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Abstract. The interest in a further pruning of the set of frequent patterns that
can be drawn from real-life datasets is growing up. In fact, it is a quite survival
reflex towards providing a manageably-sized and reliable knowledge. This fact is
witnessed by the proliferation of what is calledconcise representationof frequent
patterns. In this paper, we propose an exact concise representation that explores
the disjunctive search spacein addition to the conjunctive one, in contrast with
almost all known concise representations which only focussed on the latter space.
This representation required the definition of a new disjunctive closure operator.
The latter operator partitions the search space into distinct disjunctive equivalence
classes and, hence, makes possible to drastically reduce the number ofhandled
patterns. Empirical evidences are presented about the relative size ofthe new
representationw.r.t. those based on frequent closed, (closed) non-derivable and
essential patterns, respectively.
Keywords: Frequent pattern, Concise representation, Disjunctive search space,
Itemset.

1 Introduction and motivations

Within the traditional framework of association rule mining, managing the high number
of frequent patterns extracted from real-life datasets becomes an important topic(1). A
growing number of works hence explored the conjunctive search space to get out a
nucleus of patterns, from which the remaining ones can be derived without information
loss. Such an exploration was mainly motivated by the fact that the conjunctive operator
– linking items – got the monopoly since the application of association rules in market
basket analysis. Such a nucleus is better known asexact concise representation. Beyond
expected high compactness rates, an exact concise representation should make possible
to guess the frequency status of a pattern, and then to exactly retrieve its support when
it is frequent enough. The main exact concise representations proposed are those based
on frequent closed [1], non-derivable [2], closed non-derivable [3] (2) and essential
patterns [4]. The first three representations also have the interesting property of being
true (also calledperfect in [4]) covers of frequent patterns, since their cardinality is
always smaller than that of the frequent pattern set.

1 Here we are mainly interested in itemsets as a pattern class.
2 This representation simply gathers the set of closures of frequent non-derivable patterns. It is,

hence, smaller in size terms than the previous two ones.
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The main originality of the concise representation based onfrequent essential pat-
terns stands in the fact that it mainly explores thedisjunctive search spacewhere ele-
ments are characterized by their respective disjunctive supports, instead of conjunctive
ones. It hence makes use of the inclusion-exclusion identities [5] to bridge both con-
junctive and disjunctive search spaces. Nevertheless, in spite of such originality, this
representation suffers from two major disadvantages:
1. It is not self-contained in the sense that the essential pattern set does not make pos-
sible by itself to decide whether a pattern is frequent or not. Hence, such a set has to
be burdened by additional elements belonging to the positive border of the order ideal
induced by the frequency constraint.
2.Several essential patterns can characterize the same set ofobjects and, therefore, they
present a certain form of redundancy.
In this situation, finding a closure operator related to essential patterns would be of
paramount importance to get a more reduced concise representation. Indeed, thanks
to this operator, many essential patterns will be mapped into the same element within
the disjunctive search space. Thus, the obtained representation will be more compact,
especially for dense datasets. Furthermore, the simultaneous use of essential patterns
and disjunctive closed ones can also ease the detection of their respective disjunctive
equivalence classes and, hence, the traversal of the disjunctive search space. This can in-
tensively be explored in many applications as done within the conjunctive search space
thanks to their correspondences; minimal generators and closed patterns respectively
(see [6] for a study). Indeed, these particular patterns arestructurally localized within
the associated lattice what gives them more semantics, contrary to other patterns nu-
merically retained (like non-derivable patterns) independently from their localization.

The rest of the paper is arranged as follows. The next sectionrecalls the key notions
used throughout this paper. Section 3 describes the conciserepresentation based on fre-
quent essential patterns. The disjunctive closure operator as well as its main properties
are detailed in Section 4, where a new disjunctive closure-based concise representa-
tion is also introduced. The empirical evidences about the utility of our approach are
provided in Section 5. Section 6 discusses the main related work.

2 Key notions

In this section, we briefly sketch the key notions used in the remainder of this paper.

