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Abstract. Ontological engineering is currently being used by a range of 
functional domains to support the capture and sharing of information and 
knowledge. It has long been recognised that ontologies provide a basis for 
sharing meaning. However, several reasons explain how the management of 
knowledge contained in ontologies can be biased in a number of ways, which 
inevitably leads to the creation and use of heterogeneous ontologies. This 
situation is being witnessed in the design and manufacture stages of the product 
lifecycle, and raises an issue whenever disparate ontologies have to be made 
interoperable with each other to promote design and manufacturing knowledge 
sharing among stakeholders. Ontology mapping provides a convenient direction 
to overcome the problem of ontology heterogeneity. This paper identifies the 
nature of semantic mismatches and essential elements that need to be taken into 
account for ontology mapping. Simple examples are provided at various stages 
to support arguments. 
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1   Introduction 

In the field of product design and manufacture, due to the dispersibility of product and 
manufacturing knowledge at various stages of the product lifecycle, different 
functional domains inevitably construct their product and manufacturing ontologies 
tailored to their needs. The continuing diversity of ontologies is also partly related to 
ontologies being aligned with particular views of the world, hence resulting in biases 
and subjective features [1]. Since the definition of concepts in design and manufacture 
is dependent of the context or view being taken, this clearly identifies that an all-
embracing common basis for ontology construction to be adopted by all parties can 
prove to be very difficult and time-consuming to realise. These incommensurate 
views of the same functional domain imply incompatible systems, and incompatible 
systems imply no data sharing, no knowledge transfer, and a necessary duplication of 
effort [2].  
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Adopting an all-embracing ontology as a basis for sharing meaning, and as a 
foundation over which to build up information and knowledge exchanges, remains a 
very unlikely scenario [1], since in practice, multiple ontologies and schemas will be 
developed by independent entities [3]. Furthermore, with the widespread distributed 
use of ontologies, different parties inevitably develop ontologies with overlapping 
content [4]. These factors, although targeted at the more general problem of ontology 
heterogeneity, bring evidence of the existence of multiple ontologies developed to suit 
different functional domains and this is very likely to happen in the design and 
manufacture stages of the product lifecycle. 

In the field of product design and manufacturing engineering, a number of efforts 
has been sought towards the development of new ontology-based methodologies to 
capture knowledge behind product geometries, assemblies and process planning 
among others. For example, in the AIM@SHAPE project [5] many conceptualisations 
have been pursued, some of which include product design and shape ontologies. Kim 
et al. [6] have realised an ontology to describe assembly design attuned to the 
requirements of their domain. On the other hand, the Process Specification Language 
(PSL) ontology, which explicitly and clearly defines the concepts intrinsic to 
manufacturing process information, has been developed [7]. The growing use of 
ontologies is also witnessed in manufacturing enterprises adopting formal 
conceptualisations for knowledge representation such as at DaimlerChrysler to 
support a range of design activities [8]. This brief insight provides an awareness of the 
extent to which heterogeneous ontologies are currently being developed and this 
accounts for the difficulties associated to seamless knowledge sharing. Therefore, 
ontology heterogeneity is the primary obstacle for interoperation of ontologies [9]. 
Hence it becomes of paramount significance to reconcile multiple ontologies. 

This paper reveals a spectrum of semantic mismatches that can occur in design and 
manufacture ontologies. Next, the relevance of ontology mapping as a leap to 
promote ontology and semantic interoperability is elaborated. We also examine one 
possible mapping scenario, more specifically concerned with ontology merging 
through a domain ontology. From this investigation, we reinforce the verity behind 
semantic mismatches and finally, discussions and conclusions are provided.  

2   Semantic Mismatches between Heterogeneous Ontologies 

As previously seen, widespread multiple ontologies across a large number of 
functional domains within design and manufacture make interoperability of 
knowledge a difficult and perennial task. As a prerequisite to solving the ontology 
interoperability issue, it is first vital to understand how varied ontological concepts 
can be and in which ways ontology and semantic mismatches take place, which 
impede onto achieving seamless interoperability. Semantic mismatches can be 
interpreted from perspectives such as knowledge elicitation, databases and knowledge 
representation [1]. For the purpose of this paper, these mismatches are being 
considered from the knowledge representation side since it is probably the most wide-
ranging direction to be taken for understanding them. Appropriate examples are given 
from perspectives such as design for function, design for manufacture and 
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manufacturing planning. Some of these examples are related to standard features on 
parts such as holes. Protégé 3.3 tool has also been used for the simple definition of 
sample classes and relations in certain cases. From the knowledge representation 
perspective, a comprehensive classification of semantic mismatches to explain 
semantic heterogeneity in systems has been proposed ([1], [10]). Two main 
categorisations of semantic mismatches have been identified, namely 
conceptualisation mismatches and explication mismatches, which are explained next. 

