
Fuzzy Constraint-based Schema Matching

Formulation

Alsayed Algergawy, Eike Schallehn, and Gunter Saake

Department of Computer Science,
Otto-von-Guericke University,
39106 Magdeburg, Germany

{alshahat,eike,saake@iti.cs.uni-magdeburg.de}

Abstract. The deep Web has many challenges to be solved. Among
them is schema matching. In this paper, we build a conceptual connec-
tion between the schema matching problem SMP and the fuzzy con-
straint optimization problem FCOP. In particular, we propose the use of
the fuzzy constraint optimization problem as a framework to model and
formalize the schema matching problem. By formalizing the SMP as a
FCOP, we gain many benefits. First, we could express it as a combinato-
rial optimization problem with a set of soft constraints which are able to
cope with uncertainty in schema matching. Second, the actual algorithm
solution becomes independent of the concrete graph model, allowing us
to change the model without affecting the algorithm by introducing a
new level of abstraction. Moreover, we could discover complex matches
easily. Finally, we could make a trade-off between schema matching per-
formance aspects.

Key words: Schema matching, Constraint programming, Fuzzy con-
straints, Objective functions.

1 Introduction

The number of deep Web sources has increased rapidly [3]. To open the deep Web
to users software systems are needed to enable users to explore and integrate
deep Web sources. Schema matching is the core task of these systems.

Schema matching is the task of identifying semantic correspondences among
elements of two or more schemas. It plays a central role in many data application
scenarios [12]: in data integration, to identify and characterize inter-schema
relationships between multiple (heterogeneous) schemas; in data warehousing,
to map data sources to a warehouse schema; in E-business, to help to map
messages between different XML formats; in the Semantic Web, to establish
semantic correspondences between concepts of different web sites ontologies;
and in data migration, to migrate legacy data from multiple sources into a new
one [9].

Due to the complexity of schema matching, it was mostly performed manually
by a human expert. However, manual reconciliation tends to be a slow and

141

inefficient process especially in large-scale and dynamic environments. Therefore,
the need for automatic schema matching has become essential. Consequently,
many schema matching systems have been developed for automating the process,
such as Cupid [12], COMA [5], LSD [6], BTreeMatch [10], and Spicy [2]. Manual
semantic matching overcomes mismatches which exist in element names and
also differentiates between differences of domains. Hence, we could assume that
manual matching is a perfect process. On the other hand, automatic matching
may carry with it a degree of uncertainty, as it is based on syntactic, rather
than semantic, means. Furthermore, recently, there has been renewed interest in
building database systems that handle uncertain data in a principled way. Hence
a short rant about the relationship between databases that manage uncertainty
and data integration systems appears. Therefore, we should surf for a suitable
model which is able to meet the above requirements.

A first step in discovering an effective and efficient way to solve any difficult
problem such as schema matching is to construct a complete problem specifica-
tion. A suitable and precise definition of schema matching is essential for investi-
gating approaches to solve it. Schema matching has been extensively researched,
and many matching systems have been developed. Some of these systems are
rule-based [5, 12, 14] and others are machine learning-based [6, 7]. However,
formal specifications of problems being solved by these systems do not exist, or
are partial. Little work is done towards schema matching problem formulation
e.g. in [18, 16].

In the rule-based approaches, a graph is used to describe the state of a mod-
eled system at a given time, and graph rules are used to describe the operations
on the system’s state. As a consequence in practice, using graph rules has a
worst case complexity which is exponential to the size of the graph. Of course,
an algorithm of exponential time complexity is unacceptable for serious system
implementation. In general, to achieve acceptable performance it is inevitable to
consequently exploit the special properties of both schemas to be matched. Be-
side that, there is a striking commonality in all rule-based approaches; they are
all based on backtracking paradigms. Knowing that the overwhelming majority
of theoretical as well as empirical studies on the optimization of backtracking
algorithms is based on the context of constraint problem (CP), it is near to hand
to open this knowledge base for schema matching algorithms by reformulating
the schema matching problem as a CP [17, 13, 4].