Definition 1. (EXTRACTION CONTEXT) An extraction context is a tripletK = (O, I,
R), whereO represents a finite set of objects,I is a finite set of items andR is a binary
(incidence) relation (i.e.,R⊆O × I). Each couple(o, i) ∈R expresses that the object
o ∈ O contains the itemi ∈ I.

Example 1. In the remainder, we will consider the extraction context depicted by Table
1 withO = {1, 2, 3, 4, 5, 6, 7} andI = {a, b, c, d}.

A pattern can be characterized by three kinds of supports as sketched by the follow-
ing definition.

Definition 2. [5] (SUPPORTS OF A PATTERN) Let K = (O, I, R) be an extraction
context. We distinguish three kinds of supports associatedto a patternI:
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a b c d

1 ×

2 × ×

3 × ×

4 × ×

5 × × ×

6 × × ×

7 × × ×

Table 1.An extraction context.

- Conjunctive support: Supp(I ) = | {o ∈ O | (∀ i ∈ I, (o, i) ∈ R)} |
- Disjunctive support: Supp(∨I ) = | {o ∈ O | (∃ i ∈ I, (o, i) ∈ R)} |
- Negative support: Supp(¬I ) = | {o ∈ O | (∀ i ∈ I, (o, i) /∈ R)} |

A patternI is said to befrequentif Supp(I ) is greater than or equal to a user-specified
minimum support threshold, denotedminsup. Since frequent patterns fulfill the order
ideal property [7], the supersets of infrequent items will also be infrequent. The set of
itemsI (and consequently the extraction contextK) will hence be considered as only
containing frequent ones. Infrequent items will thus be pruned. Please also note that
Supp(∨I ) ≥ Supp(I ).

Given the respective disjunctive supports of a pattern’s subsets, we are able to derive
its conjunctive support using theinclusion-exclusion identities[5]. Furthermore, thanks
to theDe Morgan’s law, we are even able to straightforwardly derive its negative sup-
port. Lemma 1 shows these important properties.

Lemma 1. (DERIVATION OF THE CONJUNCTIVE AND NEGATIVE SUPPORTS) LetI ⊆
I be an arbitrary pattern. Its conjunctive and negative supports are respectively derived
as follows: Supp(I ) =

∑

∅⊂I1⊆I

( − 1)| I1 | - 1 Supp( ∨ I1) (1)

Supp(¬I ) = | O | − Supp( ∨ I ) (2)

Example 2. Consider the extraction context of Table 1. Given the respective disjunc-
tive supports ofbc’ subsets(3), its conjunctive and negative supports are inferred as
follows:
• Supp(bc) = ( − 1)|bc| − 1 Supp(∨bc) + ( − 1)|b| − 1 Supp(∨b) + ( − 1)|c| − 1

Supp(∨c) = - Supp(∨bc) + Supp(∨b) + Supp(∨c) = - 5 + 3 + 3 = 1.
• Supp(¬bc) = |O| - Supp(∨bc) = 7 - Supp(∨bc) = 7 - 5 = 2.

3 Frequent essential pattern-based concise representation

The next definition presents the frequent essential patterns. These patterns constitute
the core of the concise representation which motivates ours(cf. Section 1).

Definition 3. [4] (FREQUENT ESSENTIAL PATTERN) LetK = (O, I, R) be an extrac-
tion context andI ⊆ I. I is an essential patterniff Supp(∨I ) 6= max{Supp(∨I\i) | i∈
I}. An essential patternI is also frequent if Supp(I ) ≥ minsup.

Example 3. Consider the extraction context of Table 1 for minsup =1. ad is not an
essential pattern since Supp(∨ad) = Supp(∨a) = 7. Whereasbc is an essential pattern
since Supp(∨bc) = 5 6= max{Supp(∨b), Supp(∨c)} since Supp(∨b) = Supp(∨c) =
3. bc is also frequent since Supp(bc) = 1 ≥ minsup.

3 We use a separator-free form for the sets,e.g., the setbc stands for{b, c}.
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The set of frequent essential patterns, denotedFEPK, was proven in [4] to be an or-
der ideal in (2I , ⊆). The following theorem presents the frequent essential pattern-
based concise representation.BD+(FPK) denotes the set of maximal frequent pat-
terns, which is used to detect the frequency status of an arbitrary pattern.

