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Abstract. Interorganizational workflows represent a new technique that
offers companies a solution for managing business processes that involve
more than one organization. In this paper, an interorganizational work-
flow will be modelled using a special class of nested Petri nets, interorga-
nizational workflow nets (IWF-nets). This approach will allow the spec-
ification of the local workflows in the organizations involved and of the
communication structure between them, permitting a clear distinction
between these components. The paper defines a notion of behavioural
correctness (soundness) and proves this property is decidable for IWF-
nets.
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1 Introduction

A workflow is the automation of a business process that takes place inside one
organization. Workflow management deals with controlling, monitoring, opti-
mizing and supporting workflows.

Due to the rise of virtual organizations, electronic commerce and interna-
tional companies, many existent business processes involve more than one orga-
nization. These workflows , distributed over a number of different organizations,
are referred to as interorganizational workflows.

A formal method which has been successfully used for workflow modelling
is Petri nets. Petri nets are a graphical and mathematical tool for modelling
concurrent/distributed systems, which permit the explicit representation of the
states and transitions of a system. Petri nets are a suitable modelling technique
for workflows (see [2, 3]), due to several reasons: Petri nets are a graphical and
intuitive language, they have a formal semantics, they are expressive, there are
many analysis techniques for investigating the properties of Petri nets.
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Petri nets have also been proposed for modelling interorganizational work-
flows: in [4], IOWF-nets are defined for modelling loosely coupled interorganiza-
tional workflows. An IOWF-net describes the local workflows and the coordina-
tion structure used for their interaction. [12] describes a XML-based language,
called XRL, for the specification of interorganizational workflows. XRL semantic
is expressed in terms of Petri nets. The approach in [6] uses Documentary Petri
Nets, a variant of high-level Petri nets, to model and enact trade procedures.
Another approach based on Petri nets is the P2P approach from [5], which uses
inheritance to align local workflows.

A common problem in these approaches is the mixture between the different
components of the interorganizational workflow, which makes the model difficult
to understand and analyze. Also, the interoperability between the constituent
workflows either is not represented explicitly in the model, or it lacks clarity.

In order to tackle these problems, this paper presents a new approach on the
modelling of interorganizational workflows, based on nested Petri nets. Nested
Petri nets ([10]) are a special class of the Petri net model, in which tokens may be
Petri nets (object-nets). The paper deals with loosely coupled interorganizational
workflows: there are n local workflow processes which can behave independently,
but need to interact at certain points in order to accomplish a global business
goal. The interaction is made through asynchronous or synchronous communi-
cation. Interorganizational workflow nets (IWF-nets) are introduced as a special
case of nested Petri nets, in which every local workflow is modelled as a distinct
object-net. For the modelling of a local workflow we use extended workflow nets,
a version of the workflow nets introduced in [2]. The communication mechanisms
between the local workflows are also described using an object-net. The dynamic
behaviour and the synchronization steps of the IWF-net ensure the collaboration
between the constituent workflows.

This approach offers a clear distinction between all the local workflows and
the communication structure, which is represented separately from the local
workflows. Thus, IWF-nets ensure a modular view over the components of an
interorganizational workflow. The proposed model provides a high degree of flexi-
bility: any local workflow can be modified without interfering with the other local
workflows and the communication structure can be changed without affecting
the local workflows. Also, our solution, based on nested Petri nets, preserves
privacy and autonomy of the local workflows: the workflow inter-visibility is re-
duced, since the local workflows make public only the labels (identifiers) of those
tasks involved in cooperation. The paper introduces a notion of behavioural cor-
rectness for IWF-nets, soundness, and proves this property is decidable.

The rest of the paper is organized as follows: Section 2 introduces the basic
terminology and notations related to Petri nets and workflows, Section 3 presents
an informal definition of IWF-nets and a small introductory example of an IWF-
net, Section 4 introduces the formal definition of IWF-nets, Section 5 defines
and studies the soundness property for IWF-nets and Section 6 presents the
concluding remarks.
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2 Preliminaries

This section introduces the terminology and notations related to Petri nets and
workflows. For details, the reader is referred to [11] and [1, 2].

The classical Petri net is a directed bipartite graph with two node types
called places and transitions. The nodes are connected via directed arcs. Places
are represented by circles and transitions by rectangles.

A Petri net is a triple PN = (P, T, F ), where P is a finite set of places, T
is a finite set of transitions (P ∩ T = ∅), F ⊆ (P × T )∪ (T ×P ) is a set of arcs
(flow relation).