In this paper, we build a conceptual connection between the schema matching
problem (SMP)and the fuzzy constraint optimization problem (FCOP). On one
hand, we consider schema matching as a new application of fuzzy constraints; on
the other hand, we propose the use of the fuzzy constraint satisfaction problem
as a new approach for schema matching. In particular, in this paper, we propose
the use of the FCOP to formulate the SMP. However, our approach should be
generic, i.e. have the ability to cope with different data models and be used
for different application domains. Therefore, we first transform schemas to be
matched into a common data model called rooted labeled graphs. Then we re-
formulate the graph matching problem as a constraint problem. There are many

142

benefits behind this formulation. First, we gain direct access to the rich research
findings in the CP area; instead of inventing new algorithms for graph matching
from scratch. Second, the actual algorithm solution becomes independent of the
concrete graph model, allowing us to change the model without affecting the
algorithm by introducing a new level of abstraction. Third, formalizing the SMP
as a FCOP facilitates handling uncertainty in the schema matching process.
Finally, we could simply deal with simple and complex mappings.

The paper is organized as follows: Section 2 introduces necessary preliminar-
ies. Our framework to unify schema matching is presented in Sect. 3 to show
the scope of this paper. Section 4 shows how to formulate the schema matching
problem as a constraint problem. The concluding remarks and ongoing future
work are presented in Sect. 5.

2 Preliminaries

This paper is based mainly on two existing bodies of research, namely graph
theory [1] and constraint programming [4, 13]. To keep this paper self-contained,
we briefly present in this section the basic concepts of them.

2.1 Graph Model

In this subsection we present formally rooted (multi-)labeled graphs used to
represent schemas to be matched. More formally, we can define the labeled graph
as follows:

Definition 1. A Rooted Labeled Graph G is a 6-tuple G = (NG, EG, LabG, src,
tar, l) where: NG = {nroot, n2, ..., nn} is a finite set of nodes, each of them is
uniquely identified by an object identifier (OID), where nroot is the graph root.
EG = {(ni, nj)|ni, nj ∈ NG} is a finite set of edges. LabG ={ LabNG, LabEG }
is a finite set of node labels LabNG , and a finite set of edge labels LabEG. These
labels are strings for describing the properties of nodes and edges. src and tar:
EG �→ NG are two mappings (source and target), assigning a source and a target
node to each edge. And l : NG ∪EG �→ LabG is a mapping label assigning a label
from the given LabG to each node and each edge.

2.2 Constraint Programming

Many problems in computer science, most notably in artificial intelligence, can be
interpreted as special cases of constraint problems. Semantic schema matching
is also an intelligent process which aims at mimicking the behavior of humans
in finding semantic correspondences between two schemas’ elements. Therefore,
constraint programming is a suitable scheme to represent the SMP.

Constraint programming is a generic framework for declarative description
and effective solving for large, particulary combinatorial, problems. Not only it

143

is based on a strong theoretical foundation but also it is attracting widespread
commercial interest as well, in particular, in areas of modeling heterogeneous
optimization and satisfaction problems. We, here, concentrate only on constraint
satisfaction problems (CSPs) and present definitions for CSPs, constraints, and
solutions for the CSPs.

Definition 2. A Constraint Satisfaction Problem P is defined by a 3-tuple
P=(X,
D,C) where, X = {x1, x2, ..., xn} is a finite set of variables, D = {D1, D2, ..., Dn}
is a collection of finite domains. Each domain Di is the set containing the pos-
sible values for the corresponding variable xi ∈ X, and C = {C1, C2, ..., Cm} is
a nonempty, finite set of constraints on the variables of X.

Definition 3. AConstraint Cs on a set of variables S = {x1, x2, ...xr} is a pair
Cs = (S, Rs), where Rs is a subset on the product of these variables’ domains:
Rs ⊆ D1 × ...×Dr → {0, 1}.
The number r of variables a constraint is defined upon is called arity of the
constraint. The simplest type is the unary constraint, which restricts the value
of a single variable. Of special interest are the constraints of arity two, called
binary constraints. A constraint that is defined on more than two variables is
called a global constraint.