Theorem 1. [4] The setFEPK of frequent essential patterns increased byBD+(FPK)
constitutes an exact concise representation of the set of frequent patterns.

It is worth noting that in [8], this representation was shownnot to be perfect, contrary
to the authors’ claim.

4 New disjunctive closure-based concise representation

Here we detail the main constructs related to the disjunctive closure operator [8], which
will make possible to map several essential patterns into a unique element within the
disjunctive search space. This is the starting point of our new concise representation.

4.1 The disjunctive closure operator

Let us start by defining the disjunctive closure operator.

Definition 4. (DISJUNCTIVE CLOSURE OPERATOR) LetK = (O, I, R) be an extrac-
tion context. The disjunctive closure operatorh is defined as follows:
h : P(I) → P(I)

I 7→ h(I ) = {i ∈ I | (∀ o ∈ O) ((o, i) ∈ R) ⇒ (∃ i1 ∈ I )((o, i1) ∈ R)}.

Roughly speaking, the disjunctive closureh(I ) of a patternI is equal to the maximal
set of items whichonlyappear in the objects that contain at least an item ofI.

Example 4. Given the extraction context depicted by Table 1, the pattern bc is a dis-
junctive closed pattern since it is equal to the maximal set of items only contained in
the set of objects whereb orc appears, i.e.,{2, 3, 5, 6, 7}. Hence,h(bc) = bc. While
acd is not a disjunctive closed pattern sinceb only appears in the set of objects where
at least an item ofacd appears. In fact,h(acd) = abcd.

Actually, Definition 4 gives an explicit expression of the disjunctive closure operator,
free from the connection operators linkingP (I) andP (O). This definition structurally
characterizes the disjunctive closure of any patternX and, hence, allows to straight-
forwardly compute it from any extraction context. To the best of our knowledge, our
work is the first one allowing the extraction of a concise representation of frequent
patterns based on a disjunctive closure operator, and, hence exploring the disjunctive
search space. We will denote byDCPK the set of disjunctive closed patterns extracted
from a contextK. Thanks to the closure operatorh, the disjunctive search space is
partitioned into distinct disjunctive equivalence classes. In the latter classes, disjunc-
tive closed (resp.essential) patterns are the largest (resp.minimal) elements,w.r.t. set
inclusion.

The following propositions allow to establish the relationbetween the smallest dis-
junctive closed pattern containing a patternI andh(I ).

Proposition 1. LetI ⊆ I. h(I ) is the smallest disjunctive closed pattern containingI:
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h(I ) = min⊆{f ∈ DCPK | I ⊆ f}.

Proposition 2. Let I ⊆ I. Supp( ∨ I ) = Supp( ∨ h(I )).

Proposition 3 makes possible to deduce the disjunctive closure of a pattern using
the disjunctive closure of one of its subsets, while Proposition 4 establishes the link
between disjunctive closed patterns and frequent essential patterns.

Proposition 3. LetX ⊆ I andY ⊆ I be two patterns. We then have:
(X ⊆ Y ⊆ h(X )) ⇒ (h(Y ) = h(X )).

Proposition 4. Let I ⊆ I andFPK be the set of frequent patterns. We then have:
(I ∈ FPK) ⇒ (∃ f ∈ DCPK andI1 ∈ FEPK s.t.h(I1) = h(I ) = f andI1 ⊆ I ).

Proof. (Sketch) The proof is based on the fact that the setFEPK is an order ideal in
(2I , ⊆) whose elements are the minimal ones in their associated disjunctive equiva-
lence classes.

In the remainder of the paper, we will denote byEDCPK (EssentialDisjunctive
ClosedPatterns) the subset ofDCPK whose elements have at least a frequent essential
pattern as generator. Thanks to Proposition 4, it is easy to show that the disjunctive
closures of the patterns belonging toBD+(FPK) are contained inEDCPK.