For x ∈ P ∪ T , the preset of x is •x = {y|(y, x) ∈ F} and the postset of x is
x• = {y|(x, y) ∈ F}. At any time a place contains zero or more tokens, drawn as
black dots. The state (or the marking), is the distribution of tokens over places:
M : P → N (N denotes the set of natural numbers). We will represent a state as
follows: if P = {p1, p2, p3}, then 1′p1 + 2′p2 is the state with one token in place
p1, two tokens in p2 and no tokens in p3. Transitions change the state of the net
according to the following firing rule: a transition t is said to be enabled (in a
marking M) iff each place p in the preset of t contains at least one token in the
marking M : M(p) ≥ 1,∀p ∈ •t. If an enabled transition t fires, it changes the
marking M into M ′: M ′(p) = M(p)− 1, ∀p ∈ •t and M ′(p) = M(p)+1, ∀p ∈ t•.
We write M [t〉M ′.

We have the following notation: M1[σ〉Mn: the firing sequence σ = t1t2 . . . tn ∈
T ∗ leads from state M1 to Mn (i.e. there exist M2, . . . , Mn−1 such that
M1[t1〉M2[t2〉 . . . [tn〉Mn). If σ = λ, then M [σ〉M . A state Mn is called reachable
from M1 (M1[∗〉Mn) iff there is a firing sequence σ such that M1[σ〉Mn. We
denote by [M〉 the set of markings reachable from M . If N = (P, T, F ) is a Petri
net and M0 is the initial marking of N , the set of reachable markings of N is
denoted by [M0〉.

Let N be a Petri net and M0 its initial marking. A transition t is not dead
in (N, M0) if ∃M ∈ [M0〉 such that M [t〉.

There are several extensions of Petri nets, which are obtained from the clas-
sical model by adding expressions on arcs, tokens with a complex structure,
modified firing rules, time concepts, etc. Nested Petri nets are an extension of
the Petri net model, in which tokens can be Petri nets themselves (see [10]). A
nested Petri net consists of a Petri net SN , called system net, several Petri nets
called object-nets, a set of labels for the transitions (Lab = Labv ∪ Labh) and a
set of expressions used for labelling the arcs of SN . Tokens in SN can be either
atomic tokens or net tokens (i.e. object-nets in a certain marking). In nested
Petri nets, there are several firing rules ([9, 10]): an unlabelled transition from
an object-net can fire if the transition is enabled in the object-net, according to
the firing rule from ordinary Petri nets. The firing of such a transition is called
an object-autonomous step. If two transitions with adjacent labels (from Labh)
belonging to two object-nets (which reside in the same place of SN) are enabled
in those object-nets, then they should fire synchronously. The simultaneous fir-
ing of these transitions is called an horizontal synchronization step. A transition
with a label l, enabled in SN , should fire simultaneously with the transitions
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from the object-nets which have an adjacent label l (l, l ∈ Labv). This is a ver-
tical synchronization step. For the formal definition of nested Petri nets, the
reader is referred to [10].

A workflow can be seen as a collection of tasks organized in order to accom-
plish some goal. The order of tasks is specified through different constructors,
which permit the control of the flow of execution, e.g. sequence, choice, paral-
lelism, and synchronization (see [13]). A task is considered to be an atomic piece
of work. The workflow processes are instantiated for a specific case, thus, a case
is also named a workflow instance. For example, a case can be a specific request
for a lone, a tax declaration, an order.

One of the most convenient ways of specifying workflows is through the use
of Petri nets: tasks can be modelled by transitions, the causal dependencies
between tasks can be expressed using arcs and places. A place can model a pre
or post-condition for a task. The state of the process can be explicitly modelled
using the state of the Petri net.

In [2], workflow nets (WF-nets) are introduced for modelling workflows: a
WF-net will specify the procedure that handles a single case at a time. A WF-
net is a Petri net which has two special places: one source place, i, and one
sink place, o. The marking in which there is only one token in the source place
represents the beginning of the life-cycle of a case (and the initial marking of
the net, denoted by i). The marking in which there is only one token in the
sink place, represents the end of the procedure that handles the case (and the
final marking of the net, denoted by o). An additional requirement is that there
should not be conditions and tasks that do not contribute to the processing of
the case. The two conditions are expressed formally as follows:

A Petri net PN=(P,T,F) is a WF-net iff: (1) PN has a source place i and a
sink place o such that •i = ∅ and o• = ∅ and (2) if we add a new transition t∗

to PN such that •t∗ = {o} and t∗• = {i}, then the resulted Petri net is strongly
connected.

3 Interorganizational Workflow Nets: an Introductory
Example

In this section we will present an informal definition of interorganizational work-
flow nets and then we will apply their key features to a simple example of an
interorganizational workflow.

