

Modelling and Simulation of a Real-Time Hybrid
System

Manuel I. Capel-Tuñón

Department of Software Engineering, ETS Informatica y Telecomunicación,
18017 University of Granada, Spain

 mcapel@ugr.es

Abstract. A correct system design is systematically obtained from the SA/RT
requirements specification model (RSM) of a real-time system. The aim of the
systematic procedure is obtaining a complete model in the
Matlab/Simulink/Stateflow framework for solving a realistic industrial problem,
namely, an AC motor controller which must be able to maintain a constant air
flow through a filter. The article also discusses a practical application of the
method for implementing a closed loop control system to show how the
proposed procedure can be applied to derive complete hybrid system designs.

Keywords: Real-time embedded control systems, SA/RT, Simulink, Stateflow,
Process Algebra, System Software Specification.

1 Introduction

Structured Analysis methods for specification of Real-Time systems (SA/RT), applied
to the specification of non-functional user requirements, such as timing constraints
between system actions, do not address -or excessively postpone- non-functional
specification to a final phase of the system development life-cycle, thereby causing
economic loses if there are mistakes in the requirement specification phase. Although
SA/RT methods help us to find a consistent specification of system requirements,
however they must be complemented with other, formal, description methods, which
facilitate non-functional specification (i.e., scheduling analysis, resource allocation,
timing constraints, etc.) [1, 7-9] on early stages of any target system development.
Firstly, the present contribution is aimed at integrating Stateflow to represent
processes of reactive behaviour and Simulink blocks to represent continuous
components in the final stages of a real-time system specification that is
systematically derived by the application of a set of rules [1]. By using a hierarchy of
Stateflow charts as a semiformal graphical description language, we can give an
operational semantics to reactive data transformation and control processes that
appear in any SA/RT model. In addition, the simulation tools provided by
Simulink/Stateflow provide a common framework to carry out a complete system
specification of discrete events dynamic systems as well as continuous dynamic
systems, see Fig.1.

Proceedings of EOMAS’08 93

Different real-time system types require different designs of formal description
languages, programming languages and software tools. A series of tools are aimed at
modelling real-time systems that integrate continuous components. Among currently
implemented approaches, we can distinguish [15] three major classes: (1) block-
based, (2) physical oriented and (3) hybrid state machines. (1) Block based tools give
a graphical language based on a library of primitive blocks with discrete, continuous
or hybrid behaviour. The most used among these tools are: Simulink/Stateflow, Easy5
and VisSim, the latter one being used in iLogix Statemate Magnum. These tools are
usually easy to use for building small and medium-size models of target systems, but
for complex ones the model becomes a multilevel diagram that is difficult to
understand and modify. (2) Physical oriented tools use a system of differential
equations to describe the continuous behaviour of an hybrid system; these kinds of
tools are mainly academic projects, such as 20-Sim from Controllab Products,
Dynasim Dimola and Modelica, Smile from Berlin Technical University, which use a
system of differential equations to describe the continuous behaviour of the system;
discrete components are difficult to model and to change; this approach works better
for modeling pure continuous physical systems. The approach works better for
modelling physical systems, but if discrete components are intertwined with
continuous ones these tools produce inflexible models, with parameters that are
difficult to change at run time in simulations. (3) In hybrid state machines [12] the
continuous behaviour described by a system of differential equations associated with
the discrete state of a state-transition machine; when the discrete state changes as a
result of an event, the continuous behaviour may also change; this approach gives
very compact and flexible specifications of complex hybrid systems, but there are
very few tools that support this class of tools at the moment, among which are, Path
from Berkeley University and Model Vision from Object Technologies.

SA/RT user’s
requirements
specification

model

CSP+T
processes

model

High order
differential
equations

Hybrid real-time system
specification model (target)

Simulation system executive

Stateflow
charts

Simulink
library of

continuous
blocks

Fig. 1. Software architecture of the proposed model of a real-time system.

