
A Modeling Methodology for Empirically Studying User 
Behavior: The Case of UML Diagram Usage 

 
 

Gay Costain, g.costain@auckland.ac.nz,  
Ananth Srinivasan, a.srinivasan@auckland.ac.nz 

 

Information Systems and Operations Management 
University of Auckland Business School 

Auckland, New Zealand 

 

Abstract. The use of UML diagrams and associated methodologies in the 
development of software applications has, on the one hand been presented as a 
standard, while on the other hand has been criticized by empiricists who have 
actually studied its usage. In this paper, we describe a useful empirical method 
to analyze data about the nature, extent, and quality of cognitive support that 
the use of UML diagrams provides to a software developer.  The data was 
collected and analyzed in a controlled experimental setup from both 
experienced and novice users. Our approach to analysing data in this study has 
the potential for wide applicability in empirical validation studies where focus 
on the process of usage is important. 
 

Keywords: software development; unified modeling language (UML); 
cognition 

 
 

1   Introduction, Background, and Research Aims 
 
Does the Unified Modeling Language (UML) support the cognitive efforts of 
software developers? UML was made a standard by the Object Management Group 
(OMG) in November 1997 [20, 26] yet no empirical research has justified that choice. 
Some experimental work suggests that UML may in fact be a counter productive 
methodology for software developers (e.g. [40, 41]). 

The authors of UML intended it to be a modeling language to support object-
oriented (OO) analysis and design [4]. They believed that modeling is central to all 
activities leading up to the deployment of good software. A UML diagram may 
represent an abstraction of a program’s source code solution, and the source code 
forms a textural model for the executable program. OO developers were found by 
survey [11, 19, 21] to strongly believe in the advantages of OO Software 
Development (OOSD) and even non-OO developers were found to have fairly 
positive perceptions. If users believe that OOSD is the most advantageous method for 
software development, it is important that a standard modeling language, devised to 



56          Proceedings of EMMSAD 2008 

 

aid that development, fulfils its promise. The software development industry was 
canvassed for input into the composition of the standard [20, 27], but no empirical 
research supported UML’s creation.  

There are other influences at play on software developers. Software development 
productivity for users of OO modeling tools may be affected by the user’s previous 
experiences in the problem domain [1, 3, 32, 39, 43], type of user [1, 39, 43], user’s 
experience of the OO paradigm [1, 7, 35], modeling notation and its use for 
abstracting models [32], and programming environment [7, 25].  As highlighted by 
ISO 9241, Part 11 (1998), usability must be judged in context. A standard language 
should be beneficial for a wide variety of users and contexts. 

As a consequence of the preceding discussion, our main aim in this research is to 
investigate empirically if UML notation can supply cognitive support to software 
developers. If UML is found to provide that cognitive support, then this research may 
influence the opinions of software developers and encourage them to use UML. Some 
justification will have been found for UML’s selection as a standard language. 

 
 

2 Literature Review and Research Model Development 
 
In this section we review the literature related to the cognitive steps involved in 
solving software development problems, which include program modification. The 
goal is to arrive at a model of cognitive processes to drive our empirical work that 
will address the main research questions.  
 
 
2.1 Applying Cognitive Theory to Software Development 
 
Anderson [2] proposed that both declarative memory (factual knowledge) and 
procedural memory (knowledge manifested in performance) may be activated in 
problem solving. He asserted that ‘cognitive skills are realized by production rules’. 
Law [29] noted the popular belief that coding, comprehension and debugging of 
computer programs were facilitated through cognitive plan retrieval and recognition.  
For the software development environment Jefferies et al. [18] defined a design 
schema as ‘the abstract knowledge about design and design processes, along with a 
set of procedures that implement these processes’. The authors believed that a goal of 
software design was to break down a problem into sub-problems and that the design 
schema was composed of both declarative and procedural knowledge that assisted to 
this end. During the design process a decision must be made as to which sub-problem 
to solve next, and then find a solution for it. Thus a goal must be identified for the 
sub-problem whose attainment may be achieved by pattern matching with memories 
of past events stored in long-term memory (LTM). A solution may be evoked from 



Proceedings of EMMSAD 2008          57 
 

 

LTM, may be derived from information acquired from the cognitive problem space, 
or inferred from the use of mental simulations [18, 33]. For OO development, experts 
require internal schemas representing information on a specific problem domain plus 
schemas dependent upon the targeted programming domain [7, 25]. In fact ‘system 
design involves the integration of multiple knowledge domains - knowledge of the 
application domain, of software system architecture, of computer science, of software 
design methods, and so on’ [14]. 

