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1 Preface

The Concept lattice and their Applications conference series began as a response to
the increasing use of concept lattices in practical applications. These proceedings reflect
the diversity of interest in concept lattices by the scientific community with papers
ranging from the analysis of algorithms in data mining to teaching mathematics.

CLA is structured as a triple peer-review process : conference paper, presentation
and extended journal paper. 48 papers were submitted to CLA2007 and 24 papers were
selected for presentation. All papers were peer reviewed by at least 3 members of the
program committee with the final decision on acceptance determined from the reviews
by the program chairs. Based on the presentation of the final papers, outstanding contri-
butions from this volume will be invited to submit an extended version of their confe-
rence paper for a special volume on concept lattice applications for the International
Journal of General Systems. These papers will again be peer-reviewed.

We would particularly like to thank the program committee members and reviewers
who gave of their time and we extend our thanks to the authors who contributed to this
volume.
Finally, we would also like to thank our sponsors, Lirmm, CNRS, Montpellier II Uni-
versity, and Languedoc Roussillon Region.

Jean Diatta, Peter Eklund and Michel Liquiere
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Approximate clusters and biclusters

Boris Mirkin

Birkbeck College, University of London, UK,
mirkin@dcs.bbk.ac.uk

Abstract
In the talk, I review my results and related work on approximation of (weighted) graphs
and digraphs - that is, rectangular or square similarity or flow matrices - by single clus-
ters and biclusters.These are akin to maximum density subgraphs and spectral clusters
and, as well, to some popular heuristic clustering algorithms. Theoretical and com-
putational results will be presented. Approximate biclusters may be of interest as an
extension of the formal concepts.I am going to show how approximate clusters can be
used for further aggregating "clusters" of highly overlapping formal concepts to drasti-
cally reduce the numbers of "relaxed" formal concepts to study. Another development
of interest is further mapping of the clusters to a taxonomic or phylogenetic hierarchy,
that serves as an independent tool for verification of the clusters, with application to
profiling and evolution analysis.
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Closure operators and choice operators : a survey

Bernard Monjardet

CES, Université Paris 1,
Bernard.Monjardet@univ-paris1.fr

Abstract
In this talk I will give a overview on the connections between closure operators and
choice operators and on related results. An operator on a finite set S is a map defined
on the set P(S) of all the subsets of S. A closure operator is an extensive, isotone and
idempotent operator. A choice operator c is a contracting operator (c(A) ⊆ A, for every
A ⊆ S). Choice operators and their lattices have been very studied in the framework
of the theory of the revealed preference in economics. A significant connection be-
tween closure operators and choice operators is the duality between anti-exchange op-
erators (corresponding to convex geometries) and path-independent choice operators.
More generally, there is a one-to-one correspondence between closure operators and
choice operators.

Some references
Aleskerov F., Bouyssou D., Monjardet B., (2007.) Utility maximisation, choice and
preference, (Studies in Economic Theory 16), Springer-Verlag.
Caspard N., Monjardet B., (2004). Some lattices of closure systems Discrete Mathe-
matics and Theoretical Computer Science, 6, 163-190. Danilov V., Koshevoy G. A.,
(2006). Choice functions and extending operators, preprint.
J. Demetrovics, G. Hencsey, L. Libkin, I.B. Muchnik, (1992) On the interaction be-
tween closure operations and choice functions with applications to relational databases,
Acta Cybernetica 10 (3), 129 – 139.
Echenique (2007), Counting combinatorial choice rules, Games and Economic Behav-
ior 58 (2007), 231-245.
Johnson, M. R., Dean, R.A (1996): “An Algebraic Characterization of Path Indepen-
dent Choice Functions,” Third International Meeting of the Society for Social Choice
and Welfare, Maastricht, TheNetherlands.
Koshevoy G. A., (1999) Choice functions and abstract convex geometries. Mathemati-
cal Social Sciences, 38(1), 35-44.
Monjardet B., Raderinirina V. (2001) The duality between the anti-exchange closure
operators and the path independent choice operators on a finite set. Mathematical So-
cial Sciences, 41(2), 131-150.
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Concept Graphs as Semantic Structures

for Contextual Judgment Logic

Rudolf Wille

Technische Universität Darmstadt, Fachbereich Mathematik,
Schloßgartenstr. 7, D–64289 Darmstadt; wille@mathematik.tu-darmstadt.de

Abstract. This paper presents a mathematization of the philosophical doc-

trine of judgments as an extension of the mathematization of the philo-
sophical doctrine of concepts developed in Formal Concept Analysis. The
chosen approach was strongly stimulated by J. F. Sowa’s theory of concep-

tual graphs. The mathematized conceptual graphs, called concept graphs, are
mathematical semantic structures based on formal contexts and their for-
mal concepts; those semantic structures are viewed as formal judgments in
the underlying Contextual Judgment Logic. In this paper concept graphs are
systematically built up starting with simple concept graphs in section 2 and
continuing with existential concept graphs in section 3, with implicational

and clausal concept graphs in section 4, and finally with generalizations of
concept graphs in section 5. Examples are illustrating the different types of
concept graphs.

Contents

1. Semantic Structures for Contextual Judgment Logic
2. Simple Concept Graphs and Their Conceptual Contents
3. Existential Concept Graphs and Their Conceptual Contents
4. Implicational and Causal Concept Graphs
5. Generalizations of Concept Graphs

1 Semantic Structures for Contextual Judgment Logic

“Contextual Logic” has grown out of attemps to “restructure” lattice theory and
mathematical logic (see [Wi82], [Wi96], [Wi97], [Pr98]). These attempts were stim-
ulated by the german scholar Hartmut von Hentig with his charge to restructure
scientific disciplines which he explains as follows:

“The restructuring of scientific disciplines within themselves become more
and more necessary to make them better learnable, mutually available, and
criticizable in more general surroundings, also beyond disciplinary compe-
tence. This restructuring may and must be performed by general patterns
of perceptions, thought, and action of our civilization.” ([He74], p.33f.)
For this: “Sciences have to examine their disciplinarity, and this means: to
uncover their unconscious purposes, to declare their conscious purposes, to
select and to adjust their means according to those purposes, to explain
possible consequences comprehensibly and publicly, and to make accessible
their ways of scientific finding and their results by the every-day language.”
([He74], p.136f.)

Restructuring lattice theory has been started in 1979 by mathematizing concepts
and concept hierarchies which led to the notions of “formal context” and “concept
lattice” (see [Wi82]). A formal context was defined as a triple (G, M, I) where G is
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a set, the elements of which are called “objects”, M is a set, the elements of which
are called “attributes”, and I ⊆ G × M is a binary relation for which (g, m) ∈ I
(also written: gIm) is read: “the object g has the attribute m”. A formal concept
of (G, M, I) was then defined as a pair (A, B) with A ⊆ G and B ⊆ M satisfying:

A = {g ∈ G | ∀m ∈ B : gIm}(=: B′) and B = {m ∈ M | ∀g ∈ A : gIm}(=: A′).

A and B are called the extent and the intent of the formal concept (A, B), re-
spectively. The set B(G, M, I) of all formal concepts of a given formal context
(G, M, I) carries an order relation ≤ defined by (A1, B1) ≤ (A2, B2) :⇔ A1 ⊆ A2

(⇔ B1 ⊇ B2) so that (B(G, M, I),≤) becomes a complete lattice, the so-called
concept lattice of (G, M, I) which is structured by the following

∧
−operation and∨

−operation:

∧

t∈T

(At, Bt) := (
⋂

t∈T

At, (
⋃

t∈T

Bt)
′′),

∨

t∈T

(At, Bt) := ((
⋃

t∈T

At)
′′,

⋂

t∈T

Bt).

A comprehensive introduction to the rich theory of concept lattices is presented in
the monograph “Formal Concept Analysis: Mathematical Foundation” [GW99a].

Restructuring mathematical logic has been started in the early 1990s and first
presented at the conference on “logic and algebra” held in Pontignano (Siena) in
April 1994 (see [Wi96]). The restructuring approach was based on the traditional
philosophical logic which is founded on “the three essential main functions of think-
ing - concepts, judgments, and conclusions” ([Ka88], p.6) and therefore, on the
elementary level, presented in three parts: the doctrine of concepts, the doctrine
of judgments, and the doctrine of conclusions. These doctrines are essential, since
human thinking is based on concepts as basic units of thought, on judgments as
assertional combinations of concepts, and on conclusions as entailments between
judgments. For mathematizing concepts, judgments, and conclusions, they shall be
primarily understood as semantic structures which are basic for logical thinking.

Mathematizing the doctrine of concepts, using a contextual approach, has been
already performed to a great extent in developing Formal Concept Analysis (cf.
[GW99a], in particular: [GW99b],[Wi00]),[Ga05]). Therefore, this paper continues
to present the mathematization of the doctrine of judgments which builds up a
Contextual Judgment Logic based on developments in Formal Concept Analysis (cf.
[Wi01],[Wi03]). The chosen approach was strongly stimulated by J. F. Sowa’s the-
ory of conceptual graphs [So84] since those graphs can be understood as semantic
structures which represent logical judgments. The mathematized conceptual graphs,
called concept graphs, are mathematical semantic structures based on formal con-
texts and their formal concepts (cf. [Wi97],[Wi02]); those semantic structures are
considered as formal judgments in the underlying Contextual Judgment Logic. How
concept graphs can be systematically introduced and analysed is described in the
next sections: simple concept graphs in section 2, existential concept graphs in sec-
tion 3, implicational and clausal concept graphs in section 4, and generalizations of
concept graphs, in particular concept graphs with local negations in section 5.

2 Simple Concept Graphs and Their Conceptual Contents

Each step of the presented development of concept graphs shall start with an exam-
ple of a judgment represented graphically by a conceptual graph as standardized by
John Sowa (cf. [So92]). Those judgments are deduced from the following statement
written by Charles S. Peirce ([Pe92], p.114):

“Mathematics ... is the only one of the sciences which does not concern itself
to inquire what the actual facts are, but studies hypotheses exclusively.”
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To obtain an example of a simple conceptual graph, we consider the judgment: “The
science mathematics studies the hypothesis 2ℵ0 = ℵ1” (called “continuum hypoth-
esis”). This judgment may be represented by the simple conceptual graph shown
in Fig. 1. In that graph, “science” and “hypothesis” name concepts, while “mathe-
matics” and “2ℵ0 = ℵ1” name objects which fall under the concepts “science” and
“hypothesis”, respectively; furthermore, the relational concept “study” links the
science “mathematics” with the hypothesis “2ℵ0 = ℵ1”.

science: mathematics hypothesis: 2ℵ0 = ℵ1
study!"

#$

Fig. 1. Example of a simple conceptual graph

The example shows that judgments may join plain concepts with relational con-
cepts so that a mathematization of judgments has to offer besides formal concepts
also “relation concepts”. How this has been performed and further developed shall
be explained in the rest of this section (cf. [Wi04], pp. 53 – 55).

A power context family is a sequence !K := (K0, K1, K2, . . .) of formal contexts
Kk := (Gk, Mk, Ik) with Gk ⊆ (G0)k for k = 1, 2, . . .. The formal concepts of Kk

with k = 1, 2, . . . are called relation concepts, because they represent k-ary relations
on the object set G0 by their extents.

A relational graph is a structure (V, E, ν) consisting of two disjoint sets V and
E together with a map ν : E →

⋃
k=1,2,... V

k; the elements of V and E are called
vertices and edges, respectively, and ν(e) = (v1, . . . , vk) is read: v1, . . . , vk are the
adjacent vertices of the k-ary edge e (|e| := k is the arity of e; the arity of a vertex is
defined to be 0). Let E(k) be the set of all elements of V ∪E of arity k (k = 0, 1, 2, . . .).

A simple concept graph of a power context family !K := (K0, K1, K2, . . .) with
Kk := (Gk, Mk, Ik) for k = 0, 1, 2, . . . is a structure G := (V, E, ν, κ, ρ) for which

- (V, E, ν) is a relational graph,
- κ: V ∪ E →

⋃
k=0,1,2,... B(Kk) is a mapping such that κ(u) ∈ B(Kk) for all

u ∈ E(k),
- ρ: V → P(G0)\{∅} is a mapping such that ρ(v) ⊆ Ext(κ(v)) for all v ∈ V

and, furthermore, ρ(v1) × · · · × ρ(vk) ⊆ Ext(κ(e)) for all e ∈ E with ν(e) =
(v1, . . . , vk);

- in general, Ext(c) denotes the extent of the formal concept c.

It is convenient to consider the mapping ρ not only on vertices but also on edges:
for all e ∈ E with ν(e) = (v1, . . . , vk), let ρ(e) := ρ(v1) × · · ·× ρ(vk).

A subgraph of a concept graph G := (V, E, ν, κ, ρ) is a concept graph Gs :=
(Vs, Es, νs, κs, ρs) for which Vs ⊆ V , Es ⊆ E, νs = ν|Es

, κs = κ|Vs∪Es
, and ρs =

ρ|Vs
. The union and intersection of subgraphs Gt := (Vt, Et, νt, κt, ρt) (t ∈ T ) of a

concept graph G := (V, E, ν, κ, ρ) are defined by
⋃

t∈T

Gt := (
⋃

t∈T

Vt,
⋃

t∈T

Et,
⋃

t∈T

νt,
⋃

t∈T

κt,
⋃

t∈T

ρt),

⋂

t∈T

Gt := (
⋂

t∈T

Vt,
⋂

t∈T

Et,
⋂

t∈T

νt,
⋂

t∈T

κt,
⋂

t∈T

ρt).

Lemma 1 The union and intersection of subgraphs of a concept graph G is always
a subgraph of G again.
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From the background knowledge coded in a power context family !K, two types
of material inferences shall be made formally explicit: Let k = 0, 1, 2, . . .;

1. object implications: for A, C ⊆ Gk, Kk satisfies
A → C if AIk ⊆ CIk and,

2. concept implications: for B, D ⊆ B(Kk), Kk satisfies B → D if
∧

B ≤
∧

D.

