
Symbol Grounding in Computational Systems:
A Paradox of Intentions

Vincent C. Müller

American College of Thessaloniki, P.O. Box 21021, 55510 Pylaia, Greece
vmueller@act.edu, http://www.typos.de

Abstract. The paper presents a paradoxical feature of computational systems
that suggests that computationalism cannot explain symbol grounding. If the
mind is a digital computer, as computationalism claims, then it can be comput-
ing either over meaningful symbols or over meaningless symbols. If it is com-
puting over meaningful symbols its functioning presupposes the existence of
meaningful symbols in the system, i.e. it implies semantic nativism. If the mind
is computing over meaningless symbols, no intentional cognitive processes are
available prior to symbol grounding; therefore no symbol grounding could take
place since any such process presupposes intentional processes. So, whether
computing in the mind is over meaningless or over meaningful symbols, com-
putationalism implies semantic nativism.

Keywords. Computationalism, Fodor, symbol grounding, meaningless compu-
tation, Putnam, semantic nativism

1. Computationalism

We will discuss an aspect of the problems a digital computational system has to ac-
quire meaningful symbols and what these problems mean for a computational theory
of the mind, in particular its relation to semantic nativism. The classical computa-
tional theory of the mind, or “computationalism” for short, holds that the mind is a
digital computer, in particular that it is a computational information processor. The
view of the mind as a computer, especially as a computer processing symbols accord-
ing to rules, is the basis of classical cognitive science and artificial intelligence. As
Fodor puts it: “The cognitive science that started fifty years or so ago more or less
explicitly had as its defining project to examine a theory, largely owing to Turing, that
cognitive mental processes are operations defined on syntactically structured mental
representations that are much like sentences.” [1].

Computationalism is typically (but not necessarily) a version of the view of mental
states as physical states with a specific causal functional role, as proposed by the
earlier Putnam. If the mind is described not at the a basic physical level, but described
at the level of these functional roles and if these are taken as realizations of a Turing
machine, as computational states, then we have the theory commonly known as Ma-
chine Functionalism, which includes the thesis of the necessity of computing for

2 Vincent C. Müller

mentality: “Mentality, or having a mind, consists in realizing an appropriate Turing
machine” [2, 3]—a thesis that is stronger than computationalism itself. Paul Church-
land characterizes the thesis as follows: “What unites them [the cognitive creatures] is
that (…) they are all computing the same, or some part of the same abstract <<sensory
input, prior state>, <motor output, subsequent state>> function.” [4]. The computa-
tionalist version of functionalism is initially plausible because computers are neces-
sarily described functionally, as in the notion of a “Turing machine.” It does not make
sense to describe the mind as a computer in the sense of an identity theory because the
physical description of a particular computing machine is irrelevant, what matters is
the syntactical description of its function, and there could be well be such a descrip-
tion of a brain (since nobody claims that our brain physically consists of silicon chips
like the ones used in our PCs).

We shall only discuss computationalism in the sense that computation is sufficient
for mental states and that it is the cause of mental states in humans, not in the stronger
sense that computation is necessary and sufficient (or only necessary). It must be
noted, however, that computationalism is not just the weak thesis that some or all
mental processes can be modeled on a digital computer. If a hurricane can be modeled
on a computer, this is not to say that the hurricane is a computational system. (NB, it
is doubtful whether such modeling is strictly speaking possible on a digital computer,
since a hurricane is not a discrete state phenomenon). Despite the distinction of com-
putationalism from this weaker thesis, there is the possibility, however, that minds
might be special cases such that modeling a mind actually is producing a mind—
given that it has sufficient functional properties [e.g. 5].

Computationalism directly implies the possibility of strong Artificial Intelligence:
“… computers can think because, in principle, they can be programmed with the same
program that constitutes human thought.” [6]. Or, as Churchland puts it: “The central
job of AI research is to create novel physical realizations of salient parts of, and ulti-
mately all of, the abstract function we are all (more or less) computing.” [4].