Kim et al. [25] viewed OO programs as sets of rules for solving groups of 
problems. In their framework, rule development may occur in either the problem or 
solution domain, consistent with Maher and Tang’s [30] concept of co-evolutionary 
design. Rule and instance spaces as suggested by Simon and Lea [42] are included for 
each domain. Rules may be induced by evoking previously stored schemas, by 
deriving from knowledge gained from the current problem, or by inferring from 
simulations in the instance space (refer [16, 18, 42]).  

 
 

2.2 Cognitive Differences Between Experts and Novices in Software Development 
 
One significant aspect of the transformation from novice to expert in any domain of 
learning is the acquisition of problem-solving schemas. Problem-solving schemas are 
memory representations which embody knowledge based on past experiences with a 
particular type of problem. The process of constructing such a representation is also 
called schema learning. [22, p. 75]. Experts in software development can recognise 
and recall meaningful patterns when they see them, whereas the novice, lacking 
appropriate internal representations (IR), cannot [3, 15, 31, 38, 45]. However, experts 
are no better than novices when unfamiliar patterns are encountered [3].   
 
 
2.3 External Representations (ER) 
 
Several possible perspectives from which to evaluate a graphical ER exist. Scaife and 
Rogers [39] perceived the three aspects in their framework for explaining external 
cognition: Computational off-loading highlights cognitive benefits of graphical 
representations, representation relates to the representation’s structural properties, 
and graphical constraining refers to possible processing mechanisms. Petre [36] 
believed that effective use of an ER requires purposeful perusal. Thus a graphical ER 
may support the problem-solver if the notation (representation) is conducive to 
modeling the real world of the problem; the model constrains what may be inferenced 
to prime essentials; the content provides a suitable abstraction of the problem for 
computational off-loading; and the layout aids perusal. From this we may conclude 
that much of the responsibility for the success of an ER lies with the modeler who 



58          Proceedings of EMMSAD 2008 

 

controls content and layout. We present the following framework for the 
representational system of a distributed cognitive task for solving a problem by an 
individual problem-solver. This framework serves as a guide for our research. 
 
 

 

 

 

 

 

 

 

 

 

 

Fig. 1. Representational system showing knowledge flow for a distributed cognitive task for an 
individual problem-solver. 

 
 

In Figure 1, the problem cues the formation within a problem space in working 
memory (WM) of an IR of the problem to be solved [33]. A plan/design schema may 
be retrieved from LTM to act as an executive structure for selecting and applying 
methods [7, 18, 29, 33, 37]. Rules may be derived, evoked or inferred in WM to aid 
comprehension of the problem, or to achieve sub-goals towards solution [25]. ERs 
may be utilised by the problem space [33, 46]. Knowledge retrieved from an ER may 
help establish the IR [39], may ‘cue’ some schema from LTM [34], or may be a 
recipient for the off-loading of chunks of data when short-term memory (working 
memory) becomes full [13, 23, 28, 33, 39].  

An ER will be said to support a programmer’s cognitive processes during software 
development if it does any of the following: 

• aids comprehension of the problem by contributing to the IR of the problem in 
the problem space [12, 17, 34, 36]. 

• forms a set with the programmer’s internal problem space to facilitate: 

Knowledge flow during individual problem solving 

WORKING   
MEMORY 

Immediate 
Problem space 

retrieved 

Problem 
to be 

solved 

cues 

External model 
Representations 

Other external 
representations
- text books 
- patterns 
- sample 

solutions 
- notes,   etc. 

off-loaded to 

retrieved 

retrieved 

applied 
off-loaded to 

Long-
term 

memory 

Solution 
Representation 

established cues 

cues 

(Rules are: evoked, 
derived, inferred, in 
Problem & Solution 

Domains) 

Internal Representation 

 



Proceedings of EMMSAD 2008          59 
 

 

o evoking of schemas in LTM [18, 25, 33]. 
o deriving of rules from the problem space [18, 24, 25]. 
o application of instances to simulate solution [15, 16, 18, 24, 25, 33, 42].  