2.1   Conceptualisation Mismatches 

Conceptualisation mismatches occur as a consequence of having two or more 
conceptualisations of a certain domain. These conceptualisations can potentially differ 
in the way they are defined as ontological entities or in the way they are related within 
ontologies. Conceptualisation mismatches involve: 
 
Class Mismatches. i.e. the different classes and subclasses present in ontologies. 

 
Categorisation Mismatch. This takes place when in two ontologies the same class has 
been defined but the class possesses different subclasses. In the following example, 
both ontologies X and Y identify the concept “Hole_Feature” but in each 
conceptualisation, different subclasses have been defined (Fig. 1). 

 
 
 
 
 

Fig. 1. Conceptual Mismatch 

Aggregation-Level Mismatch. This takes place if in both ontologies the same class has 
been defined but the latter has varying levels of abstraction. 

 
 
 
 
 

Fig. 2. Aggregation-Level Mismatch 

In Fig. 2, the concept of a “Hole” is present in both ontologies X and Y. In 
ontology X, the concepts “Diameter”, “Depth” and “Tip_Angle” are aggregated 
through the “hasDimension” property in order to define the class “Hole”. In ontology 
Y, only the “Diameter” and “Depth” concepts have been aggregated through the 
“hasDimension” relation to define the same class “Hole”. This clearly shows that the 
notion of “Hole” in Ontology X is broader than that in Ontology Y. 

 

      Ontology X                      Ontology Y 

Ontology X Ontology Y 
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Relation Mismatches. This type of mismatch is concerned with relations or 
properties present in ontologies. They involve, for instance, the hierarchical relations 
between two classes or the assignment of attributes to classes [1]. 

 
Structure Mismatch. This is likely to happen when in two ontologies, experts have 
used the same set of classes but have structured the classes differently using 
relations/properties. Fig. 3 depicts this structure mismatch and also reveals varying 
domain semantics as a result of dissimilar levels of granularity. In this example, the 
“requiresSequence” relation  illustrates a range of hole machining processes before a 
reaming operation can be realised. The “U” symbol refers to the union of the classes. 
In Ontology Y, the “hasPredecessor” relation is used to identify the necessary 
preconditions of having “Centre Drilling” U “Drilling” before “Reaming” can be 
performed. The intent from both parties is almost the same, and can surely be 
reconciled, but the structure mismatch present leads to potential problems.  

 
 
 
 
 
 
 
 
 
 

Fig. 3. Structure Mismatch 

Attribute-Assignment Mismatch. This form of mismatch is found when the same 
relation is defined in two separate ontologies, but differ in the way the particular 
relation is attributed to classes in both conceptualisations. In Fig. 4, the two 
ontologies do not bear resemblance in the way that the “belongsTo” property has been 
attributed to the intended classes and/or subclasses.  

 
 

 
 
 
 
 
 

Fig. 4. Attribute-Assignment Mismatch 

Attribute-Type Mismatch. This takes place when in two ontologies, the same relation 
has been defined, but has varying value types, which consequently affects the range of 
possible values for the instances in both ontologies, for example, a same relation 
“hasDimension” can be defined as an object property in one ontology and as a 
datatype property in another ontology, hence resulting in attribute-type conflicts. 
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2.2 Explication Mismatches 

In addition to conceptualisation mismatches, explication mismatches can also occur. 
Three components are used in order to refer to a definition namely: a term (T) for 
denoting a particular concept; definiens (D) which provide the building blocks for a 
definition in the form of aggregated statements; and concept (C) which constitutes the 
underlying notion to be defined. Examples are provided in each case and expressions 
used are based around the Semantic Web Rule Language (SWRL) which uses a high-
level abstract syntax for Horn-like rules. The → symbol denotes that elements of the 
expression on the left hand side (i.e. definiens) describe the expression on the right 
hand side (i.e. the term denoting a concept) after the arrow. The ^ symbol is used to 
aggregate various definiens. Namespace prefixes are used to relate expressions to 
their respective ontologies e.g. (X: expression) refers to an expression used in 
Ontology X. 

