
User Interface Modelling Based on the Graph

Transformations of Conceptual Data Model

Martin Molhanec

Department of e-Technology, Faculty of Electrical Engineering
Czech Technical University in Prague

Technická 2, 166 27 Praha 6, Czech Republic
Phone (++420) 224 352 118, Fax (++420) 224 353 949

molhanec@fel.cvut.cz

http://martin.molhanec.googlepages.com

Abstract The aim of our article is a brief description of user inter-
face modelling based on the graph transformations of conceptual data
model. We use the lightweight formal method intended for deriving the
user interface schemes by graph transformations from conceptual data
model speci�cations. The presented method based on graph transforma-
tion theory gives us a very visual tool for our objective. In our paper the
presented method is notwithstanding an innovative and original speci-
�cation and modelling technique targeted primarily for utilization as a
part of BORM II Agile methodology, especially for the design of large
and complex web based applications.

Key words: user interface modelling, conceptual data model, graph
transformations

1 Introduction

Advanced web based information applications are usually constructed above
large relational or object oriented databases. The design of those databases
is based on the well-known conceptual modelling methodology. The particular
problem resides in an insu�cient methodical support for user interface design
phase. Notwithstanding that exist some user interface design methods; none of
them is based on a conception of deriving user interface schemes from concep-
tual data model speci�cations. This conceptual de�ciency makes a semantic gap
between the database content and information presented by a user interface.

In our article we show an alternative formal approach to compose a user inter-
face model scheme as a result of transformations from the conceptual data model
scheme. Our method is based on formal descriptions of user interface and con-
ceptual data models and set of rules describing building up the resulting proper
user interface scheme containing only of relevant and valid data. This allows
constructing only the correct user interface schemes. This is the main advantage
of herein presented method. Furthermore, the approach presented in our article
is important for the design of sophisticated web based information systems in



80 Proceedings of EOMAS'08

consideration of fact that quality of this kind of applications is highly linked
with a well-designed user interface working together with a complex database
system.

This paper focuses on formal description of particular user interface design
method based on principle of deriving user interface model from conceptual data
model using graph transformations theory. The issues addressed in this article
include:

� De�nition of conceptual data model.
� De�nition of logical data model.
� De�nition of user interface model.
� Description of our method.

This paper is structured as follows: Section 2 discusses alternate approaches to
the formal speci�cation of user interface with reference to utilization of graph
transformations. Subsequently, section 3, 4 and 5 are concerned with formal-
ization of conceptual, logical and user interface model, respectively. Section 6
introduces the proposed formal transformation the major part of our work, and
section 7 presents some conclusions and an overview of possible future work.

2 Related Work

Some work has been done on the formalisation of user interface. It does not,
however, focus on the deriving user interface model from the underlying concep-
tual data model. The author work proposed in this paper is based on his prior
work [1] published on local Czech informatics conference. This former work is not
based on the utilization of graph transformations, but the main idea subsisted
in the possibility to derive user interface model from the underlying data model
was introduced therein.

Another approach of user interface formal speci�cation and design was pub-
lished in [6] and [7]. The de�ciency of this approach consists of the fact that any
context between user interface elements and the underlying database or more
precisely conceptual data model does not exist. Further, the graph transforma-
tions used by similar way are published also in [8] and [9]. However the aim
of these works is in the use of graph transformations for the role based access
control. But, many concepts introduced there were adopted in our work.

Also, our work is closely joined with approaches engaged in the web site de-
velopment. Almost all web methods propose a technique for user interface design.
The insu�ciency of this approaches consist in unsatisfactory interconnection be-
tween user interface model and underlying data model. We can note the WebML
method [2] with concept of the derivation model derived from the structure
model (a data model in the WebML technology). Though, the derivation of the
user interface from the derivation model is not described in the WebML method.
The majority of web methods only focus in deriving of the navigational model
from the underlying data model, but that methods usually are not concerned
with the type of derivation proposed in this paper.



Proceedings of EOMAS'08 81

Our work we consider as a part of BORM II Agile method. The original
BORM method [3] was born in 1993 and was intended to provide seamless sup-
port for the building of object oriented software systems based on pure object-
oriented languages together with object databases, such as Gemstone. It is now
realized that this method also has a signi�cant potential in capturing knowl-
edge of business processes, business data and business issues. At the present
time, the BORM II method continues in concepts based on the original BORM
method, but evolves into the new methodological framework enriched in many
ways (e.g., ontology, knowledge management, object normalization, MDA). The
�rst overview of the BORM II method will be published within short.

