
QuiKey – a Demo

Heiko Haller

Forschungszentrum Informatik (FZI), Germany
heiko.haller@fzi.de

Abstract. QuiKey is a light-weight tool that can act as an interac-
tive command-line for a semantic knowledge base. It focuses on highest
interaction-efficiency to browse, query and author graph-based knowl-
edge bases in a step-by-step manner. It combines ideas of simple interac-
tion techniques like auto-completion, command interpreters and faceted
browsing and integrates them to a new interaction concept. It is being
developed in the Semantic Desktop project nepomuk 1. Despite its ver-
satility, QuiKey needs very little screen space, which also makes it a
candidate for future mobile use.

1 Idea

QuiKey is inspired by quicksilver 2, a kind of advanced application launcher for
the Mac that has gained a lot of popularity due to its versatility and efficiency.
With very few keystrokes, quicksilver can open files and applications and trigger
a large variety of common actions not only on any files but also on specific
information objects: Depending on the plug-ins installed, it can e. g. manage
play-lists in iTunes, send files via e-mail or dial a contact’s phone number.

In knowledge bases like a semantic desktop, knowledge is typically be mod-
elled in a formal and fine granular way. QuiKey provides a light-weight generic
UI for browsing and editing them in such fine-granular ways. It also brings simple
ways of constructing structured queries to not-so-technically-advanced users.

2 Examples / Interaction

Adds new Relation works at. State that Claudia works at SAP Research.

works at Claudia Stern SAP Research

Fig. 1. Mock-up showing how both a new statement and relation are added.

1 http://nepomuk.semanticdesktop.org/
2 http://blacktree.com/?quicksilver

SemSearch 2008, CEUR Workshop Proceedings, ISSN 1613-0073, online at CEUR-WS.org/Vol-334/

QuiKey is organised around the notion of parts. A part can be an existing
item, a relation, a new text string or a command. Depending on the number,
order and types of parts entered, it is decided what action to take.

Authoring To add a new text item to the knowledge base, it is enough to just
type the text into the QuiKey console and press enter. To make statements about
existing items, the statement can just be entered in a subject-predicate-object
fashion, separated by tab-keys. So. e. g.

Claudia Stern→works for→SAP Research[enter]

would just add that statement. Only that the user would not even have to type
in the whole labels because parts that are already known can be chosen from a
list an auto-completion manner with the best fitting NameItem pre-selected. So
for this example it is actually enough to type in

Ster→wor→SAP R[enter]

If not all three parts in such a statement are known strings, the respective items
or relations are automatically added to the knowledge base– c. f. Fig. 1. Like this,
a knowledge graph can be woven in single simple steps in an ad-hoc fashion.
Apart from requiring the user to think in triple patterns, cognitive overhead is
reduced to a minimum since additional actions and decisions that are not part of
the actual content, like starting an application, opening a new document, finding
the right place to add or change content, choosing a file name and location, are
not necessary anymore.

Fig. 2. Screen shot of the current QuiKey implementation showing a list of statements
about “Claudia Stern”.

SemSearch 2008, CEUR Workshop Proceedings, ISSN 1613-0073, online at CEUR-WS.org/Vol-334/

Browsing Simply navigating the knowledge base through its graph structure
is done with QuiKey without even changing into a different mode: when a part
has been selected, before the user types anything new to select the next part,
existing contents that fit the part pattern are already displayed in the suggestion
area and can be browsed in a way similar to faceted browsing (s. Fig. 2).

Queries Constructing complex, possibly nested queries is difficult for non-
expert users and every slight error in the syntax makes the whole query fail
or return unintended results. QuiKey tackles two common problems:

a) Misspellings and syntax errors are largely avoided because instead of re-
quiring the user to write a whole query in some complicated syntax which is
parsed later on, in QuiKey the query is constructed interactively, selecting from
existing items and without the need of syntactical characters.

b) To facilitate modular construction of complex queries in a step-by-step
manner, each query can be saved and referred to as a special query item. Simple
query items can be constructed with the easy pattern shown in the two examples
in Fig. 3:

Dirk→knows→?DirksFriends[enter]

creates a new query item that represents a query about everyone that ‘Dirk’
‘knows’.

list of everything that lives in Karlsruhe – stored as KA inhab

Karlsruhe KA inhab? lives in

List of everything that Dirk knows – stored as DirksFriends

knows DirksFriends? Dirk

Fig. 3. Mock-up of simple elementary queries including generic descriptions of their
meaning.