• provides a notation for off-loading of chunks to free WM [13 p.7, 23, 28, 33, 39]. 
 

3 Methodology 
 
This paper is based on a study consisting of controlled experiments with experienced 
and novice modelers to obtain a rich understanding of the modeling process.  
 
 
3.1 Controlled Experiment 
 
Our intention was to empirically study the performance and behavior of modelers 
engaged in the modification of a non-trivial application with a view toward obtaining 
a rich picture of the process of modeling that occurs. While performance was an 
important part of the research, our emphasis in this paper is on examining process 
behavior during the modeling activity. In order to address this, the following research 
questions are examined: 

• Can the use of UML documentation facilitate a developer’s comprehension of a 
non-trivial program by assisting in the formation of valid IRs of a problem? 

• Can the use of UML documentation facilitate a developer in modifying a non-
trivial program by forming a set with the internal problem space? 

• Can the use of UML documentation facilitate a developer’s writing of code to 
solve a non-trivial problem by acting in a set with the problem space to induce 
rules for solution? 

• Can the use of UML documentation facilitate a developer’s modifying a non-
trivial program by providing a vehicle for off-loading from working memory? 

To study these issues, we conducted a controlled experiment with a group of 21 
subjects, eight of whom had some industry experience. For the research reported in 
this paper, we examined in detail the activity of the five most successful modelers 
from each of the industry-experienced (expert) and student (novice) groups. The 
experiment involved the modification of two applications: invoicing and diary. 
Modifying a software program involves both the comprehension of the problem [5, 
34] and the induction of rules to achieve the sub-goals that contribute to the full 
solution [25]. To study programmers’ cognitive activities whilst modifying the 
programs, concurrent verbal protocols were collected for analysis. The use of verbal 
protocol analysis for process studies and their limitations are well discussed in the 
literature (e.g. [14, 44]).  Since our focus in this research was on a deep understanding 
of process issues, we believed that the use of this methodology was appropriate. 



60          Proceedings of EMMSAD 2008 

 

Following a brief practice at talking aloud whilst programming, subjects were 
requested to modify each of the two computer applications written in the OO 
programming language VB.NET, only one of which was supplied with UML version 
1.X use case, class, and sequence diagrams. The choice of diagrams reflected industry 
preference [8]. Use case descriptions were written in the format specified by 
Cockburn [6]. As per industry custom only the most important use case descriptions 
and sequence diagrams were included. The sequence diagrams documented the 
interactions for the use cases that were affected by the modifications.  

The invoice modification required the addition of Goods and Services Tax (GST) 
calculations, the display of the calculated GST for each invoice item, and GST total, 
on the invoice form, and the inclusion of GST on the printed invoice. Not only was 
the calculation done for new items added to the invoice, but GST had to be adjusted 
when an invoice item was added to, or deleted. The diary application enabled users to 
record appointments with details. Its modification required that a set of one to three 
types of reminders be optionally added to an appointment. Whilst the application was 
running, on the day an appointment was due, and prior to the time of that 
appointment, reminder messages for the imminent appointments were to be triggered.  

The sequence in which subjects carried out the modifications was rotated to ensure 
an even distribution of which application was encountered first and which was 
accompanied by UML documentation. The sequence of attendance at sessions 
depended upon the availability of the subjects. Paper, pencils and erasers were 
supplied. Subjects were advised that they could write on any supplied documentation.  

Concurrent verbal protocols were collected whilst each participant modified each 
application. Ericsson and Simon [9] had concluded that simultaneous verbal protocols 
should not change the sequence or structure of problem solving, provided the subjects 
were not required to explain their actions as they performed. Transcribed protocols 
were analysed to find the sequence and category of the participants’ cognitive steps 
during their modifications. Each modification ended when either the subject believed 
the task was complete or after two hours had elapsed, which ever came first. 