The interorganizational workflows we are interested in are based on a special
type of interoperability between processes : the global workflow consists of loosely
coupled workflow processes which operate independently, but need to commu-
nicate and synchronize their activity at certain points in order to accomplish
correctly the global workflow process. There are two ways of interaction between
processes: asynchronous communication (corresponding to the exchange of mes-
sages) and synchronous communication. Thus, the interorganizational workflow
consists of private workflows and a communication structure.
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In order to model interorganizational workflows, we use an approach based on
nested nets: interorganizational workflow nets (IWF-nets) are nested Petri nets,
extended with two special sets used for describing the communication structure
between the local workflows, SC and AC. AC represents the asynchronous com-
munication relation: if (t, t′) ∈ AC, then, the transition t must execute before
the transition t′. SC represents the set of synchronous communication elements:
if x ∈ SC, then, all the transitions from x have to execute at the same time.
Also, the IWF-net has two special sets of labels used for synchronizing the tran-
sitions involved in the elements of AC and SC: the labels in LabAC are used for
the transitions which appear in the elements of AC and the labels from LabSC

are used for the transitions which appear in the elements of SC. In an IWF-
net, the system net SN comprises three places (I, p, O) and a transition (end).
Tokens in SN can be atomic tokens (without inner structure) or net-tokens
(object-nets). The arcs of SN are labelled with expressions: the arc (p, end) is
labelled with the expression (x1, . . . , xn, xn+1) (where x1, . . . , xn, xn+1 are vari-
ables), while the rest of the arcs are labelled with the constant 1 (which is not
represented explicitly on arcs). In an IWF-net, there are n + 1 object-nets: n
object-nets (extended WF-nets) representing the local workflows involved in the
interorganizational workflow and one object-net, C, which describes a part of
the communication structure (the asynchronous communication). The structure
of C results from AC: if ac = (t, t′) ∈ AC, then, in C there is a place pac,
a transition tc (corresponding to t), a transition t′c (corresponding to t′), one
arc from tc to pac and one arc from pac to t′c. In an IWF-net there is a partial
function, Λ, which labels transitions from the object-nets and the transition end
from SN . If x ∈ SC is a set of transitions which must fire synchronously, then
all the transitions from x have the same label l ∈ LabSC . For every transition t
involved in an asynchronous communication element, there is a transition tc in
the object-net C with the same label as t: Λ(t) = Λ(tc) = l, l ∈ LabAC .

In our example, there are two local workflow processes: the first process
contains the tasks t1, t2, t3 and t4, while the second process contains the tasks
t5, t6, t7 and t8. The two workflow processes are modelled by two extended work-
flow nets, WF ′1 and WF ′2 (see Fig. 1). These nets are workflow nets, extended
with transitions which empty the sink places of the workflow nets (transition t′1
in WF ′1 and t′2 in WF ′2). The initial marking of WF ′1 is i1 and the initial marking
of WF ′2 is i2.

In the interorganizational workflow, the two workflow processes interact as
follows: task t1 in WF ′1 must fire before the tasks t5 and t6 in WF ′2, task t6
in WF ′2 must fire before task t3 in WF ′1. We define, thus, a partial order on
tasks, describing the asynchronous communication between the two workflow
processes: AC = {(t1, t5), (t1, t6), (t6, t3)}. Also, task t4 in WF ′1 and task t8 in
WF ′2 must fire synchronously (there is a synchronous communication between
the two local workflows, through these transitions). We will define the set of
synchronous communication elements: SC = {{t4, t8}}. The IWF-net used for
modelling this interorganizational workflow consists of the system net SN and
of three object nets, WF ′1,WF ′2 and C. In the initial marking of the net (Fig.
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Fig. 1. An example of an IWF-net

1), there is an atomic token in place I and all the object-nets reside in place
p. The initial marking of C is 0 (there are no tokens in the places of C). The
arc (p, end) is assigned the expression (x1, x2, x3), while the rest of the arcs are
assigned the constant expression 1.

The object-net C results from the asynchronous communication relation.
The set of places is PC = {pac1 , pac2 , pac3}, where ac1 = (t1, t5), ac2 = (t1, t6),
ac3 = (t6, t3). The transitions in TC correspond to the transitions involved in
asynchronous communication: TC = {t1c, t3c, t5c, t6c}. The arcs of C are ob-
tained using the sets PC , TC and AC: for instance, since ac1 = (t1, t5) ∈
AC, pac1 ∈ PC , t1c, t5c ∈ TC , then we will add the arcs (t1c, pac1) and (pac1 , t5c).