CSP+T formal notation is capable of unambiguously describing the different
modeling entities of SA/RT notation, which can afterwards be converted into a
hierarchy of Stateflow diagrams. A semantic equivalence between CSP+T process
terms and a subset of Stateflow modeling entities can be shown, according to our
method. The validation of the final system model is carried out by simulation, since

94 Proceedings of EOMAS’08

Simulink blocks are very accurate and can be tested in a realistic environment by
downloading the target software in an embedded controller, with which the
environment can directly communicate through different A/D, D/A interfaces. The
imprecision regarding time specification that SA/RT notation presents has been
overcome by deploying CSP+T as a meta-notation to label transitions in state-
transition diagrams. This way opens up the possibility of having automatic code
derivation of the annotated RSM, which can be automatically translated into a Java
controller with the support of JCSP [11]. The constructive nature of the method
makes it a good candidate to be integrated with off-the-shelf simulation tools for
dynamic continuous systems design. This research aims at the implementation of
formal tools for performing probably correct automatic generation of code for real-
time controllers.

The remainder of the paper is structured as follows. We first give some background
on SA/RT modelling methods and CSP+T process algebra. The top-down derivation
procedure proposed in this paper is discussed in detail in the next section specifying
the steps to be performed. Then, the method proposed is applied to solve an industrial
problem of a real-time feedback closed loop used to maintain constant rotor speed of
an induction motor driven by a TriaC device such that a constant air flow through a
filter in HVAC systems is achieved. The case study shows how the proposed method
can be applied to derive a hybrid system that also contains discrete components. The
next section describes how the system can be validated by simulation and adds some
components to the model. Finally, the conclusions and the ongoing lines of work are
presented.

2 Modeling methods

In the proposed top-down derivation method to design a real-time hybrid system with
continuous and discrete components, we use a derivation procedure that allows us to
obtain a compact specification (CSP+T process terms) of the functional and dynamic
aspects (Simulink/Stateflow blocks) of the system.

2.1 Requirements Specification Model (RMS)

A RSM can be obtained by applying a set of SA/RT methods using an informal
graphical notation also provided by SA/RT. This model consists of a hierarchy of
transformation schemes rooted on the System Context Diagram (SCD). Each scheme
“explodes” into a State Transition Diagram (STD) or into a Data Flow Diagram
(DFD). The scheme denoted as SCD defines the border between the system, which
should be understood as a double model describing the data flow and the control flow
relationships in the “solution domain”, and the environment, comprising the external
entities (or terminators) to the system and representing the “problem domain”.

The SA/RT notations include other elements of representation, called analysis
entities, Data Transformation Processes (DTPs), Control Transformation Processes
(CTPs), Data Stores (DS), Control Stores (CS), Data Flows and Control Flows.
Control Flows represent the transportation of transient signals or events towards

Proceedings of EOMAS’08 95

CTPs. A transformation scheme is represented by an SCD or by a DFD. DFDs are
composed of several copies of the above analysis entities and must include at least
one DTP. The bubbles that represent DFDs may “explode” into new, more detailed
DFDs. A fundamental strategy of SA/RT is to separate the control and the data
process descriptions within the system. A CTP is formally specified by means of a
state transition diagram (STD). STDs should be deterministic Moore or Mealy
automata, and they describe a sequence of state transitions of the system that cause
the execution of DTPs to be triggered. The SCD of the constant air flow through a
filter control system can be seen in Fig.4.

2.2 Flaws of SA/RT as a Specification Notation for Real-time Systems

The following ambiguities appear in both the WM [2] and HP [3] notations, causing
imprecisions in the specification, and therefore non predictability may be present [9]
in final real-time systems at a later development stage:

a) Lack of any rule for defining primitive process specifications (PSPECs). The
only indication given is that these specifications should define the functional
transformation performed by primitive DTPs. However, in real-world applications,
DTPs not only describe a purely functional behaviour of processes, but they often also
include control and timing information.

b) The enabling conditions of processes are not fixed. The SA rationale is that
processes are enabled whenever “sufficient data” appear in any of their input flows.
However, the enabling conditions rules do not clearly indicate the expected behaviour
of a process when more than one of its input flows are carrying values. In that case, a
non-deterministic selection appears in a process execution sequence and there is no
SA entity foreseen to represent it.

c) Execution time requirements for processes are excluded. These requirements,
when applied to practical cases, are used to specify either a maximum or minimum
time to be associated with the execution of a process.

d) The number and type of the input flows entering a process are vaguely
described. When there are multiple input flows entering a process, it is necessary to
define whether all the inputs must carry a value simultaneously to enable the process
(synchronous case) or only a subset of the input flows (asynchronous).

e) Simultaneous events awakening more than one transition. This possibility is
excluded in SA/RT notations since transitions exiting the same state are associated
with different events, since STDs are Mealy machines. However, there should be no
objection to allowing nondeterministic selection of transitions in notations for soft
real-time systems. Many proposals have been made in the last years to overcome the
problem of SA imprecision by complementing a system specification with formal
methods. The use of extensions of algebraic process description languages [7], such
as CSP[17], CSP+T [4], or the standard specification language LOTOS, can give a
precise and flexible interpretation to SA entities. In this respect, it has been shown [1]
that CSP+T process algebra formalizes the semantics of a SA/RT specification model
and also allows for the specification of timing constraints between the occurrences of
actions during any execution of the system by using a defined set of rules.