 
 

4 Documenting Processes Using Behavior Graphs 
 
The encoding categories for verbal protocol analysis should be clear and explicit, and 
should be defined prior to accepting input for encoding [10, 44]. The main goal of 
subjects is to modify an application. In order to achieve this, a number of sub-goals 
must be achieved. Sub-goals could include the acquiring of information related to the 
problem or solution, or the creating of a strategy to investigate or solve the problem. 
A goal may be achieved with the assistance of ERs such as UML diagrams, written 
text, online Help or the internet. The ER may be read by a subject or created by the 
subject during an episode (e.g. drawing a diagram or writing something). The 



Proceedings of EMMSAD 2008          61 
 

 

transcriptions of the subjects’ verbal protocols were divided into episodes which were 
categorised as per Table 1, which encapsulates the criteria itemized in Section 2.3.  

 
 

Table 1. Verbal protocol cognitive episode categories for solving a problem with the assistance 
of external representations. 

 

 

 

 

 

 

 

 
A participant who remembers original code and returns to it in order to copy and/or 

modify it provides evidence that the code contributed to the modifier’s IR. Checking a 
solution using instances may be carried out with the aid of an ER such as the code 
itself, or a diagram, and is categorised as ‘Test’. When a participant creates an ER, 
reuses that ER, or modifies an existing ER, it is categorised as ‘Off-load’.  

Behavior graphs provide a method whereby each category of cognitive step in 
which UML documentation was involved may be quickly referenced. Each encoded 
episode is recorded vertically in the behavior graph in the sequence in which it 
occurred, within the column representing its cognitive episode category from Table 1.  

Each episode is annotated with its sequence number, and with its source of cue or 
destination, and time duration, as shown in Figure 2. 

 
 

 

 
 
 

Fig. 2. Template for documentation of a categorised episode in a Behavior Graph. 
 

 
X represents one of the six episode categories. The sequence number for episodes 

judged as creating an IR is preceded by an ‘I’, and, for episodes inducing rules, by an 
‘R’; other codes are: ‘P’ - plan schema formation, ‘D’ - design schema formation, ‘G’ 

Verbal Protocol Cognitive Episode Categories 
Problem Domain Solution Domain 
Form plan schema Form design schema 

Form internal representation  

Derive rule Derive rule 

Evoke rule Evoke rule  

Generate rule Generate rule  

Test Test 

Off-load Off-load 

Xnnn (sequence no. of episode)              Source of  cue/destination 

Time duration of episode in seconds 



62          Proceedings of EMMSAD 2008 

 

- generation, ‘T’ - testing, and ‘O’ - off-load. Any statement by a subject that could 
not be so categorised was deemed as ‘other’ and was not included in his/her graph.  

 
 

5 Behavior Graph: An Example 
 
In this section we provide one behavior graph example. Our intent is to show the 
value of using this technique in the study of detailed processes. The example was 
selected to display the richness with which we are able to capture details about the 
process. The behavior graph shown in Figure 3 captures the first quarter of the Diary 
modification protocol for Subject 16, the most experienced industry-based participant. 
The graph is helpful in showing a wide range of behaviors in which a participant may 
engage and that need to be accurately captured. The full graph spanning the entire 
protocol for this participant covers several pages; our objective here is to demonstrate 
the nature of the graph and the implications that can be drawn from it. 

This subject completed the modification task in 1 hour 35 minutes. He was 
assessed as the most successful performer, achieving more sub goals than any other 
subject. We provide a commentary on how the behavior graph is interpreted. 
 
 
5.1 Cognitive Episodes in Modification 

• Subject 16 read the requirements (I1) and the use case documentation (I2) and as 
he made a number of informed comments about the diagrams it is assumed that 
he created IRs of the problem. He planned (P3) to check that the modification 
functionality was not specified in the documentation.  

• He searched the class diagram to find where to put a reminder set, only to 
discover a ReminderSet class existed (I4). He checked the sequence diagram for 
the steps to add an appointment (I5), assuming that the existing ReminderSet 
required modification (G6). He reread the reminder set details in the specification 
related to the reminder set (I7) and generated the idea to add appointment details 
to the reminder sets collection (G8). (Note: Subject 16 later altered his theory.) 
He then studied the code behind the reminder set data entry form (R9). 

• He discovered that the diary form was the start up form (R10), looked through 
the regions (R11), and then ran the application (T12). He theorised (G13) that the 
reminder sets be linked to the diary form. He added a reminder set check box to 
the diary form (R14), studied the sequence diagram (I15), then off-loaded his 
proposed changes into the ‘Add Appointment’ use case description (O16). 