3 Formalization of conceptual data model

This section gives a brief description of the conceptual data model (CDM ) we
used in our method. The CDM considered in this work is composed of follow-
ing concepts: class, attribute and association (generalization-specialisation, part-
whole and relationship) in the usual sense and compliance with object oriented
modelling paradigm. A precise meaning of these concepts is based on general
ontology. In our work we emanate from particular ontology (GOL [5]); however
this fact is not a subject of this article. The reason is that a commonly used
object oriented technique UML does not provide a good foundation for a precise
description of the conceptual data model semantic we need to use.

(a) Type graph of
CDM.

(b)
Type
graph
of
LDM.

(c) Type graph of
UIM.

Figure 1. Type graphs of CDM, LDM and UIM.

The Fig. 1(a) shows the type graph used to describe our CDM. In this type
graph each node represents a class or attribute and each edge represents one of
the three types of possible associations (generalisation-specialisation, part-whole
and relationship). This particular type graph contains nodes of type c and a;
and edges of type gs, pw, rs and ao. Nodes of type c represent classes and



82 Proceedings of EOMAS'08

nodes of type a represent attributes. Edges of type gs represent generalisation-
specialisation associations, edges of type pw represent part-whole associations,
edges of type rs represent relationship associations and edges of type ao represent
attribute ownerships between the class and its attributes. But, we do not use
the concept of attribute in our text temporarily. The type graph represents a
condition, which must be ful�lled by all correct graphs that could be constructed.

(a) UML class diagram. (b) CDM graph

Figure 2. Simple example - university information system.

In our article we demonstrate our ideas by a simple example introducing part
of the real world. Our problem domain forms a part of the university information
system consisting of courses, time-tables, students, lecturers, teaching rooms etc.
The corresponding conceptual data model scheme in UML notation is shown in
Fig. 2(a) and the corresponding graph representation in Fig. 2(b). It is evident;
we use a directed, typed, attributed and labelled graph. A shorthanded name
of the particular class in the corresponding UML diagram is written into the
circle representing a node in resulting graph diagram. The letter c represents
a course, t represents a timetable, r represents a room, s represents a student,
p represents a person and l represents a lecturer. All nodes in our resulting
graph represent only one type allowed in the corresponding type graph � the
class. The edges are marked by its type, we use the following shorthand: gs
represents a generalisation-specialisation type, pw represents a part-whole type
and rs represents a relationship type. The nodes joined by relationship type may



Proceedings of EOMAS'08 83

have a di�erent cardinality (a participation in the relationship) and we mark
these edges by cardinality value as well. The cardinality of relationship edge
means a count of possible occurrences of instances of particular classes from
either sides of the particular edge. The possible values of relationship cardinality
are de�ned by the set: (1, 1), (1, M), (M, 1), (M,N). The letters M and N are
used as a symbolical count with denotative meaning many.

(a) CDM to LDM (b) change of cardi-
nality

(c) LDM to UIM

Figure 3. Graph transformation rules.

4 Formalisation of logical data model

In our subsequent work we do not need a precise distinction between di�erent
types of associations. For proper design of user interface model we only need to
know the cardinality of particular association. Class attributes can be omitted
temporarily from our model. The type graph for our logical data model is shown
in Fig. 1(b). It is evident that we use only one type of labelled nodes � the
class and one type of edges marked by cardinality � the general association.
Transformation rules for transition from CDM to LDM (Logical Data Model) in
commonly used notation are shown in Fig. 3(a).

It is evident that all semantic information about the di�erent types of asso-
ciations is lost. But, this fact is not too restrictive, because in herein presented



84 Proceedings of EOMAS'08

method we do not use this semantic information; it is our will at this moment.
In our subsequent work, we intend to propose a more complex transformation
method without a loss of the type information. Thus, in our method we omit the
type information from the resulting graph and mark edges only with its cardi-
nality by reason that all edges possess only one relationship type � the general
association.

(a) LDM graph (b) UIM graph

Figure 4. Simple example - university information system.

The resulting graph of our example is shown in Fig. 4(a). It is apparent that
original and resulting graphs can be a cyclic and doesn't create a tree. Also,
value of cardinality depends on the selected direction we choose. Finally, we
can change orientation of edge cardinality by a simple transformation de�ned in
Fig. 3(b).

5 Formalisation of user interface model

The main idea included in our work consists in formalisation of user interface
model (UIM ) and de�nition of graph transformations rules in order to derive
UIM from LDM. Our UIM is based on following concepts:

� Only the components of user interface which correlate to data model (mod-
elled by LDM, respectively CDM) are relevant.

� All components of user interface can display only one value or list of values.



Proceedings of EOMAS'08 85

� All associations between user interface components are derived from the
underlying LDM.

Now, we explain the features of user interface model (UIM) related to our
method. At �rst we de�ne a few new concepts we need in the subsequent work.