The formal implications A → C and B → D give rise to a closure system C(Kk)
on Simp(Kk) := {(g, b) ∈ Gk × B(Kk) | g ∈ Ext(b)} consisting of all subsets Y of
Simp(Kk) which have the following property:

(Pk) If A × B ⊆ Y and if Kk satifies A → C and B → D then C × D ⊆ Y.

For k = 1, 2, . . ., the Kk-conceptual content Ck(G) of a concept graph G :=
(V, E, ν, κ, ρ) of a power context family !K is defined as the closure of

{(!g, κ(e)) | e ∈ E(k) and !g ∈ ρ(e)}

with respect to the closure system C(Kk);
the K0-conceptual content C0(G) of G is defined as the closure of

{(g, κ(v)) | v ∈ V and g ∈ ρ(v)}∪
{(gi, (G0, G

I0
0 )) | ∃((g1, . . . , gk), c) ∈ Ck(G) with gi ∈ {g1, . . . , gk}}

with respect to the closure system C(K0). Then

C(G) := C0(G) ∪̇C1(G) ∪̇C2(G) ∪̇ . . .

is called the (!K-)conceptual content of the concept graph G.
The defined conceptual contents give rise to an information (quasi-) order <

∼

on the set of all concept graphs of a power context family: A concept graph G1 :=
(V1, E1, ν1, κ1, ρ1) is said to be less informative (more general) than a concept graph
G2 := (V2, E2, ν2, κ2, ρ2) (in symbols: G1

<
∼ G2) if

Ck(G1) ⊆ Ck(G2) for k = 0, 1, 2, . . . ;

G1 and G2 are called equivalent (in symbols: G1 ∼ G2) if G1
<
∼ G2 and G2

<
∼ G1

(i.e., Ck(G1) = Ck(G2) for k = 0, 1, 2, . . .). The set of all equivalence classes of
concept graphs of a power context family !K together with the order induced by the
quasi-order <

∼ is a complete lattice denoted by Γ̃ (!K).

3 Existential Concept Graphs
and Their Conceptual Contents

To obtain an example of an existential conceptual graph, we modify the judgment of
section 2 as follows: “The science mathematics studies hypotheses”. Logically equiv-
alent is the judgment: “There exists at least one hypothesis studied by the science
of mathematics”. This judgment may be represented by the existential conceptual
graph shown in Fig. 2.

The example shows that judgments may embody existentially quantified vari-
ables which are usually indicated by letters like x, y, z (sometimes they are re-
placed by a so-called “coreference link”). The mathematization of existential con-
ceptual graphs whose variables are from a variable set X can be based on “free
X-extensions” of a power context family. Such mathematization generalizes the ap-
proach of section 2 so that it becomes a wider range of applications (cf. [Wi04], pp.
55 – 57).

4
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science: mathematics hypothesis: xstudy!"
#$

Fig. 2. Example of an existential conceptual graph

For a set X of variables, an X-interpretation into a set G0 with G0 ∩ X = ∅ is
defined as a mapping χ : G0∪X → G0 with χ(g) = g for all g ∈ G0; the set of all X-
interpretations into G0 is denoted by B(X, G0). The free X-extension of the power
context family !K := (K0, K1, K2, . . .) with Kk := (Gk, Mk, Ik) for k = 0, 1, 2, . . . and
G0∩X = ∅ is defined as a power context family !K[X ] := (K0[X ], K1[X ], K2[X ], . . .)
for which

– K0[X ] := (G0[X ], M0[X ], I0[X ]) with G0[X ] := G0 ∪ X ,
M0[X ] := M0, I0[X ] := I0 ∪ (X × {m ∈ M0 | {m}I0 0= ∅}),

– Kk[X ] := (Gk[X ], Mk[X ], Ik[X ]) (k = 1, 2, . . .) with
Gk[X ] := {(u1, . . . , uk) ∈ G0[X ]k|∃χ ∈ B(X, G0) : (χ(u1), . . . , χ(uk)) ∈ Gk},
Mk[X ] := Mk, and
(u1, . . . , uk)Ik[X ]m : ⇐⇒ ∃χ ∈ B(X, G0) : (χ(u1), . . . , χ(uk))Ikm.

!K[X ] is called an existential power context family.
For defining existential concept graphs, the surjective

∧
-homomorphisms

πX
k : B(Kk[X ]) → B(Kk) (k = 0, 1, 2, . . .) are needed which are determined by

πX
k (A, B) := (A ∩ Gk, (A ∩ Gk)Ik) for (A, B) ∈ B(Kk[X ]).

An existential concept graph of a power context family !K is defined as a concept
graph G := (V, E, ν, κ, ρ) of a free X-extension !K[X ] for which an X-interpretation
χ into G0 exists such that Gχ := (V, E, ν, κχ, ρχ) with κχ(u) := πX

k (κ(u)) and

ρχ(v) := χ(ρ(v)) is a concept graph of !K; χ is then called an X-interpretation
admissible on G. For a fixed variable set X , G is more precisely named an existential
concept graph of !K over X .

Lemma 2 The subgraphs of an existential concept graph over X are existential
concept graphs over X, too.

The conceptual content of an existential concept graph GX of a power context
family !K is defined as the conceptual content of GX understood as a concept graph
of the free X-extension !K[X ]. To clarify this, it is helpful to show how variables
give rise to object implications of the relational contexts Kk[X ] as indicated in the
following lemma:

Lemma 3 Let Kk[X ] := (Gk[X ], Mk[X ], Ik[X ]) with k ∈ {1, 2, . . .} be a relational

context of an existential power context family !K[X ]; furthermore, let α be a map of
G0 ∪ X into itself satisfying α(g) = g for all g ∈ G0. Then Kk[X ] has the object
implications {(α(u1), . . . , α(uk))} −→ {(u1, . . . , uk)} with u1, . . . , uk ∈ G0 ∪ X.

For a permutation π of the variable set X , let απ be the map of G0 ∪ X into
itself with απ(g) = g for all g ∈ G0 and απ(x) = π(x) for all x ∈ X . Then
we obtain the object implication {(απ(u1), . . . , απ(uk))} −→ {(u1, . . . , uk)} with
u1, . . . , uk ∈ G0 ∪ X . Together with the corresponding object implication for π−1,
this yields that changing variables according to a permutation of X in a (k-ary)
object of Kk[X ] does not change the intension of that object.

An existential concept graph G1 := (V1, E1, ν1, κ1, ρ1) is said to be less in-
formative (more general) than G2 := (V2, E2, ν2, κ2, ρ2) (in symbols: G1

<
∼ G2) if
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Ck(G1) ⊆ Ck(G2) for k = 0, 1, 2, . . .; G1 and G2 are called equivalent (in symbols:
G1 ∼ G2) if G1

<
∼ G2 and G2

<
∼ G1 (i.e., Ck(G1) = Ck(G2) for k = 0, 1, 2, . . .). The

set of all equivalence classes of existential concept graphs of a power context family
!K over a fixed set X of variables together with the order induced by the quasi-order
<
∼ is an ordered set denoted by Γ̃ (!K; X).

4 Implicational and Causal Concept Graphs

For representing exactly Peirce’s judgment “mathematics studies hypotheses exclu-
sively”, we have to generalize existential conceptual graphs further to implicational
conceptual graphs. This becomes clear when we consider an equivalent formulation
of Peirce’s judgment, namely: “If mathematics studies a proposition then mathe-
matics studies a hypothesis”. A representation of this judgment by an implicational
conceptual graph is pictured in Fig. 3.

science: mathematics proposition: xstudy

science: mathematics hypothesis: xstudy

if:

then:

!"
#$

!"
#$

!!""

Fig. 3. Example of an implicational conceptual graph

The example shows an implicational judgment in which the premise and the
conclusion contain the same variable x; this indicates that the proposition x is, more
precisely, a hypothesis. The mathematization of implicational conceptual graphs
who are composed by two subgraphs representing a premise and a corresponding
conclusion, respectively, can be viewed as a generalization of existential concept
graphs (cf. [Wi04], pp. 57 – 59).

An implicational concept graph of a power context family !K is defined as an
existential concept graph G := (V, E, ν, κ, ρ) of !K over a variable set X with a
designated pair (pG, cG) of subgraphs such that

1. G is the union of pG and cG, and
2. each X-interpretation admissible on pG is also admissible on cG (and hence on

G too).

pG → cG may be written instead of G; the subgraphs pG and cG are called the
premise and the conclusion, resp.

For an existential concept graph G of a power context family !K over a variable
set X , the formal context K(X ; G) := (B(X, G0), Sub(G), !) is defined where

– the object set B(X, G0) consists of all X-interpretations into the object set G0

of the formal context K0 in !K,
– the attribute set Sub(G) is the set of all subgraphs of G,
– χ!G means that the X-interpretation χ is admissible on the subgraph G of G.
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Proposition 1 {Gs | s ∈ S} → {Gt | t ∈ T } is an attribute implication of K(X ; G)
if and only if

⋃
s∈S Gs →

⋃
t∈T Gt is an implicational concept graph of !K over X.

Proposition 2 K(X ; G) := (B(X, G0), Sub(G), !) is always a formal context of
which all extents are non-empty attribute extents. Conversely, let K := (G, M, I)
be a clarified formal context of which all extents are non-empty attribute extents;
then K is isomorphic to the clarified context of the formal context K({x}; G) :=
(B({x}, G), Sub(G), !) where G := (V, E, ν, κ, ρ) is the existential concept graph

of the power context family !K := (K) over {x} with V := M , E := ∅, ν := ∅,
κ(m) := µm, and ρ(m) := {x}.

Corollary 1 The concept lattices B(K(X ; G)) are up to isomorphism the concept
lattices of formal contexts.

Implicational conceptual graphs can even be generalized to clausal conceptual
graphs in which the conclusion consists of a disjunction of propositions (cf. [Wi04],
pp. 59 – 60). An example of a clausal conceptual graph is shown in Fig. 4.

science: x proposition: ystudy

science: x actual facts: ystudy

science: x hypothesis: ystudy

if:

then:

or:

!"
#$

!"
#$

!"
#$

!!""

Fig. 4. Example of a clausal conceptual graph

A clausal concept graph of a power context family !K is defined as an existential
concept graph G := (V, E, ν, κ, ρ) of !K over a variable set X with a designated pair
(pG, {ctG | t ∈ T }) consisting of a subgraph pG of G and a set {ctG | t ∈ T } of
subgraphs of G such that

1. G is the union of pG and all the ctG with t ∈ T , and
2. each X-interpretation admissible on pG is also admissible on at least one ctG

with t ∈ T .

pG →
∨

t∈T ctG may be written instead of G; the subgraphs pG and ctG (t ∈ T )
are called the premise and the disjunctive conclusions, resp. For subsets A and B
of the attribute set M ,

∧
A →

∨
B is an attribute clause of K if g ∈ AI always

implies gIm for at least one m ∈ B.

Proposition 3 Let G be an existential concept graph of a power context family
!K over a variable set X and let Gs (s ∈ S) and Gt (t ∈ T ) be subgraphs of G.
Then

∧
{Gs | s ∈ S} →

∨
{Gt | t ∈ T } is an attribute clause of the formal context

K(X ; G) if and only if
⋃

s∈S Gs →
∨

t∈T Gt is a clausal concept graph of !K over X.
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Proposition 2 and 3 show that the theory of clausal concept graphs is essentially
equivalent to the theory of attribute clauses of formal contexts. The advantage of
this equivalence is that many results about attribute clauses can be transferred
to clausal concept graphs which substantially enriches the research on Contextual
Judgment Logic.

Corollary 2 G∅ →
∨

t∈T Gt is a clausal concept graph of !K over X if and only if
for all X-interpretations χ into G0 there exists a tχ ∈ T such that χ is admissible
on Gtχ

.

5 Generalizations of concept graphs

Concepts and concept graphs form a comprehensive core for a semantics of Con-
textual Logic. Although such a semantics offers a great variety of support for logical
thinking, there is still the desire to use further conceptual structures. Here only two
types of such structures shall be discussed briefly so that readers get at least an
idea about the richness which still has to be explored.

As a first type of generalized graphs we want to consider conceptual graphs
with local negation. For this, we start again with an example deduced from Peirce’s
statement cited at the beginning of section 2; the example is shown in Fig. 5 which
presents an implicational conceptual graph with local negation. The diagram can

science: x | actual facts: y |study

science: x | science: mathematics |equal| |

if:

then:

!"
#$

!"
#$

!!""

Fig. 5. Example of an implicational conceptual graph with local negation

be read: “If a science studies actual facts then this science is not mathematics”
or ”mathematics is a science which does not study actual facts”. The additional
vertical strokes which divide the spaces after the colon in the rectangular boxes
allow to represent the negation of the object-concept-relation (see [Wi02]). The
vertical strokes cutting the horizontal lines joining the rectangular boxes with the
equal-circle indicate the negation of the relation “equal”; such localization means
that “x is not mathematics”.

Graphs with local negation have been introduced as “protoconcept graphs” in
[Wi02]. An extensive elaboration of the logic system of those protoconcept graphs
with their syntax and semantics can be found in [Kl05]. The logic system of concept
graphs with negation (and its relationship to predicate logic) which can be under-
stood as a mathematization of a large fragment of Sowa’s theory of conceptual
graphs, has been impressively worked out and published in the Springer Lecture
Notes in Artificial Intelligence [Da03].

As a second type of generalized graphs we want to mention conceptual graphs
with a modal component. Nested conceptual graphs may be understood to have a
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modal component. This becomes clear through a mathematical representation of
nested conceptual graphs by triadic concept graphs which have been invented in
[Wi98]. The discussion in that paper clarifies that one should consider not only
nestings, but also subdivisions with overlappings. As an example for this, a triadic
concept graph is shown which represents a diatonic modulation from C-major to A-
major with its constitutive chord overlappings. Triadic concept graphs are based on
a triadic power context family !K := (K0, K1, K2, . . .) with Kk := (Gk, Mk, B, Ik) and
Gk ⊆ Gk

0 (k = 0, 1, 2, ...) where B is always a set of modalities. It can be shown that
the triadic concept graphs of a triadic power context family always form a complete
lattice with respect to the generalization order. It turns out that the generalization
order may be differently defined, depending on the assumed background knowledge,
respectively (cf. [GW00]).