• In episode 17 he wrote the code for the check box, linking it to the reminder sets 
form. He unsuccessfully tested the code (T18), deleted it, studied the existing 



Proceedings of EMMSAD 2008          63 
 

 

code (R19), then reinstated the deleted code in another part of the application 
(R20). He successfully tested to bring up the reminder sets data entry form (T21). 

 

 

Fig. 3. Behavior Graph for Subject 16, page 1 of 2.                                                                                                                                                                                    



64          Proceedings of EMMSAD 2008 

 

 

Fig. 3. Behavior Graph for Subject 16, Page 2 of 2. 
 
 

• He read the requirements again (I22), then looked at the class diagram (I23). 

• Subject 16 realised that his initial assumptions in G6 and G8 were wrong, and 
reconfirmed this by re-reading the specification (I24).  

• He removed the checkbox, added a Reminders combo-box to the diary form 
(R25), and planned to load the combo-box (G26). He tested his code (T27), found 
he had forgotten to remove the code for the check box, and removed it. 

• He studied the diary form loading procedures, found where to load the reminder 
sets (R28), then did not find reminder sets in the sequence diagram (I29) 

• He copied the code for loading the reminder sets from the reminder set form into 
the diary form (R30), and successfully ran the program with his changes (T31). 

• Subject 16 drew on the class diagram (O32), reread the requirements (I33) then 
changed his addition to the class diagram (O34) as a result of what he had read. 

 
 
5.1.1 Subject 16 Forming an Internal Representation 
 
The UML documentation appeared to assist Subject 16 in the creation of IRs. His 
comments indicated that reading the UML documentation (I2, I4, and I5) had clarified 
his understanding of the application. There is evidence that an IR was clarified as a 
result of his reading the class diagram (I4), when he discovered the ReminderSet class 
existed. He rejected his original plan to add appointment details to a reminder set after 
rereading the class diagram (I23) and changed his plan to add reminder details to 



Proceedings of EMMSAD 2008          65 
 

 

Appointment. He also used the sequence diagram to ascertain the functionality of the 
‘Add appointment’ use case on several occasions: I5, I15, I29, R38, I72.  
 
 

5.1.2 Subject 16 Off-loading to UML Documentation  
 
In episode 14 Subject 16 added a check box to the diary form for selecting a reminder 
set. He studied the sequence diagram to find where to place his code to control the 
check box (I15), found the use case description more useful and off-loaded the 
information onto the use case description for ‘Create Appointment’ in O16. 

Subject 16 also off-loaded changes onto the class diagram. He initially drew a 
joining class between the Appointment and ReminderSet classes (O32), re-read the 
requirements, changed his mind, removed the joining class and added a ReminderSet 
attribute to Appointment (O34).  

 
 

5.2  Evidence from all Transcribed Protocols of Cognitive Support from UML 

The results obtained for this research are based upon the analysis of collected, 
concurrent verbal protocols. The evidence that UML documentation provided 
cognitive support is based on the criteria itemized at the end of Section 2.3. Tables 2 
and 3 summarize the results from the analysis of the transcribed protocols.  

As can been seen from Tables 2 and 3, the class diagram was used productively in 
more episodes than use case or sequence diagrams. It is possible that the choice of 
application could affect the type of UML usage. The invoice application was process-
oriented and should lend itself to process-oriented documentation such as use case, a 
fact taken advantage of by Subject 07 in his off-loading episode O9, and Subject 16 in 
his off-loading episode O16. The diary application was event-oriented. 

 
 

Table 2. Cognitive support from UML documentation for NON-industry-experienced subjects. 

 



66          Proceedings of EMMSAD 2008 

 

Episodes were entered into Tables 2 and 3 only if their content was found to be 
used in succeeding episodes. Thus the act of reading is not included if there was no 
evidence of its effect on further episodes. It is possible that some episodes that are not 
recorded here did contribute, but the evidence was not detected within the protocols. 

The industry-experienced subjects exhibited more episodes on average of UML 
use. Few non-industry-experienced subjects had the experience (i.e. had the internal 
schemas) in software development to enable them to plan and progress swiftly 
through to solution. 