Example 1. (Map Coloring:) Let us assume we have a map comprising n coun-
tries. We want to color each country using one of four colors: red, green, white,
or blue in a way that no two adjacent countries have the same color. This prob-
lem could be formulated as CSP P=(X,D, C) where: X = {x1, x2, ..., xn} repre-
sents n countries, D = {D1, D2, ..., Dn} represents the domains of the variables
such that D1 = D2 = ... = Dn = {red, green, blue, white}, and Crepresents con-
straints which should be satisfied such that C(xi,xj) = {(vi, vj) ∈ Di ×Dj |vi �= vj}.

Solving a CSP is finding assignments of values from the respective domains
to the variables so that all constraints are satisfied. However, in the schema
matching field, we do not need to find any solution but the best solution. The
quality of a solution is usually measured by an application dependent function
called objective function. The goal is to find such a solution that satisfies all
the constraints and minimizes or maximizes the objective function respectively.
Such problems are referred to as Constraint Optimization Problems (COP).

Definition 4. A Constraint Optimization Problem Q is defined by couple Q
=(P,g) such that P is a CSP and g : D1 × ... × Dn → [0, 1] is an objective
function that maps each solution tuple into a value.

While powerful, both CSP and COP present some limitations. In particu-
lar, all constraints are considered mandatory. In many real problems, there are
constraints that could be violated in solutions without causing such solutions to
be unacceptable. If these constraints are treated as mandatory, this often causes

144

problems to be unsolved. If these constraints are ignored, solutions of bad qual-
ity are found. This is a motivation to extend the CSP schema and make use
of soft constraints. A way to circumvent inconsistent constraints problems is to
make them fuzzy. The idea is to associate fuzzy values with the elements of the
constraints, and combine them in a reasonable way.

A constrain, as defined before, is usually defined as a pair consisting of a
set of variables and a relation on these variables. This definition gives us the
availability to model different types of uncertainty in schema matching. In [8],
authors identify different sources for uncertainty in data integration. Uncertainty
in semantic mappings between data sources can be modeled by exploiting fuzzy
relations while other sources of uncertainty can be modeled by making the vari-
able set a fuzzy set. In this paper, we take the first one into account while the
other sources are left for our ongoing work.

Definition 5. A Fuzzy Constraint Cμ on a set of variables S = {x1, x2, ...xr} is
a pair Cμ = (S, Rμ), where the fuzzy relation Rμ, defined by μR :

∏
xi∈var(C) Di →

[0, 1] where μR is the membership function indicating to what extent a tuple v
satisfies Cμ. μR(v) = 1 means v totaly satisfies Cμ, μR(v) = 0 means v totaly
violates Cμ, while 0 < μR(v) < 1 means v partially satisfies Cμ.

Definition 6. A Fuzzy Constraint Optimization Problem Qμ is a 4-tuple Qμ=
(X, D, Cμ, g) where X is a list of variables, D is a list of domains of possible
values for the variables, Cμ is a list of fuzzy constraints each of them referring
to some of the given variables, and g is an objective function to be optimized.

In the following section we shed light on our schema matching framework to
determine the scope of schema matching understanding.

3 A Unified Schema Matching Framework

Most of existing schema matching systems deal with the schema matching prob-
lem from its point of view, but we need a generic framework that unifies the
solution of this intricate problem independent of the domain of schemas to be
matched and independent of the model representations. To this end, we propose
the following general phases to address the schema matching problem. Figure
1 shows these phases with the main scope of this paper. In the following sub-
section we introduce a framework for defining different data models and how to
transform them into schema graphs.

3.1 Schema Graph

To make the matching process a more generic process, schemas to be matched
should be represented internally by a common representation. This uniform rep-
resentation reduces the complexity of the matching process by not having to cope
with different representations. By developing such import tools, schema match

145

Fig. 1: Matching Process Phases

implementation can be applied to schemas of any data model such as SQL, XML,
UML, and etc. Therefore, the first step in our approach is to transform schemas
to be matched to a common model in order to apply matching algorithms. We
make use of labeled graphs as the internal model. We call this phase TransMat ;
Transformation for Matching process.