Some of the transitions of the IWF-net are labelled. The sets of labels
are: LabAC = {l1, l2, l3, l4}, LabSC = {l5} and a set {e, e}. The transitions
involved in the asynchronous communication elements will be assigned asyn-
chronous communication labels: in WF ′1, Λ(t1) = l1, Λ(t3) = l3 and in WF ′2,
Λ(t5) = l2 and Λ(t6) = l4. The transitions from the synchronous communi-
cation element will be assigned the same synchronous communication label:
Λ(t4) = Λ(t8) = l5. We also have Λ(t′1) = e in WF ′1, Λ(t′2) = e in WF ′2 and
Λ(end) = e in SN . The labels for the transitions in C are assigned as fol-
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lows: since (t1, t5) ∈ AC, then Λ(t1c) = Λ(t1) = l1 and Λ(t5c) = Λ(t5) = l2.
(t1, t6) ∈ AC, then Λ(t6c) = Λ(t6) = l4. (t6, t3) ∈ AC, then Λ(t3c) = Λ(t3) = l3.

The firing rules in an IWF-net are the same as those from nested Petri nets.
The only difference is that we allow the horizontal synchronization of transitions
belonging to several object-nets (not just from two object-nets, as defined in
[9, 10]). In an IWF-net, an unlabelled transition from an extended WF-net can
fire if the transition is enabled in that extended WF-net (an object-autonomous
step). Also, if several labelled transitions, with the same label, from some object-
nets are enabled in those object-nets, then they should fire synchronously (an
horizontal synchronization step). Finally, if the transition end is enabled in SN ,
then it should fire simultaneously with the transitions from the object-nets la-
belled with e, if these transitions are enabled in their corresponding object-nets
(the vertical synchronization step).

In the example in Fig. 1, transition t1 is enabled in (WF ′1, i1) and the tran-
sitions t5 and t6 are enabled in (WF ′2, i2). But transition t5 should fire at the
same time with transition t5c in the object-net C (because Λ(t5) = Λ(t5c))
and transition t6 should fire at the same time with transition t6c in the object-
net C (because Λ(t6) = Λ(t6c)). The transitions t5c and t6c are not enabled
in (C, 0). So, transitions t5 and t6 cannot fire yet. This behaviour is consis-
tent with the restrictions imposed by the asynchronous communication relation:
(t1, t5), (t1, t6) ∈ AC means that t1 should fire before t5 and t6. Since transition
t1 is enabled in (WF ′1, i1), transition t1c is enabled in (C, 0), then the horizontal
synchronization step (; t1, t1c) is enabled in marking M0. In the resulting mark-
ing, M1, place I contains an atomic token, place O contains no tokens, and place
p contains three object-nets with their corresponding new markings: WF ′1 (with
the marking m11 = 1′p1+1′p2, i.e. p1 and p2 have one token), WF ′2 (in its initial
marking, i2) and C (with the marking mc1 = 1′pac1 + 1′pac2). We write: M1 =
(1, ((WF ′1,m11), (WF ′2, i2), (C,mc1)), 0). In (WF ′1,m11) the unlabelled transi-
tion t2 is enabled. The firing of this local transition is an object-autonomous
step and the resulted marking is M2 = (1, ((WF ′1,m12), (WF ′2, i2), (C, mc1)), 0),
where m12 = 1′p2 + 1′p3. One can notice that only the marking of the object-
net WF ′1 has changed. Transition t3 in WF ′1 can only fire synchronously with
transition t3c in C, but transition t3c is not enabled in (C,mc1). The horizon-
tal synchronization steps (; t5, t5c) and (; t6, t6c) are enabled in M2. If (; t6, t6c)
fires, it produces the marking M3 = (1, ((WF ′1,m12), (WF ′2,m21), (C, mc2)), 0),
where m21 = 1′p6 and mc2 = 1′pac1 + 1′pac3 . If we assign to x1 the object-net
(WF ′1,m14), to x2 the object-net (WF ′2,m22) and to x3 the object-net (C,mc3),
then transition end is enabled in M5: place I contains an atomic token, place p
contains three object-nets. Since t′1 is enabled in (WF ′1,m14) and t′2 is enabled
in (WF ′2,m22), then the vertical synchronization step (end; t′1, t

′
2) is enabled in

M5. The firing of this step removes the atomic token from I, the object-nets
from p and adds an atomic token to place O.
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4 Definition of Interorganizational Workflow Nets

This section introduces the definition of interorganizational workflow nets, a
model based on nested Petri nets, for loosely coupled interorganizational work-
flows.

We will assume that there are n local workflows belonging to n business
partners. Each business partner has total control over his own workflow process
and the local workflows interact at certain points, according to a communication
structure. There are two types of communication: asynchronous communication
(corresponding to the exchange of messages between workflows) and synchronous
communication (which forces the local workflows to execute specific tasks at the
same time) .

We define, first, extended workflow nets, an extension of the WF-nets defined
in Sect. 2.

Definition 1. Let WF = (P, T, F ) be a WF-net. The extended WF-net is
WF ′ = (P, T ′, F ′), where T ′ = T ∪ {t′} and F ′ = F ∪ {(o, t′)}

WF is called the underlying net of WF ′. One can notice that the set of
reachable markings of WF ′ includes the set of reachable markings of WF . The
final marking of an extended workflow net is the empty marking (the marking
in which all the places are empty), denoted by 0. This marking is reachable only
from the final marking of WF , o, by firing the transition t′.