 
 

Table 3. Cognitive support supplied by UML documentation for industry-experienced subjects. 
 

  
 
[Note: Where UML documentation was used in a set to induce rules, the type of rule, whether 
derived (D) or evoked (E), is shown as a superscript following the episode number. A ‘P’ 
included in the superscript indicates problem domain, otherwise solution domain applies.] 

 
 

5.2.1 UML Aids Comprehension in Formation of Internal Representations  
 
The most popular use of UML documentation was in the formation of IRs (refer 
Table 4). The UML documentation was used to assist the subjects to familiarize 
themselves with the applications to be modified. 
 
 
5.2.2 UML Documentation Forming a Set with the Problem Space 
 



Proceedings of EMMSAD 2008          67 
 

 

There was less evidence of subjects forming sets than there was for subjects forming 
IRs (refer Table 4). One explanation could be that, like Subject 16, subjects preferred 
to gain an understanding from the UML documentation, but resisted switching back 
and forth between screen and forms when coding commenced. 

 
 

Table 4. Number of episodes providing evidence of UML cognitive support. 

 

 

 

 
5.2.3 UML Notation Used for Off-loading 
 
Examples were obtained of subjects using the use case descriptions and class 
diagrams to assist in the development of what they intended to do. Steps for the 
planned changes could be added to use case descriptions (refer Table 2 Subject 07, 
episode 9, and Table 3 Subject 16, episode 16). The class diagram was used to 
develop the relationship between classes. Subject 16 off-loaded his thoughts for a 
relationship between the ReminderSet and Appointment classes in episode 32, which 
he rethought and corrected in episode 34. Subject 13 used the class diagram to the 
same end – adding an incorrect link in episode 10, then referring back to her link in 
episode 13, and finally correcting it in episode 26. These examples demonstrate the 
usefulness of external documentation in the planning stages for the modifications. 
Off-loading that occurred when no UML documentation was provided often included 
rough sketches of relevant classes, the notation being simplified to suit the author. 
Subjects 05, 09, 16, 17 and 21 off-loaded sketches onto paper that communicated 
relevant class information but did not use formal UML notation. Where programmers 
create their own diagrams they may use any notation suited to their needs.  

Two subjects drew non-UML diagrams to aid their understanding and plan what 
they would do. Subject 01 drew a flowchart and Subject 16 a structure diagram. 
Whereas Subject 01 was not a successful modifier, Subject 16 was the most 



68          Proceedings of EMMSAD 2008 

 

successful. He crossed off each section of his structure diagram as it was coded. His 
choice of notation reflected his familiarity with and prior use of structure diagrams. 

 
 

6 Conclusion 
 
From the results it was found that UML documentation did cognitively support 
programmers: it was found to assist in the creation of IRs of the problems, aiding 
comprehension; it was found to be used in a set with the programmers’ problem 
spaces to assist in problem familiarisation and solution; and the UML provided a 
notation for off-loading from WM. 

The number of subjects used in these experiments was small – twenty participants 
modified both applications, and ten of the more successful subjects had their verbal 
protocols transcribed and analysed to discover the cognitive support. The small 
sample size means that results cannot be applied globally to all programmers. 
However, it has been demonstrated that all transcribed subjects received cognitive 
support from the UML documentation. It has been demonstrated that UML can supply 
cognitive support. The question at the start of this paper has been answered. 

The industry-experienced subjects, on average, used the UML documentation more 
than the non-industry-experienced subjects. There are several possible explanations 
for this. The industry-experienced subjects may have ‘learned’ to use the UML 
notation. The two best performing subjects worked in environments where class 
diagrams were used. Schemas for working with the diagrams may have been 
established that the non-industry-experienced subjects lacked. It is also possible the 
inexperience of the non-industry-experienced subjects inhibited their progress and 
reduced their opportunities to leverage the diagrams. 

As a methodology to guide the study of processes using a modeling approach, we 
have found the use of behavior graphs to be particularly useful. It allows the 
researcher to extract, record, and analyze the full richness embedded in processes that 
have the potential of revealing details that might otherwise be missed. 
 
