and IEHENA 2005, Hermes Science Publishing
(2005) 65–76

13. OMG: Unified Modeling Language: Superstructure, version 2.1.1. Object Manage-
ment Group. version 2.1.1 formal/2007-02-05 edn. (2007)

14. Marshall, C.: Enterprise Modeling with UML. Designing Successful Software
Through Business Analysis. Addison Wesley (2000)

15. Eriksson, H., Penker, M.: Business Modeling with UML: Business Patterns at
Work. J. Wiley (2000)

16. Anaya, V., Ortiz, A.: How enterprise architectures can support integration. In:
IHIS’05: Proceedings of the first international workshop on Interoperability of Het-
erogeneous Information Systems, New York, NY, USA, ACM (2005) 25–30

17. Cuenca, L., Ortiz, A., Vernadat, F.: From UML or DFD models to CIMOSA partial
models and enterprise components. International Journal of Computer Integrated
Manufacturing 19 (2006) 248–263

18. Jouault, F., Allilaire, F., Bézivin, J., Kurtev, I., Valduriez, P.: ATL: a QVT-like
transformation language. In Tarr, P.L., Cook, W.R., eds.: OOPSLA Companion,
ACM (2006) 719–720

19. Allilaire, F., Bézivin, J., Jouault, F., Kurtev, I.: ATL - Eclipse Support for Model
Transformation. In: Proceedings of the Eclipse Technology eXchange Workshop
(eTX) at the ECOOP 2006 Conference, Nantes, France. (2006)

20. Grangel, R., Salem, R.B., Bourey, J.P., Daclin, N., Ducq, Y.: Transforming GRAI
Extended Actigrams into UML Activity Diagrams: a First Step to Model Driven
Interoperability. In Gonçalves, R.J., Muller, J., Mertins, K., Zelm, M., eds.: 3rd
International Conference on Interoperability for Enterprise Software and Appli-
cations, Enterprise Interoperability II, New Challenges and Approaches, Springer
(2007) pp447–458 ISBN 978-1-84628-857-9.

21. OMG: Object Constraint Language 2.0. Object Management Group. formal/06-
05-01 edn. (2006)