A concept graph with subdivision is a mathematical structure derived from a tri-
adic power context family. The aim of introducing concept graphs with subdivision
is to represent modal information mathematically. This has been demonstrated in
[SW03] by an example, namely by a comparison of the two famous paintings: the
“Darmstädter Madonna” and the “Dresdner Madonna”. Based on the notion of a
conceptual content, the concept graphs with subdivision of a triadic power context
family has been proved to form a complete lattice with respect to the information
order (cf. [SW03]).

Finally, it shall be pointed out that a conceptual theory and methodology of se-
mantic structures, named “semantology”, are under development from which the
theory and practice of concept graphs and their generalizations, and therefore of
Contextual Judgment Logic could benifit. The initial paper [GW06] discusses, from
the view of Peirce’s classification of sciences, a three-fold semantics of conceptual
knowledge: the mathematical, the philosophical and an application-oriented seman-
tics. Examples from Formal Concept Analysis are considered. The second paper
[EW07] extends the discussion of the three-fold semantics to Conceptual Knowledge
Processing by using the extensive analysis of methods in Formal Concept Analysis
and Contextual Logic presented in [Wi06]. A special case-study about applications
of semantology in music is offered in [WW07]. For understanding how mathemati-
cal methods can be applied in the real world, the relationship between mathematics
and concept analysis is analysed in [Wi07], in particular by the three-fold semantics
of concept analysis in Conceptual Knowledge Representation.
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Abstract. Two variations of an algorithm by Alan Day for reducing a list of
implications regarding redundancy are given, with a new simple justification.
All three algorithms have the property that the list can be reduced in place -at
no extra memory cost- that will be useful for large applications and databases.

Keywords: basis of implications, closure operator, reduction in place, redundancy.

Introduction

Many years after having “introduced implication basis into FCA” (as noted in
[GW99 p.94]) which dates back to the fall of 1983 (see [GD84-86], [G84-87], [D84-
87]), it is surprising if not hard to acknowledge that we didn’t learn a lot more on
“their intimacy” in the meantime, despite many interesting papers using or revisiting
them. In that respect, a special attention should be paid to one of the last papers by
Alan Day ([Day92]), who spent several months of his spare time to clarifying the
interest of Lattice Theory for putting databases into canonical forms, by decomposing
them through functional dependencies and relation schemes. This was linked with
other works (among which [W95]) that made precise the connections with functional
dependencies ([MA83]) -classical in databases and AI-, to the FCA community. More
recently we had ([D&A01], [O&D03-07], [V&D03-07]) to device some variations
around Alan’s algorithm and some pain to explain how they work which we now do.

Let A be a (finite) set of attributes, L:={Xi!Yi"i#I, Xi,Yi$A} be a list of

attribute implications, and let consider the two closure operators:

(1) L-closure, X|!L(X) for all X$A, that is defined by reiteration of

XL:=X%%{Yi"Xi!Yi#L, Xi$X} up to reaching a fixpoint (hence finiteness…),

namely L(X):=XL...L=(XL...L)L which is the consequence of X, and similarly,

(2) L-saturation X|!L°(X) for all X$A, L°(X):=XL°...L°=(XL°...L°)L° defined

by reiteration of XL°:=X%%{L(Xi)"Xi!Yi#L, Xi$X, L(Xi)&L(X)}.

The L-saturation L°(X) is a restricted consequence of X for “what is already known
for smaller premises than X out of X’s L-closed class”. Notice how it is a bit harder to

handle since dependent of the L-closure due to the condition L(Xi)&L(X) that requires

to have L(X) at hand when calculating L°(X) and will thus slow down algorithms.
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An implication is full whenever its conclusion is L-closed, L itself is said to be full

when L:={Xi!L(Xi)"i#I, Xi$A}, which could be taken as a strong hypothesis, but

is very natural when the input is a context. To avoid repeating Xi!Yi%Xi all the time

in the sequel, we always suppose that L:={Xi!Yi"i#I, Xi,Yi$A} is such that Xi&Yi

(i#I) and sometimes that L is full, specifying wherever results and algorithms can be
extended to families of non-full implications. We freely mix together our original
terminology and denotations with more established ones in FCA [GW99].

Now, X=L°(X) is called L-saturated for short. A saturated subset L°(X) is called L-

quasi-closed when not closed L°(X)'L(X) –some authors did differently…-, in which

case L(X) is called essential L-closed (or meet-essential element of the (-semi-lattice

of L-closed subset, see [D84-87, D91]). L°(X) is called L-pseudo-closed when $-

minimal L-quasi-closed in {Y$A"L(Y)=L(X)}. The set BL:={X!L(X)"X L-

pseudo-closed} is called the canonical basis of L (saturated moreover, if necessary,
sometimes Guigues-Duquenne basis or – a new comer- stem basis in FCA’s folklore).

The main result in [GD84-86] states that BL is a minimal set of implications

inferring L -for usual propositional calculus, or so-called Armstrong rules- and that
moreover any such minimal family is in one-one correspondence with BL through a

natural construction, hence the name canonical saturated basis [D84-87 p.225] that
was first chosen. Many authors revisited these notions introducing their own
denotations. Here, we will not come back on that, but focus on some properties of
quasi / pseudo-closed subsets that should be extended for bettering the algorithms.

It is now part of the folklore (see the above references) that:

Lemma 1. For a list L, a subset H$L defines the same closure operator (has the same
set of consequences) as L iff H has the same canonical basis as L iff for every L-

pseudo-closed X there is at least one (Xi!Yi)#H for which Xi$X&L(X)=H(Xi).

It provided the characterizations formulated in early drafts of [D84-87]:

Lemma 2. For a closure operator L() on A (or a list L of implications...):

1. X=L°(X) iff L(Xi)&X for all Xi$A s. t. Xi&X and L(Xi)&L(X).

2. X=L°(X) iff L(Xi)&X for all L-pseudo-closed Xi s. t. Xi&X and L(Xi)&L(X).

3. X is L-pseudo-closed or L-closed iff L(Xi)$X for all L-pseudo-closed Xi&X.

Remark. (2) reduces (1) to L-pseudo-closed. (3) gives a recursive definition of L-
pseudo-closed subsets, that [G84-87], [GW99] took as a starting definition instead.

Now when starting from a list of implications, it will be enough to rewrite (1) as:

Lemma 3. For a list L:={Xi!Yi"i#I, Xi&Yi$A}, X=L°(X)

iff L(Xi)&X for all (Xi!Yi)#L such that Xi&X and L(Xi)&L(X).

Our aim is to complete these basic properties for deriving either the canonical or
some arbitrary basis of a list L, by dropping out redundant implications one at a time.
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Reducing lists of full implications

Lists of full implications will be somehow easier to deal with thanks to the simple:

Lemma 4. For a full list of implications L:={Xi!Yi=L(Xi)"i#I, Xi&Yi$A},

(Xi!Yi)#L and H:=L\{Xi!Yi},

1. H(Xi)'L(Xi) iff

2. L°(Xi) is L-pseudo-closed and there is no other (Xk!Yk)#L with L°(Xk)=L°(Xi).

Proof. Since {Xi!Yi#L, Xi$X, L(Xi)'L(X)}$H&L, notice that

(*) for X$A with L(X)=L(Xi), X$L°(X)$H(X)$L(X) holds.

Suppose (2) fails. Case 1: L°(Xi) not-quasi-closed hence L-closed L°(Xi)=L(Xi)

implies H(Xi)=L(Xi) by (*). Case 2: L°(Xi) L-quasi-closed not pseudo-closed implies

the existence of a L-pseudo-closed Z with Z&L°(Xi)&L(Z)=L(Xi), and by Lemma 1

the existence of at least one (Xk!Yk)#L with L°(Xk)=Z so that

H(Xi))L(Xk)=L(Xi) hence H(Xi)=L(Xi). Case 3: L°(Xi) pseudo-closed and the

existence of some (Xk!Yk)#L with Xk'Xi and L°(Xk)=L°(Xi) implies

H(Xi)=H(Xk)=L(Xi). Conversely, suppose that (2) holds: since L°(Xi) is L-quasi-

closed and minimal in its L-closed class for this property, for any (Xk!Yk)#L such

that Xk&L°(Xi), L(Xk)&L°(Xi) must hold by Lemma 3, which implies

L°(Xi)=H(L°(Xi)), so that by (*) it comes that Xi$L°(Xi)=H(L°(Xi))$H(H(Xi))=

H(Xi), hence H(Xi)=L°(Xi)'L(Xi), by isotony of H() and L°(Xi) is L-pseudo-closed.

Algorithm 1.

Input a full family L:={Xi!Yi=L(Xi)"i#I, Xi&Yi$A}.

Output: canonical basis BL:={Xk!Yk"k#K, Xk L-pseudo-
closed} (or an arbitrary one).

1. For i#I

2.   L=L\{Xi!Yi} /drop it out /

3.   X=L(Xi) /see below Amendment 1/

4.   If X'Yi Then 

5.     L=L%{X!Yi} /restore it when Xi was the (last)/

6.   Endif /generator of a pseudo-closed/

7. Endfor

We have used this algorithm in GLAD [D83-96] for years, specially in preparing
[D&Al01], [O&D03-07], [V&D03-07]. It has been independently conceived in [R07].
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Remarks. The negation of Lemma 4 (1) provides a simple criteria for dropping out

redundant implications Xi!Yi in L: when H(Xi)=L(Xi). Notice that otherwise,

H(Xi)=L°(Xi) is so to say automatically delivered L-pseudo-closed thanks to fullness.

Moreover, to get a basis with smaller premises replace 5 by (5’ L=L%{Xi!Yi}).

The morality of this procedure is that L-pseudo-closed are generated by either their
single generator or last examined generator whenever several are existing in L, which
is another explanation -out of their recursive nature- for their difficulty to be reached.

A main feature of this algorithm is that the reduction can be done in place. The
price is to suppose the list L full, which takes … full benefit of transitivity and keeps
tracks of implication consequences by isotony after they have been dropped out. The
bonus are that the painful part (statement 3) reduces in time as implications are
dropped out. There is no post-processing to get the pseudo-closed and this can be used
to extract a basis made of the original implications, while preserving the redundant
ones by permutation of L, separating L in two areas basis / redundant implications.

Amendment 1. Statements 3-4 in Algorithm 1 can be replaced by the following:

3’. X=L-conditional(Xi,Yi,L,Restore)

4’. If (Restore=true) Then

where L-conditional is a function that reiteratively calculates L(Xi) but cancels the

calculus as soon as (if ever) the criteria X=Yi is reached within the iterative loop

(returning Restore=false), and returns L(Xi) otherwise (with Restore=true). As many

implications are redundant in practice, this usually will save time.
Hence, in any circumstances where L is naturally full or can be made full at small

price –which is quite often the case in FCA when the input is a context- this will
avoid to calculate the L-saturation of the Xis by applying the definition and dealing

continuously with both the painful restrictions L(Xk)'L(Xi) and deadly reiteration.

Fullness provides the clarity and efficiency of this simple algorithm.

Reducing non-full implications

Now, in the context of databases and AI, it may be the case that dependencies are
expressed by non-full implications. For instance, see the new developments in [B06]
that promote canonical direct basis for which the L-closure / saturation do not require
reiteration, but are always reached with a single scan of the basis in construction.

For reducing such lists of implications some specific properties are required:

Lemma 5. Let L:={Xi!Yi"i#I, Xi&Yi$A} be a list, (Xi!Yi)#L and

H:=L\{Xi!Yi}, suppose moreover that H(X)&L(X) for some X$A, then:

1. X$X%Xi&X%Yi$L(X) and L(X))L(Xi), and

2. H(X))Xi, and

3. H(X).not.)Yi holds.
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Proof. (1): H(X)&L(X) implies that Xi!Yi must take part in the iterative calculus of

L(X), so that X$X%Xi&X%Yi$L(X). By isotony and idempotence of L(), this

implies L(X)$L(X%Xi)$L(L(X))=L(X), hence L(X)=L(X%Xi))L(Xi) must hold.

(2): By contraposition. Since X$H(X)&L(X) and L\H={Xi!Yi} hold, H(X).not.)Xi

implies H(X)=L(X), a contradiction. (3): Similarly, H(X))Yi*Xi implies

H(X)%Xi=H(X)%Yi, so that by contraposition of (1), H(H(X))=L(H(X)), but

H(H(X))=H(X) and L(H(X))=L(X), hence H(X)=L(X) should hold, a contradiction,

so that H(X).not.)Yi holds as asserted.

This should be made a little bit more precise and gives some indications where the

premises X&A of non-redundant implications for which H(X)&L(X) are, a
potentiality that will be made clearer by the following:

Lemma 6. For a list L:={Xi!Yi"i#I, Xi&Yi$A}, (Xi!Yi)#L and H:=L\{Xi!Yi},

1. either H(Xi))Yi, in which case H(Xi)=L(Xi), H()=L() and Xi!Yi is L-redundant,

2. or H(Xi).not.)Yi, in which case H(Xi)&L(Xi) and H(Xi)=L°(H(Xi)) is L-quasi-

closed and Xi$L°(Xi)$H(Xi)=L°(H(Xi))&L(Xi) holds, that moreover collapses

L°(Xi)=H(Xi) whenever L°(Xi) is L-pseudo-closed and there is no other

(Xk!Yk)#L with L°(Xk)=L°(Xi) and Yk.not.$L°(Xi).