 

References 
 
1. Agarwal, R., De, P., Sinha, A.P., Tanniru, M.: On the Usability of OO Representations. 

Communications of the ACM 43(10), 83-89 (2000) 
2.  Anderson, J. R.: Rules of the Mind, Lawrence Erlbaum Associates, U.S.A. (1993) 
3. Andriole, S., Adelman, L.: Cognitive Systems Engineering for User-Computer Interface 

Design, Prototyping, and Evaluation. Lawrence Erlbaum Associates, U.S.A. (1995) 
4. Booch, G., Rumbaugh, J., Jacobson, I.: The Unified Modeling Language User Guide. 

Addison-Wesley, Massachusetts (1999) 



Proceedings of EMMSAD 2008          69 
 

 

5. Brooks, R.E.: Studying the Programmer behavior Experimentally: The Problems of Proper 
Methology. Communications of the ACM 23(4), 207-213 (1980) 

6. Cockburn, A.: Using Goal-Based Use Cases. Journal of Object-Oriented Programming 
10(7), 56-62. SIGS Publications, New York (1997) 

7. Détienne, F.: Design Strategies and Knowledge in Object-Oriented Programming: Effects of 
Experience. Human-Computer Interaction 10, 129-169 (1995) 

8. Dobing, B., Parsons, J.: Dimensions of UML diagram Use: A Survey of Practitioners. 
Journal of Database Management 19(1), 1-18 (2008) 

9.  Ericsson, K.A., & Simon, H.A.: Protocol analysis: Verbal reports as data. Cambridge, MA: 
MIT Press (1984) 

10.  Ericsson, K.A., & Simon, H.A.: Protocol analysis: Verbal reports as data. Rev. ed. 
Cambridge, MA: MIT Press (1993). 

11.  Fedorowicz, J., Villeneuve, A.: Surveying object technology usage and benefits: A test of 
conventional wisdom. Information & Management 35, 331-344 (1999) 

12.  Goel, V.: Sketches of Thought. A Bradford Book. MIT Press, Cambridge, Massachusetts 
(1995) 

13.  Grogono, P., Nelson, S.H.: Problem Solving & Computer Programming. Addison-Wesley, 
U.S.A. (1982) 

14.  Guindon, R.: Knowledge exploited by experts during software system design. International 
Journal of Man-Machine Studies 33(3), 279-304 (1990) 

15.  Guindon, R., Curtis, B.: Control of Cognitive Processes During Software Design: What 
Tools are Needed. Proceedings of the CHI’88 Conference on Human Factors in Computer 
Systems, New York. Pp.263-268. ACM (1988) 

16.  Haverty, L.A., Koedinger, K.R., Klahr, D., Alibali, M.W.: Solving Inductive Reasoning 
Problems in Mathematics: Not-so-Trivial PURSUIT. Cognitive Science 24(2), 249-298 
(2000) 

17.  Hungerford, B.C.: Reviewing Software Diagrams: A Cognitive Study. IEEE Transactions 
on Software Engineering 30(2), 82-96 (2004) 

18.  Jefferies, R., Turner, A.A., Polson, P.G., Atwood, M.E.: The Processes Involved in 
Designing Software. In Anderson, J.R. (ed) Cognitive Skills and their Acquisition, pp.255-
283. Lawrence Erlbaum Associates, Hilldale, New Jersey (1981) 

19.  Johnson, R.A.: The Ups and Downs of Object-Oriented Systems Development. 
Communications of the ACM 43(10), 69-73 (2000) 

20.  Johnson, R.A.: Object-oriented analysis and design – What does the research say? Journal 
of Computer Information Systems 42(3), 11-15 (2002) 

21.  Johnson, R. A., Hardgrave, B.C.: Object-oriented methods: current practices and attitudes, 
The Journal of Systems and Software 48, 5-12 (1999) 

22.  Kahney, H.: Problem Solving: Current issues. Second Edition. Open University Press, 
Buckingham, Philadelphia (1993) 

23.  Kim, J., Lerch, J.F.: Towards a Model of Cognitive Process in Logical Design: Comparing 
Object-Oriented and Traditional Functional Decomposition Software Methodologies. In 
Bauersfield, P., Bennett, J., Lynch, G. (eds) Proceedings of CHI ’92, ACM Conference on 
Human Factors in Computing Systems, May 3-7, Monterey, California, pp. 489-498 (1992) 