Example 5. Consider the context of Table 1. Within the disjunctive lattice sketched by
Figure 1, different sets of patterns are indicated. The essential patterns are shown with
bold letters, while the disjunctive closed patterns are underlined. The setFEPK in-
duces an order ideal structure, as shown in Figure 1 for minsup = 1. LetBD−(FEPK)
be the negative border ofFEPK equal tomin⊆{I ∈ P (I) \ FEPK}. The elements
belonging to this border are in italic. An example of a disjunctive equivalence class,
induced by the disjunctive closure operator, is also sketched. Its minimal element is the
essential patterna and its largest one is the disjunctive closed patternabcd. Please
note that if, for example, a pattern is in bold letters and is also underlined, then this
means that it is both an essential pattern and a disjunctive closed one. As an indication,
the patterns belonging toBD+(FPK) are encircled.

 
∅ 

(a, 7) (b, 3) (c, 3) (d, 3) 

(bc, 5) (bd, 5) (cd, 5) (ab, 7) (ac, 7) (ad, 7) 

(bcd, 6) ( abc , 7) ( abd , 7) ( acd , 7) 

(abcd, 7) 
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Fig. 1. The associated disjunctive lattice where each node contains a disjunctive pattern with its
disjunctive support.
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4.2 New disjunctive closure-based concise representation

It is commonly known that the definition of a concise representation is closely related to
the way the whole set of frequent patterns will be generated starting from its elements.
Suppose we have at hand the setEDCPK where each element is provided with its
disjunctive support (as it is the case in [8]). We need to analyze the “tools” that will be
of help in such a regeneration process. To the best of our knowledge, only the formula
shown in Lemma 1 makes the link between the disjunctive support of a pattern and its
conjunctive one. This formula requires knowing beforehandthe disjunctive supports of
the subsets of a given candidate to be able to compute its conjunctive support. Hence, an
APRIORI-like regeneration is naturally advocated. This manner of regeneration consists
in finding the conjunctive supports of1-patterns,2-patterns, and so on.

Let X be a pattern to which we are interested in retrieving its conjunctive support.
ReachingX is conditioned by the fact that all its subsets (and more precisely, the im-
mediate ones) are proven to be frequent. Indeed, the set of frequent patterns is an order
ideal [7]. Hence, if a subset ofX is infrequent, thenX will necessarily be infrequent.
Assume now that all subsets ofX are frequent. At this step, the main information we
have about each subset consists in its disjunctive closure (cf. Proposition 1) and, con-
sequently, its different supports (cf. Lemma 1). IfX is included in the closure of one
of its immediate subsets, then we have its disjunctive closure and, hence, its disjunctive
support (cf. Proposition 3). We can thus compute its conjunctive support. Please note
that in this case,X is obviously not an essential pattern. IfX is included in none of
its subsets’ closures, then X is necessarily an essential pattern. However, the closure of
X is required to correctly compute its conjunctive support and then deduce ifX is fre-
quent or not. Nevertheless, how can we ensure that such a closure belongs toEDCPK?
Indeed,X can be aninfrequentpattern and, at the same time, theuniquegenerator of
its disjunctive equivalence class. Hence, its closure willnecessarily not be inEDCPK
(4). This important part was missed in [8], what motivates a careful scrutiny to correct
the representation and make it really exact.

At this step of the treatment, to correctly regenerate the whole set of frequent pat-
terns, it is clear that we need the disjunctive closures of frequent patterns (i.e., EDCPK),
augmented by the closuresuniquelygenerated by essential patterns belonging to the
negative border ofFEPK. These latter closures do not belong toEDCPK, but they
bring key information when an infrequent essential patternis reached. They are also
necessarily sufficient because once an infrequent pattern is discovered all its supersets
will not be treated. Hence, an important result is thatEDCPK is not sufficient to ensure
the exact regeneration of the whole frequent pattern set, what makes the claim of the
authors in [8] incorrect. As characterized in the remainder, some closures should then
be added to ensure that some candidates will not be erroneously considered as frequent
whereas they are actually infrequent. These closures will form the setADCPK (Added
DisjunctiveClosedPatterns). An interesting question will be: how can we reducethe
cardinality ofADCPK without affecting the exact regeneration of the whole frequent
pattern set?