96 Proceedings of EOMAS’08

2.3 Real-time systems specification with CSP+T

The group of CSP derivatives to describe time intervals includes Timed CSP [17] and
CSP+T, the latter being a simpler approach. Providing less descriptive power,
although still powerful enough to formally describe a set of primitive processes with
time constrained behavior, CSP+T is an adequate formal specification language for
the majority of real-time systems.

The syntax of CSP+T, adapted to our method, which is detailed in [1] is next
described,

−Every process P defines its own set of communication symbols, i.e. its finite
communication alphabet α(P). These communications represent the events that the
process P receives from its environment or internally occur (e.g. the null action τ).
Any type of event causes a change of state of the process. Internal events, such as τ ,
are not externally visible.

−The communication interface comm_act(P) of a given process P contains all the
CSP-like communications ({?, !}) in which P can engage and the alphabet α(P).

−An instance of a process term must be created before it can execute. Thus, an
operator, (star) denotes process instantiation. This event is unique in the system
since it represents the origin of a single global time line in the system to which the
execution time of each process refers. Let us consider a process P that initially can
only engage in the event a. Given P’, the timed version of P, which is instantiated at
time 1, and that s is a time stamp associated to a, the specification of P’ becomes

P’= 1. →s.a→STOP, where s∈[1,∞) (1)

−An event operator >< is introduced to be used jointly with a variable to record the
time instant at which the event occurs, so that ev >< v means that the time at which
ev is observed in a process execution is recorded in the variable v. As several
successive events can instantiate the same variable at different times, if we specify the
process,

P= 1. →a>< var→STOP (2)

For each process execution, var will record the corresponding value of the time at
which the event a occurred, and it will always satisfy var≥ 1. The variables
associated to the operator >< are called marker variables and their scope is strictly
limited to one sequential process.

−Each event is associated with a time interval, which is called the event-enabling
interval. This interval represents the period of time during which the event considered
is available to the process and its environment, and is relative to some preceding event
of the current process execution. A process is considered to be the STOP process if it
cannot engage in an alternative within the enabling interval of the event. The event-
enabling intervals are continuous. Let us suppose, for instance, that a process P can
only engage in event a, which can only occur between 1 and 2 units of time from the
instantiation time, recording itself in the marker variable v as the time at which this
event has occurred:

Proceedings of EOMAS’08 97

P= 0. →[1,2] a >< v→ STOP. (3)

• The value of the marker variable v will satisfy the inequality 1≤ v ≤ 2. The
enabling intervals are defined in terms of functions, as rel(ti, vi) = [vi, ti+vi], over
a set of marker variables {vi}. When there are no marker variables referenced, the
enabling interval is defined relative to the immediately preceding event.

P = ... E.P’ . E = {s | s = rel(x, v)} (4)

−If the preceding event occurs at time t0, then rel(x, v)= [v-t0, x+v-t0], since the

times for events are absolute and the times for intervals are relative to the preceding
event. The semantics of the parallel composition of two processes with enabling
intervals depends on whether the values of these intervals are identical, partially
overlapping or disjoint. In the case of disjoint intervals, the parallel composition
behaves identically to the STOP process.