� Screen. The concept of screen presents all properties of user interface seen
on computer screen at a time. User can change only hardware dependent
characteristics of the screen, for example resolution, brightness and so on.

� Window. The concept of window presents explicit area of the screen. Indi-
vidual windows are mutually independent. The user can change location and
visibility of single window on the screen independently.

� Panel. The concept of panel presents a contiguous area of the window. The
panel impersonates a logically bound entity. We can describe behaviour of
panel by means of software engineering abstraction, e.g., activity and state
transition diagram. Associations can exist between individual panels.

� Data Model Dependent Area (or Data Area for short). The concept of Data
Model Dependent Area presents a set of user interface components bounded
together by a conjunctive dependency on underlying data. Change of data
focus of one component can change a data focus of other components. Our
work concerns about proper design of just one Data Area.

� User Interface Component (or Component for short). The concept of User
Interface Component presents a visual component of user interface which has
a visual presentation on the screen. User can change the visual presentation
of such component, but not its data content.

� User Interface Data Component (or Data Component for short). The concept
of User Interface Data Component presents a subset of components bounded
to underlying data. The set of data components forms a data area that was
hereinbefore de�ned. Our work concerns only such data components.

� Data Component Class Area (or Class Area for short). The concept of
Data Component Class Area presents a speci�c subset of data components
bounded to exactly one entity in underlying data model. We will discuss this
concept in detail later in this article.

� Data Component Same Multiplicity Area (or Multiplicity Area for short).
The concept of Data Component Same Multiplicity Area presents a speci�c
subset of data components having the same multiplicity. We will discuss this
concept and concept of multiplicity in detail later in this article.

Let us use the following labels for hereinbefore concepts. S for screen, W for
window, P for panel, DA for data area, C for component, DC for data component,
CA for class area and MA for multiplicity area. We can consider following
relations between them1:

C,DC ⊂MA ⊂ CA ⊂ DA ⊂ P ⊂ W ⊂ S (1)

1 We used a symbol . for concept of inheritance or generalization - specialization. The
term A . B we read as A is inherited from B or A is a specialization of B.



86 Proceedings of EOMAS'08

DC . C (2)

Let's consider the following de�nitions of later used concepts.

� Multiplicity of data component (or Multiplicity for short) is capability to
display a single value or list of values or list of list of values and so on. We
will denote multiplicity by count as superscript associated with particular
data component. The multiplicity equates to 0 means possibility to display
a single value, equates to 1 means possibility to display a list of values and
so on.

� Dependency of data components means an abstract association between data
components laid within the particular data area. Changing of data focus of
one component changes data focus of other component. Every data com-
ponent in particular data area can be mapped to single entity attribute in
underlying data model2.

� Dependency of class areas means an abstract association between class areas
corresponding to data relationships between entities in underlying model.
Changing the data focus of one class area changes the data focus of other
class area. Every class area in particular data area can be mapped to a single
entity in underlying data model.

� Multiplicity of dependency of data components or class areas (or Multiplicity
of dependency for short) is de�ned as an ordered pairs of numbers denota-
tive multiplicity of corresponding data components. It is evident, that mul-
tiplicities of dependency are from the set: {(1, 1), (1, M)}. Multiplicity of
dependency between data components from particular class area will always
equate to pair of values (1, 1). This is the reason why dependencies of data
components from particular class areas are not important for us and we can
focus on dependencies between di�erent class areas only. By reason that all
data components from particular class area have the same multiplicity, we
can de�ne a multiplicity of particular class area as follows.

� Multiplicity of class area equates to multiplicity of its data components.

The type graph of our UIM is shown in Fig. 1(c). The type graph contents
nodes of type ca i and ca i+1 and edges with multiplicity of (1, 1) and (1, M).
Nodes of type ca i and ca i+1 represent class areas of multiplicity i and i+1
respectively. Edges of type (1, 1) and (1, M) represent dependencies of class
areas with multiplicity of dependency equates to (1, 1) and (1, M) respectively.
Type graph represents a condition, which must be ful�lled by all correct graphs
that could be constructed. It is good to note that for any LDM can be constructed
as many UIM as you like.

2 At presented work we do not consider derived (calculated) data components. This
concept will be subject of our future work.



Proceedings of EOMAS'08 87

Figure 5. Example 1, graph transformations from LDM to UIM, step by step.



88 Proceedings of EOMAS'08

6 Graph transformation from LDM to UIM

Graph transformations are usually used to transform particular graph from
source form to target form. We use graph transformations to derive UIM graph
from LDM graph. This transformation can be described by the following steps:

1. Selection of the initial node in the LDM graph.
2. Addition of the selected node as initial node in the new UIM graph.
3. Marking of the selected node as starting point and simultaneously as already

used node in the LDM graph.
4. Selection of another node in the LDM graph, which is in incidence relation-

ship with arbitrary node marked before.
5. Changing of direction of relevant edge by using appropriate graph transfor-

mation rule (Fig. 3(b)) if necessary.
6. Transformation of the selected node and the corresponding edge by using

appropriate graph transformations rules (Fig. 3(c)) and insertion of this
node and relevant edge to our new-created UIM graph.