4 If X is not the unique essential pattern of its disjunctive equivalence classC, then its closure
can belong toEDCPK if C contains at least a frequent pattern.
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Let X be an infrequent essential pattern belonging toBD−(FEPK). Let us have a
look at the formula establishing the link between the conjunctive and disjunctive sup-
ports:

Supp(X ) =
∑

∅⊂X′⊆X

( − 1)|X
′|−1Supp(∨X ′) = (−1)|X|−1Supp(∨X ) +

∑

∅⊂X′⊂X

( − 1)|X
′|−1Supp( ∨ X ′).

Suppose that|X| is even. Hence, (− 1)|X|−1
= -1. Assume now that we did not

compute the disjunctive closuref of X. Then, two cases can arise: eitherX is covered
by at least an element inEDCPK or is not covered at all (i.e., ∀ f ′ ∈ EDCPK, X * f ′).
In the latter case, it is obvious thatX is infrequent (cf. Proposition 4). Let us analyze
the former case. Letf1 be the smallest closure inEDCPK coveringX. It is clear thatf
⊆ f1 (otherwise, the closure ofX will never bef ) (5). Hence,Supp(∨f1) ≥ Supp(∨f )
= Supp( ∨ X ). Hence, if we useSupp( ∨ f1) in the formula instead ofSupp( ∨ X ), the
support value we obtain will be lower than or equal to the exact support ofX (6). This
does not affect the final decision about the frequency statusof X since it is infrequent
and the possible decrease of its support will maintain its infrequency status. Hence, ifX
is an infrequent pattern of even size belonging toBD−(FEPK), we need not compute
its disjunctive closure, what consists in a very interesting pruning.

Example 6. Consider the extraction context depicted by Table 1 for minsup = 2. Ap-
plying an extraction process, we obtainEDCPK = {(b, 3), (c, 3), (d, 3), (abcd, 7)},
where each couple represents a disjunctive closed pattern and its disjunctive support.
Let us regenerate the set of frequent patterns. We begin by1-patterns, i.e.,a, b, c and
d. The smallest closure containinga isabcd. Hence, its disjunctive support is equal to
7, which also corresponds to its conjunctive support. It is the same for the remaining1-
patterns. Thus, we find that their associated conjunctive supports are respectively equal
to 7, 3, 3 and3. We hence have the four candidates frequent. We then handle candi-
date2-patterns. Consider the case ofbc whose subsets are proven to be frequent. The
smallest closure inEDCPK containingbc is abcd. However,abcd is not the actual
closure ofbc. Nevertheless, this does not affect the final decision aboutthe frequency
status ofbc. Indeed, three cases should be distinguished:(i) if bc was frequent, hence
its closure must belong toEDCPK, (ii ) if bc is not covered by the elements ofEDCPK

thenbc is necessarily infrequent, otherwise,(iii ) since|bc| = 2, then(-1)|bc|−1 = -1
and hence taking a largest closure(i.e.,abcd), instead of the actual one(i.e.,bc) will
decrease the result obtained thanks to Formula(1) (cf. Lemma 1), and, hence,bc will
always be considered as infrequent and no status change can arise. Thus, the closure of
bc is not required in the representation whenbc is infrequent. Note that the applica-
tion of Formula(1) is required independently from the frequency status ofbc since we
cannot guess its status beforehand only if it contains an infrequent subset what is not
the case here.

Unfortunately, such a pruning cannot be applied whenX is of odd size. Indeed,
in this case, (− 1)|X|−1

= +1. Thus, usingSupp( ∨ f1) instead ofSupp( ∨ X ) will

5 f can be equal tof1 if it also has a frequent essential pattern as generator.
6 The computation of the conjunctive support ofX is inevitable since we cannot beforehand

predict whether it is frequent or not.
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probably lead to the increase ofSupp(X ). Consequently, ifX is infrequent and we
augment its conjunctive support, then this may lead to a support value greater than
or equal tominsupwhat clearly falsifies its frequency status. In this situation, we can
further reduce the cardinality ofADCPK by only maintaining the closuref of X if it is
included in at least an element ofEDCPK. Indeed, a patternX is eligible to be frequent
only if it is covered by a pattern ofEDCPK (cf.Proposition 4). This can simply be done
oncef is computed by set inclusion operations with maximal elements ofEDCPK.