Extended WF-nets will be used for modelling the local workflows from the
interorganizational workflow.

Interorganizational workflow nets (IWF-nets) are defined as a special class of
nested Petri nets. IWF-nets are nested nets with a particular structure, extended
with two sets (AC and SC), used for describing the communication between the
local workflows, and a special labelling system.

Definition 2. An interorganizational workflow net IWF is a nested Petri net:
IWF = (V ar, Lab, (WF ′1, i1), . . . , (WF ′n, in), AC,
SC, (C, 0), SN,Λ) such that:

1. V ar = {x1, x2, . . . , xn, xn+1} is a set of variables.
2. Lab = LabAC ∪ LabSC ∪ {e, e} is a set of labels.
3. (WF ′1, i1), . . . , (WF ′n, in) are extended WF-nets, with the corresponding ini-

tial markings i1, i2, . . . , in.
4. AC is the asynchronous communication relation: AC ⊆ T ◦ × T ◦, where

T ◦ = ∪k∈{1,...,n}Tk, Tk is the set of transitions from WF ′k. If (t, t′) ∈ AC, t ∈
Ti, t

′ ∈ Tj, then i 6= j.
5. SC is the set of synchronous communication elements: SC ⊆ P (T ◦) and:

– ∀x, y ∈ SC : x ∩ y = ∅.
– if t ∈ Ti, t

′ ∈ Tj , t, t
′ ∈ x, x ∈ SC, then i 6= j.

6. C = (PC , TC , FC) is the communication object:
– PC = {pac|ac ∈ AC}.
– TC = {tc|∃(t′, t) ∈ AC ∨ (t, t′) ∈ AC}.
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– FC = {(p, t) ∈ PC ×T ◦|p = (t′, t) ∈ AC}∪{(t, p) ∈ T ◦×PC |p = (t, t′) ∈
AC}

7. SN = (N, W,M0) is the system net of IWF, such that:
– N = (PN , TN , FN ) is a Petri net:

• PN = {I, p,O}, where O is a place such that O• = ∅ and I is a place
such that •I = ∅.

• TN = {end}.
• FN = {(I, end), (p, end), (end, O)}.

– W is the arc labelling function: W (I, end) = 1, W (p, end) = (x1, x2, . . . , xn+1),
W (end, O) = 1.

– M0 is the initial marking of the net: M0(I) = 1,
M0(p) = ((WF ′1, i1), . . . , (WF ′n, in), (C, 0)) and M0(O) = 0.

8. Λ is a partial labelling function such that:
– ∀x ∈ SC, ∀t, t′ ∈ x,Λ(t) = Λ(t′) = l, l ∈ LabSC .
– if t ∈ T ◦ such that (t, t′) ∈ AC or (t′, t) ∈ AC, then there exists tc ∈

TC : Λ(tc) = Λ(t) = l, l ∈ LabAC .
– Λ(t′i) = e,∀i ∈ {1, . . . n} and Λ(end) = e.
– ∀t, t′ ∈ Ti(i ∈ {1, . . . , n}) : Λ(t) 6= Λ(t′).

In an IWF-net there are n object-nets (extended WF-nets) representing the
local workflows corresponding to the n business partners involved in the interor-
ganizational workflow.

V ar is the set of variables in the net. Variables xi, i ∈ {1, . . . , n} will take as
value an object WF-net in a certain marking. Variable xn+1 will take as value
the object-net C in a certain marking.

Lab is a set of labels: the labels in LabAC are used for asynchronous com-
munication elements and the labels from LabSC are used for synchronous com-
munication elements. LabAC and LabSC are not necessary disjoint. The label e
is used for labelling the transition t′i from WF ′i , ∀i ∈ {1, . . . , n}. The label e is
used for the transition end from SN .

AC defines a partial order on the transitions of the extended workflow nets,
representing the asynchronous communication: if (t, t′) ∈ AC, t must execute
before t′ (i.e. t′ waits for a message which is sent after the firing of t). Also,
t and t′ should not belong to the same set of transitions Ti (i ∈ {1, . . . n}):
if t and t′ belong to the same local workflow, there exist other mechanisms for
synchronizing these transitions and it is not necessary to specify an asynchronous
communication relation between them.

SC represents the set of synchronous communication elements: if x ∈ SC,
then, all the transitions from x have to execute at the same time. x should not
contain two transitions from the same set of transitions Ti: the local transitions
from the same workflow should not be synchronized using SC. All the sets in
SC should be disjoint.