In general, to represent schemas and data instances, starting from the root,
the schema is partitioned into relations and further down into attributes and
instances. In particular, to represent relational schemas, XML schemas, etc. as
rooted labeled graphs, independently of the specific source format, we benefit
from the rules found in [18, 15, 11]. These rules are rewritten as follows:

– Every prepared matching object in a schema such as the schema, relations,
elements, attributes etc. is represented by a node, such that the schema itself
is represented by the root node. Let schema S consist of m elements (elem),
then

∀ elem ∈ S ∃ ni ∈ NG ∧ S �→ nroot, s.t. 1 ≤ i ≤ m

– The features of the prepared matching object are represented by node labels
LabNG. Let features (featS) be the property set of an element (elem), then

∀ feat ∈ featS ∃ Lab ∈ LabNG

– The relationship between two prepared matching objects is represented by an
edge. Let the relationships between schema elements be (relS), then

∀ rel ∈ relS ∃ e(ni, nj) ∈ EG s. t. src(e) = ni ∈ NG ∧ tar(e) = nj ∈ NG

– The properties of the relationship between prepared objects are represented
by edge labels LabEG. Let features rfeatS be the property set of a relationship
rel, then,

∀ rfeat ∈ rfeatS ∃ Lab ∈ LabEG

Example 2. (Relational Database Schemas) Consider schemas S and T depicted
in Fig. 2(a) (from [14]). The elements of S and T are tables and attributes. Ap-
plying the above rules, the two schemas Schema S and Schema T are represented

146

(a) Two Relational Schemas (b) Schema Graphs

Fig. 2: Two Relational Schemas & their Schema Graphs (without labels)

by SG1 and SG2 respectively, such that SG1 = (NGS , EGS , LabGS , srcS , tarS , lS)
where NGS = {n1S , n2S , n3S , n4S , n5S , n6S}, EGS = {e1−2, e2−3, e2−4, e2−5, e2−6},
LabGS = LabNS ∪ LabES = {name, type, datatype} ∪ {part − of, associate}.
srcS, tarS, lS are mappings such that srcS(e1−2) = n1S , tarS(e2−3) = n3S and
lS(e1−2) = part−of . Figures 2(b) shows only the nodes and edges of the schema
graphs (SG2 can be defined similarly).

In this example, we exploit different features of matching objects such as
name, datatype, and type. These features are represented as nodes’ labels. These
features shall be the input parameters to the next phase. For example, the name
of a matching object in SG1 will be used to measure linguistic similarity between
it and another matching object from SG2, its datatype is to measure datatype
compatibility, and its type is used to determine semantic relationships. However,
our approach is flexible in the sense that it is able to exploit more features as
needed. Moreover, in this example, we exploit one structural feature ”part-of”
to represent structural relationships between nodes at different levels. Other
structural features e.g. association relationship, that is a structural relationship
specifying both nodes are conceptually at the same level, are represented between
keys. One association relationship is represented in Fig. 2(b) between the nodes
n6T and n9T to specify a key/foreign key relation. Visually, association edges are
represented as dashed lines.

So far, recent schema matching systems directly determine semantic corre-
spondences between schemas’ elements as a graph matching. In this paper, we
extend the internal representation, schema graphs, and reformulate the graph
matching problem as a constraint problem.

4 Schema Matching as a FCOP

4.1 Schema Matching as Graph Matching

Schemas to be matched are transformed into rooted labeled graphs and, hence,
the schema matching problem is converted into graph matching. Two types of

147

graph matching exist isomorphism and homomorphism. In general, a match of
one graph into another is given by a graph morphism, which is a mapping of
one graph’s object sets into the other’s, with some restrictions to preserve the
graph’s structure and its typing information.

Definition 7. A Graph Morphism φ : SG1 → SG2 between two schema graphs
SG1 = (NGS , EGS , LabGS , srcS , tarS , lS) and SG2 = (NGT , EGT , LabGT , srcT , tarT , lT)
is a pair of mappings φ = (φN , φE) such that φN : NGS → NGT (φN is a node
mapping function) and φE : EGS → EGT (φE is an edge mapping function) and
the following restrictions apply:

1. ∀n ∈ NGS ∃ lS(n) = lT (φN (n))
2. ∀e ∈ EGS ∃ lS(e) = lT (φE(e))
3. ∀e ∈ EGS ∃ a path p′ ∈ NGT × EGT such that p′ = φE(e) and

φN (srcS(e)) = srcT (φE(e)) ∧ φN (tarS(e)) = tarT (φE(e)).