The notion of computing used her is the classical one as defined by Turing, i.e.
computing means a mechanical procedure (e.g. the manipulation of symbols) accord-
ing to algorithms, i.e. explicit non-ambiguous rules that proceed step by step and that
can be carried out in finite time, leading to a definite output—what is also called “ef-
fective computing.” The Church-Turing thesis says that a Turing machine can com-
pute all and only the effectively computable functions. (I ignore the theoretical possi-
bility of hypercomputing in this paper, but see [7].)

2. Computing with Meaningful Symbols: Language of Thought
Computationalism

The main theoretical options within computationalism depend on whether the sym-
bols on which the computer operates (and that constitute its program) are meaningful
or not. I shall call the option of operating on meaningful symbols “Language of
Thought Computationalism” or LOCO.

 Symbol Grounding in Computational Systems: A Paradox of Intentions 3

The tradition of Fodor’s “Language of Thought” focuses on “cognition” or, even
more narrowly, “thought”, and it claims that thinking is computing over mental repre-
sentations. Fodor’s slogan could be said to be “There is no computation without rep-
resentation” [8], so the computing is computing over symbols that represent.

The symbols are also taken to be closely related to natural language concepts, in
what Smolensky calls the “Newell/Simon/Fodor/Pylyshyn view”: the programs of this
computational system “are composed of elements, that is, symbols, referring to essen-
tially the same concepts as the ones used to consciously conceptualize the task do-
main.” [9, cf. 10]. One consequence of this approach is “the view that propositional
attitudes (such as believing, noticing, preferring) are to be regarded as computational
relations to semantically valuable representations that are encoded in the brain or
other hardware of the thinker.” [11]. To conclude in Fodor’s words: “The emphasis
upon a syntactical character of thought suggests a view of cognitive processes in
general—including, for example, perception, memory and learning—as occurring in a
languagelike medium, a sort of ‘language of thought’.” [3]. So, LOCO could be sum-
marized as the conjunction of two views:

(1) “Thinking is computation.” [12] and
(2) Thinking computes over language-like mental representations.

Fodor’s emphasis on the syntactical nature of the computational process should not be
taken to mean that his position is anything other than language of thought computa-
tionalism. It just so happens, that thinking is a computation over symbols that are
representations:

“First, all mental processes are supposed to be causally sensitive to, and only
to, the syntax of the mental representations that they are defined over; in par-
ticular, mental processes aren’t sensitive to what mental representations mean.
This is, I think, at the very heart of the Classical [Fodor’s] account of cogni-
tion.” [13]

Given that we have explained the central term of the first thesis (computing), it re-
mains to specify what we mean that of the second: “language.” I will just adopt the
proposal by Lycan, who says: “(1) they are composed of parts and syntactically struc-
tured; (2) their simplest parts refer or denote things and properties in the world; (3)
their meanings as wholes are determined by the semantical properties of their basic
parts together with the grammatical rules that have generated the overall syntactic
structures; (4) they have truth conditions …; (5) they bear logical relations of entail-
ment or implication to each other.” [14] What is characteristic for the language of
thought is not only that its parts represent, but also that it consists of sentence-like
pieces that, due to their compositionality, have systematicity and productivity, as do
natural languages (we can think a virtually unlimited number of thoughts and which
thoughts one can think is connected in a systematic way).

2.1 Origin of Meaning?

This brings us to the problem. How is it possible that these symbols of a computa-
tional system have meaning? Fodor himself appears to see that this is problematic, at
least sometimes: “How could a process which, like computation, merely transforms

4 Vincent C. Müller

one symbol into another guarantee the causal relations between symbols and the
world upon which … the meanings of symbols depend?” [3]. There seem to be two
ways in principle: meaning is built-in (innate) or meaning is acquired. What I am
trying to show here is that if LOCO is assumed, it cannot be acquired, leaving the
option of built-in (innate) meaning.

2.2 A Short Line

The situation invites a very short line indeed: If language of thought computational-
ism is the manipulation of meaningful symbols, then the functioning of the language
of thought (the “cognition” or the “thinking”) presupposes the existence of meaning-
ful symbols in the system. In other words, the system must have meaningful symbols
before the language of thought can function. The acquisition of these meaningful
symbols can thus not be the work of a language of thought.