C is an object-net which describes the asynchronous communication between
workflows. C can be constructed automatically using the elements of AC: for
every asynchronous communication element ac ∈ AC, there is a corresponding
place pac in PC . For every transition t ∈ T ◦ involved in an asynchronous com-
munication element, there is a transition tc ∈ TC . Also, if ac = (t, t′) ∈ AC,
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tc ∈ TC is the transition which corresponds to t, t′c ∈ TC is the transition which
corresponds to t′, pac is the place which corresponds to ac, then there exist two
arcs (tc, pac), (pac, t

′
c) ∈ FC . The initial marking of C is the empty marking,

denoted by 0.
W is a function that assigns to each arc in SN an expression. In IWF-nets,

an expression can be either the pair (x1, . . . , xn, xn+1) or the constant 1.
Λ is a partial function which assigns labels from Lab to certain transitions.

All the transitions from a synchronous communication element x ∈ SC have the
same label l ∈ LabSC . If t is a transition from an extended WF-net which appears
in an asynchronous communication element ac ∈ AC, then Λ(t) ∈ LabAC . Since
t belongs to an asynchronous communication element, there is a corresponding
transition, tc, in the object-net C. t and tc have the same label: Λ(t) = Λ(tc) = l.
In any extended WF-net, there are no transitions with the same label.

We denote by Anet the net tokens of the IWF-net:
Anet = {(EN,m) / m is a marking of EN , EN ∈ {WF ′1, . . . , WF ′n, C}}.

A marking of an IWF-net is a function such that: M(I) ∈ N, M(O) ∈ N and
M(p) ∈ An+1

net . We write M as a vector M = (M(I),M(p),M(O)).

Definition 3. A binding (of transition end) is a function b : V ar → Anet.

If expr is an expression, expr(b) denotes the evaluation of expr in binding b.
expr(b) is obtained from expr by replacing every variable z ∈ V ar from expr
with b(z). If expr is a constant expression (an expression without variables),
then expr(b) = expr.

Definition 4. Transition end from the system net SN of an IWF-net is enabled
in a marking M w.r.t. a binding b if and only if:
∀q ∈ •end : W (q, end)(b) = M(q), where W (q, end)(b) is the arc expression of
the arc (q, end) evaluated in binding b.

Transition end is enabled in a marking M w.r.t. the binding b if M(I) = 1
and the expression from the arc (p, end) evaluates to the same tuple of tokens
from place p: W (p, end)(b) = M(p).

There are several types of steps, defining the behaviour of nested Petri nets
(see [9, 10]). In the case of IWF-nets, which are a special class of two-level nested
Petri nets, these steps are:

Definition 5. A vertical synchronization step:
If transition end is enabled in a marking M w.r.t. a binding b and every transi-
tion t′i (Λ(t′i) = e) is enabled in the object-net b(xi) = (WF ′i ,mi), ∀i ∈ {1, . . . , n},
then the simultaneous firing of end and t′1, . . . , t

′
n is a vertical synchronization

step.
The firing of the vertical synchronization step (end; t′1, . . . , t

′
n) in marking M

produces the marking M ′ = (0, 0, 1).
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This step removes the object-nets from p and the atomic token from I. In
the resulting marking, M ′, there is only one atomic token in place O.

Definition 6. An object - autonomous step:
Let M be a marking of an IWF-net and (α1, α2, . . . , αn+1) a tuple of tokens
from p. Let αi be one of the object-nets (i ∈ {1, . . . , n}) αi = (WF ′i , m). Let
t be a transition in αi such that t is enabled in marking m, Λ(t) is undefined
and m[t〉m′ (i.e. the firing of t, by the firing rule from the classical Petri nets,
produces a new marking m′ in αi).

Let M ′ be a marking of the IWF-net obtained from the old marking M by
replacing, in the tuple (α1, α2, . . . , αn+1) from M(p), the net token αi with the
net token α′i, where α′i = (WF ′i ,m

′). We write: M [; t〉M ′.

An object-autonomous step is the firing of a local unlabelled transition in
one of the local workflows. None of the object-nets are moved from the place p.

Definition 7. A horizontal synchronization step:
Let M be a marking of IWF and (α1, α2, . . . , αn+1) a tuple of net-tokens from p.
Assume t1, . . . ts ∈ T ◦ is the set of all the transitions with the same label l 6= e,
Λ(t1) = Λ(t2) = . . . = Λ(ts) = l, such that: every transition tj (j ∈ {1, . . . , s})
is enabled in a net-token αkj = (ENj ,mj) ({k1, . . . ks} ⊆ {1, . . . , n + 1}, ENj ∈
{WF ′1, . . . , WF ′n, C} ) and mj [tj〉m′

j (by means of classical Petri nets). The
synchronous firing of t1, . . . , ts is called a horizontal synchronization step.