24. Kim, J., Lerch, J.F.: Why is Programming (sometimes) So Difficult? Programming as 
Scientific discovery in Multiple Problem Spaces. Information Systems Research 8(1), 25-
50 (1997) 



70          Proceedings of EMMSAD 2008 

 

25.  Kim, J., Lerch, J.F., Simon, H.A.: Internal Representation and Rule Development in 
Object-Oriented Design. ACM Transactions on Computer-Human Interaction 2(4), 357-390 
(1995) 

26.  Kobryn, C.: UML 2001: A Standardization Odyssey. Communications of the ACM 42(10), 
29-37 (1999) 

27.  Kobryn, C.: Will UML 2.0 be Agile or Awkward? Communications of the ACM 45(1), 
107-110 (2002) 

28.  Kotovsky, K., Hayes, J.R., Simon, H.A.: Why are Some Problems Hard? Evidence from 
Tower of Hanoi. Cognitive Psychology 17, 248-294 (1985) 

29.  Law, L.: A situated cognition view about the effects of planning and authorship on 
computer program debugging. Behaviour & Information Technology 17(6), 325-337 (1998) 

30.  Maher, M.L., Tang, H.: Co-evolution as a Computational and Cognitive Model of Design. 
Research in Engineering Design 14, 47-63 

31.  McKeithen, K.B., Reitman, J., Rueter, H.H., Hirtle, S.C.: Knowledge Organization and 
Skill Differences in Computer Programmers. Cognitive Psychology 13, 307-325. Academic 
Press (1981) 

32.  Nielsen, J.: Usability Engineering. Academic Press, U.S.A. (1993) 
33.  Newell, A., Simon, H.A.: Human Problem Solving. Prentice-Hall, U.S.A. (1972) 
34.  Pennington, N.: Stimulus Structures and Mental Representations in Expert Comprehension 

of computer Programs. Cognitive Psychology 19, 295-341 (1987) 
35.  Pennington, N., Lee, A.Y., Rehder, B.: Cognitive Activities and Levels of Abstraction in 

Procedural and Object-Oriented Design. Human-Computer Interaction 10, 171-226 (1995) 
36.  Petre, M.: Why looking isn’t always seeing: Readership skills and graph. Communications 

of the ACM 38(6), pp.33-44 (1995) 
37.  Rist, R.S., Schema Creation in Programming. Cognitive Science 13, 389-414 (1989) 
38.  Rosson, M. B., Alpert, S. R.: The Cognitive Consequences of Object-Oriented Design. 

Human-Computer Interaction 5, 345-379, (1990) 
39.  Scaife, M., Rogers, Y.: External cognition: how do graphical representations work? 

International Journal of Human-Computer Studies 45, 185-213 (1996) 
40.  Shanks, G., Tansley, E., Nuredini, J., Tobin, D., Weber, R.: Representing Part-Whole 

Relationships in Conceptual Modeling: An Empirical Evaluation. Proceedings of the 23rd 
International Conference on Information Systems, Barcelona, pp. 89-100 (2002) 

41.  Siau, K., Cao, Q.: Unified Modeling Language (UML) – A Complexity Analysis. Journal of 
Database Management 12(1), 26–34. Idea Group Publishing (2001) 

42.  Simon, H. A. & Lea G.: Problem Solving and Rule Induction. In: Simon, H. A., (ed.) 
Models of Thought, pp. 329-346. University Press, London (1979) 

43.  Tabachneck-Schijf, H. J. M., Leonardo, A. M., Simon, H. A.: CaMeRa: A Computational 
Model of Multiple Representations. Cognitive Science 21(3), pp. 305-350 (1997) 

44.  Todd, P., Benbasat, I.: Process Tracing Methods in Decision Support Systems: Exploring 
the Black Box. Management Information Systems (MIS) Quarterly 11(4), 493-512 

45.  Wǽrn, Y.: Cognitive Aspects of Computer Supported Tasks. John Wiley and Sons, Essex, 
Great Britain (1989) 

46.  Zhang, J., Norman, D. A.: Representations in Distributed Cognitive Tasks. Cognitive 
Science 18, 87-122 (1994) 