2.4 Generation of a System Specification from the RSM

In order to obtain a model of the system, it is necessary to represent every analysis
entity of the RSM by a class of CSP+T processes. Following this approach, we write
a CSP+T process prototype for every DTP, CTP, DS, CS, etc. A series of
transformation rules [1] allow us to create a process term of the algebra for every
transformation scheme that appears in any diagram of the RSM. A representation of
the complete derivation procedure is shown in Fig 2. The modelling elements of
Stateflow diagrams can be represented by CSP+T terms, as reactive processes at the
lowest level of a system specification. As Simulink blocks are the basic bricks needed
to represent primitive functions, as well as continuous components in many hybrid
real-time systems simulations, we replace the primitive processes in a RSM model by
Simulink blocks in order to get an integrated model of a hybrid real-time system that
can afterwards be validated by simulation.
To carry out a simulation in the Simulink/Stateflow framework, additional blocks
must be added to the final model. These blocks represent the external entities of RSM
and must be modeled according to the specific physical devices (actuator or sensor)
that supply signals (data or event) to/from the system.
In general, we will adopt a bottom-up process that consists of the following steps:
1) Prepare the analysis schemes for carrying out the transformation. It may be
necessary to rename some analysis entities to avoid conflicts, i.e., unwanted
synchronizations between processes.
2) Transform the control transformation schemes (CTP) and data transformation
schemes (DTP) that present reactive behaviour of the lower level, i.e. those that do
not explode into other schemes, into Stateflow diagrams.
3) Add Simulink-blocks to represent external devices or continuous components, i.e.,
when they are needed to represent DTPs with transformational behaviour .

98 Proceedings of EOMAS’08

4) Select the other schemes, i.e., Data Storage (DS), Control Storage (CS), DTP, CTP,
or Continuous Flow of Data, that appear in the scheme, in ascending order; and build
a CSP+T process for each entity in the scheme.
5) Once the CSP+T model has been obtained for all the entities in an SA/RT scheme,
one CSP+T process will be defined to model the complete scheme. If this scheme is
already included in a CTP or a DTP of a higher level, repeat step (4), thus
progressively integrating the CSP+T model of the system in an ascending way.
The iterative process finishes when a unique process with the communication
interface of the system is obtained, i.e., when the CSP+T model of the System
Context Diagram is obtained.