The resulting marking, M ′, is obtained from M by replacing the tuple (α1, α2, . . . , αn+1)
from place p with the tuple (α′1, α

′
2, . . . , α

′
n+1), where α′kj

= (ENj ,m
′
j), ∀j ∈

{1, . . . , s} and α′i = αi, ∀i ∈ {1, . . . , n + 1}\{k1, . . . ks}. We write: M [; t1, . . . , ts〉M ′.

If in a marking M of an IWF-net, all the transitions t1, . . . , ts, with the
same label l 6= e, are enabled in the object-nets αk1 = (EN1,m1), . . . , αks =
(ENs,ms) from M(p), then the simultaneous firing of these transitions is a
horizontal synchronization step.

The definitions of the vertical synchronization step and of the object-autonomous
step are the definitions from [10], adapted for the structure of IWF-nets. The
definition of the horizontal synchronization step for IWF-nets extends the defini-
tion from [10], allowing the horizontal synchronization of transitions from several
object-nets. This extension does not change the properties of nested Petri nets.

5 The Soundness Property for Interorganizational
Workflow Nets

In this section we will introduce a notion of soundness for IWF-nets.
A notion of soundness was defined for WF-nets, expressing the minimal con-

ditions a correct workflow should satisfy ([1]): a workflow must always be able
to complete a case, any case must terminate correctly, and every task should
contribute to at least one possible execution of the workflow. In a WF-net, com-
pletion of a case is signalled by a token in its sink place. Thus, the completion (or
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termination) option means that it must always be possible to produce a token
for this place. Correct termination means that, as soon as a token is produced
for the sink place, all other places must be empty. The last requirement means
that a WF-net should not have any dead transitions. The formal definition of
soundness (from [1]) is:

Definition 8. A workflow net WF = (P, T, F) is sound iff:

1. For every marking m reachable from the initial marking i, there exists a firing
sequence leading from m to the final marking o (termination condition):
(∀m)((i[∗〉m) =⇒ (m[∗〉o)).

2. Marking o is the only marking reachable from state i with at least one token
in place o: (∀m)((i[∗〉m) ∧m ≥ o) =⇒ (m = o)).

3. There are no dead transitions in WF: (∀t ∈ T )(∃m,m′)(i[∗〉m[t〉m′).

It was proven (see [1]) that the soundness property is decidable for WF-nets.

Definition 9. Let WF ′ be an extended workflow net and WF its underlying
workflow net. WF ′ is sound if WF is sound.

In an interorganizational workflow, although the local workflows are sound,
we can have synchronization errors and it is possible that communication el-
ements introduce interlocking. In the interorganizational workflow in Fig. 1,
the two local workflows are sound. But if we consider the execution sequence
M0[Y1〉M1[Y2〉M2, where Y1 = (; t1, t1c), Y2 = (; t5, t5c), then, transition t3 will
never fire in WF ′1, so the local workflow WF ′1 does not terminate (transition t4
will never be enabled).

We will define a notion of soundness for interorganizational workflows. We
will consider the final state for an IWF-net, a marking Mf , in which there is
only one atomic token in place O: Mf = (0, 0, 1). An IWF-net is sound if: (1)
every extended WF-net WF ′i (i ∈ {1, . . . , n}) is sound and (2) for any reachable
marking of the IWF-net, M ∈ [M0〉, there is a firing sequence that leads to Mf .

We can define formally the notion of soundness for an IWF-net as follows:

Definition 10. An interorganizational workflow net
IWF = (V ar, Lab, (WF ′1, i1), . . . , (WF ′n, in), AC,
SC, (C, 0), SN,Λ) is sound if and only if:

1. (WF ′j , ij) is a sound extended workflow net, ∀j ∈ {1, . . . , n}.
2. For every marking M reachable from the initial marking M0, there exists a

firing sequence leading from M to the final marking Mf : (∀M)((M0[∗〉M) =⇒
(M [∗〉Mf )).

First, we consider the interorganizational workflow is sound if the extended WF-
nets describing the local workflows are sound. The final marking of the IWF-net
is reached if and only if the vertical synchronization step fires. This implies
that all the transitions t′i are enabled in WF ′i (i ∈ {1, . . . , n}), which happens
if and only if the final markings in the extended WF-nets have been reached.
Thus, the second condition from the soundness definition basically states that
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the interorganizational workflow is sound if the termination condition still holds
for every WF-net, when the firing of tasks is restricted by the communication
structure.

The notion of soundness for IWF-nets is weaker than the notion of soundness
defined in [2], as it does not impose the absence of dead steps in the IWF-net.