So, if a newborn child’s mental activity is within language of thought, then a child
must be born with meaningful symbols: language of thought computationalism pre-
supposes meaningful symbols. Fodor himself has been supporting the idea of innate
meaning for some time, of course, but many in the field want the language of thought
computationalism without the nativism. Nativism is typically taken as optional but as
the ‘short line’ shows, it is not. This “short line” is a simple argument against lan-
guage of thought computationalism without semantic nativism—an argument we lack
so far as far as I can see [see 1, 13, 15, 16].

3. Computing with Meaningless Symbols:
Syntactic Computationalism

Given the problem described in the above “short line”, it may be plausible to revert to
a more modest version of computationalism: Mental computation is (or could be)
purely syntactic. Of course, this does not exclude that the symbols could be inter-
preted by some observer; it just says that they have no meaning for the system. At first
glance, this is what is the case with any conventional digital computing machine: For
example, the operation of a set of switches that constitute an XOR-gate could be in-
terpreted as be doing a logical operation, or as computing an addition, or as doing
various other things. (The logical gates for exclusive or are the same as those for
binary addition plus a “carrying over” of surpluses to the next digit.) The switches
have no meaning for the system itself. When my pocket calculator displays the output
“844$” or my washing machine displays “End”, this means something to me, but not
to the computer.

 Symbol Grounding in Computational Systems: A Paradox of Intentions 5

3.1 Symbol System, Technically

In order to understand the proposal of computationalism without presupposing mean-
ing in the system, it is useful to gain a deeper understanding of what a computer,
really does. The main characteristic of a digital computer is that is algorithmic. Any
calculator can “carry out” a particular algorithm (and mechanical calculators were
already constructed in the 17th Century by Schickard, Pascal and Leibniz). A com-
puter, however, is programmable, that is which algorithm it carries out can be
changed. The universal Turing machine is a model for a computer that can run any
program, essentially by giving numbers to all the other simple Turing machines that
can compute only one algorithm.

To understand computation, it is important to see that we can describe a computer
on three (plus) levels of description:

Physical level: Some physical objects such as toothed wheels, holes in cards, states
of switches, states of transistors, states of neurons, etc. are causally connected with
each other—such that a state of one object can alter the state of another.

Syntactical level: The physical objects are taken to be tokens of a type (e.g.
charge/no charge) and are manipulated according to algorithms. These algorithms are
also stored and changed in the computer via some set of physical tokens (typically the
same set). The manipulation follows the algorithms and only concerns these tokens as
tokens, not their physical realization or their interpretation; it is “purely syntactical.”
To do this, the computer needs to recognize each token as of a type, as a basic symbol
for this system, e.g. a 0 or 1 in a binary system.

What I call the syntactical level could also be called the “form” of a computational
procedure. This way of talking is aptly criticized by [17], who claims that there is no
computational form without a semantics to identify tokens of types. In his discussion
of physical form (morphology) vs. syntactical form Kuczynski fails to invoke levels
of description and thus comes to the conclusion that there really is no such thing as a
purely formal procedure distinguished by physical form alone (especially for logical
inference).

Horowitz makes the related proposal that we need “computational externalism
without relying on semantic externalism” [18]. I argue elsewhere that we do not need
the notion of semantics to solve what I call the “individuation problem”, namely to
explain what makes something to be a token of a computational type (see [19]).

Symbolic level: The physical objects that are manipulated on the logical level are
taken to represent; they are (parts of) letters, numbers, words, images, vectors, con-
cepts, … One could thus have one algorithm (on the syntactical level) that carries out
several functions (on the symbolic level).

Piccinini’s terminology, who discusses the problem of how to “individuate compu-
tational states” [20] cuts across my position here: I do not adhere to a semantic view
(since I allow description levels below the “symbolic” level), but neither do I sub-
scribe to his view that that a computational state must be individuated functionally, in
terms of function for a whole organism. I tend to think that this would pick out one
level of description within my “symbolic” level: Piccinini’s explanatory aim is differ-
ent from mine.