Proof. (1): H(Xi))Yi implies H(Xi)=L(Xi) by contraposition of Lemma 5.3. Suppose

that there exists some X&A for which H(X)&L(X), this implies H(X))Xi by Lemma

5.2, hence H(X))H(Xi)=L(Xi))Yi holds by isotony of H(), hence H(X)=L(X) by

contraposition of Lemma 5.3, a contradiction, so that H()=L(), and Xi!Yi is

therefore redundant in L. (2): Let H(Xi).not.)Yi holds. Xi&Yi$L(Xi) and

Xi$H(Xi)$L(Xi) imply that H(Xi)=L(Xi) implies H(Xi))Yi, a contradiction, hence

H(Xi)&L(Xi) must hold. Suppose now that H(Xi) is not L-quasi-closed. By Lemma 3

there must exist some (Xk!Yk)#L for which Xk$H(Xi), L(Xk).not.$H(Xi) and

such that L(Xk)&L(H(Xi))=L(Xi). L(Xk)&L(Xi) implies L(Xk).not.)L(Xi), hence

H(Xk)=L(Xk), by contraposition of Lemma 5.1. By isotony and idempotence of H(),

Xk$H(Xi) implies Xk$H(Xk)$H(H(Xi))=H(Xi), so that L(Xk)$H(Xi), a

contradiction, H(Xi) is thus L-quasi-closed. Xi$L°(Xi)$H(Xi)&L(Xi) follows from

(*) in Lemma 4’s proof. Last, L°(Xi) L-pseudo-closed and there is no other

(Xk!Yk)#L with L°(Xk)=L°(Xi) and Yk.not.$L°(Xi) implies L°(Xi)=H(L°(Xi)),

the above inequalities imply that Xi$L°(Xi)=H(L°(Xi))$H(Xi)&L(Xi) hold, but

L°(Xi))Xi implies H(L°(Xi)))H(Xi) by isotony,  so that H(Xi)=L°(Xi) must hold.
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Remark. Lemma 6 (1) provides an efficient criteria for dropping out most

redundant implications in L, and in particular all those (Xi!Yi)#L with L(Xi) not-

essential L-closed (of which the L-closed classes contain no L-quasi-closed subset).

Lemma 6 (2) guaranties that replacing Xi!Yi in L by H(Xi)!H(H(Xi)%Yi)=L(Xi)

gives an equivalent set of implications with a new premise H(Xi) that is made

automatically L-quasi-closed, without having to calculate any saturation actually.

Together with Lemma 1 and reiteration, this can be used to produce a superset of
the canonical basis, and provides a new simple justification of the algorithm that is
given at the end of [Day92 p. 426], of which the original setting –although focused on
functional dependencies- is somehow complex and quite algebraic in nature, since it
is expressed with sophisticated constructions on semi-lattice congruence relations:

Algorithm 2. [Alan Day 1992 p.426]

Input a family L:={Xi!Yi"i#I, Xi&Yi$A}.

Output: an equivalent set of implications

L:={Xk!Yk"k#K, Xk L-quasi-closed}.

1. For i#I

2.   L=L\{Xi!Yi} /drop it out /

3.   Xi=L(Xi) /see above Amendment 1/

4.   If Yi.not.$Xi Then

5.     Yi=L(Xi%Yi) /restore non-redundant/

6.     L=L%{Xi!Yi} /remade full implications/

7.   Endif

8. Endfor

Remark. As observed by Alan Day, getting the canonical basis (“critical” basis in
his own terms) out of this new amended list requires a post-processing to sort it and
check premises’ minimal property in their L-closed classes. This is due to the fact that
a non-minimal quasi-closed can be obtained and kept in the list while a smaller
pseudo-closed in the same L-closure class makes it becoming redundant afterwards.
Hence, the reduction process is dependent of the order taken for scanning through L,

and there is no way to insure that quasi-closed are tested in a $-compatible order.

However, a main advantage of this algorithm is to drop out a lot of redundant
implications (statements 2-4), although it cannot detect the L-pseudo-closed sets on
the fly, that could be a handicap for real scale applications and huge databases.

This can be avoided by using their recursive characterization in Lemma 2.3:
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Algorithm 3.

Input a family L:={Xi!Yi"i#I, Xi&Yi$A}.

Output: basis BL:={Xk!Yk"k#K, Xk L-pseudo-closed}.

1.  For i#I

2.    L=L\{Xi!Yi} /drop it out /

3.    Xi=L(Xi) /see above Amendment 1/

4. If Yi.not.$Xi Then

5.      Yi=Xi%Yi /restore non-redundant/

6.      L=L%{Xi!Yi} /possibly non-full implications/

7.    Endif

8.  Endfor

9. SORT L by lexicographic order on Xi(i#I)

10. Basis=+ /namely: 00<01<10<11.../

11. For i#I

12.   For (Xk!Yk)#Basis /is Xi L-pseudo-closed?/

13.     If Xk$Xi.and.Xi.not.*Yk Then

14.        L=L\{Xi!Yi} /no: drop it out /

15.        Goto 20 /i.e. Endfor i/

16.     Endif

17.   Endfor

18. Yi=L(Yi) /yes: make Xi!Yi full/

19. Basis=Basis%{Xi!Yi}

20 Endfor

Remarks. As compared with Alan Day’s Algorithm 2, the only new idea is to
separate saturating the premises although keeping enough information from the
original implications (first loop), from detecting the L-pseudo-closed -by using their
recursive characterization (Lemma 2.3, which requires sorting L before, statement 9)-
and closing their conclusions (second loop). Even if this sorting and detection
(statements 12-17) have a cost, a major benefit is to L-close only the L-pseudo-closed
(statement 18), which will be more efficient when L comprises far more implications
than L-pseudo-closed, by saving the deadly price of reiteration in calculating L(). This
algorithm can also be done in place by permuting L to avoid the extra table “Basis”.
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Discussion.

Starting from an (a priori) non-full list of implications L:={Xi!Yi"i#I, Xi&Yi$A}

for calculating its canonical basis BL:={Xk!L(Xk)"k#K, Xk L-pseudo-closed}, any

algorithm will so far require "I"+"K" closures, unless a sparing-closure-test is
elaborated in the future to detect non-L-pseudo-closed premises at first sight...

Algorithm 1 requires "I" closures, but half the work is already embedded and was
supposed done by the fullness hypothesis, to be honest. Notice that in this note it is
the only procedure giving optionally at no memory cost a basis with the original
smaller premises -that may be crucial in some applications either for semantical
reasons (because the user care them) or for optimization (cost, minimal generators…).
L should usually shrink quickly during the reduction process since -in addition to
redundant implications- L-quasi-non-pseudo-closed are dropped out at first sight
thanks to fullness, which so doing provides a non order-dependent algorithm.

The best feature of Alan Day’s Algorithm 2 is to start with over-saturating
premises that drops out redundant implications of which the premise L-closure is not

essential, leading to "I"+"K’" closures, "K’"#["K","I"], but is order dependent.

Algorithm 3 is a variation which requires exactly the optimal "I"+"K" closures,

after a pre-sorting -instead of post-sorting as for Alan’s-, with an extra "I" , loops in
the growing list to detect L-pseudo-closed premises, replacing iterative closures by
simple loops, which follows the popular advice: “better clean before you close”!

All three algorithms share two nice properties: they don’t calculate L-saturation
actually -which would involve reiteration and presuppose the L-closure at hand- but
do a test leading “automatically” to pseudo / quasi-closed premises, and secondly the
reduction processes can be done in place, which is nice for building general programs.

In that respect, since the beginning of the development of our computer program
GLAD (General Lattice Analysis & Design, see [D83-96]), a main concern has not
been so much a pernickety fight against complexity, but to try understanding the
interplay between the representations of algebraic / structural objects in programs,
methodological questions ([D99]), and a search for simple / clearer algorithms. Alan’s
algorithm is very elegant and doesn’t require sophisticated (often valued although
exponential…) constructions, even if Alan (or his hidden editor) was perhaps a bit
unfair when claiming that another alternative algorithm [NextClosure for implications
that starts from a “formal” context] “provides an excellent (though necessarily

exponential time) algorithm” [Day92 p.410]. Unfair, because … the input are not the
same! If one reduces something (a list) which is close to our current goal (a non-
redundant list), one is for sure in a better situation than wandering in the exponential
powerset of all potential premises even with clever shortcuts… In practice, both types
of algorithms are absolutely necessary depending on the context and applications.

Remaining questions for the future will be: Are there other ideas than fullness /
pre-sorting to optimize Alan Day’s algorithm? Combining different approaches and
tricks, will there be other properties for identifying pseudo-closed premises quickly?
Is there any hidden algebraic property or tool that could drive their detection?

So far, the three algorithms that we focused on in this note give another discrete
clue on why / how pseudo-closed premises are hard to catch: as the ultimate survivors
among the original list of candidates, may be they are just “the veracious core of what
is left after throwing away the unnecessary gangue”, in an Hegelian spirit...
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Abstract. In this paper, we present and detail a multifunctional item-
set mining algorithm called Zart, which is based on the Pascal algorithm.
Zart shows a number of additional features and performs the following,
usually independent, tasks: identify frequent closed itemsets and asso-
ciate generators to their closures. This makes Zart a complete algorithm
for computing classes of itemsets including generators and closed item-
sets. These characteristics allow one to extract minimal non-redundant
association rules, a useful and lossless representation of association rules.
In addition, being based on the Pascal algorithm, Zart has a rather effi-
cient behavior on weakly and strongly correlated data. Accordingly, Zart

is at the heart of the Coron platform, which is a domain independent,
multi-purposed data mining platform, incorporating a rich collection of
data mining algorithms.

1 Introduction

Finding association rules is one of the most important tasks in data mining.
Generating valid association rules from frequent itemsets (FIs) often results in
a huge number of rules, which limits their usefulness in real life applications. To
solve this problem, different concise representations of association rules have been
proposed, e.g. generic basis (GB) [1], informative basis (IB) [1], representative
rules [2], Duquennes-Guigues basis [3], Luxenburger basis [4], proper basis [5],
structural basis [5], etc. A very good comparative study of these bases can be
found in [6], where it is stated that a rule representation should be lossless
(should enable derivation of all valid rules), sound (should forbid derivation of
rules that are not valid), and informative (should allow determination of rules
parameters such as support and confidence).

Kryszkiewicz showed in [6] that minimal non-redundant rules3 (MNR) with
the cover operator, and the transitive reduction of minimal non-redundant rules3

(RMNR) with the cover operator and the confidence transitivity property are
lossless, sound, and informative representations of all valid association rules.

3 Defined in Section 2.
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From the definitions of MNR and RMNR it can be seen that we only need
frequent closed itemsets and their generators to produce these rules. Frequent
itemsets have several condensed representations, e.g. closed itemsets [7–9], gen-
erator representation [10], approximate free-sets [11], disjunction-free sets [12],
disjunction-free generators [10], generalized disjunction-free generators [13], non-
derivable itemsets [14], etc. From these representations, the one which consists
of frequent closed itemsets and frequent generators gives rise to a concise set of
association rules, which is lossless, sound, and informative [6]. This set of rules,
called the set of minimal non-redundant association rules (MNR) [1], is not
minimal in general case, but presents a good compromise between its size and
time needed to generate it [15].

In [16], Bastide et al. presented the Pascal algorithm and claimed that MNR
can be extracted with this algorithm. However, to obtain MNR from the output
of Pascal, one has to do a lot of computing. First, frequent closed itemsets must
also be known. Second, frequent generators must be associated to their closures.
Here we propose an algorithm called Zart, an extension of Pascal, which does this
computing. Thus, Zart allows one to easily construct MNR. Instead of Pascal,
we might have selected another algorithm. The reason for choosing Pascal was
as follows: among levelwise frequent itemset mining algorithms, it may be the
most efficient. This is due to its pattern counting inference mechanism that can
significantly reduce the number of expensive database passes. Furthermore, as
it was argued in [17], the idea introduced in Zart can be generalized, and thus
it can be applied to any frequent itemset mining algorithm.

The paper is organized as follows. In the next section, we overview the basic
concepts and essential definitions. This is followed by the description of the three
main features of the Zart algorithm. We then present Zart and give a running
example. Then, the generation of minimal non-redundant association rules is
presented. Next, we provide experimental results for comparing the efficiency of
Zart to Pascal and Apriori. Finally, we draw conclusions in the last section.

2 Main Definitions

Frequent Itemsets. We consider a set of objects O = {o1, o2, . . . , om}, a set of
attributes A = {a1, a2, . . . , an}, and a binary relation R ⊆ O ×A, where R(o, a)
means that the object o has the attribute a. In formal concept analysis the triple
(O, A, R) is called a formal context [18]. The Galois connection for (O, A, R) is
defined along the lines of [18] in the following way (here B ⊆ O, D ⊆ A):

B′ = {a ∈ A | R(o, a) for all o ∈ B}, D′ = {o ∈ O | R(o, a) for all a ∈ D}.

In data mining applications, an element of A is called an item and a subset of
A is called an itemset. Further on, we shall keep to these terms. An itemset of
size i is called an i-itemset.4 We say that an itemset P ⊆ A belongs to an object

4 For instance, {a,b,e} is a 3-itemset. Further on we use separator-free set notations,
i.e. abe stands for {a,b,e}.
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o ∈ O, if (o, p) ∈ R for all p ∈ P , or P ⊆ o′. The support of an itemset P ⊆ A
indicates the number of objects to which the itemset belongs: supp(P ) = |P ′|.
An itemset is frequent if its support is not less than a given minimum support
(denoted by min supp). An itemset P is closed if there exists no proper superset
with the same support. The closure of an itemset P (denoted by P ′′) is the
largest superset of P with the same support. Naturally, if P = P ′′, then P is
a closed itemset. The task of frequent itemset mining consists of generating all
(closed) itemsets (with their supports) with supports greater than or equal to a
specified min supp.

Two itemsets P, Q ⊆ A are said to be equivalent (P ∼= Q) iff they belong to
the same set of objects (i.e. P ′ = Q′). The set of itemsets that are equivalent to
an itemset P (P ’s equivalence class) is denoted by [P ] = {Q ⊆ A | P ∼= Q}. An
itemset P ∈ [P ] is called a generator5, if P has no proper subset in [P ], i.e. it
has no proper subset with the same support. A frequent generator is a generator
whose support is not less than a given minimum support.

Pattern Counting Inference. The following properties of support and gen-
erators were observed in [16] and are usually referred to as properties of counting
inference.