Example 7. Now consider the context of Table 1 for minsup =1. EDCPK = {(b, 3), (c,
3), (d, 3), (bc, 5), (bd, 5), (cd, 5), (abcd, 7)}. As in the previous example, we begin by
1-patterns, i.e.,a, b, c andd. We find that their associated conjunctive supports are
respectively equal to7, 3, 3 and3. We then treat candidate2-patterns and we find that
the different candidates are frequent. We now reach candidate 3-patterns. The unique
candidate isbcd since all its subsets are proven to be frequent.bcd hence fulfills the
order ideal property of frequent patterns. It is also not contained in the closure of its
subsets(cf. Figure 1). bcd is hence an essential pattern. If we will apply the same re-
generation process tobcd, abcd will be considered as the disjunctive closure ofbcd
since it is the smallest one inEDCPK containing it. The conjunctive support ofbcd
will then be equal to1. However, this is not true becauseabcd is not the actual disjunc-
tive closure ofbcd. The latter should be equal tobcd. Since|bcd| = 3, (-1)|bcd|−1

= +1 and hence taking a largest closure(i.e., abcd), instead of the actual one(i.e.,
bcd), will augment the conjunctive support ofbcd, actually equal to0, which shifts
its status from infrequent to frequent. The problem arises becauseEDCPK only con-
tains closures having at least a frequent essential patternas generator. This is not the
case ofh(bcd) equal tobcd whose unique generator is obviouslybcd. Such a closure
necessarily does not belong toEDCPK sincebcd is infrequent(its conjunctive sup-
port is equal to0). Hence, its closure must be added to the representation to ensure not
includingbcd with the set of frequent patterns during the regeneration process.

We now give the formal definition of the setADCPK that ensures the new repre-
sentation being exact.

Definition 5. Let EPK be the set of the essential patterns that can be extracted from
a contextK. The setADCPK is defined as follows:ADCPK = {h(X ) | (X ∈

BD−(FEPK)
⋂

EPK) ∧ (( − 1)|X|
= -1) ∧ (∀X ′ ⊆ I, h(X ′) = h(X ) ⇒

Supp(X ′) < minsup) ∧ (∃f ∈ EDCPK s.t.h(X ) ⊂ f )}.

To summarize,ADCPK contains closures generated by infrequent essential patterns
of odd sizes belonging toBD−(FEPK). These closures have all their corresponding
essential patterns infrequent and are covered by at least one element ofEDCPK. It
is important to mention that inADCPK, we did not consider the disjunctive closures
of infrequent non-essential patterns belonging toBD−(FEPK) since they are already
included inEDCPK (cf. Proposition 3).

The concise representationEDCPK
⋃
ADCPK will be denotedDCPK rep.

Theorem 2. DCPK rep is an exact concise representation ofFPK.

The proof of Theorem 2 can be treated as a naive algorithm for deriving frequent pat-
terns and their associated supports.
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In addition to the exact retrieval of frequent patterns as well as their various sup-
ports,DCPK rep presents three other main properties:
1. Homogeneity: DCPK rep only involves disjunctive closed patterns (vs.FEPK

⋃

BD+(FPK)). Hence, it ensures the homogeneity of the representationsince all its ele-
ments are provided with the same kind of support; the disjunctive one. They also have
the same structural properties. Indeed, they are the top elements of their associated
equivalence classes within the disjunctive search space.
2. Small size: In [8], the size ofEDCPK is shown to be significantly smaller than those
of the best known concise representations. In addition, thesize ofADCPK is very
small since its elements must fulfill many easy-to-check constraints. Hence, the size of
DCPK rep will be, in most cases, smaller than those of the other representations.
3. Low regeneration cost:It is worth mentioning that our concise representation allows
retrieving the conjunctive support faster than from (closed) non-derivable patterns [2,
3]. Indeed, for a patternX s.t.|X| = n, the retrieval process ofSupp(X ) from these rep-
resentations requires the costly evaluation of2

n deduction rules based on Bonferroni-
inequalities [9]. The computation cost for inferring supports is then awfully high. While
the retrieval ofSupp(X ) from our concise representation only needs to evaluate a unique
inclusion-exclusion identity. Furthermore, it allows thestraightforward retrieval of the
disjunctive and negative supports of frequent patterns.