6 Vincent C. Müller

I propose to have “3+” levels rather than “3” because each of the symbols on the
symbolic level can symbolize something else in turn. Accordingly, one might distin-
guish several further levels within the symbolic level when describing a computa-
tional cognitive system, for example, the distinction between nonconceptual content
and conceptual content, or the distinction between symbols and concepts [for the
latter, see 21, ch. 7].

If we now describe a conventional van Neumann machine, e.g. a PC, at its syntac-
tical level, rather than at its physical (realization) level, we will see basic operations
on bits of main memory such as read (is this bit on or off?) and write (to this bit).
These operations are combined by building in logical (Boolean) switches where one
bit takes a particular state, given the state of two other bits. With the help of such
switches, one can construct algorithms of switching patterns that perform particular
tasks on the symbolic level, e.g. compare, add, … The computing process is a long
sequence of such basic operations resulting in a memory state. Note that it is irrele-
vant for the syntactical description of the computer how a particular operation is car-
ried out—one way to see this is to conceive of the computer as operating a Turing
machine [see e.g. 22].

3.2 Is there Computing Without Meaning?

After this initial clarification we can return to the proposal of syntactic computational-
ism. Some have claimed that this is per se impossible, that there could not really be a
computing system, without any meaningful symbols. One prominent objection is that
the system must be able to carry out programs, programs that are themselves encoded
in symbols, and typically stored in memory. Does this not require following rules and
understanding at some level? For example, in Searle’s famous computation in the
“Chinese Room” [23, cf. 24], Searle sits in the room and manipulates Chinese sym-
bols according to manipulation instructions given in English: A language that he un-
derstands!

John Haugeland claims that in any computing system there are primitive opera-
tions of which the system knows how to carry them out [25]. Indeed, he says these
must involve meaning: “The only way that we can make sense of a computer as exe-
cuting a program is by understanding its processor as responding to the program
descriptions as meaningful.” [26] [cf. 27, 28].

If this was right, in any computing system we would be back at our original prob-
lem: If there are “meaningful primitives” in any computing machine—where do they
get their meaning? Our ‘short line’ would show that computationalism implies seman-
tic nativism, generally. Or rather, semantic nativism must be true for any computer,
given that we have working computers. All our computers would already have mean-
ingful symbols built in!

I think it will be apparent form the discussion of descriptive levels above, that
purely syntactic machines are in fact possible, however. We just need to be more
careful when we say that the system “follows rules”, or “executes programs.” Witt-
genstein famously distinguished between following a rule and acting according to a
rule—and only the former requires that one understands the rule (gives it an interpre-

 Symbol Grounding in Computational Systems: A Paradox of Intentions 7

tation). The computer does not literally follow a rule. Being in a particular state, given
a particular input, it will perform a series of steps (e.g. switches) and produce a par-
ticular output, a memory state. The same happens when it is programmed, i.e. its
switches are set (this even happens in the same central memory, in the case of a
‘stored program’ von Neumann machine). This is a purely causal, mechanical proce-
dure that requires no understanding of a rule. It is no different from a can vending
machine taking a particular input (my coins and my pressing a button), processing,
and producing a particular output (the can).

The computing machine is just constructed in such a way that it will mechanically
do what we call “carrying out a program”, on the logical or even the symbolic level.
We can describe the computer as “following a rule” and some of its states as “sym-
bols” but that is entirely irrelevant to its functioning. A computer can be described on
the symbolic level, but it must not have such a level. It may also, to repeat, be de-
scribed differently on the symbolic level. The widespread resistance to calling com-
puting “purely syntactical” [e.g. 11, 22, 29, 30] perhaps due to the fact that this proc-
ess is, of course, causal. It is not so much a formal procedure, but rather the syntacti-
cal properties of a physical procedure. On the syntactical level, one can say that the
computer operates on meaningless symbols with programs that are meaningless to it.

Accordingly, the solution to symbol grounding cannot be to give basic rules, as
does for example Hofstadter in his discussion of the matter. For his MU and MIU
systems you assume that rules have meaning [31, chs. I & II, pp. 170, 264]. If you do
not, then you have to postulate that “absolute meaning” comes about somehow by
itself, in “strange loops” (ch. VI and passim).