Level of STDs

TOP-DOWN Strategy

Operational
semantics
equivalence

overheat

ref

oheatf syncf

texct

sync

flow

timeval

Open
Loop

Control

PID
Comput

ation
1.2

1.1

overheat

syncftexct

sync
timeval

disable

oheatf

Overheat
watchdogExcitation

generation
2.1

2.2 x:= timeval

sync 11 ms.syncf

x ms.
texct

overheat
oheatf, disable

System

Sync
Gene
rator

Triac Flow
senso

r

flow
ºC

sensor

overheat

ref

oheatf

syncf

texct

sync

0

1st Level DFDs

2nd Level DFDs

BOTTOM-UP Strategy

Abstraction
of atomic
operations
on the STD +
parallel
composition of
EG and OW

Hiding of “disable”
and “init + parallel
compositions

Hiding of
“timeval” +
parallel
compositions

EG

OW

Level of STDs

TOP-DOWN Strategy

Operational
semantics
equivalence

overheat

ref

oheatf syncf

texct

sync

flow

timeval

Open
Loop

Control

PID
Comput

ation
1.2

1.1

overheat

syncftexct

sync
timeval

disable

oheatf

Overheat
watchdogExcitation

generation
2.1

2.2 x:= timeval

sync 11 ms.syncf

x ms.
texct

overheat
oheatf, disable

System

Sync
Gene
rator

Triac Flow
senso

r

flow
ºC

sensor

overheat

ref

oheatf

syncf

texct

sync

0

1st Level DFDs

2nd Level DFDs

BOTTOM-UP Strategy

Abstraction
of atomic
operations
on the STD +
parallel
composition of
EG and OW

Hiding of “disable”
and “init + parallel
compositions

Hiding of
“timeval” +
parallel
compositions

EG

OW

TOP-DOWN Strategy

Operational
semantics
equivalence

overheat

ref

oheatf syncf

texct

sync

flow

timeval

Open
Loop

Control

PID
Comput

ation
1.2

1.1

overheat

syncftexct

sync
timeval

disable

oheatf

Overheat
watchdogExcitation

generation
2.1

2.2 x:= timeval

sync 11 ms.syncf

x ms.
texct

overheat
oheatf, disable

System

Sync
Gene
rator

Triac Flow
senso

r

flow
ºC

sensor

overheat

ref

oheatf

syncf

texct

sync

0

1st Level DFDs

2nd Level DFDs

BOTTOM-UP Strategy

Abstraction
of atomic
operations
on the STD +
parallel
composition of
EG and OW

Hiding of “disable”
and “init + parallel
compositions

Hiding of
“timeval” +
parallel
compositions

EG

OW

overheat

ref

oheatf syncf

texct

sync

flow

timeval

Open
Loop

Control

PID
Comput

ation
1.2

1.1

overheat

syncftexct

sync
timeval

disable

oheatf

Overheat
watchdogExcitation

generation
2.1

2.2 x:= timeval

sync 11 ms.syncf

x ms.
texct

overheat
oheatf, disable

System

Sync
Gene
rator

Triac Flow
senso

r

flow
ºC

sensor

overheat

ref

oheatf

syncf

texct

sync

0

1st Level DFDs

2nd Level DFDs

BOTTOM-UP Strategy

Abstraction
of atomic
operations
on the STD +
parallel
composition of
EG and OW

Hiding of “disable”
and “init + parallel
compositions

Hiding of
“timeval” +
parallel
compositions

EG

OW

overheat

ref

oheatf syncf

texct

sync

flow

timeval

Open
Loop

Control

PID
Comput

ation
1.2

1.1

overheat

ref

oheatf syncf

texct

sync

flow

timeval

Open
Loop

Control

PID
Comput

ation
1.2

1.1

overheat

syncftexct

sync
timeval

disable

oheatf

Overheat
watchdogExcitation

generation
2.1

2.2

overheat

syncftexct

sync
timeval

disable

oheatf

Overheat
watchdogExcitation

generation
2.1

2.2

syncftexct

sync
timeval

disable

oheatf

Overheat
watchdogExcitation

generation
2.1

2.2 x:= timeval

sync 11 ms.syncf

x ms.
texct

x:= timeval

sync 11 ms.syncf

x ms.
texct

overheat
oheatf, disable

overheat
oheatf, disable

System

Sync
Gene
rator

Triac Flow
senso

r

flow
ºC

sensor

overheat

ref

oheatf

syncf

texct

sync

0
System

Sync
Gene
rator

TriacTriac Flow
senso

r

flow
ºC

sensor
ºC

sensor

overheat

ref

oheatf

syncf

texct

sync

0

1st Level DFDs

2nd Level DFDs

BOTTOM-UP Strategy

Abstraction
of atomic
operations
on the STD +
parallel
composition of
EG and OW

Hiding of “disable”
and “init + parallel
compositions

Hiding of
“timeval” +
parallel
compositions

EG

OW

Fig. 2. The complete derivation procedure of a real-time system

3 Regulation of Rotor Speed With An Induction Motor

3.1 Description of the Induction Motor Control

An informal description of the user´s requirements specification of a closed loop
control system is presented for controlling an AC motor (or induction motor), Fig.3.
The open loop control of the engine is obtained by feeding it with a controlled voltage
of 220 volts and 50 Hz. This control is carried out by cutting the sinus wave, which
represents the input voltage using an electronic device named TriaC, which operates
as a very fast switch.

Proceedings of EOMAS’08 99

The control line of the TriaC is driven by a synchronization signal (synch), which
informs when the input voltage passes through a zero value, at this moment the TriaC
automatically stops to conduct electricity. If after switching the TriaC off, it is fired a
number of milliseconds later, it will be driven to saturation by the signal texct and
will start to conduct until the input voltage passes through a zero value again. The
closed loop of control is obtained in this case by calculating the precise time at which
the TriaC must be fired, so the excitation time must be calculated in real-time and in
every cycle of the input voltage. The system should address its own safety if
synchronization signal fails or TriaC overheats. If synch is missed after passing a
complete cycle of the input voltage, then syncf is raised. Other possible failure could
happen if the TriaC overheated, in this case the electronic device might short-circuit
and lead the engine to start working at the maximum number of revolutions, which
would cause the loss of the engine after 1 second approximately.

220 v
50 Hz

Triac
Excitation

AC output
time controlable

220 v
50 Hz

Triac
Excitation

AC output
time controlable

Fig. 3. Description of the operation of TriaC device that controls the AC induction motor.

The combination of induction motor with TriaC device can be used to control or
maintain constant the velocity of a centrifuge of washing machine, the air flow
through a filter, the speed of a vehicle, etc. From now on we suppose that AC
induction motor directed by the TriaC device controls the air flow through a filter.