The notion of soundness for IWF-nets does not impose a condition similar
to condition (2) from Def. 8, because such a condition always holds for sound
IWF-nets:

Lemma 1. Let IWF be a sound IWF-net. Marking Mf is the only marking
reachable from M0 with at least one token in place O: (∀M)((M0[∗〉M) ∧M ≥
Mf ) =⇒ (M = Mf ))

Proof. Assume M ∈ [M0〉 and M ≥ Mf . If M ≥ Mf , then M(O) ≥ 1. But
tokens can be added to place O only when transition end fires in IWF . This
transition can only fire once and it empties place I and place p. No other steps
can fire after this. So, the only reachable marking with M(O) ≥ 1 is Mf .

In order to decide whether the soundness property defined is decidable, we
introduce a partial order on the markings of the IWF - net (see [10]):

Definition 11. Let IWF be an IWF-net, M1 and M2 markings of IWF . M1 ¹
M2 if and only if M1(I) ≤ M2(I), M1(O) ≤ M2(O) and there is an embedding
Jp : M1(p) → M2(p), such that for α = (α1, . . . , αn+1) ∈ M1(p) and for Jp(α) =
α′ = (α′1, . . . α

′
n+1) we have for i ∈ {1, . . . , n+1} either αi = α′i or αi = (EN,m)

and α′i = (EN, m′) (EN ∈ {WF ′1, . . . , WF ′n, C}) and for all the places q of EN :
m(q) ≤ m′(q).

Definition 12. Let IWF be an IWF-net and M and M ′ two markings of IWF .
The marking M covers M ′ (w.r.t. the partial ordering ¹) if M ′ ¹ M .

Definition 13. Given a set of markings Q = {q1, q2, . . . , qn} and an initial
marking M , the inevitability problem is to decide whether all computations start-
ing from M eventually visit a marking not covering (w.r.t. the partial ordering
¹) one of the markings from Q.

It was proven in [9, 10] that the inevitability problem is decidable for nested
Petri nets.

Theorem 1. Let IWF be an IWF-net and M ∈ [M0〉. There is a firing sequence
M [∗〉Mf if and only if there is a firing sequence M [∗〉M ′ and M ′ does not cover
(w.r.t. ¹) the marking (1, 0, 0).

Proof :
(=⇒) Assume M [∗〉Mf in IWF . Since Mf does not cover the marking (1, 0, 0),
we can consider M ′ = Mf .
(⇐=) We assume there exists a firing sequence from marking M to a marking
M ′ which does not cover the marking (1, 0, 0). If M ′ does not cover (1, 0, 0), then
M ′(I) = 0 (there are no tokens in place I). Marking M ′ is reachable from M0
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(because M0[∗〉M [∗〉M ′). M ′(I) = 0 if and only if the vertical synchronization
step Y = (end[b]; t′1, . . . , t

′
n) fires in IWF . The firing of this step always leads

to the marking Mf (so, M ′ = Mf ). This implies there is a firing sequence such
that M [∗〉Mf .

Theorem 2. The soundness problem is decidable for IWF - nets.

Proof: Let IWF be an IWF-net. Using the definition of soundness and Theorem
1, IWF is sound if and only if: (1) WF ′i are sound, ∀i ∈ {1, . . . , n} and (2) for any
reachable marking in IWF , M ∈ [M0〉, there exists a firing sequence M [∗〉M ′

such that M ′ does not cover (w.r.t. ¹) the marking (1, 0, 0). The soundness of the
extended WF-nets is decidable (because the soundness for WF-net is decidable)
and condition (2) is equivalent to the inevitability problem, if we consider the
marking M and the set of markings Q = {(1, 0, 0)}.

6 Conclusions

In this paper we introduced a new approach on the modelling of interorga-
nizational workflows, based on nested Petri nets: the local workflows and the
communication structure are modelled as object-nets. The local workflows have
an independent behaviour and they can interact, according to the given com-
munication structure, using the synchronization mechanisms offered by nested
Petri nets. This approach has several advantages: one can have a modular view
on the interorganizational workflow, because the local workflows and the com-
munication structure are distinct elements in IWF-nets; steps in IWF- nets can
easily express the synchronous and the asynchronous communication; IWF-nets
represent a flexible model for interorganizational workflows, because any com-
ponent can be modified easily, with minimal changes to the other components.
This is an important requirement for interorganizational workflows, since the
communication structure between the local workflows can change in time. Also,
our contribution preserves the privacy of the local workflows: the local workflows
only share two sets of labels used for the synchronous and the asynchronous com-
munication. A notion of soundness was introduced for IWF-nets: an IWF-net is
sound if and only if all the extended workflow nets which describe the local
workflows are sound and for any reachable marking of the IWF-net, there is a
firing sequence that leads to the final marking. We proved this property is de-
cidable for IWF-nets. Future work aims at defining IWF-nets which will model
interorganizational workflows in which every local workflow processes batches of
cases, instead of one case in isolation.
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