Property 1. Let P and Q be two itemsets.
(i) P ∼= Q ⇒ supp(P ) = supp(Q)
(ii) P ⊆ Q and (supp(P ) = supp(Q)) ⇒ P ∼= Q

Property 2. All subsets of a frequent generator are frequent generators.

Property 3. An itemset P is a generator iff supp(P ) &= minp∈P (supp(P \ {p})).

The last property says that in order to decide whether a candidate set P is a
generator, one needs to compare its support to its subsets of size |P | − 1. By
definition, generators do not admit proper subsets of the same support.

Frequent Association Rules. An association rule is an expression of the
form I1 → I2, where I1 and I2 are arbitrary itemsets (I1, I2 ⊆ A), I1 ∩ I2 = ∅
and I2 &= ∅. The left side, I1 is called antecedent, the right side, I2 is called
consequent. The support of an association rule6 r is defined as: supp(r) =
supp(I1 ∪ I2). The confidence of an association rule r: I1 → I2 is defined as the
conditional probability that an object has itemset I2, given that it has itemset I1:
conf(r) = supp(I1 ∪ I2)/supp(I1). An association rule r with conf(r) = 100%
is an exact association rule (or implication [18]), otherwise it is an approxi-
mate association rule. An association rule is valid if supp(r) ≥ min supp and
conf(r) ≥ min conf . The set of valid association rules is denoted by AR.

Now recall the following definitions of bases of association rules:

5 In the literature these itemsets have various names: key itemsets, minimal generators,
free-itemsets, key generators, etc. Further on we will refer to them as “generators”.

6 In this paper we use absolute values, but the support of an association rule r is also
often defined as supp(r) = supp(I1 ∪ I2)/|O|.

CLA 2007 24 Montpellier, France



Definition 1. Let FCI be the set of frequent closed itemsets. For each frequent
closed itemset f , let FGf denote the set of frequent generators in the equivalence
class of f . The generic basis for exact association rules (implications):

GB = {r : g ⇒ (f\g) | f ∈ FCI ∧ g ∈ FGf ∧ g &= f}.

Definition 2. Let FCI be the set of frequent closed itemsets and let FG be the set
of frequent generators. The informative basis for approximate association rules:

IB = {r : g → (f\g) | f ∈ FCI ∧ g ∈ FG ∧ g′′ ⊂ f}.

Definition 3. Let IB denote the informative basis for approximate association
rules as defined above, and let FCI be the set of frequent closed itemsets. The
transitive reduction of IB:

RIB = {r : g → (f\g) ∈ IB | g′′ is a maximal proper subset of f in FCI}.

Definition 4. The set of minimal non-redundant rules (MNR) is defined as:
MNR = GB ∪ IB. The transitive reduction of minimal non-redundant rules
(RMNR) is defined as: RMNR = GB ∪RIB.

3 Main Features of Zart

Zart has three main features, namely (1) pattern counting inference,
(2) identifying frequent closed itemsets, and (3) identifying generators of fre-
quent closed itemsets.

3.1 Pattern Counting Inference in Pascal and Zart

The first part of Zart is based on Pascal, which employs properties of the count-
ing inference. In levelwise traversal of frequent itemsets, first the smallest ele-
ments of an equivalence class are discovered, and these itemsets are exactly the
generators. Later, when finding a larger itemset, it is tested if it belongs to an
already discovered equivalence class. If it does, the database does not have to
be accessed to determine the support of the itemset. This way the expensive
database passes and support counts can be constrained to the case of generators
only. From some level on, all generators can be found, thus all remaining fre-
quent itemsets and their supports can be inferred without any further database
pass.

In Figure 1 (left) we show the output of Pascal when executed on dataset D
(Table 4): it finds frequent itemsets and marks frequent generators. Recalling the
definitions of MNR and RMNR, we see that this output is not enough. From
our running example, the output of Zart is shown in Figure 1 (right). Here one
can see the equivalence classes of database D. Only the maximal (frequent closed
itemset) and minimal elements (frequent generators) of each equivalence class
are indicated. Support values are shown in the top right-hand corner of classes.
As can be seen, the output of Zart is necessary and sufficient for generating GB,
IB, RIB, MNR, and RMNR.
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Fig. 1. Result of Pascal (left) and Zart (right) on D with min supp = 2 (40%)

3.2 Identifying Closed Itemsets among Frequent Itemsets in Zart

The second part of Zart consists in the identification of FCIs among FIs, adapting
this idea from Apriori-Close [5]. By definition, a closed itemset has no proper
superset with the same support. At the ith step all i-itemsets are marked as
“closed”. At the (i + 1)th iteration for each (i + 1)-itemset we test if it contains
an i-itemset with the same support. If so, then the i-itemset is not a closed
itemset since it has a proper superset with the same support, thus it is marked
as “not closed”. When the algorithm terminates with the enumeration of all FIs,
itemsets still marked “closed” are the FCIs of the dataset.

3.3 Associating the Generators to their Closures in Zart

Because of the levelwise itemset search, when an FCI is found, all its frequent
subsets are already known. This means that its generators are already computed,
they only have to be identified. We show that the search space for generators
can be narrowed to not closed ones. This is justified by the following properties:

Property 4. A closed itemset cannot be a generator of a larger itemset.

Property 5. The closure of a frequent not closed generator g is the smallest
proper superset of g in the set of frequent closed itemsets.

By using these two properties, the algorithm for efficiently finding generators
is the following: generators are stored in a list l. At the ith iteration, frequent
closed i-itemsets are filtered. For each frequent closed i-itemset z, the following
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steps are executed: find the subsets of z in list l, register them as generators
of z, and delete them from l. Before passing to the (i+1)th iteration, add the
i-itemsets that are not closed generators to list l. Properties 4 and 5 guarantee
that whenever the subsets of a frequent closed itemset are looked for in list l,
only its generators are returned. The returned subsets have the same support as
the frequent closed itemset, it does not even have to be tested. Since only the
generators are stored in the list, it means that we need to test far fewer elements
than the whole set of FIs. Since at step i the size of the largest itemset in list
l can be maximum (i − 1), we do not find the generators that are identical to
their closures. If an FCI has no generator registered, it simply means that its
generator is itself. As for the implementation, instead of using a “normal” list
for storing generators, the trie data structure is suggested, since it allows a very
quick lookup of subsets.

4 The Zart Algorithm

4.1 Pseudo Code

Due to lack of space, we can only give a short overview of the algorithm here.
The detailed description of Zart can be found in [19]. The main block of the
algorithm is given in Table 2. Zart uses three different kinds of tables, their
descriptions are provided in Table 1. We assume that an itemset is an ordered
list of attributes, since we will rely on this in the Zart-Gen function.

Table 1. Tables and table fields used in Zart

Ci potentially frequent candidate i-itemsets
fields: (1) itemset, (2) pred supp, (3) key, (4) support

Fi frequent i-itemsets
fields: (1) itemset, (2) key, (3) support, (4) closed

Zi frequent closed i-itemsets
fields: (1) itemset, (2) support, (3) gen

itemset – an arbitrary itemset
pred supp – the minimum of the supports

of all (i − 1)-long frequent subsets
key – is the itemset a generator?
closed – is the itemset a closed itemset?
gen – generators of a closed itemset

Zart-Gen function. As input, it gets an Fi table that has a set of frequent
itemsets. As output, it returns the Ci+1 table. The method is the following. It
fills the Ci+1 table with the one-size larger supersets of the itemsets in Fi. The
pred supp values in Ci+1 are set to the minimum of the supports of all one-size
smaller subsets. If a subset is not a generator, then the current itemset is not a
generator either, and thus its support is equal to its pred supp value.

Find-Generators procedure. As input it gets a Zi table. The method is the fol-
lowing. For each frequent closed itemset z in Zi, find its proper subsets in the
global FG list, register them as generators of z, delete them from FG, and add
not closed generators from Fi to FG.
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Table 2. Main block of Zart

1) FG ← { }; // global list of frequent generators
2) fill C1 with 1-itemsets and count their supports;
3) copy frequent itemsets from C1 to F1;
4) mark itemsets in F1 as “closed”;
5) mark itemsets in F1 as “key” if their support < |O|;

//where |O| is the number of objects in the input dataset

6) if there is a full column in the input dataset, then FG ← {∅};
7) i ← 1;
8) loop
9) {

10) Ci+1 ← Zart-Gen(Fi);
11) if Ci+1 is empty then break from loop;
12) count the support of “key” itemsets in Ci+1;
13) if Ci+1 has an itemset whose support = pred supp,

then mark it as “not key”;
14) copy frequent itemsets to Fi+1;
15) if an itemset in Fi+1 has a subset in Fi with the same

support, then mark the subset as “not closed”;
16) copy “closed” itemsets from Fi to Zi;
17) Find-Generators(Zi);
18) i ← i + 1;
19) }
20) copy itemsets from Fi to Zi;
21) Find-Generators(Zi);

4.2 Running Example

The execution of Zart on dataset D (Table 4, left) is illustrated in Table 3.
The algorithm first performs one database scan to count the support values of 1-
itemsets. The itemset d is pruned because it is not frequent. At the next iteration,
all candidate 2-itemsets are created and their support values are counted. In C2

there is one itemset with the same support as one of its subsets, thus be is not a
generator. Using F2, the itemsets b and e in F1 are not closed because they have
a proper superset with the same support. The remaining closed itemsets a and c
are copied to Z1 and their generators are determined. In the global list of frequent
generators (FG), which is still empty, they have no subsets, which means that
both a and c are generators themselves. Not closed generators of F1 (b and e)
are added to the FG list. In C3, abe and bce turn out to be not generators. Their
support values are equal to the support of be (Property 3). By F3, the itemsets
ab, ae, bc, and ce turn out to be not closed. The remaining closed itemsets ac
and be are copied to Z2. The generator of ac is itself, and the generators of be
are b and e. These two generators are deleted from FG and ab, ae, bc, and ce
are added to FG. The candidate abce is not a generator either, and as there are
no more candidate generators in C4, from this step on no more database scan
is needed. In the fifth iteration no new candidate is found and the algorithm
breaks out from the main loop. The generators of abce are read from FG. When
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Table 3. Execution of Zart on dataset D with min supp = 2 (40%)

DB
scan1

→ C1 pred supp key supp
a 4
b 4
c 4
d 1
e 4

F1 key supp closed
a yes 4 yes
b yes 4 yes
c yes 4 yes
e yes 4 yes

Z1 supp gen
a 4
c 4

FGbefore = {}
FGafter = {b, e}

DB
scan2

→ C2 pred supp key supp
ab 4 yes 3
ac 4 yes 3
ae 4 yes 3
bc 4 yes 3
be 4 yes 4
ce 4 yes 3

F2 key supp closed
ab yes 3 yes
ac yes 3 yes
ae yes 3 yes
bc yes 3 yes
be no 4 yes
ce yes 3 yes

Z2 supp gen
ac 3
be 4 {b, e}
FGbefore = {b, e}
FGafter = {ab, ae, bc, ce}

DB
scan3

→ C3 pred supp key supp
abc 3 yes 2
abe 3 yes 3
ace 3 yes 2
bce 3 yes 3

F3 key supp closed
abc yes 2 yes
abe no 3 yes
ace yes 2 yes
bce no 3 yes

Z3 supp gen
abe 3 {ab, ae}
bce 3 {bc, ce}
FGbefore = {ab, ae, bc, ce}
FGafter = {abc, ace}

C4 pred supp key supp
abce 2 yes 2

F4 key supp closed
abce no 2 yes

Z4 supp gen
abce 2 {abc, ace}
FGbefore = {abc, ace}
FGafter = {}

C5 pred supp key supp
∅

the algorithm stops, all FIs and all FCIs with their generators are determined,
as shown in Table 4 (right). In the table the “+” sign means that the frequent
itemset is closed. The support values are indicated in parentheses. If Zart leaves
the generators of a closed itemset empty, it means that the generator is identical
to the closed itemset (as this is the case for a, c, and ac in the example).

5 Finding Minimal Non-Redundant Association Rules
with Zart

Generating all valid association rules from FIs produces too many rules of which
many are redundant. For instance, in dataset D with min supp = 2 (40%)
and min conf = 50% no less than 50 rules can be extracted. Considering the
small size of the dataset, 5 × 5, this quantity is huge. How could we find the
most interesting rules? How could we avoid redundancy and reduce the number
of rules? Minimal non-redundant association rules (MNR) can help us. By
Definition 4, an MNR has the following form: the antecedent is an FG, the
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Table 4. A sample dataset D for the examples (left) and the output of Zart (right)

a b c d e

1 x x x x
2 x x
3 x x x x
4 x x x
5 x x x x

All frequent All frequent closed itemsets
itemsets (

S

i Fi) with their generators (
S

i Zi)
a (4) + be (4) + a (4); [a]
b (4) ce (3) c (4); [c]
c (4) + abc (2) ac (3); [ac]
e (4) abe (3) + be (4); [b, e]
ab (3) ace (2) abe (3); [ab, ae]
ac (3) + bce (3) + bce (3); [bc, ce]
ae (3) abce (2) + abce (2); [abc, ace]
bc (3)

Table 5. Comparing sizes of different sets of association rules

dataset AR GB IB RIB MNR RMNR
(min supp) min conf (all valid rules) (GB ∪ IB) (GB ∪RIB)

D (40%) 50% 50 8 17 13 25 21
90% 752,715 721,716 91,422 721,948 91,654

T20I6D100K 70% 986,058 232 951,340 98,097 951,572 98,329
(0.5%) 50% 1,076,555 1,039,343 101,360 1,039,575 101,592

30% 1,107,258 1,068,371 102,980 1,068,603 103,212
90% 140,651 8,254 2,784 9,221 3,751

C20D10K 70% 248,105 967 18,899 3,682 19,866 4,649
(30%) 50% 297,741 24,558 3,789 25,525 4,756

30% 386,252 30,808 4,073 31,775 5,040
95% 1,606,726 30,840 5,674 32,208 7,042

C73D10K 90% 2,053,936 1,368 42,234 5,711 43,602 7,079
(90%) 85% 2,053,936 42,234 5,711 43,602 7,079

80% 2,053,936 42,234 5,711 43,602 7,079
90% 20,453 952 682 1,496 1,226

Mushrooms 70% 45,147 544 2,961 1,221 3,505 1,765
(30%) 50% 64,179 4,682 1,481 5,226 2,025

30% 78,888 6,571 1,578 7,115 2,122

union of the antecedent and consequent is an FCI, and the antecedent is a
proper subset of this FCI. For the generation of such rules, the FCIs and their
associated generators are needed. Since Zart can find both, the output of Zart
(Table 4, right) can be used directly to generate these rules. For a very quick
lookup of frequent closed proper supersets of generators we suggest storing FCIs
in a trie.