The first two conditions preserve both nodes and edges labeling information,
while the third condition preserves graph’s structure.

Graph matching is an isomorphic matching problem when |NGS | = |NGT |
otherwise it is homomorphic. Obviously, the schema matching problem is a ho-
momorphic problem.

Example 3. For the two relational schemas depicted in Fig. 2(a) and its associ-
ated schema graphs shown in Fig. 2(b), the schema matching problem between
schema S and schema T is converted into a homomorphic graph matching prob-
lem between SG1 and SG2.

Graph matching is considered to be one of the most complex problems in
computer science. Its complexity is due to two major problems. The first prob-
lem is the computational complexity of graph matching. The time required by
backtracking in a search tree algorithm may in the worst case become expo-
nential in the size of the graph. The second problem is the fact that all of the
algorithms for graph matching mentioned so far can only be applied to two
graphs at a time. Therefore, if there is more than two schemas that must be
matched, then the conventional graph matching algorithms must be applied to
each pair sequentially. For applications dealing with large databases, this may be
prohibitive. Hence, choosing graph matching as a platform to solve the schema
matching problem may be effective process but inefficient. Therefore, we propose
transforming graph homomorphism into a FCOP.

4.2 Graph Matching as a FCOP

In the schema matching problem, we are trying to find a mapping among the
elements of two schemas. Multiple conditions should be applied to make these
mappings valid solutions to the matching problem, and some objective functions
are to be optimized to select the best mappings among matching result. The
analogy to the constraint problem is quite obvious: here we make a mapping

148

between two sets, namely between a set of variables and a set of domains, where
some conditions should be satisfied to a certain extent. In order to obtain an
equivalent constraint problem CP for a given schema matching problem (assum-
ing that schemas to be matched are transformed into schema graphs) we utilize
the followings rules:

1. take objects of one schema graph to be matched as the CP’s set of variables,
2. take objects of other schema graphs to be matched as the variables’ domain,
3. find a proper translation of the conditions that apply to schema matching

into a set of fuzzy constraints, and
4. form objective functions to be optimized.

We have defined the schema matching problem as a graph matching homo-
morphism φ. We now proceed by formalizing the problem φ as a FCOP problem
Qμ = (X, D, Cμ, g). To construct a FCOP out of this problem, we follow the
above rules. Through these rules, we take the two relational database schemas
shown in Fig. 2(a) and its associated schema graphs shown in Fig. 2(b) as an
example, taking into account that |NGS |(= 6) < |NGT |(= 10)

– The set of variables X is given by X = NGS ∪ EGS where the variables from
NGS are called node variables XN and from EGE are called edge variables XE

X = XN ∪XE

= {xn1, xn2, xn3, xn4, xn5, xn6} ∪ {xe1−2 , xe2−3 , xe2−4 , xe2−5 , xe2−6}
– The set of domain D is given by D = NGT ∪ EGT , where the domains from

NGT are called node domains DN and from EGT are called edge domains DE ,

D = DN ∪DE =
{Dn1, Dn2, Dn3, Dn4, Dn5, Dn6} ∪ {De1−2 , De2−3 , De2−4 , De2−5 , De2−6}

where Dn1 = Dn2 = Dn3 = Dn4 = Dn5 = Dn6 = {n1T , n2T , n3T , n4T , n5T ,
n6T , n7T , n8T , n9T , n10T } (i.e. the node domain contains all the second schema
graph nodes) and De1−2 = De2−3 = De2−4 = De2−5 = De2−6 = {e1−2T , e1−3T ,
e2−4T ,, p1−2−4T , ...} (i.e. the edge domain contains all the available edges
and paths in the second schema graph)(the edge e1−2 reads the edge extends
between the two nodes n1 and n2 such that e1−2 = e(n1, n2)).

Using this formalization enables us to deal with holistic matching. This can
be achieved by taking the objects of one schema as the variable set, while the
objects of other schemas are the variable’s domain. Let we have n schemas which
are transformed into schema graphs SG1, SG2,...,SGn then X = XN ∪ XE ,
DN =

∑n
i=2 DNi, DE =

∑n
i=2 DEi. Another benefit behind this approach is

that our approach is able to discover complex matchings of types 1:n and n:1
very easily.