5 Experimental results

We compare, through various experiments, the size of our concise representation to
those of the exact ones based on frequent closed, (closed) non-derivable and essential
patterns. This is done in the most critical cases,i.e., for strongly correlated datasets(7).
Indeed, within such datasets, the ratio between the cardinality of the frequent pattern set
and those of concise representations is high. Thus, we are inthe most interesting cases.
Moreover, equivalence classes extracted from sparse datasets are often reduced to the
associated generators and cannot be compacted anymore. This makes the size reduction
rates brought by concise representations meaningless in such datasets. Due to lack of
space, we only summarize the main results in this section.

All experiments were carried out on a PC equipped with a 1.73GHz Centrino Duo
Core and 2GB of main memory, and running the Linux version Fedora Core 6 (with
2GB of swap memory). Results are shown in Table 5. The abbreviation “FPK set”( resp.
“FCPK rep” (8), “NDPK rep”, “ CNDPK rep”, and “FEPK rep”) is used to stand
for the set of frequent patterns (resp.frequent closed, non-derivable, closed non-derivable
and essential pattern-based concise representation). It is important to note that in the ex-
perimental results given in [3], the authors have chosen a specific interval ofminsupfor
each dataset to extractCNDPK rep. However, we noticed that their program abruptly
comes to an end with an execution error beyond these intervals. Therefore, we use the
symbol “-” to designate a case where an execution error occurred. At a glance, we can
also deduce the following assertions:
1. Necessity to set up concise representations: Indeed, their respective sizesw.r.t. that

7 These datasets are available at:http://fimi.cs.helsinki.fi/data.
8 Source codes for extracting frequent (closed) patterns are availableat:

http://fimi.cs.helsinki.fi/src.
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of the set of frequent patterns clearly show their utility and potential benefits. In particu-
lar, even for highminsupvalues, the cardinality of the introduced concise representation
is considerably reduced.
2. Effectiveness of the proposed concise representation: Indeed, for CHESS, CON-
NECT and PUMSB datasets, the size ofDCPK rep is significantly reduced compared
to those of the remaining concise representations, while offering different kinds of pat-
terns’ supports.
3. Scalability ofDCPK rep: It is easily observable that, in most cases, the cardinality
of DCPK rep is less sensible to the variation ofminsupthan those of the other concise
representations.
4. Absence of an outstanding concise representation: For example, in some cases, the
size ofDCPK rep is slightly greater than the size of the other concise representations
(e.g., MUSHROOM for minsup= 5%).

minsup (%) |FPK set | |FCPK rep| |NDPK rep| |CNDPK rep| |FEPK rep| |DCPK rep|

CONNECT

90 27, 127 3, 486 199 177 398 22
70 4, 129, 839 35, 875 545 491 1, 710 161
50 88, 324, 400 130, 112 1, 397 - 5, 063 589
30 1, 331, 673, 367 460, 356 3, 221 - 14, 083 1, 986

M USHROOM

40 565 140 146 117 151 91
20 53, 583 1, 197 1, 143 731 1, 258 941
10 574, 431 4, 885 4, 347 2, 655 6, 530 5, 457
5 3, 755, 511 12, 843 11, 569 6, 546 24, 407 20, 554

CHESS

90 622 498 95 93 118 43
70 48, 731 23, 892 684 669 1, 482 420
50 1, 272, 932 369, 450 3, 425 3, 341 14, 272 1, 971
30 37, 282, 962 5, 316, 467 15, 147 - 147, 777 8, 824

PUMSB

90 2, 607 1, 467 586 460 788 318
80 142, 156 33, 308 3, 642 2, 136 6, 251 1, 079
70 2, 698, 654 241, 259 7, 875 4, 564 18, 318 2, 143
60 19, 529, 991 1, 074, 627 21, 323 - 54, 644 5, 550
50 165, 903, 540 7, 121, 264 47, 764 - 232, 581 11, 551

Table 2.Size of the different concise representations for benchmark datasets.