 
Concept (C) Mismatch. This occurs when the definitions possess the same terms and 
definiens but vary in their intent at conceptual level. In other words, the definitions in 
both cases appear to be identical, when in reality different concepts are being targeted. 

 
X: Hole(?a) ^ hasPlacementFace(?a, ?b) ^ Boss(?b) → Hole_Through_Boss(?c, true) 
Y: Hole(?a) ^ hasPlacementFace(?a, ?b) ^ Boss(?b) → Hole_Through_Boss(?c, true) 

 
The first statement says that if a hole (?a) has a placement face (?b) such that (?b) 

is a boss feature, then the situation of having a “Hole_Through_Boss” (?c) arises. In 
Ontology X, a “Hole_Through_Boss” refers to a simple hole going through a boss 
feature. In Ontology Y, a “Hole_Through_Boss” refers exclusively to a tapped hole 
through a boss feature. In both cases, identical terms and definiens have been used but 
the concept of a “Hole_Through_Boss” from both domains differ due to the different 
contexts in which the definitions of “Hole_Through_Boss” are perceived.  

 
Concept and Definiens (CD) Mismatch. This type of mismatch happens when the 
same term is used by different parties to refer to different “things”, and where 
different concepts and definiens have been specified. 

 
X: Part_Name(?a) ^ Description(?b) ^ Material(?c) → Part_Spec (?d, true)  
Y: Part_Number(?a) ^ Quantity(?b) ^ Despatch_Date(?c) → Part_Spec(?d, true) 

 
The first statement states that if there exist a “Part_Name” (?a), a “Description” 

(?b) and “Material” (?c), then a “Part_Spec”, i.e. a part specification, is present 
relating to the characteristics of a particular part. In Ontology Y, for a “Part_Spec” to 
stand true, the entities “Part_Number”, “Quantity”, and “Despatch_Date” need to be 
concatenated, where “Part_Spec” reflects the necessary parameters to ship the given 
part. In both ontologies the “Part_Spec” term is being defined, where the definition is 
biased to the context, hence the concept of “Part_Spec” being different in both cases, 
as well as through the definiens specified. 
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Definiens (D) Mismatch. This occurs when definitions refer to exactly the same 
concept but differ in the way definiens have been used as a body for the definitions. 
Consider the next example (Fig. 5) where in both ontologies X and Y, a counterbore 
hole is being considered. The “hasOverallDepth” (i.e. the total depth of the compound 
hole feature) has the same concept and the same term in both conceptualisations, but 
differs in the way definiens have been used to define it. 
 
X: Counterbored_Hole(?a) ^ hasPrimaryDepth(?a, ?b) ^ hasSecondaryDepth(?a, ?c) ^ 
swrlb:add(?overallDepth, ?b, ?c) → hasOverallDepth(?a, overallDepth) 
Y: Cbore_Hole(?a) ^ hasHoleDepth(?a, ?b) ^ hasCboreDepth(?a, ?c) ^ 
swrlb:add(?depth, ?b, ?c) → hasOverallDepth(?a, ?depth) 

 
The expression for X simply states that the “Counterbored_Hole” has an overall 

depth “hasOverallDepth”, which is equal to the algebraic sum (denoted by the SWRL 
built-in “swrlb:add”) of dimensions labelled (3) and (4). In the second expression, the 
same concept and term “hasOverallDepth” is being defined and is equal to the 
algebraic sum of dimensions labelled (3) and (4). These two examples clearly depict a 
situation which can be classified under the definiens mismatch category, since the 
same concept and term is used in two separate ontologies to refer to the same “thing”, 
but where different definiens have been used.  

 
 
 
 
 
 
 
 
 
 

Fig. 5. Definiens Mismatch 

Term (T) Mismatch. This form of explication mismatch occurs when definitions 
share the same concept and definiens, but employ different terms. 
 
X: Cutting_Fluid(?a) ^ Cutting_Speed(?b) ^ Feed(?c) → 
Min_Process_Requirement(?d, true) 
Y: Cutting_Fluid(?a) ^ Cutting_Speed(?b) ^ Feed(?c) → 
Sufficient_Operation_Parameter(?d, true) 

 
In X, the necessary process parameters that make up a minimum process 

requirement “Min_Process_Requirement” are “Cutting_Fluid”, “Cutting_Speed” and 
“Feed”. In Y, again the necessary process parameters for having a 
“Sufficient_Operation_Parameter” are “Cutting_Fluid”, “Cutting_Speed” and “Feed”. 
The only discrepancy from these two statements lies in the variation in term (T). 