3.3 Can Purely Syntactic Computing Acquire Meaning? —A Challenge
(the Longer Line)

So, how does syntactic computationalism, thus understood, fare with our problem of
symbol grounding? The problem for a computationalist is that she has to construct a
causal chain that does not involve any mental process at any stage that is other than
purely syntactic. Meaning-involving processes such as attention, object tracking,
object-files, interest, intention, etc. are not permitted.

Let us look at some lessons from history to understand the difficulty: I take the dis-
cussion about the so-called “causal theory of reference”, originally developed by
Putnam and Kripke in the early 1970ies, to have shown two things:

A) We want to grant causal connections between tokens of some kinds of symbols
and their reference a role in the determination of the meaning of the symbols—in
particular, we want to do this in the case of natural kind terms, such as “gold”, where
the stuff they refer to, the element gold, plays a role in the determination of what
counts as gold and what does not. This is what Putnam called the “contribution of the
environment.” I say, “We want to grant” because it is important to see that Putnam’s
and Kripke’s discoveries are discoveries about our linguistic intuitions.

B) The causal relations between, for example, the tokens of the word “gold” and
the element gold are immensely complex and it is extremely hard to figure out the
particular causal relation that should connect a particular token to its referent. A given

8 Vincent C. Müller

token stands in any number of causal relations and none of these by itself distin-
guishes itself as the right one (for example, “gold” does not refer to jewelers shops or
to chemistry textbooks or to metal or to undiscovered fake gold). What we need is a
notion of “explanatory cause”, the cause that is relevant for our explanatory inten-
tions.

What is relevant here is not so much semantic externalism (that has lead to exter-
nalism about mental states) but Putnam’s later critique of his own earlier causal theo-
ries of reference. This critique shows that a successful story of the causal relation
between my tokens of “gold” and gold has to involve my desire to refer to that par-
ticular metal with that particular word. Putnam has tried to show this in his model-
theoretic argument [32] and in the point that we need to single out what we mean by
“cause,” given that any event has several causes—whereas we need the one “explana-
tory” cause [33-35]. This is supported by Wittgensteinian arguments to the effect that
deixis is necessarily ambiguous (sometimes called the “disjunction problem”). When
Kripke pointed at the cat (and Quine’s native pointed at the rabbit), were they point-
ing at a cat, a feline, an animal, a flea, a color, or a symbol? When Putnam pointed at
water, how much H2O did we need in the sample for reference to be successful?

The Putnam/Kripke story shows that the causal relation of a linguistic symbol to its
referent must involve the intention of speakers to refer to a specific object or kind:
otherwise it is underdetermined due to the multiplicity of causal chains.

Fodor himself seems to see an issue when he argues against language acquisition
by non-linguistic thinkers as follows: “Plausibly, for example, learning English re-
quires learning that the form of words ‘it’s raining’ is properly used to communicate
the thought that it’s raining. How do you learn that sort of thing if you have the kind
of mind that can’t, even in principle, think about thoughts?” [36]

So, the problem is, how can a system acquire meaningful symbols without making
use of cognition? Could there be a theory of language acquisition (or machine learn-
ing) that assumes a language can be learned by a system that has no cognitive proc-
esses? I propose that to develop such a theory is more than just a challenge: it cannot
be done.

3.4 Relation to Searle’s “Chinese Room Argument”

The same point can be illustrated in the terms used in Searle’s “Chinese room argu-
ment” [23, cf. 24]. Searle’s central notion is “understanding” (of Chinese and of sto-
ries) and he claims, 1) that the symbol manipulator in the Chinese room should not be
said to understand Chinese by virtue of his handling the symbols correctly and thus
producing correct output, also that he has no chance of learning Chinese [both of this
everybody agrees with], 2) that the whole system containing the Chinese room, with
manipulation manuals and all, cannot be said to understand Chinese [the “systems
reply”], not even if “sensory organs” (cameras, microphones, etc.) are added [the
“robot reply”], since these supply “just more Chinese.” He sometimes expresses this
as saying that the system has syntax but no semantics for its symbols: that symbols in
a system cannot acquire meaning due to mere symbol manipulation.