3.2 Top-down derivation of the System Model

A set of hierarchical diagrams is obtained using top-down strategy within the SA/RT
methodology. The high-level diagram is the System Context Diagram (SCD). The
SCD (fig 4) includes 5 control flows: the synchronization signal (synch), which
informs when the input voltage passes trough zero value; the TriaC overheating
warning; two signals, the first one signals the missing of synch and the second one
signals TriaC overheating; the excitation (texct) signals to make the TriaC return to
allow current to pass again. It also includes 2 data flow: the first one gives the present
air flow trough the filter (flow) and the second one, the air flow reference value (ref).
Note that the automatic system modeled interacts with external devices that supply
data flows to the system like sensors, or interacts with external devices sending

100 Proceedings of EOMAS’08

control events which change the state of system environment like actuators. Then the
AC motor is not controlled directly by the system, consequently it is not considered as
an external entity of the system. The latter one computes a timeval value that activates
the excitation signal of TriaC texct. This device causes an immediate effect to the
induction motor by changing the actual speed of motor which can only be made
available to the system by sensors as tachometers.

System

Sync

Generator

TriacTriac
Flow

sensor
Flow

sensor

air flow
ºC

sensor
ºC

sensor

overheat

ref

oheatf

syncf

texct

sync

0

Fig. 4. System Context Diagram.

The SCD “explodes” into two main DTP processes on the 1st level DFD:
Proportional-Integral-Derivative control (PID) and the open loop control (OLC). The
OLC process triggers signals to actuators depending of the input data flows; i.e. textct
from an input timeval value, oheatf from an positive overheat value, syncf when the
synchronization signal is missed after passing one complete cycle of the input voltage.
However the PID control process determines the correct time (timeval) at which the
TriaC must be fired within the present voltage cycle. The integration of two DTPs
represents in fact the Closed Loop Control (CLC) of the system. Once the PID control
process adjusts the timeval value according to the actual speed of motor, the OLC
process produces a new excitation signal that changes the actual speed until the actual
speed reaches the reference speed.

Fig. 5. Simulink model of the final system.

A static analysis of the system reveals that the shorter the timeval is the higher the
speed reached by the rotor will be; but the relationship between these variables is non-
linear. The corrected timeval has been obtained as follow. First, the PID control
computes a positive or negative timeval increment which is added to the previous

Proceedings of EOMAS’08 101

value of timeval depending on whether the actual speed is over or under the speed
reference value, respectively. If the timeval is outside the interval [0,1/freq*2], its
value is saturated by the maximum or minimum value. Then one Simulink subsystem
block is designed as the PID controller with its interface made up of two ports: the
error signal (speed error signal) as the input port and the corrected timeval as the
output one.

4 Simulation of The Hybrid System

In order to carry out a simulation of the hybrid system proposed in this paper, more
components must be added to the model. We need to construct one model of a TriaC
device, one AC Motor , the flow sensor (or a sensor to measure the speed of the rotor
like a tachometer), the temperature sensor and one sync generator. This model can be
implemented in Simulink/Stateflow framework as Fig. 5 shows.

4.1 Physical Modeling of an Induction Motor

The most difficult component to model is the AC Motor, since the rest of them can be
modeled by means of simple switches or a combination of them. The following
sections discuss the model of AC motor developed for the system.

The functioning of an induction motor is based on the Physical principle of mutual
induction between electrical circuits traversed by a variable magnetic flux Φ.

According to the Faraday law, which is given by the following equation,
)(BN

dt
d

Φ⋅−=ε
,

the magnetic flux traversing a motor winding only depends on the current conducted
by the circuit. It does not depend, for instance, on the number of poles of the motor.
We can assign a self-induction constant L to any circuit being affected by magnetic
induction, according to the equation reelB iLN ⋅=Φ⋅

Nowadays the winding of induction motors is made of three windings, carrying

each one of them a voltage phase separated 32π rad. from the next phase, which
yields a rotating magnetic field in the stator, Fig.12. The velocity of rotation is called
the synchronous speed, which is given as a parameter of induction motors. If we
short-circuit the rotor winding –using a squirrel cage winding, for instance-, then the
motor will start rotating because the change in the magnetic field direction yielded by
the synchronous speed of the stator ωe induces a current that produces an
electromagnetic force in the rotor. The difference between the rotation velocity of the
stator ωe and this one of the rotor ωr is named slip, which is also given as a parameter
of induction motors.

102 Proceedings of EOMAS’08

4.2 The two-phase synchronous rotating frame

We can assume a reference system that rotates at the synchronous speed ωe of the
stator to ease the representation of the rotating

→

B and inductance linkages by a
system of coupled differential equations that describe the physical induction and
motor dynamics, as Fig. 6 shows. The induction motor is therefore modeled by two
reels, the first one is aimed at conducting the current in the stator and it also generates
the rotating magnetic field. The second one generates the induced magnetic field in
the rotor. This simple model allow us to describe the magnetic coupling between the
stator and rotor windings of an induction motor very accurately.