 

Counterbored_Hole 
 

• hasPrimaryDiameter (1) 
• hasSecondaryDiameter (2) 
• hasPrimaryDepth (3) 
• hasSecondaryDepth (4) 
• hasOverallDepth (i.e. 3+4) 

Cbore_Hole 
 

• hasDiameter (1) 
• hasCboreDiameter (2) 
• hasHoleDepth (3) 
• hasCboreDepth (4) 
• hasOverallDepth (i.e. 3+4) 

Ontology X Ontology Y 

 1 

2 

3 

4 



 Proceedings of MDISIS 2008         7 
 

 

Concept and Term (CT) mismatch. This situation arises when dissimilar concepts 
and terms are identified in ontologies, but where the definitions have the same 
definiens. In other words, the same “item” is being defined by the same body of 
definition (definiens) but the concepts and terms used in both cases vary.  
 
X: Engineer(?a) ^ External_Department(?b) ^ collaboratesWith(?a, ?b) → 
Concurrent_Engineering(?c, true) 
Y: Engineer(?a) ^ External_Department(?b) ^ collaboratesWith(?a, ?b) → 
Subcontracted_Engineer(?c, true) 

 
In Ontology X, it is specified that if an “Engineer” “collaboratesWith” an 

“External_Department”, then “Concurrent_Engineering” practice exists. On the other 
hand, in Y, it is said that if an “Engineer” “collaboratesWith” an 
“External_Department” then the “Engineer” is a “Subcontracted_Engineer”. Clearly, 
from the two expressions depicted, the same definiens have been used to refer to an 
“Engineer” who “collaboratesWith” some “External_Department”. However, the 
concepts “Concurrent_Engineering” and “Subcontracted_Engineer” do not reflect the 
same underlying concept, and in addition, they use different terms to refer to these. 

 
Term and Definiens (TD) Mismatch. In this form of explication mismatch, which is 
the converse of the C mismatch, only the term and the definiens vary, whereas the 
concept stays the same in all distinct cases. The example next is taken from Kim et al. 
[6] who have devised an ontology to capture knowledge in assembly design. One of 
their rules is concerned with the definition of assembly/joining relations, and two 
constraints expressed using SWRL to explain assembly/joining have been identified. 
Quoted next are the implied constraints and the SWRL rule representing 
assembly/joining relations in the assembly ontology. Implied constraints are: (1) The 
associated form features must belong to two non-equivalent parts, (2) The associated 
form features must be a joining pair. The SWRL rule [6] used to cover the two 
constraints appear as the first expression below. 
 
X: FormFeature(?x) ^ FormFeature(?y) ^ Part(?z) ^ Part(?a) ^ belongTo(?x, ?z) ^ 
belongTo(?y, ?a) ^ differentFrom(?z, ?a) ^ isJointPair(?x, ?y) → 
assemblyJoiningRelationship(?x, ?y) 
Y: Object_Feature(?a) ^ Object(?b) ^ formsPartOf(?a, ?b) ^ Object_Feature(?d) ^ 
Object(?e) ^ formsPartOf(?d, ?e) ^ dissimilarTo(?b, ?d) ^ matesWith(?a, ?d) → 
matingAssociation(?x, ?y) 

 
In Y, the same constraints form part of the underlying concept but almost 

completely different definiens and terms are used in the definition. It can be deduced 
from the two expressions provided that albeit the use of different definiens and terms, 
exactly the same concept is being referred, i.e. that of defining assembly/joining 
relations between form features belonging to different parts.   
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3 An Ontology Mapping Method for Manufacturing Features 

In order to support ontology interoperability, it becomes obvious that ontology and 
semantic mismatches need to be overcome. Interoperability of ontologies and the 
approaches to solve it remain a core question, and the interoperation process cannot 
rely on manual input due to the complexity, size and number of ontologies being 
developed [11]. It is thus clear that there is a need for automatic or at least semi-
automatic ways of interoperating ontologies in order to relieve the inconveniences of 
manually creating and maintaining ontology mappings. Three ways in which 
heterogeneous ontologies can be made interoperable have been recognised [9] and 
they are identified as: (1) building inclusion relations between ontologies, (2) building 
mapping relations between ontologies and (3) building a common ontology from local 
ontologies. 