 Symbol Grounding in Computational Systems: A Paradox of Intentions 9

As several people have pointed out, 2) does not follow from 1). This does not mean
that his argument fails, however. The upshot of the argument is, in my view, that
Searle sets the task to explain how a system can understand Chinese given that the
central symbol manipulator does not. After the Chinese Room Argument the belief
that a symbol manipulating system can “understand” is in doubt and would require
positive support.

Searle’s claim is that he cannot learn Chinese by manipulating the symbols in his
room, even if he tries hard—and then he expands this point to the whole system. But
he already grants too much: Searle in the room does understand the symbols in the
instructions for manipulation, wants to learn Chinese, knows that Chinese is a lan-
guage, that some of its symbols refer and which world they refer to. None of these is
given in an actual purely syntactic computational system. Given that there is literally
no understanding, desire and knowledge in the actual Chinese Room of a syntactic
system (there are no intentional states), there is even less reason to believe that there
is in the whole system.

The argument presented above thus goes some way towards closing the gap in
Searle’s argument by explaining why symbol manipulation, even under causal inter-
action with the environment, cannot produce intention. The system will not acquire
meaningful symbols because it lacks everything necessary, specifically it has no de-
sire to do so (it has no desires directed at anything). The situation is thus worse than
in Searle’s “Chinese Room”, where Searle tries to show that an intelligent agent oper-
ating a purely syntactical system cannot acquire meaning. We only need to claim that
a purely syntactical system itself will not acquire meaning—even if it could.

On a cautionary note, just like Searle, we do not claim to have found any bounds as
to what can be done with purely syntactic computing. Clearly, advanced AI systems
(and perhaps “lower” animals) have achieved impressive feats without the “meaning-
ful symbols” we have been asking for and which humans surely possess.

This look into the Chinese room might leave a paradoxical air; one might wonder
what that magical bit is which allows humans and other animals what computers
cannot have. My suggestion here is that this bit has to be something that is not compu-
tational—and I think desire is a good candidate.

4. Taking Stock

4.1 Some Conclusions

What we have seen so far is that:
1) A language of thought computational system presupposes innate meaning,
2) A purely syntactical computational system is possible,
3) A purely syntactical computational system could only acquire meaning if that

process does not involve any mental states with intention (e.g. desires, beliefs, atten-
tion, …).

What we have not seen is whether there is another version of computationalism
that could save the day. Perhaps there is computation without symbols or there is

10 Vincent C. Müller

information processing in ways other than computing? Let us take a brief look at the
options.

4.2 Vacuous Computationalism

Searle has repeatedly said that whether a system is a computer or not depends on its
interpretation by some observer, a syntactic property is an observer-relative notion
This is why he comes to the prima facie surprising conclusion that “The brain is a
computer, in the sense that it instantiates computer programs...” because “everything
is a digital computer at some level of description” [cf. 30, 37].

Whether this view is true or not (I tend to think it is not [cf. 20]), as Searle knows,
this makes computationalism vacuous. Clearly, computationalism cannot be the claim
that, if an observer likes to see it that way, the brain is a computer, and so is a train, a
tree or a bumblebee.

4.3 Non-Symbolic Computing and “Information Processing”

There are cognitive scientists that use the word “computational” in a much weaker
sense than the one defined above—in fact, the plethora of definitions is depressing: I
counted 9 different ones, most of which are obviously either too narrow or too broad,
in a recent exchange between Pinker and Fodor [13, 15, 16]:

1) Literally being a Turing machine with tape and all [attributed to Fodor by 15].
2) “Cognitive architecture is Classical Turing architecture” [15].
3) Having “the architecture of a Turing machine or some other serial, discrete, lo-

cal processor” [attributed to Fodor by 15]. False attribution, since in 2000, Fodor did
not mention the possibility of other processors. Suggests that “architecture” means
physical setup (tape and reader), after all—see problems in 2).

4) Being ‘Turing-equivalent’, in the sense of ‘input-output equivalent’ [1].
5) Being ‘defined on syntactically structured mental representations that are much

like sentences’ [1].
6) Being supervenient “on some syntactic fact or other”—“minimal CTM” [1].
7) Being “causally sensitive to, and only to, the syntax of the mental representa-

tions they are defined over” [not to meaning] AND being “sensitive only to the local
syntactic properties of mental representations” [upshot in 13].