Chained queries like “Who works on a project funded by the EU?” can be
asked as shown in Fig. 4. Note that a node or variable between works on and
is funded by, like it is necessary e. g. in SPARQL, can be omitted here since
the meaning is clear from the pattern of two relation names after each other.
Furthermore, it is consistent with reaching the same query by browsing:

EU→funds→

would result in a list of everything funded by the EU. Continuing this pattern
with

EU→funds→has member→

SemSearch 2008, CEUR Workshop Proceedings, ISSN 1613-0073, online at CEUR-WS.org/Vol-334/

would result in a query of all members of these things funded by the EU. Like
this browsing and constructing queries becomes the same.

List of everything that works on anything that is funded by EU - stored as EU proj member

is funded by EUEU proj member? works on

Fig. 4. Mock-up of a chained query including generic description of its meaning.

More complex queries can be constructed by combining existing query items
like the examples in Fig. 5.

list of everything that lives in Karlsruhe and Dirk knows

 KA inhab? DirksFriends?∧
and

List of everything that lives in Karlsruhe and Dirk knows but without what works at SAP

∧¬
and not works at

 ? KA inhab? DirksFriends?
∧

and SAP

Fig. 5. Mock-up modular queries combining previously existing query items including
generic descriptions of their meaning.

3 Technical Background

The current implementation of QuiKey is built on top of CDS (“Conceptual
Data Structures”), a lightweight top-level ontology designed to bridge the gap
between unstructured content like informal notes and formal semantics like on-
tologies. CDS allows the use of vague semantics by subsuming arbitrary specific
relation types under more general ones. CDS is described in [1] and [2]. The
CDS-framework which we use as a back-end is a CDS-API in Java, which is
designed to serve as a back-end for semantic personal knowledge management
tools. It is described in detail in [3].

In CDS there are four basic kinds of items that can be freely added, edited
and queried:

ContentItems that can hold html-like content
NameItems that are characterised by a unique, typically short string – com-

parable to e. g. a file name or a wiki page name
relations i. e. types of relations that can be stated between items (plus, in CDS

every relation type has an inverse assigned)

SemSearch 2008, CEUR Workshop Proceedings, ISSN 1613-0073, online at CEUR-WS.org/Vol-334/

statements in the form of subject–predicate–object or rather item–relation–
item(in CDS statements are addressable as first-order citizens)

While the general QuiKey approach could be used with any kind of graph-
based knowledge base, the CDS framework is especially suited for QuiKey, since
NameItems can be used to easily identify items with a unique string using auto-
completion mechanisms. And since every relation has an inverse relation defined,
any statement can be made and browsed / queried in both directions.

QuiKey will soon also be integrated into the visual knowledge workbench of
the nepomuk project, e.g. to open existing items directly in the visual iMapping
browser [4] or to ‘summon’ an existing item into a specific place in a map.

The currently used CDS back-end converts the queries to SPARQL. However,
since the expressiveness of QuiKey’s queries does not exceed EL++[5], there
could also be optimised implementations that scale to large knowledge bases
without slowing down user experience.

Acknowledgments:

Research reported in this paper has been financed by the EU in the Social Semantic
Desktop project NEPOMUK (IST-FP6-027705).

References

1. Völkel, M., Haller, H.: Conceptual data structures (cds) – towards an ontology for
semi-formal articulation of personal knowledge. In: Proc. of the 14th International
Conference on Conceptual Structures 2006, Aalborg University - Denmark (2006)

2. Völkel, M., Haller, H., Abecker, A.: Modelling higher-level thought structures -
method and tool. In: Proceedings of Workshop on Foundations and Applications of
the Social Semantic Desktop. (2007)

3. Völkel, M., Haller, H., Bolinder, W., Davis, B., Edlund, H., Groth, K., Gudjons-
dottir, R., Kotelnikov, M., Lannerö, P., Lundquist, S., Sogrin, M., Sundblad, Y.,
Westerlund, B.: Conceptual data structure tools. Deliverable 1.2, nepomuk consor-
tium (2008)

4. Haller, H.: imapping – a graphical approach to semi-structured knowledge modelling.
In Rutledge, L., ed.: Proceedings of the The 3rd International Semantic Web User
Interaction Workshop (SWUI2006). (2006) Poster and extended abstract presented
at the The 3rd International Semantic Web User Interaction Workshop.

5. Krötzsch, M., Rudolph, S., Hitzler, P.: Complexity boundaries for horn descrip-
tion logics. In: Proceedings of the 22nd AAAI Conference on Artficial Intelligence,
Vancouver, British Columbia, Canada, AAAI Press (2007) 452–457

SemSearch 2008, CEUR Workshop Proceedings, ISSN 1613-0073, online at CEUR-WS.org/Vol-334/