Out of those three ways to enable the interoperability of heterogeneous ontologies, 
the most effective method for solving ontology heterogeneity is ontology mapping 
[9]. Mapping provides a common layer from which several ontologies can be 
accessed and hence could exchange information in semantically sound manners [12]. 
With the intention of overcoming problems related to the interoperability of 
ontologies, effort has been fostered from different groups in order to improve the 
process of ontology mapping. Several frameworks such as ([13], [14], [15]), methods 
like ([4], [16], [17]) and theoretical work have been proposed and are still evolving to 
achieve more promising results of mapping. Fundamental to the task of interoperating 
ontologies, are a number of commonly adopted ontology interoperability paradigms, 
where ontology mapping is central to. These are shown in Fig. 6 below. 

 
 
 
 
 
 
 
 
 
 
 
 

Fig. 6. Ontology Interoperability Methods Involving Mapping (based on [4]). 

In this paper our approach to ontology interoperability focuses on the merging 
process, but the process also conceptually covers some ideas behind other methods 
such as articulation, namely through the development of a well-defined domain 
ontology. The concepts present in this domain ontology serve as a reference point for 
comparing concepts from external ontologies sharing a common context. 
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3.1 An Ontology Mapping and Merging Example 

 
This section focuses on a simple investigation to understand the key factors behind 
ontology reconciliation, an essential step prior to achieving ontological and semantic 
interoperability. Work identified here partly builds up on our understanding of 
semantic interoperability requirements for manufacturing knowledge sharing [18]. 
The OWL Plugin of Protégé 3.3 environment has been used for ontology development 
and we have based our conceptualisation around the definitions and descriptions of 
holes occurring in design and manufacture. The four main levels involved in the 
approach consist of: (1) the construction of a domain ontology of design and 
manufacture hole features whose definitions have been formalised in OWL DL, (2) 
the identification and definition of two disparate hole feature ontologies which to 
some degree share a common context, (3) manually mapping and merging the two 
ontologies into the domain ontology, and (4) using the DL inference engine (FaCT++) 
in Protégé OWL as a basis to extract knowledge that has not been directly asserted. 
Fig. 7 below identifies the four-step process and relevant mechanisms, namely the 
user and the ontology framework, interacting with the process.  

 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 

Fig. 7. Interaction of User and Ontology Framework with the Mapping Process 

The formalised domain ontology acts as an ontology where external ontologies can 
be articulated to before mapping. Apart from defining hole concepts from a 
geometrical context, the domain ontology also captures other contexts such as a hole 
machining process context and a manufacturing resource context, both pertinent to 
hole machining processes. The recognition of the need to include different but 
interlinked contexts during ontology construction has been made [18] and the domain 
ontology in this example also uses inclusion properties defined to relate the different 
contexts together to enrich the semantics of concepts in the ontology. The formalised 
domain ontology on one side describes hole feature concepts from a geometrical 
viewpoint and clearly depicts all the “necessary” and “necessary and sufficient” 
conditions for the description of these concepts, e.g. a “Counterbore_Hole” from the 

Inclusion 
properties 

between contexts 

Formalised 
Domain Ontology 

Protégé 
Environment 

FaCT++ 
Reasoner 

User 

+ 

+ 

Hole 
Geometry 
Context 

 
Resource 
Context 

Machining 
Context 

 
 
 
 

 
                       

Ontology X Ontology Y 

Map & Merge 

Four-Step Process Mechanisms 



10          Proceedings of MDISIS 2008 

 

domain ontology has a set of “necessary” and “necessary and sufficient” conditions. 
A formal definition of “Counterbore_Hole” in the ontology is as shown in Fig. 8. 

 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 

Fig. 8. From Informal to Formal Definition of a Counterbore Hole in the Domain Ontology 

What is actually being implied through the various asserted conditions is that if 
there exists a random class that satisfies any of the “necessary and sufficient” 
conditions in line with those of a “Counterbore_Hole”, then that random class can be 
inferred by the DL reasoner as being a “kind of” “Counterbore_Hole”. Conversely, 
having a random class satisfying all the “necessary” conditions alone without 
satisfying “necessary and sufficient” conditions does not imply that the random class 
is a “kind of” “Counterbore_Hole”. This type of reasoning is key behind the inference 
engine for the deduction of new knowledge and is used after the merging process is 
completed for finding commonalities between the two disparate ontologies based on 
the merged ontology.  