The algorithm for finding MNR is the following: for each FG P1 find its
proper supersets P2 in the set of FCIs. Then add the rule r : P1 → P2 \ P1 to
the set of MNR. For instance, using the generator e in Figure 1 (right), three
rules can be determined. Rules within an equivalence class form the generic ba-
sis (GB), which consists of exact association rules (e ⇒ b), while rules between
equivalence classes are approximate association rules (e → bc and e → abc). For
extracting RMNR, the search space for finding frequent closed proper super-
sets of generators is reduced to equivalence classes that are direct neighbors, i.e.
transitive relations are eliminated. Thus, for instance, in the previous example
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only the first two rules are generated: e ⇒ b and e → bc. A comparative ta-
ble of the different sets of association rules, that can be extracted easily using
the output of Zart, is shown in Table 5.7 In sparse datasets, like T20I6D100K,
the number of MNR is not much less than the number of AR. However, in
dense, highly correlated datasets, like C20D10K or Mushrooms, the difference
is significant. RMNR always represents much less rules than AR, in sparse and
dense datasets too.

6 Experimental Results

We evaluated Zart against Apriori and Pascal. We have implemented these al-
gorithms in Java using the same data structures, and they are all part of the
Coron data mining platform [20]. The experiments were carried out on an In-
tel Pentium IV 2.4 GHz machine running Debian GNU/Linux operating system
with 512 MB RAM. All times reported are real, wall clock times as obtained
from the Unix time command between input and output. For the experiments
we have used the following datasets: T20I6D100K, C20D10K, and Mushrooms.
The T20I6D100K8 is a sparse dataset, constructed according to the properties
of market basket data that are typical weakly correlated data. The C20D10K is
a census dataset from the PUMS sample file, while the Mushrooms9 describes
mushrooms characteristics. The last two are highly correlated datasets. It has
been shown that weakly correlated data, such as synthetic data, constitute easy
cases for the algorithms that extract frequent itemsets, since few itemsets are
frequent. For such data, all algorithms give similar response times. On the con-
trary, dense and highly-correlated data constitute far more difficult cases for the
extraction due to large differences between the number of frequent and frequent
closed itemsets. Such data represent a huge part of real-life datasets. Response
times for the datasets are presented numerically in Table 6.

6.1 Weakly Correlated Data

The T20I6D100K synthetic dataset mimics market basket data that are typical
sparse, weakly correlated data. In this dataset, the number of FIs is small and
nearly all FIs are generators. Apriori, Pascal, and Zart behave identically. As
we can see in T20I6D100K, above 0.75% minimum support all frequent itemsets
are closed and generators at the same time. It means that each equivalence class
has one element only. Because of this, Zart and Pascal cannot use the advantage
of pattern counting inference and they work exactly like Apriori.

6.2 Strongly Correlated Data

In datasets C20D10K and Mushrooms, the number of FGs is much less than
the total number of FIs. Hence, using pattern counting inference, Zart has to

7 Note that in the case of GB, by definition, minimum confidence is 100%.
8 http://www.almaden.ibm.com/software/quest/Resources/
9 http://kdd.ics.uci.edu/
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Table 6. Response times of Zart and other statistics (number of FIs, number of FCIs,
number of FGs, proportion of the number of FCIs to the number of FIs, proportion of
the number of FGs to the number of FIs)

min supp execution time (sec.) # FIs # FCIs # FGs #F CIs
#F Is

#F Gs
#F Is

Apriori Pascal Zart

T20I6D100K
2% 72.67 71.15 71.16 378 378 378 100.00% 100.00%
1% 107.63 106.24 107.69 1,534 1,534 1,534 100.00% 100.00%

0.75% 134.49 132.00 133.00 4,710 4,710 4,710 100.00% 100.00%
0.5% 236.10 228.37 230.17 26,836 26,208 26,305 97.66% 98.02%
0.25% 581.11 562.47 577.69 155,163 149,217 149,447 96.17% 96.32%

C20D10K
50% 61.18 16.68 17.94 1,823 456 456 25.01% 25.01%
40% 71.60 19.10 19.22 2,175 544 544 25.01% 25.01%
30% 123.57 26.74 26.88 5,319 951 967 17.88% 18.18%
20% 334.87 53.28 54.13 20,239 2,519 2,671 12.45% 13.20%
10% 844.44 110.78 118.09 89,883 8,777 9,331 9.76% 10.38%

Mushrooms

60% 3.10 2.04 2.05 51 19 21 37.25% 41.18%
50% 6.03 3.13 3.13 163 45 53 27.61% 32.52%
40% 13.93 6.00 6.03 505 124 153 24.55% 30.30%
30% 46.18 12.79 12.84 2,587 425 544 16.43% 21.03%
20% 554.95 30.30 34.88 53,337 1,169 1,704 2.19% 3.19%

perform much fewer support counts than Apriori. We can observe in all cases
that the execution times of Zart and Pascal are almost identical: adding the FCI
derivation and the identification of their generators to the FI discovery does not
induce serious additional computation time. Apriori is very efficient on sparse
datasets, but on strongly correlated data the other two algorithms perform much
better.

7 Conclusion and Future Work

In this paper we presented a multifunctional itemset mining algorithm called
Zart, which is a refinement of Pascal. As an addition, it can identify frequent
closed itemsets, and it can associate generators to their closure. We showed that
these extra features are essential for the generation of minimal non-redundant
association rules. Experimental results show that Zart gives almost equivalent
response times to Pascal on both weakly and strongly correlated data.

An interesting question is the following: can the idea of Zart be general-
ized and used for any arbitrary frequent itemset mining algorithm, be it either
breadth-first or depth-first? Could we somehow extend these algorithms in a uni-
versal way to produce such results that can be used directly to generate not only
all valid association rules, but minimal non-redundant association rules too? Our
answer is positive [17], but detailed study of this will be subject of a next paper.
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Extensions of Bordat’s algorithm for attributes

K. Bertet, S. Guillas, and J.-M. Ogier

Laboratory L3I - University of La Rochelle - France

Abstract. In our works, we use a concept lattice as classifier of noised symbol
images. On the contrary of others methods of classification based on Formal
Concept Analysis [12], our approach is adapted to the special case of noisy since
it is based on a navigation into the lattice structure to classify a noised symbol
image : the navigation is performed from the minimal concept, until a final
concept is reached, according to the cover-relation between concepts. Class of
the input noised symbol is then the class associated to the reached final concept.

We use Bordat’s algorithm to generate the concept lattice since it generates
the cover relation of the lattice. In this paper, we present three extensions of
Bordat’s algorithm : the first extension generates the reduction of the concept
lattice to its attributes, i.e. a closure system on attributes ; the second extension
generates concepts only when required during the navigation, thus a reduction
of the total number of generated concepts ; the third extension generates the
concept lattice together with the canonical direct basis, i.e. a basis of implication
rules between attributes to describe them.

Key words: generation algoritm, concept lattice, classification, noised images

1 Introduction

In our current works in [16], we use a concept lattice as classifier of noised
symbol images, where objects are symbols and attributes are features issued
from images of symbols. On the contrary of others methods of classification
based on Formal Concept Analysis [12], our approach is based on a navigation
into the lattice structure to classify a symbol image : the navigation consists in
a breadth-first search in the concept lattice starting from the bottom, until a
final concept is reached, using a choice criteria to choose according to the cover-
relation between concepts. Class of the input noised symbol is then the class
associated to the reached final concept. This approach is similar to the use of a
decision tree, adapted to the special case of noisy objects.

Bordat’s algorithm is an appropriate algorithm to generate the concept lattice
since it generates the cover relation between concepts. A concept is a pair (A, B)
where A is a subset of attributes and B is a subset of objects. Since we only need
attributes during the navigation in the concept lattice, Bordat’s algorithm is first
extended to compute the reduction of the concept lattice to the attributes. Such
a reduction forms a closure system on attributes.

Only a small part of the concept lattice is explored by navigation, the others
concepts are not required. Thus, the navigation implies the possibility to on-line
generate a concept only when it is reached by navigation, aims of our second
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extension of Bordat’s algorithm. As the main drawback of the concept lattice is
its exponential complexity in the worst case, we understand the interest to build
only the concepts necessary to the recognition.

Implication rules between attributes represents an efficient tools to describe
relationship between attributes in different areas research (databases area [18] ;
data-mining [26], [25] ...). Among equivalent implicational systems, there exists
two basis : the canonical basis [14] that has the canonical and minimality pro-
perties ; the canonical direct basis [17] that has the directness, canonical and
minimality properties. As a third extension of Bordat’s algorithm, we describe
the generation the canonical direct basis while generated of the cover relation of
the concept lattice.

Section 2 gives definitions of a concept lattice, a closure system and an im-
plicational system. The three extensions of Bordat’s algorithm for classification
of noisy symbols are descried in Section 3.

2 Definitions

In this paper, all sets are finite sets and a subset X = {x1, x2, . . . , xn} is
written as the word X = x1x2 . . . xn. Moreover, we abuse notation and use
X + x (respectively, X − x) for X ∪ {x} (respectively, X\{x}), with X ⊆ S and
x ∈ S.

Binary relation and lattice. An order relation ≤ on a set S is a binary
relation on S which is reflexive (∀x ∈ S, x ≤ x), antisymmetric (∀x '= y ∈ S,
x ≤ y imply y '≤ x) and transitive (∀x, y, z ∈ S, x ≤ y and y ≤ z imply x ≤ z).
A partially ordered set P = (S,≤), also called a poset, is a set S equipped with
an order relation ≤. The cover relation ≺ on S is the transitive reduction of the
order relation ≤. A poset L = (S,≤) is a lattice if any pair {x, y} of elements
of L has a join (i.e. a least upper bound) denoted by x ∨ y and a meet (i.e. a
greatest lower bound) denoted by x∧y. Therefore, a lattice contains a minimum
(resp. maximum) element according to the relation ≤ called the bottom (resp.
top) of the lattice, and denoted ⊥S or simply ⊥ (resp. ,S or simply ,.)

An equivalence relation∼ on a set S is a binary relation on S which is reflexive
(∀x ∈ S, x ∼ x), symmetric (∀x '= y ∈ S, x ∼ y imply y ∼ x) and transitive
(∀x, y, z ∈ S, x ∼ y and y ∼ z imply x ∼ z). The equivalence class of a ∈ S is the
subset of all elements in S which are equivalent to a : .a/ = {x ∈ S : x ∼ a}.
The set of all equivalence classes in S given an equivalence relation ∼ is usually
denoted as S/∼, and called the quotient set of S by ∼. The quotient set S/∼
forms a partition of S.

Concept lattice. A formal context K = (G,M, I) consists of two sets G and
M , and a relation I between G and M . The elements of G are called the objects,
and the elements of M are called the attributes of the context. We define the
application f that associates to every element o ∈ G the set f(o) = {a ∈
M | (o, a) ∈ I}, and the application g that associates to every element a ∈ M
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the set g(a) = {o ∈ G | (o, a) ∈ I}. The extension of f to subsets A ⊆ G
provides :

f(A) = ∩o∈Af(o) = {a ∈ M |∀ o ∈ A, (o, a) ∈ I } (1)

Dually, the extension of g to subsets B ⊆ M provides :

g(B) = ∩a∈Gg(a) = {o ∈ G |∀ a ∈ B, (o, a) ∈ I} (2)

The two applications f and g forms a Galois connection between G and M .
A formal concept of a formal context K is a pair (A, B) with A ⊆ G, B ⊆ M ,

f(A) = B and g(B) = A. Let C be the set of all the concepts of K, and ≤C be
the following order relation on C, with (A1, B1) and (A2, B2) two concepts :

(A1, B1) ≤C (A2, B2) iff A1 ⊆ A2 (or equivalently B2 ⊆ B1) (3)

The poset (C,≤C) is a lattice called the concept lattice. This lattice is also
denoted Galois lattice by reference to the Galois connection (f, g) of the formal
context C. In particular ⊥ = (f(G), G) and , = (M, g(M)). Moreover for
all (A1, B1), (A2, B2) ∈ C, (A1, B1) ∨ (A2, B2) = (f(B1 ∩ B2), B1 ∩ B2) and
(A1, B1) ∧ (A2, B2) = (A1 ∩ A2, g(A1 ∩ A2)). In formal concept analysis (FCA)
concept lattices are used to analyze data when organized by a binary relation
between object and attributes. See the complete book of Ganter and Wille [12]
for a complete description of formal concept analysis.

Closure system. A set system on a set S is a family of subsets of S. A closure
system F on a set S, also called a Moore family, is a set system stable by inter-
section and which contains S : S ∈ F and F1, F2 ∈ F implies F1 ∩ F2 ∈ F. The
subsets belonging to a closure system F are called the closed sets of F.

The poset (F,⊆) is a lattice with, for each F1, F2 ∈ F, F1 ∧F2 = F1 ∩F2 and
F1 ∨F2 =

⋂
{F ∈ F |F1 ∪F2 ⊆ F}. Moreover, any lattice L is isomorphic to the

lattice of closed sets of a closure system (see [2] for more details).
A closure operator on a set S is a map ϕ on P(S) satisfying the three following

properties : ϕ is isotone (i.e. ∀X, X ′ ⊆ S, X ⊆ X ′ ⇒ ϕ(X) ⊆ ϕ(X ′)), extensive
(i.e. ∀X ⊆ S, X ⊆ ϕ(X)) and idempotent (i.e. ∀X ⊆ S, ϕ2(X) = ϕ(X)). Closure
operators are in one-to-one mapping with closure systems. On the first hand, the
set of all closed elements of ϕ forms a closure system Fϕ :

Fϕ = {F ⊆ S |F = ϕ(F )} (4)

Dually, given a closure system F on a set S, one defines the closure ϕF(X) of a
subset X of S as the least element F ∈ F that contains X :

ϕF(X) =
⋂

{F ∈ F |X ⊆ F} (5)

In particular ϕF(∅) = ⊥F. Moreover for all F1, F2 ∈ F, F1 ∨ F2 = ϕF(F1 ∪ F2)
and F1 ∧ F2 = ϕF(F1 ∩ F2) = F1 ∩ F2.