8) “In this conception, a computational system is one in which knowledge and
goals are represented as patterns in bits of matter (‘representations’). The system is
designed in such a way that one representation causes another to come into existence;
and these changes mirror the laws of some normatively valid system like logic, statis-
tics, or laws of cause and effect in the world.” [15].

9) “…human cognition is like some kind of computer, presumably one that engages
in parallel, analog computation as well as the discrete serial variety” [15].

One prominent idea is that computing is somehow “information processing.” [cf.
38] But information processing could take many forms, some of which are not com-
putational. There are many systems that could be used to compute but should not be

 Symbol Grounding in Computational Systems: A Paradox of Intentions 11

called a computer. Dynamical systems in the sense of van Gelder [39] are one exam-
ple. Another are analogue systems, such as slide rules, mechanical (non-digital) add-
ing machines, scales, tubes, etc. So, even if computing is information processing,
what distinguishes it from other forms of information processing—some of which
may even produce the same results? Surely this must be the mechanism by which it
achieves that processing: namely computation (i.e. performing algorithms). There are
at least two notions of algorithm possible here, depending on whether the step-by-step
process is one of symbol manipulation or not [for a discussion, see 40]. [41].

I would therefore make the terminological suggestion to distinguish between
“computationalism” and “information processing” as paradigms for cognitive science.

4.4 Outlook: Analogue and Hybrid systems

The pages above present a reason to believe that the mind is not a computational
system, unless it has semantics built in. However, there is still good reason to think
that some parts of the human mind are computational, even if the problems explained
show that it is not only that. Perhaps the picture that emerges is that of a hybrid and
modular mind where some modules are computational but many are not [1]. Some of
the non-computational systems will be mathematically describable, perhaps in con-
tinuous mathematics, and can thus be simulated on digital computers to some degree
of accuracy. Perhaps some of these non-digital parts, together with the embodiment of
the whole, can explain how meaning can be built into the system, or acquired.

Acknowledgments. My thanks to people with whom I have discussed this paper,
especially to Thanos Raftopoulos, Kostas Pagondiotis and the attendants of the “Phi-
losophy on the Hill” colloquium. I am grateful to an anonymous reviewer for written
comments.

References

1. Fodor, J.A.: The mind doesn't work that way: The scope and limits of computational psy-
chology. MIT Press, Cambridge, Mass. (2000)

2. Kim, J.: Philosophy of mind. Westview Press, Boulder (1996)
3. Fodor, J.A.: The elm and the expert: Mentalese and its semantics. MIT Press, Cambridge,

Mass. (1994)
4. Churchland, P.M.: Functionalism at forty: A critical retrospective. Journal of Philosophy

(2005) 33-50
5. Chalmers, D.J.: The conscious mind: In search of a fundamental theory. Oxford University

Press, Oxford (1996)
6. Wakefield, J.: The Chinese room argument reconsidered: Essentialism, indeterminacy, and

strong AI. Minds and Machines 13 (2003) 285-319
7. Müller, V.C.: On the possibility of hypercomputing supertasks. submitted to Minds and

Machines (2006)
8. Fodor, J.A.: The mind-body problem. Scientific American 244 (1981) 114-123

12 Vincent C. Müller

9. Smolensky, P.: On the proper treatment of connectionism. Behavioral and Brain Sciences
11 (1988) 1-23

10. Smolensky, P.: Computational models of mind. In: Guttenplan, S. (ed.): A companion to
the philosophy of mind. Blackwell, Oxford (1994) 176-185

11. Rey, G.: Searle's misunderstandings of functionalism and strong AI. In: Preston, J.,
Bishop, M. (eds.): Views into the Chinese room: New essays on Searle and artificial intel-
ligence. Oxford University Press, Oxford (2002) 201-255

12. Fodor, J.A.: Concepts: Where cognitive science went wrong. Oxford University Press,
Oxford (1998)

13. Fodor, J.A.: Reply to Steven Pinker 'So how does the mind work?' Mind & Language
(2005) 25-32

14. Lycan, W.G.: Philosophy of mind. In: Bunnin, N., James, E.P.T. (eds.): The Blackwell
companion to philosophy. Blackwell, Oxford (2003) 173-202

15. Pinker, S.: So how does the mind work? Mind and Language 20 (2005) 1-24
16. Pinker, S.: A reply to Jerry Fodor on how the mind works. Mind and Language 20 (2005)

33
17. Kuczynski, J.-M.: Two concepts of ‘form’ and the so-called computational theory of mind.