In the following subsections, we demonstrate how to construct both con-
straints and objective functions to obtain a complete problem definition.

149

4.3 Constraints Construction

The exploited constraints should reflect the goals of schema matching. Schema
matching based only on schema element properties has been attempted. How-
ever, it does not provide any facility to optimize matching. Furthermore, addi-
tional constraint information, such as semantic relationships and other domain
constraints is not included, and schemas may not completely capture the se-
mantics of data they describe. Therefore, in order to improve performance and
correctness of matching, additional information should be included. In this pa-
per, we are concerned with both syntactic and semantic matching. Therefore,
we shall classify constraints that should be incorporated in the CP model into:
syntactic constraints and semantic constraints.

Syntactic Constraints

1. Domain Constraint: It states that a node variable must be assigned a value
(or a set of values) from a node domain, and an edge variable must be
assigned a value from the edge domain. That is ∀xni ∈ XN and xej ∈ XE∃
a unary constraint Cdom

μ(xni)
and Cdom

μ(xei)
ensuring domain consistency of the

match, where

Cdom
μ(xni)

= {di ∈ DNi}, Cdom
μ(xei)

= {di ∈ DEi}
2. Structural Constraints: There are many structural relationships between

nodes in schema graphs such as:
– Edge Constraint: It states that if an edge exists between two variable

nodes, then an edge (or path) should exist between their corresponding
images. That is, ∀xei ∈ XE and its source and target nodes are xns and xnt

∃ two binary constraints Csrc
μ(xei,xns), Ctar

μ(xei,xnt)
representing the structural

behavior of matching, where:
Csrc

μ(xei,xns) = {(di, dj) ∈ DE ×DN | src(di)= dj }
Ctar

(xei,xnt)
= {(di, dj) ∈ DE ×DN | tar(di)=dj}

– ∀ two variable nodes xni and xnj ∈ XN ∃ a set of binary constraints as
follows:

a) Parent Constraint Cparent
μ(xni,xnj)

representing the structural behavior of
parent relationship, where

Cparent
μ(xni,xnj)

= {(di, dj) ∈ DN ×DN | ∃ e (di, dj) s.t. src(e)=di }
b) Child Constraint Cchild

μ(xni,xnj)
representing the structural behavior of

child relationship, where
Cchild

μ(xni,xnj)
= {(di, dj) ∈ DN ×DN | ∃ e (di, dj) s.t. tar(e)=dj }

c) Sibling Constraint Csibl
μ(xni,xnj)

representing the structural behavior of
parent relationship, where
Csibl

μ(xni,xnj)
= {(di, dj) ∈ DN ×DN | ∃ dn s.t. parent(dn, di)∧ paren(dn,

dj) }

150

Semantic Constraints

1. Labeled Constraints: ∀xi ∈ X∃ a unary constraint CLab
μ(xi)

ensuring the se-
mantics of the predicates in the schema such that: if xi ∈ XN and if xi ∈ XE :

CLab
μ(xi)

= {dj ∈ DN | lsim(lS(xi),lT (dj)) ≥t }
CLab

μ(xi)
= {dj ∈ DE | lsim(lS(xi),lT (dj)) ≥ t},

where lsim is a similarity function determining the semantics similarity be-
tween nodes/edges labels such name and t is a predefined threshold.

The above syntactic and semantic constraints are by no means the contextual
relationships between elements. Other kinds of domain knowledge can also be
represented through constraints. Moreover, each constraint is associated with
a membership function μ(v) ∈ [0, 1] to indicate to what extent the constraint
should be satisfied. If μ(v) = 0, this means v totally violates the constraint and
μ(v) = 1 means v totally satisfies it. Constraints restrict the search space for
the matching problem so may benefit the efficiency of the search process. On
the other hand, if too complex, constraints introduce additional computational
complexity to the problem solver.

4.4 Objective Function Construction

The objective function is the function associated with an optimization process
which determines how good a solution is and depends on the object param-
eters. The objective function constitutes the implementation of the problem
to be solved. The input parameters are the object parameters. The output is
the objective value representing the evaluation/quality of the individual. In the
schema matching problem, the objective function simulates human reasoning on
similarity between schema graph objects.