3.2 The Mapping and Merging Process 

As previously seen, each hole concept present in the ontology possesses a set of 
asserted “necessary” and “necessary and sufficient” conditions, which brings higher 
formality to definitions. In order to reconcile two disparate ontologies sharing a 
similar context to that of the domain ontology, a number of steps has to be considered 
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for manually being able to map concepts from ontologies X and Y to the domain 
ontology. First, the external ontologies have to be normalised to the representation 
language of the domain ontology. It is of fundamental importance that during 
comparison and mapping from an external ontology to the domain ontology, all 
entities from the external ontology find their correct match in the domain ontology, 
implying that the latter has to be sufficiently broad to capture large domain 
knowledge. Fig. 9 depicts an example where essentially the same hole concept 
appears in the two disparate ontologies but different terms and definiens have been 
used to describe the concept (see TD Mismatch). The mismatch between “C-Bore” 
and “Counterbored_Hole” also overlaps onto aggregation-level mismatch and 
structure mismatch. Reconciliation of the two concepts has to be done using the 
formalised definitions present in the domain ontology. 

 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 

Fig. 9. Example of Classes and Properties for Mapping to the Domain Ontology 

The methodology adopted for manual mapping is based around the decisions and 
actions input by the user to ensure consistent ontology reconciliation. In other words, 
the methodology depicts the knowledge that is required to carry out the mapping 
process and subsequent merging of concepts from ontologies X and Y to the domain 
ontology. The most important mapping and merging steps are identified next and take 
into account the examples shown in Fig. 9. 

 
• For each class from the external ontologies to be mapped and merged, create the 

same class in the domain ontology in the most obvious hierarchy of concepts 
where that class fits, e.g. the “C-Bore” class is created as a child in the 
“Hole_Concepts” parent class from the domain ontology. Naming clashes can 
simply be resolved by prefixing concepts. 

In Ontology X, 

In Ontology Y, 
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• Each external attribute is matched and replaced by a best-fit property in the domain 
ontology, e.g. the “hasAttribute” property of “C-Bore” is substituted by the 
“hasDimension” property from the domain ontology. Although “hasAttribute” as a 
textual statement does not directly indicate its connection to “hasDimension”, it 
becomes feasible to suggest the link between the two properties based on the fact 
that in Ontology X, “hasAttribute” is used to aggregate a set of dimensional 
parameters implying equivalence to “hasDimension”. Ontology Y, on the other 
hand, identifies two levels to relate dimensions to holes namely through 
“hasPrimaryDimension” and “hasSecondaryDimension”. These properties in 
Ontology Y do not carry any formal semantics and are interpreted as being 
equivalent to the more general “hasDimension” property. Embedding more formal 
semantics to distinguish “hasPrimaryDimension” from “hasSecondaryDimension” 
would require the consideration of more expressive logic with rules. 

• A “filler” class used in a restriction for describing and defining a concept is 
matched with the appropriate class in the ontology based on lexical and structural 
similarity as well as intent, e.g. “Hole_Diameter” of a “C-Bore” hole is a type of 
“Hole_Dimension_Parameter” but more specifically a type of 
“Diameter_Parameter” in the domain ontology. Hence, the class “Hole_Diameter” 
is recreated as a child of the “Diameter_Parameter” class. This matching and 
merging step has to be completed for all filler classes used in both external 
ontologies. 

• Having created all necessary classes, synonymy among classes is specified within 
the domain ontology using the “hasSynonym” property which is symmetric and 
transitive in nature, e.g. it can be specified that “Hole_Diameter” and 
“Primary_Diameter” now present in the domain ontology are synonymous 
concepts.  

3.3 Performing Inferences Based on the Merged Ontology 

After mapping and merging concepts form the external ontologies to the domain 
ontology, the next step consists of performing an inference on the main merged 
ontology by using the DL reasoner. One simple inference consists of a reclassification 
of the taxonomy to identify subsumptions not explicitly asserted in the first instance. 
On running the inference engine, the individually defined hole concepts of “C-Bore” 
and “Counterbored_Hole”, now present in the domain ontology, appear as subclasses 
of the formally defined “Counterbore_Hole”. Furthermore, even after computing the 
taxonomy, “C-Bore” and “Counterbored_Hole” still appear as individual non-
equivalent concepts, thereby preserving initial semantics. 