6 Discussion

First of all, let us make an alignment between the disjunctive search space and the
conjunctive one. We will hence find that an essential patternis the mapping of the
concept ofminimal generator(aka key patternand free-setin the literature, see [6]
for references) when the conjunctive search space is considered. While the disjunctive
closed patterns are the mapping of conjunctive ones [1].

The concepts of essential and disjunctive closed patterns can be considered as par-
ticular cases ofcomposite items[10] where the disjunction of items is used to compose
new items, the composite ones. This is an attempt towards making useful infrequent
items in some applications. For example, consider the context of Table 1 and letminsup
= 4, b andc are hence infrequent items since their support is equal to3. Nevertheless,
the support ofb∨c is equal to5 and, hence,Supp(b∨c) ≥ minsup. b∨c will be consid-
ered as a new item (a composite one) even if, actually it is composed of two items. It
will be used during the mining process since it is frequent what makesb andc useful.
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It is important to make the link between our work and that of Zhaoet al. Indeed, in
[11], the authors proposed connection operators to linkP (I) andP (O) for the case of
disjunctive Boolean expressions. Nevertheless, their definition of the operator linking
P (O) to P (I) depends on that ensuring the opposite direction and was notindepen-
dently given from any other operator. Furthermore, they neither proposed the expres-
sion of the resulting closure operator nor carried out a thorough analysis of inherent
structural properties.

The disjunction operator (i.e., the operator∨) has also been used to define some
concise representations only exploring the conjunctive search space, like those based
on disjunction-free sets and (generalized) disjunction-free generators [12](9). This re-
quired the introduction of what is calleddisjunctive rule. Such a rule has a premise part
composed by a conjunction of items and a conclusion part, distinct from the premise
one, containing a specified number of items linked using the disjunction operator [12].

Some works [13, 14] were interested in using disjunction within association rules to
define what is called generalized association rules. These rules grasped the interest of
many researchers since they offer wealthier types of knowledge in many applications.
In addition to the inclusive disjunction operator,i.e., the operator∨, the authors in
[13] were also interested in the exclusive disjunction operator, denoted⊕. In [14], the
author mainly focusses on association rules having conclusions containing mutually
exclusive items,i.e., the presence of one of them leads to the absence of the others,
what is expressed in [13] using the operator⊕. Other forms of generalized association
rules were also described in [15].

7 Conclusion and future work

In this paper, we presented a new disjunctive closure operator as well as its main prop-
erties. Based on this operator, we introduced a new concise representation which cor-
rects the claim of [8] where the associated representation can miss some cases. This
required the addition of few further elements what ensures the correctness of the whole
regeneration process of frequent patterns. In addition to interesting compactness rates,
our concise representation allows a straightforward computation of the disjunctive and
negative supports. The experimental results showed that, in most cases, its size is signif-
icantly smaller than those of the best known concise representations. It is worth noting
that our approach can easily be extended when negative itemsare handled.

Other avenues for future work mainly address the following points: First, due to
space limitations here, we intend to address as next step thecomplexity time issue
(generation and derivability) of our representationvs. those of the literature. In this
respect, other algorithms for mining conjunctive closed patterns could be adapted to
disjunctive ones, both breadth-first search algorithms anddepth-first ones. Second, a
structural characterization of disjunctive closed patternsw.r.t. existing frameworks like
the k-free sets [12] will be done. Another important task consists in overcoming the
lack in the literature of semantics’ studies related to concise representations. The study
of the possible extension of our representation to other pattern classes should also be
examined. Finally, the extraction of generalized association rules will be thoroughly

9 We did not use these representations in our experiments sinceNDPK rep (and consequently,
CNDPK rep) is shown in [2] to provide better results.
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addressed. Indeed, setting up a theoretical framework thatincludes different kinds of
operators is of paramount importance for jumping beyond standard association rules.
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