Philosophical Psychology 19 (2006) 795-821
18. Horowitz, A.: Computation, external factors, and cognitive explanations. Philosophical

Psychology 20 (2007) 65-80
19. Müller, V.C.: Representation in digital systems. In: Brey, P., Briggle, A., Waelbers, K.

(eds.): Philosophy of computing: Selected papers from E-CAP 2007. IOS, Amsterdam
(2008)

20. Piccinini, G.: Computation without representation. Philosophical Studies forthcoming
(2007)

21. Gärdenfors, P.: Conceptual spaces: The geometry of thought. MIT Press, Cambridge,
Mass. (2000)

22. Davies, M.: The universal computer: The road from Leibniz to Turing. W. W. Norton,
New York (2000)

23. Searle, J.R.: Minds, brains and programs. Behavioral and Brain Sciences 3 (1980) 417-457
24. Preston, J., Bishop, M. (eds.): Views into the Chinese room: New essays on Searle and

artificial intelligence. Oxford University Press, Oxford (2002)
25. Haugeland, J.: Artificial intelligence: The very idea. MIT Press, Cambridge, Mass. (1985)
26. Haugeland, J.: Syntax, semantics, physics. In: Preston, J., Bishop, M. (eds.): Views into

the Chinese room: New essays on Searle and artificial intelligence. Oxford University
Press, Oxford (2002) 379-392

27. Boden, M.A.: Escaping from the Chinese room. In: Boden, M.A. (ed.): The philosophy of
artificial intelligence. Oxford University Press, Oxford (1990) 89-104

28. Boden, M.A.: Mind as machine: A history of cognitive science. Oxford University Press,
Oxford (2006)

29. Hauser, L.: Nixin' goes to China. In: Preston, J., Bishop, M. (eds.): Views into the Chinese
room: New essays on Searle and artificial intelligence. Oxford University Press, Oxford
(2002) 123-143

30. Preston, J.: Introduction. In: Preston, J., Bishop, M. (eds.): Views into the Chinese room:
New essays on Searle and artificial intelligence. Oxford University Press, Oxford (2002)
1-50

31. Hofstadter, D.R.: Gödel, Escher, Bach: An eternal golden braid. Basic Books, New York
(1979)

32. Putnam, H.: Reason, truth and history. Cambridge University Press, Cambridge (1981)
33. Putnam, H.: Why there isn't a ready-made world. Realism and reason: philosophical pa-

pers, vol. 3. Cambridge University Press 1983, Cambridge (1981) 205-228

 Symbol Grounding in Computational Systems: A Paradox of Intentions 13

34. Putnam, H.: Reflexive reflections. Words and life. Harvard University Press 1994, Cam-
bridge, Mass. (1985) 416-427

35. Müller, V.C.: Realismus und Referenz: Arten von Arten [Realism and Reference: Kinds of
Kinds]. Universität Hamburg, Hamburg (1999)

36. Fodor, J.A.: More peanuts. The London Review of Books 25 (2003) 09.10.2003
37. Searle, J.R.: Consciousness and language. Cambridge University Press, Cambridge (2002)
38. Müller, V.C.: Review of Margaret Boden 'Mind as Machine: A History of Cognitive Sci-

ence' (2 vols., Oxford University Press 2006). Minds and Machines 18 (2008) 121-125
39. van Gelder, T.: What might cognition be if not computation? The Journal of Philosophy 91

(1995) 345-381
40. Shagrir, O.: Two dogmas of computationalism. Minds and Machines 7 (1997) 321-344
41. Harel, D.: Computers ltd.: What they really can't do. Oxford University Press, Oxford

(2000)