 
 
 
 
 

Fig. 9. Inference-Based Taxonomy Classification for “Counterbore_Hole” Class 
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4 Discussions and Conclusions 

The four-step approach used to reconcile heterogeneous ontologies with the help of a 
domain ontology with inclusion properties among various contexts is interesting since 
it explores the possibility of having an ontology mapping and merging model which is 
a hybrid of different techniques for ontology interoperability. Capturing the 
knowledge that leads to the mapping and merging process can be very useful to 
support the interoperability of heterogeneous ontologies in the design and 
manufacture domains. One of the reasons why only manual mapping and merging of 
the ontologies have been done at this stage is because of the necessity to develop a 
good understanding of the knowledge that the user has to employ during the process. 
Manual mapping can be a labour-intensive task [19] that requires careful analysis of 
ontologies in order to understand all the entities present, but it can prove to be 
accurate for dealing with small ontologies and can also help resolve missing 
knowledge behind concepts that are not well-defined. Manual mapping loses its 
feasibility when large ontologies need to be reconciled. For convenience in this 
investigation, only small ontologies consisting of a taxonomy of classes, properties 
and definitions based on restrictions have been considered. 

In Section 3.2, a mapping methodology has been proposed, the latter being based 
on the thought process and decisions made during mapping and merging. It is 
necessary to build up and formalise this mapping knowledge so that it can effectively 
be applied as an algorithm to enable automatic/semi-automatic implementations, 
thereby saving an enormous amount of time, while making an ontology mapping 
system more robust and extensible. In this paper, the mapping investigation 
predominantly revolves around the reconciliation of classes, properties, relations and 
restrictions. Ontologies may also include instances carrying particular knowledge and 
axioms which bring semantic enrichment and at the same time restrict the 
interpretations of concepts in an ontology. Therefore, it is also important that 
ontology interoperability involves the mapping of instances and axioms as well.  

On the other hand, the experiment performed shows that during the mapping 
process, individual entities in separate ontologies do need to find corresponding 
equivalent matches in the domain ontology. However, it should not be forgotten that 
small segments of knowledge around a given entity also play a crucial role in 
enabling a feasible mapping decision to be made by reducing semantic ambiguities. 
Observations made during the four-step approach has allowed the specification of a 
number of factors that need to be accounted for in the quest for ontology and semantic 
interoperability in the design and manufacture domains. These factors are: 

 
• Individual external ontologies requiring mapping need to be normalised to a 

standard ontology representation language, which formally captures semantics of 
domain models. 

• A mapping environment should emphasise on the identification of synonymous 
concepts and similarity among entities from two ontologies sharing a similar 
domain. Similarities can, for example, be related to lexical similarity or similarity 
through embedded rules. 
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• It is necessary to identify ontology and semantic mismatches early in the process 
and the user needs to be able to view and understand the nature of these 
mismatches before mapping can be performed. Hence, appropriate actions can be 
taken to overcome semantic mismatches between ontologies and improve 
interoperability. 

• A formal algorithm has to be defined as a basis for automating a mapping process. 
The algorithm, therefore, needs to work hand in hand with identifying semantic 
mismatches while at the same time pursuing the correct actions for ontology 
reconciliation. 

• Knowledge inference should not be limited to taxonomical classification alone. 
Instead, a user should be able to query the mapped ontologies in order to derive 
maximum constructive knowledge from the system. 

• It is important to set up a framework with an appropriate user interface (UI), which 
facilitates user-system interaction. 

 
The task of designing, implementing and maintaining ontology-based systems 

requires adequate support for ontology matching [20]. Ontology matching and 
reconciliation  is an essential step to achieve semantic interoperability for promoting 
manufacturing knowledge sharing. Several frameworks, methods and tools are present 
in order to deal with ontology interoperability. However, these techniques do not 
encompass sufficient potential to resolve interoperability in design and manufacture, 
since the latter is an expert domain with very specific content and issues. It is 
intended that our future work shall address further issues in regard to ontology and 
semantic interoperability in product design and manufacture and shall also explore 
richer semantic structuring through more expressive representation formalisms such 
as Common Logic (CL) [21] and the Process Specification Language (PSL) [22]. 
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