7. Marking of the selected node and edge from preceding step as already used
in the LDM graph.

8. Repeat steps 4 to 7 as you need.

Finally, we document our approach by a simple example shown in Fig. 5, for
demonstration of our algorithm described hereinbefore. Our example is broken
down to single steps, labelled from 1 to 4. The resulting UIM graph of a little
more complex example is shown in Fig. 4(b). For better understanding of our
approach the corresponding graphical presentations of user interface screens of
these two examples are shown in Fig. 6 and Fig. 7. Concepts of class area and
multiplicity area are marked in these examples as well. We have to note that
arbitrary node or edge can be used in step 4 a number of time in the course of
utilization of our algorithm. We break up cycling of our algorithm when nodes
all we required will be placed in the resulting UIM graph.

7 Conclusion and further work

The proposed formalization is based on graph transformations theory [4] with a
few modi�cations. This formalization has some advantages:

� A clear visual interface and intuitive visual description of our problem do-
main.

� A good theoretical foundation based on graph transformations.
� Graph transformations also provide possibility to verify correctness of the
resulting user interface scheme.

However, this work is a �rst attempt at this �eld and we used the simplest model
of user interface. Thus, for now, we must consider following disadvantages:

� The proposed method is targeted for further elaborating.



Proceedings of EOMAS'08 89

Figure 6. Example 1, GUI presentation.

� We work only with a few simplest elements of user interface.
� At the present time we have not completed a software tool for our approach.

In conclusion, our lightweight formal method intended for deriving the user inter-
face schemes by graph transformations from conceptual data model speci�cations
is not fairly good yet. We use the graph transformations paradigm a little bit
di�erent way from the common usage described in [4]. We are convinced that the
algorithm described in the preceding section has to be more detailed, formally
and purely speci�ed.

Consequently, our future objectives consist in an improvement of our for-
malization concept and transforming algorithm. Subsequently, we want to use
all semantic information from the source conceptual graph for the construction
of proper user interface. Next, we must complete a software tool supporting
hereinbefore proposed transformation. Finally, we will work on the speci�cation
of the rules for the construction of relational algebra queries or more precisely
on the construction of the SQL select statement in order to automate the code
generation of corresponding applications.

Acknowledgement

This research (work) has been supported by Ministry of Education, Youth and
Sports of Czech Republic under research program MSM6840770017.



90 Proceedings of EOMAS'08

Figure 7. Example 2, GUI presentation.

References

1. Molhanec, M.: Typologie uºivatelského rozhraní (Typology of user interface). In:
Tvorba software'97, pp. 88�97. Tanger, Ostrava (1997)

2. WebML � Web Modeling Language, http://webml.org
3. Knott, R.P., Merunka, V., Polák, J.: The BORM methodology: a third-generation

fully object-oriented methodology. In: Knowledge-Based Systems 3(10). Elsevier
Science Publishing, New York (2003)

4. Rozenberg, G., editor: Handbook of Graph Grammars and Computing by Graph
Transformation, Volume 1: Foundations. World Scienti�c (1997)

5. Guizzardi, G., Herre, H., Wagner, G.: On the General Ontological Foundations of
Conceptual Modeling. In: Proc. of 21 Intl. Conf. on Conceptual Modeling (ER 2002),
Lecture Notes in Computer Science. Springer-Verlag, Berlin, (2002)

6. Alencar, P.S.C., Cowan, D.D., Lucena, C.J.P.: Abstract data Views as a formal Ap-
proach to Adaptable Software. In: OOPSLAWorkshop On Adaptable And Adaptive
Software, Proceedings. Austin (1995)

7. Rossel, P., Contreras, R., Bastarrica, M. C.: Graphic Speci�cation of Abstract Data
Types. In: Rev. Fac. Ing. - Univ. Tarapacá, vol.12, no.1, pp. 15�23. Tarapacá (2004)

8. Koch, M., Mancini, L.V., Parisi-Presicce, F.: A Graph-Based Formalism for RBAC.
In: ACM Transaction on Information ans System Security, Vol. 5, No. 3, pp. 332�
365. (2002)



Proceedings of EOMAS'08 91

9. Koch, M., Mancini, L.V., Parisi-Presicce, F.: Administrative Scope in the Graph-
based Framework. In: SACMAT'04, June 2-4. Yorktown Heights, New York, USA
(2004)