A concept lattice (C,≤C) is composed of two particular closure systems CG

and CM respectively defined on the set G of objects, and on the set M of
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attributes : CG is the restriction of C to the objects where each concept (A, B)
is replaced by the subset A of objects ; the associated closure operator is f ◦ g.
Dually, CM is the restriction of C to the attributes and the associated closure
operator is g ◦ f . Moreover, the three lattices (CG,⊆), (CM ,⊇) and (C,≤) are
isomorphic. See the survey of Caspard and Monjardet [5] for more details about
closure systems.

Implicational system. An Unary Implicational System (UIS for short) Σ on
S is a binary relation between P(S) and S : Σ ⊆ P(S) × S. An ordered pair
(A, b) ∈ Σ is called a Σ-implication whose premise is A and conclusion is b. It is
written A → b, meaning “A implies b”. A subset X ⊆ S respects a Σ-implication
A → b when A ⊆ X implies b ∈ X (i.e. “if X contains A then X contains b”).
X ⊆ S is Σ-closed when X respects all Σ-implications, i.e A ⊆ X implies b ∈ X
for every Σ-implication A → b. The set of all Σ-closed sets forms a closure
system FΣ on S :

FΣ = {X ⊆ S |X is Σ-closed} (6)

Then we can associate to Σ a closure operator ϕΣ = ϕFΣ which defines the
closure of a subset X ⊆ S

ϕΣ(X) = πΣ(X) ∪ π2
Σ(X) ∪ π3

Σ(X) ∪ . . . where (7)

πΣ(X) = X ∪
⋃

{b |A ⊆ X and A → b} (8)

An UIS Σ is a generating system of the closure system FΣ (using Eq. (4)),
and thus for the induced closure operator ϕ, and the induced lattice (FΣ ,⊆).
When some UISs Σ and Σ′ on S are generating systems for the same closure
system, they are called equivalent (i.e. FΣ = FΣ′).

An UIS Σ is called direct or iteration-free if for every X ⊆ S, ϕ(X) = πΣ(X)
(see Eq. (8)). An UIS Σ is minimal or non-redundant if Σ \ {X → y} is not
equivalent to Σ, for all X → y in Σ. It is minimum if it is of least cardinality,
i.e. if |Σ| ≤ |Σ′| for all UIS Σ′ equivalent to Σ. A minimum UIS is trivially
non-redundant, but the converse is not true in general. A minimal UIS is usually
called a basis for the induced closure system (and thus for the induced lattice),
and a minimum basis is then a basis of least cardinality.

The canonical direct basis described in [17] and denoted Σcd, has three main
properties : directness, canonical and minimality properties.

In the literature, an implicational system (IS for short) Σ can also be defined
as a binary relation on P(S). A Σ-implication is then an ordered pair (A,B) ∈ Σ,
written A → B, with A, B ∈ P(S). Generating systems (also called covers) and
bases can be also defined for IS. In this case, there exists an unique minimum
basis, called the canonical basis, also denoted the Guigues and Duquenne basis
([15]), enabling to get all the others minimum basis.

Other definitions and bibliographical remarks can be found in the survey of
Caspard and Monjardet in [5].
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Bordat’s algorithm. One of the first algorithm generating the concept lattice
is due to Chein [6] : concepts are generating from the inital context using sub-
matrix computation algorithm. These first algorithms has then been improved
using efficient methods for testing wether a concept has been already genera-
ted. The initial algorithms are Norris’s algorithm [23], Next Closure of Ganter
[11], Bordat’s algorithm [3]. Norris’s algorithm is an incremental algorithm, as
algorithms in [13] and [27]. Next Closure algorithm defines the lectic order (ex-
tended the inclusion order) between concept for testing wether a concept has
been already generated. Bordat’s agorithm computes the Hasse diagram of the
concept lattice, as algorithms in [4] and [27]. Nourine and Raynaud [24] use a
sophisticated tree data structure to generated concepts with the best theoretical
complexity.

Name : Concept-Lattice
Input: A context K = (G, M, I)

Output: The cover relation (C,≺) of the concept lattice of K

begin
C = {(f(G), G))};
foreach (A, B) ∈ C not marked do

F=cover (K, (A, B));
foreach B′ ∈ F do

A′ = g(B′);
if (A′, B′) #∈ C then add (A′, B′) in C;
add the cover relation (A, B) ≺ (A′, B′)

end
mark (A, B)

end
return (C,≺)

end

For our classification problem, Bordat’s algorithm [3], or any algorithm ge-
nerating the Hasse diagram, is the more appropriate since it generates the cover
relation between concepts. Bordat’s algorithm is issued from Theorem 1 that is
redefined in Corollary 1.

Theorem 1 (Bordat [3]). Let (A,B) and (A′, B′) two concepts of a context
(G,M, I). Then (A,B) ≺ (A′, B′) if and only if B′ is inclusion-maximal in the
following set system FA defined on G :

FA = {f(a) ∩B : a ∈ M −A} (9)

Corollary 1 (Bordat [3]). Let (A,B) be a concept. There is a one-to-one
mapping between Cover((A,B)) and the inclusion-maximal subsets of FA where :

Cover((A,B)) = {(A′, B′) : (A, B) ≺ (A′, B′)} (10)

CLA 2007 38 Montpellier, France



Bordat’s algorithm in Algorithm Concept-Lattice computes all the concepts
of C by computing cover(A,B) for each concept (A,B), starting from the bottom
concept ⊥ = (f(G), G), until all concepts are generated. It is in O(|C||M |α), with
2, 5 ≤ α ≤ 3, since each concept is issued from the computation of cover((A,B))
that is in O(|M |α).

Algorithm cover-objects describe the two steps of the computation of
cover((A, B)) : the set system FA has first to be generated in a linear time
since FA can be computed in an incremental way ; then inclusion-maximal sub-
sets of FA can easily be computed in O(|M |3), but the inclusion-maximal subsets
problem is known to be resolved in O(M |2,5) using sophisticated data structures
([10,22]).

Name : Cover-objects
Input: A context K ; A concept (A, B) of K

Output: The inclusion-maximal subsets of FA

begin

1. Compute FA : FA = {f(a) ∩B : a ∈ M −A};
2. Compute F : the maximal-inclusion subsets of FA;

return F
end

3 Extensions of Bordat’s algorithm for recognition of
noised symbols

Classification with a concept lattice. In our current works in [16], we use a
concept lattice as classifier of noised symbol images. Each symbol X is giving by
a vector of features (xi)i≤n, denoted its signature, and extracted from the image
of a symbol X using image analysis treatment. A class information c(X) is also
associated to each symbol.

The classification problem consists then in computing the class information
of not classed and noised symbols. This problem is usually decomposed into two
step : a learning step aiming at generating a classifier from a set of symbols as
input ; a classification step aiming at classify noised symbols using the classifier.
The noised symbol recognition problem takes as learning input a set of symbols
given by their signature and their class ; and as classification symbols a set of
noised symbols given by their signatures.

In the learning step, features of the signature are discretized into intervals
in order to separate between symbols of different classes. The relation between
the learning symbols (objects) and the features’s intervals (attributes) forms a
context K = (G,M, I) and the classifier is then the cover relation of the concept
lattice of K.
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This concept lattice classifier is used to classify a noised symbol X = (xi)i≤n

in a second step by navigation into the concept lattice. The navigation consists
in a breath-first search in the concept lattice starting from the bottom concept,
until a final concept is reached, using a choice criteria to choose according to the
cover-relation between concepts. Class of the input noised symbol is then the
class associated to the reached final concept, thus a concept is a final concept
when it is composed of objects of the same class. A final concept is covered by the
top concept. This classifier is based on three extensions of Bordat’s algorithm :
1. We need attributes and not objects during the navigation in the concept

lattice. Thus a first extension of Bordat’s algorithm to compute the closure
system on attributes instead if the concept lattice.

2. We explore by navigation only a small part of the concept lattice depending
on the input symbols to classify. So, all concepts are not required. The second
extension of Bordat’s algorithm consists to on-line generate a concept only
when it is reached by navigation.

3. Implication between attributes represents an efficient tools to describe at-
tributes. The third extension of Bordat’s algorithm is a generation of the
canonical direct basis while generating concepts.

Generation of the closure system on attributes. In the context of recog-
nition of noised symbols, the cover relation (CM ,≺) of the closure system on
attributes is sufficient for the navigation.

Let A ∈ CM be a closed set. The cover of A in the lattice (CM ,≺) is redefined
as :

Cover(A) = {A′ : A′ ≺ A} (11)

Although the set system FA is composed of subsets of objects of G, it is
defined according to attributes of M \A (see 9). Let us consider the two following
cases for a and a′ two attributes of M \ A :
1. If f(a) ∩ B = f(a′) ∩ B then a and a′ give raise to one subset f(a) ∩ B in

FA. Thus a and a′ are equivalent in this case.
2. If f(a)∩B '= f(a′)∩B, then the two subsets f(a)∩B and f(a′)∩B belong

to FA. The maximal-inclusion subsets of FA are deduced from the inclusion
relation between f(a) ∩B and f(a′) ∩B, and can be extended to a relation
between a and a′.
To formalize the first case, we introduce an equivalence relation ∼ on at-

tributes of M \ A. The second case can then be reformulated using an ordered
relation %A on the set of equivalence classes of ∼. This set is called the quotient
set by ∼ and denoted (M \ A)/∼ :
1. ∼ is an equivalence relation ∼ on M \ A defined by

∀a, a′ ∈ M \ A, a ∼ a′ ⇐⇒ f(a) ∩B = f(a′) ∩B (12)

2. %A is the order relation defined on the quotient set (M \ A)/∼ by :

∀a, a′ ∈ M \ A, .a/ %A .a′/ ⇐⇒ f(a) ∩B ⊆ f(a′) ∩B (13)

CLA 2007 40 Montpellier, France



Therefore, FA can be be extended to an order relation on equivalence classes
on attributes of M \ A. The following corollary extends Theorem 1 to an use of
the only attributes, and gives raise to Algorithm Closure-System that generates
the cover each closed set A using Algorithm cover-attributes.

Corollary 2. Let A ∈ CM . There is a one-to-one mapping between Cover(A)
and the maximal elements of the poset ((M \ A)/∼, %A).

Name : Closure-System
Input: A context K = (G, M, I)

Output: The cover relation (CM ,≺) of the lattice (CM ,⊆)

begin
CM = {f(G))};
foreach A ∈ CM not marked do

F=cover-attributes (K, A);
foreach X ∈ F do

A′ = A + X;
if A′ #∈ CM then add A′ in CM ;
add a cover relation A ≺ A′

end
mark A

end
return (CM ,≺)

end

Algorithm cover-attributes is very similar to Algorithm cover-attributes,
and can also be resolved in O(|C||M |α) using sophisticated data structure. Howe-
ver, the maximal elements of the inclusion relation %A can be updated in a incre-
mental way in O(|M |3) since equivalence classes for a closed set A are included
in those of closed set successors of A. Therefore, Algorithm cover-attributes
is in O(|M |3), and Algorithm Closure-System is in O(|C||M |3), as Bordat’s
algorithm.

A similar poset introduced by Morvan and Nourine and denoted G′
A in [20]

or Pred∗A in [21] is defined according to B \f(a) instead of f(A)∩B. They state
the following equivalent theorem :

Theorem 2 (Morvan, Nourine [20]). Let A ∈ CM . There is a one-to-one
mapping between Cover(A) and min(G′

A).

They derive from this theorem a generation algorithm of ”minimal interval
extensions” based on a one-to-one mapping between theses extensions and the
maximal chains of a closure system ordered by inclusion (i.e. a lattice). In ano-
ther paper [21], this algorithm has been simplified to the distributive case (case
where the concept lattice is distributive) in O(|C|) : in this case, the %A’s similar
poset can be computed in a post-treatment, and thus has not to be updated for
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each closed set. This generation is called the strong simplicial elimination scheme
and corresponds to the decomposition process of a distributive lattice in inter-
vals described by Markowski in [19] ; as to the duplication process of intervals
introduced by Day in [7] and generalized to other duplications in [8,9,1].

Name : cover-attributes
Input: A context K ; closed set A ∈ CM of attributes

Output: The maximal elements of ((M \ A)/∼, !A).

begin

1. Compute (M \ A)/∼ : the equivalences classes of ∼ on M \ A.

2. Compute !A : the inclusion relation on (M \ A)/∼;

3. Compute F : the maximal elements of !A

return F
end

Extension to an on-line generation. Algorithm On-Line-Closure-System
is an extension of Bordat’s algorithm to on-line generate closed sets according to
a choice criteria to select a closed set between cover(A). Since Bordat’s algorithm
generates concepts with a breath-first strategy, it has been adapted to a death-
first strategy in a recursive way, and has initially to be called with ϕ(∅) as first
closed set.

Let us notice that a death-first generation of all closed sets would consists in
replacing Select X in F by the loop ForEach X in F to consider all subsets
of F in the same way, thus uselessness of the else statement.

Algorithm On-Line-Closure-System is in (O(|Con−line||M |3) where Con−line

is the set of closed set on-line generated. This set depends of the symbols to clas-
sify : |M | ≤ |Con−line| ≤ |C|

Table 3 illustrates the interest of an on-line generation for recognition of
noised symbols.