In this framework, we should consider two function components which consti-
tute the objective function. The first is called cost function fcost which determines
the cost of a set constraint over variables. The second is called energy function
fenergy which maps every possible variable assignment to a cost. Then, the ob-
jective function could be expressed as follows:

g = min|max(
∑

setofconstraint fcost +
∑

setofassignment fenergy)

5 Summary and Future Work

In this paper, we have introduced a fuzzy constraint-based framework to model
the schema matching problem. Our approach is able to handle uncertainty in
schema matching by exploiting fuzzy constraints. Moreover, our framework is
generic which has the feature to deal with different schema representations by
transforming the schema matching problem into graph matching. Instead of solv-
ing the graph matching problem which has been proven to be an NP-complete

151

problem, we reformulate it as a constraint problem. We have identified two types
of constraints syntactic and semantic to ensure match semantics. We also shed
light on how to construct objective functions.

The main benefit of this approach is that we gain direct access to the rich
research findings in the CP area; instead of inventing new algorithms for graph
matching from scratch. Another important advantage is that the actual algo-
rithm solution becomes independent of the concrete graph model, allowing us to
change the model without affecting the algorithm by introducing a new level of
abstraction.

Understanding the schema matching problem is considered the first step to-
wards an effective and efficient solution for the problem. In our ongoing work,
we will exploit constraint solver algorithms to reach our goal.

References

1. R. Babakrishnan and K.Ranganathan. A textbook of graph theory. Spring Verlag,
1999.

2. A. Bonifati, G. Mecca, A. Pappalardo, and S. Raunich. The spicy project: A new
approach to data matching. In SEBD. Turkey, 2006.

3. S. C. Chang, B. He, C. Li, M. Patel, and Z. Zhang. Structured databases on the
web: Observations and implications. SIGMOD Record, 33(3):61–70, 2004.

4. R. Dechter. Constraint Processing. Morgan Kaufmann, 2003.
5. H. H. Do and E. Rahm. COMA- a system for flexible combination of schema

matching approaches. In VLDB 2002, pages 610–621, 2002.
6. A. Doan. Learning to map between structured representations of datag. In Ph.D

Thesis. Washington University, 2002.
7. A. Doan, P. Domingos, and A. Halevy. Reconciling schemas of disparate data

sources: A machine-learning approach. SIGMOD, pages 509–520, May 2001.
8. X. Dong, A. Halevy, and C. Yu. Data integration with uncertainty. In VLDB’07,

pages 687–698, 2007.
9. C. Drumm, M. Schmitt, H.-H. Do, and E. Rahm. Quickmig - automatic schema

matching for data migration projects. In Proc. ACM CIKM07. Portugal, 2007.
10. F. Duchateau, Z. Bellahsene, and M. Roche. An indexing structure for automatic

schema matching. In SMDB Workshop. Turkey, 2007.
11. F. Giunchiglia and P. Shvaiko. Semantic matching. KER Journal, 18(3), 2003.
12. J. Madhavan, P. A. Bernstein, and E. Rahm. Generic schema matching with cupid.

In VLDB 2001, pages 49–58. Roma, Italy, 2001.
13. K. Marriott and P. Stuckey. Programming with Constraints: An Introduction. MIT

Press, 1998.
14. S. Melnik, H. Garcia-Molina, and E. Rahm. Similarity flooding: A versatile graph

matching algorithm and its application to schema matching. In ICDE’02, 2002.
15. L. Palopoli, D. Rossaci, G. Terracina, and D. Ursino. A graph-based approach for

extracting terminological properties from information sources with heterogeneous
formats. Knowledge and Information Systems, 8:462–497, 2005.

16. M. Smiljanic. XML Schema Matching Balancing Efficiency and Effectiveness by
means of Clustering. PhD thesis, Twente University, 2006.

17. E. Tsang. Foundations of Constraint Satisfaction. Acadimic Press, 1993.
18. Z. Zhang, H. Che, P. Shi, Y. Sun, and J. Gu. Formulation schema matching

problem for combinatorial optimization problem. IBIS, 1(1):33–60, 2006.

152