ωe θeB
ωe θeB

θe isd

isβ

ωe

Φs
Φsq

Fig. 6. Motor winding. Fig. 7. Rotating reference system

The first axis, Fig. 7, is called the direct axis and the second one, the quadrature axis.
eθ is an additional variable representing the rotor angle and it can be considered an

additional state of the induction motor model. An induction motor with a squirrel
cage rotor winding (short-circuited) will have null vqr and vdr voltages. The constants
and system variables of the above linear differential equations are given in Table 1.

Table 1. Constants and variables of the physical variables of an induction motor.

Variables of Physical Model
d: direct axis of the rotating
reference system

χ*
lm= 1/(1/χls+1/χlr+1/χm): total reactance

with the loses for magnetizing (χm)
q: quadrature axis of the
rotating reference system

iqs, ids: currents of the q and d stator axis

s: subindex for the stator
variable

iqr, idr: currents of the q and d rotor axis

r: subindex for the rotor
variable

p: number of poles of the motor

Fij=Φij, where i=q or d and
j=s or r, magnetic linkage

J: inertia momentum

vqs, vds: stator voltages Me: motor electrical torque (output variable)
vqr, vdr: rotor voltages Ml: load torque (input variable)
Rr, Rs: rotor and stator
resistors

ωe: stator synchronous speed (input variable)

χls: stator reactance (ωeLls) ωb=2⋅π⋅fb: angular speed corresponding to the

Proceedings of EOMAS’08 103

electric frequence of the motor feeding
voltage.

4.3 Calculation of the electromagnetic torque generated by the motor

We can derive a mathematical expression for calculating the electromagnetic torque
generated by the motor. Since we know that the mechanical power given by the motor

is obtained from the electromagnetic equation
()sqsdbsdsqbmech iΦωiΦω

2
3P ⋅⋅−⋅⋅=

,

and the magnetic linkage sdsq,Φ
 only depends on the synchronous angular speed and

the magnetic flux Fij = ωe⋅Φij. The mechanical power can be made equivalent to the
electrical torque Te generated by the motor, then we can obtain

()dsqsqsds
b

e iFiF
ω
1

2
p

2
3T −⎟

⎠
⎞

⎜
⎝
⎛=

 from the magnetic linkages Fds, Fqs, and currents, which are
obtained by solving a system of differential linear equations with concrete values of p
(the number of poles) and ωe as the input data to the induction motor model. The
angular velocity ωr of the rotor can also be calculated, since the load torque Tl and
moment of inertia J are also parameters of the induction motor model. As the above
equations show, the electrical torque and the angular rotor velocity depend on the
number of poles of the rotor winding, on the contrary of what happens with the
magnetic couplings.

5 Matlab/Simulink model of an induction motor drive

The model of an induction motor http://lsi.ugr.es/~mcapel/miscelanea/motor has been
structured in 3 main blocks: (1) transforms the three stator voltages va, vb, vc , with a
phase of 2π/3 between each two, into the rotating reference system dq; (2) the block
representing the induction motor itself (which inputs the three phase voltages, the
synchronous angular speed ωe and the load torque); (3) this block returns the
expression of the model variables in the dq system back to the three phases abc
reference system, since the latter one give us the standard graphical representation of
currents in the stator.

104 Proceedings of EOMAS’08

Fig. 8. Response of the rotor to changes in the stator speed

Two specific blocks have been designed to calculate the electrical torque Me given by
the motor and another to calculate the rotor axis angular speed ωr.
Finally, all the physical model constants given in table I have been defined using IS
physical units in a m-file of Simulink, which has to be executed in Matlab before
opening the Simulink model of the system.

6 Obtained Results

The results obtained with the two models (OLP and CLP) were quite different. In the
first case, it was only considered an open control loop model; thus, only after a
constant time the TriaC is fired in every cycle. In this case the disturbances in the
system response (ωr) are remarkable. Rotor speed follows the changes produced in the
synchronous angular speed in the stator (ωe), but any change in the value of ωe
provokes fast oscillations around the new value in the rotor velocity, see Fig. 9. If we
carry out a simulation with the rotor velocity controlled by a PID, then we will obtain
better results.

Moreover, if we take a plot of the electrical torque output by the induction motor
w.r.t. a constant load torque, which is given as an input variable to the system, we will
take only important oscillations at the beginning, while the system is trying to get a
stabilisation point. The oscillations shown in Fig.8 represent about the 20% of the
target value for the torque Me, (300 Nm),; these oscillations are caused by dynamic
conditions during motor functioning, as the rotor axis friction.

Proceedings of EOMAS’08 105

Fig. 9. Closed loop control model response to changes in the stator speed

7 Conclusions

We have presented a derivation procedure to obtain a correct system specification
from a semi-formal SA/RT system requirements specification of a given real-time
system. The imprecision and ambiguities intrinsic to SA/RT notations have been
overcome in our method by using a formal description language based on CSP+T
process algebra. Simulink/Stateflow and its library of blocks, which are of use for
modeling continuous and discrete dynamic systems, have been used to integrate
continuous components in a hybrid real/time system design. However, unlike other
proposals that attempted to overcome the same problem by complementing SA with
formal methods, our methodological scheme is mainly a set of guidelines, which have
proved to be of use for deriving a verifiable specification model of complex systems,
as in the case of the application case discussed in the article: the induction motor
drive, and controlling an AC motor to maintain a constant air flow through a filter.
The method has been defined for its easy integration in ASE environments and/or
formal tools based on SA notations. We are currently working on the development of
a formal software tool based on JCSP [11] and Java, and which is capable of
automated specification, verification and code generation of real-time and embedded
system software for several computing platforms.

References

1. Capel, M.I., Holgado, J.A., Balsas, J.R.: A Transformational Approach to the Systematic
Design of Real-time Systems. Manufacturing Eng., 3, 2, 5--13, (2004).

2. Ward, P.T., Mellor, S.: Structured Development of Real-Time Systems. Prentice-Hall,
Englewood Cliffs (N.J.), (1985).

3. Hatley, D.J., Pirbhai, I.A.: Strategies for Real-Time Systems Specification, Dorset House,
New York, (1988).

4. Žic, J.J.: Time-Constrained Buffer Specifications in CSP+T and Timed CSP. ACM
Transactions on Programming Languages and Systems, 16, 6, 1661—1674, (1994).

5. Demarco, T: System Analysis and Specification, Yourdon Press, (1971).

106 Proceedings of EOMAS’08

6. Semmens, L.T., Allen, P.M.: Using Yourdon and Z: An Approach to Formal Specification.
In: Z User Workshop, Oxford, UK, 228—253, (1990).

7. Fencott, P.C., Galloway, A.J., Lockyer, M.A., O’brien, S.J., Pearson, S.: Formalising the
Semantics of Ward-Mellor SA/RT Essential Models Using Process Algebra. In: FME’94:
Industrial Benefit of Formal Methods. LNCS 873, Springer-Verlag, 681—702, (1994).

8. Elmstrom, R., Lintualampi, R., Pezze, M.: Giving Semantics to SA/RT by Means of High-
Level Timed Petri Nets. J. Real Time Systems, 5, 2/3, 249—271 (1993).

9. Baresi, L., Pezzè, M.:Towards Formalising Structural Analisis. ACM Transactions on
Software Engineering and Methodology, 7, 80-107 (1998).

10. Structured Technology Group: AxiomSys/AxiomDsn: Design CASE Tool. Structured
Technology Group. Saugus, California, USA, (1995).

11. Welch, P: Process Oriented Design for Java: Concurrency for All. In: Parallel and
Distributed Processing Techniques and Applications, PDPTA 2001, USA, (2001).

12. Maler, O., Manna, Z., Pnueli,A.: From timed to hybrid systems. Proceedings of REX
workshop ”Real-time: theory in practice”, Springer-Verlag, (1992).

13. Harel, D., Gery, E: Executable object modeling with Statecharts. Computer, 30, 7 (1997).
14. Alur, R. Et Al. : Modular specification of hybrid systems in Charon. Proceedings HSCC

2000. LNCS 1790, 6—19 (2000).
15. Borschev, A., Koleshov, Y., Senichenkov, Y.: Java Engine for UML based hybrid state

machines. Proceedings of the 2000 Winter Simulation Conference, 1888—1894 (2000).
16. Elmqvist, H., Mattson, E., Otter, M.:Modelica-the new object oriented language.

Proceedings 12th European Simulation Multiconference, 127-131 (1998).
17. Hoare, C.Ar.: Communicating Sequential Processes, Prentice-Hall, (1985).
18. Rational Rose Real Time, http://www.rational.com.