Learning Recognition Number of concepts
Total generation 430,2 sec 2 sec 3185

On-line generation 0,5 sec 9,8 sec 282

Tab. 1. Recognition of 10 noised symbols ; Learning with 25 not noised symbols

Extension to generation of the canonical direct basis. It is possible to
extend relation %A to be defined on M \A instead on the quotient set (M \A)∼ :

∀a, a′ ∈ M \ A, a %A a′ ⇐⇒ f(a) ∩B ⊂ f(a′) ∩B (14)
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Name : On-Line-Closure-System
Input: A context K = (G, M, I) ; a suborder (C′

M ,≺) of the cover relation (C,≺) ;
a closed set A ∈ C′

M

begin
if A not marked then

F=Cover-Attributes (K, A);
Select X in F according to the choice criteria;
A′ = A + X;
add the cover relation A ≺ A′;
if A′ #∈ C′

M then add A′ in C′
M ;

mark A;

end
else

Let F = {A′ \ A : A′ ∈ C′
M and A ≺ A′};

Select X in F according to the choice criteria;

end
if A′ #= M then On-Line-Closure-System(K, C′

M ,≺, A′);

end

It’s important to notice that the relation %A defined on M \A isn’t an ordered
relation since a %A a′ and a′ %A a for two ∼-equivalent attributes a and a′.

It is stated in [?] that Pred∗A (i.e. relation %A) is equivalent to the dependance
relation δ defined for a lattice, and introduced in [?] (see also [?]). The dependence
relation δX is defined on S, with x, y ∈ S and X ⊂ S, by :

xδXy if and only if x '∈ ϕ(X), y '∈ ϕ(X) and x ∈ ϕ(X + y) (15)

In [?], the authors state the equality between the canonical basis and five
implicational systems issued from different works and satisfying various proper-
ties. One of the five implicational system is the dependence relation’s basis on
S is issued from the dependence relation :

Σcd = {X + y → x : xδXy and X is minimal for this property} (16)

Therefore, using relation %A, it is possible to compute the canonical direct ba-
sis Σcd of the closure set C′

M using Eq.16 as done by Algorithm Canonical-Direct-Basis.
In particular %∅ corresponds to the inclusion relation on M , and to unitary im-
plicational rules in Σcd (i.e. rules with a singleton as premise).

The canonical direct basis Σcd can be computed in (O(|CM ||M |3), thus a
complexity of Algorithm On-Line-Closure-System in (O(|CM ||M |3), as Bor-
dat’s algorithm.

4 Conclusion

We present in this paper three extensions of Bordat’s algorithm. Although
these extensions have been introduced for the noised symbol recognition problem,
it can be implemented with any concept lattice.
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Name : Canonical-Direct-Basis
Input: A context K = (G, M, I)

Output: The Cover relation of the lattice (CM ,⊆) ; The canonical direct basis Σcd

begin
CM = {f(G)};
Σcd = ∅;
Let !∅ be the inclusion relation on M ;
foreach (a, a′) ∈ M2 such that a !∅ a′ do

add a′ → a in Σcd

end
foreach A ∈ CM not marked do

Let F =cover-attributes (K, A);
Let !A= the inclusion relation on M \ A;
foreach X ∈ F do

A′ = A + X;
foreach (a, a′) ∈ M \ A′ such that a !A′ a′ and a # !Aa′ do

add A + a′ → a in Σcd

end
if A′ #∈ CM then add A′ in CM ;
add a cover relation A ≺ A′

end
mark A

end
return (CM ,≺) and Σcd

end

Acknowledgments to Philippe Sachot and Antoine Mercier for the implementa-
tion of the algorithms presented in this paper.
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95 :5–18, 1986.

15. J. Guigues and V. Duquenne. Familles minimales d’implications informatives
résultant d’un tableau de données binaires. Mathematiques & Sciences Humaines,
95 :5–18, 1986.

16. S. Guillas, K. Bertet, and J.-M. Ogier. Concept lattice classifier : a first step
towards an iterative process of recognition of noised graphic objects. In Fourth
International Conference on Concept Lattices and their Applications (CLA’2006),
pages 257–263, Tunisia, 2006.

17. B. M. K. Bertet. The multiple facets of the canonical direct basis, 2005.

18. D. Maier. The Theory of Relational Databases. Computer Sciences Press, 1983.

19. G. Markowski. Primes, irreducibles ans extremal lattices. Order, 9 :265–290, 1992.

20. M. Morvan and L. Nourine. Generating minimal interval extensions. Research
Report 92-015, LIRMM, Montpellier, juin 1992.

21. M. Morvan and L. Nourine. Simplicial elimination shemes, extremal lattices and
maximal antichains lattice. Order, 13(2) :159–173, 1996.

22. I. Munro. Efficient determination of the transitive closure of a directed graph.
Information Processing Letter, pages 56–58, 1971.

23. E. Norris. An algorithm for computing the maximal rectangles in a binary relation.
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Abstract. The interest in a further pruning of the set of frequent patterns that

can be drawn from real-life datasets is growing up. In fact, it is a quite survival

reflex towards providing a manageably-sized and reliable knowledge. This fact is

witnessed by the proliferation of what is called concise representation of frequent

patterns. In this paper, we propose an exact concise representation that explores

the disjunctive search space in addition to the conjunctive one, in contrast with

almost all known concise representations which only focussed on the latter space.

This representation required the definition of a new disjunctive closure operator.

The latter operator partitions the search space into distinct disjunctive equivalence

classes and, hence, makes possible to drastically reduce the number of handled

patterns. Empirical evidences are presented about the relative size of the new

representation w.r.t. those based on frequent closed, (closed) non-derivable and

essential patterns, respectively.

Keywords: Frequent pattern, Concise representation, Disjunctive search space,

Itemset.

1 Introduction and motivations

Within the traditional framework of association rule mining, managing the high number

of frequent patterns extracted from real-life datasets becomes an important topic (1). A

growing number of works hence explored the conjunctive search space to get out a

nucleus of patterns, from which the remaining ones can be derived without information

loss. Such an exploration was mainly motivated by the fact that the conjunctive operator

– linking items – got the monopoly since the application of association rules in market

basket analysis. Such a nucleus is better known as exact concise representation. Beyond

expected high compactness rates, an exact concise representation should make possible

to guess the frequency status of a pattern, and then to exactly retrieve its support when

it is frequent enough. The main exact concise representations proposed are those based

on frequent closed [1], non-derivable [2], closed non-derivable [3] (2) and essential

patterns [4]. The first three representations also have the interesting property of being

true (also called perfect in [4]) covers of frequent patterns, since their cardinality is

always smaller than that of the frequent pattern set.

1 Here we are mainly interested in itemsets as a pattern class.
2 This representation simply gathers the set of closures of frequent non-derivable patterns. It is,

hence, smaller in size terms than the previous two ones.
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The main originality of the concise representation based on frequent essential pat-

terns stands in the fact that it mainly explores the disjunctive search space where ele-

ments are characterized by their respective disjunctive supports, instead of conjunctive

ones. It hence makes use of the inclusion-exclusion identities [5] to bridge both con-

junctive and disjunctive search spaces. Nevertheless, in spite of such originality, this

representation suffers from two major disadvantages:

1. It is not self-contained in the sense that the essential pattern set does not make pos-

sible by itself to decide whether a pattern is frequent or not. Hence, such a set has to

be burdened by additional elements belonging to the positive border of the order ideal

induced by the frequency constraint.

2. Several essential patterns can characterize the same set of objects and, therefore, they

present a certain form of redundancy.

In this situation, finding a closure operator related to essential patterns would be of

paramount importance to get a more reduced concise representation. Indeed, thanks

to this operator, many essential patterns will be mapped into the same element within

the disjunctive search space. Thus, the obtained representation will be more compact,

especially for dense datasets. Furthermore, the simultaneous use of essential patterns

and disjunctive closed ones can also ease the detection of their respective disjunctive

equivalence classes and, hence, the traversal of the disjunctive search space. This can in-

tensively be explored in many applications as done within the conjunctive search space

thanks to their correspondences; minimal generators and closed patterns respectively

(see [6] for a study). Indeed, these particular patterns are structurally localized within

the associated lattice what gives them more semantics, contrary to other patterns nu-

merically retained (like non-derivable patterns) independently from their localization.

The rest of the paper is arranged as follows. The next section recalls the key notions

used throughout this paper. Section 3 describes the concise representation based on fre-

quent essential patterns. The disjunctive closure operator as well as its main properties

are detailed in Section 4, where a new disjunctive closure-based concise representa-

tion is also introduced. The empirical evidences about the utility of our approach are

provided in Section 5. Section 6 discusses the main related work.

2 Key notions

In this section, we briefly sketch the key notions used in the remainder of this paper.

Definition 1. (EXTRACTION CONTEXT) An extraction context is a triplet K = (O, I,
R), whereO represents a finite set of objects, I is a finite set of items andR is a binary

(incidence) relation (i.e.,R⊆O × I). Each couple (o, i) ∈R expresses that the object

o ∈ O contains the item i ∈ I.

Example 1. In the remainder, we will consider the extraction context depicted by Table

1 with O = {1, 2, 3, 4, 5, 6, 7} and I = {a, b, c, d}.

A pattern can be characterized by three kinds of supports as sketched by the follow-

ing definition.

Definition 2. [5] (SUPPORTS OF A PATTERN) Let K = (O, I, R) be an extraction

context. We distinguish three kinds of supports associated to a pattern I:
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a b c d

1 ×

2 × ×

3 × ×

4 × ×

5 × × ×

6 × × ×

7 × × ×

Table 1. An extraction context.

- Conjunctive support: Supp(I ) = | {o ∈ O | (∀ i ∈ I, (o, i) ∈ R)} |
- Disjunctive support: Supp(∨I ) = | {o ∈ O | (∃ i ∈ I, (o, i) ∈ R)} |
- Negative support: Supp(¬I ) = | {o ∈ O | (∀ i ∈ I, (o, i) /∈ R)} |

A pattern I is said to be frequent if Supp(I ) is greater than or equal to a user-specified

minimum support threshold, denoted minsup. Since frequent patterns fulfill the order

ideal property [7], the supersets of infrequent items will also be infrequent. The set of

items I (and consequently the extraction context K) will hence be considered as only

containing frequent ones. Infrequent items will thus be pruned. Please also note that

Supp(∨I ) ≥ Supp(I ).

Given the respective disjunctive supports of a pattern’s subsets, we are able to derive

its conjunctive support using the inclusion-exclusion identities [5]. Furthermore, thanks

to the De Morgan’s law, we are even able to straightforwardly derive its negative sup-

port. Lemma 1 shows these important properties.

Lemma 1. (DERIVATION OF THE CONJUNCTIVE AND NEGATIVE SUPPORTS) Let I ⊆
I be an arbitrary pattern. Its conjunctive and negative supports are respectively derived
as follows:

Supp(I ) =
∑

∅⊂I1⊆I

( − 1)| I1 | - 1 Supp( ∨ I1) (1)

Supp(¬I ) = | O | − Supp( ∨ I ) (2)

Example 2. Consider the extraction context of Table 1. Given the respective disjunc-

tive supports of bc’ subsets (3), its conjunctive and negative supports are inferred as

follows:

• Supp(bc) = ( − 1)|bc| − 1 Supp(∨bc) + ( − 1)|b| − 1 Supp(∨b) + ( − 1)|c| − 1

Supp(∨c) = - Supp(∨bc) + Supp(∨b) + Supp(∨c) = - 5 + 3 + 3 = 1.

• Supp(¬bc) = |O| - Supp(∨bc) = 7 - Supp(∨bc) = 7 - 5 = 2.

3 Frequent essential pattern-based concise representation

The next definition presents the frequent essential patterns. These patterns constitute

the core of the concise representation which motivates ours (cf. Section 1).

Definition 3. [4] (FREQUENT ESSENTIAL PATTERN) Let K = (O, I,R) be an extrac-

tion context and I ⊆ I. I is an essential pattern iff Supp(∨I ) )= max{Supp(∨I\i) | i∈
I}. An essential pattern I is also frequent if Supp(I ) ≥ minsup.

Example 3. Consider the extraction context of Table 1 for minsup = 1. ad is not an

essential pattern since Supp(∨ad) = Supp(∨a) = 7. Whereas bc is an essential pattern
since Supp(∨bc) = 5 )= max{Supp(∨b), Supp(∨c)} since Supp(∨b) = Supp(∨c) =

3. bc is also frequent since Supp(bc) = 1 ≥ minsup.

3 We use a separator-free form for the sets, e.g., the set bc stands for {b, c}.
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The set of frequent essential patterns, denoted FEPK, was proven in [4] to be an or-

der ideal in (2I , ⊆). The following theorem presents the frequent essential pattern-

based concise representation. BD+(FPK) denotes the set of maximal frequent pat-

terns, which is used to detect the frequency status of an arbitrary pattern.

Theorem 1. [4] The setFEPK of frequent essential patterns increased byBD
+(FPK)

constitutes an exact concise representation of the set of frequent patterns.

It is worth noting that in [8], this representation was shown not to be perfect, contrary

to the authors’ claim.

4 New disjunctive closure-based concise representation

Here we detail the main constructs related to the disjunctive closure operator [8], which

will make possible to map several essential patterns into a unique element within the

disjunctive search space. This is the starting point of our new concise representation.

4.1 The disjunctive closure operator

Let us start by defining the disjunctive closure operator.

Definition 4. (DISJUNCTIVE CLOSURE OPERATOR) Let K = (O, I, R) be an extrac-

tion context. The disjunctive closure operator h is defined as follows:
h : P(I) → P(I)

I +→ h(I ) = {i ∈ I | (∀ o ∈ O) ((o, i) ∈ R) ⇒ (∃ i1 ∈ I )((o, i1) ∈ R)}.

Roughly speaking, the disjunctive closure h(I ) of a pattern I is equal to the maximal

set of items which only appear in the objects that contain at least an item of I .

Example 4. Given the extraction context depicted by Table 1, the pattern bc is a dis-

junctive closed pattern since it is equal to the maximal set of items only contained in

the set of objects where b or c appears, i.e., {2, 3, 5, 6, 7}. Hence, h(bc) = bc. While
acd is not a disjunctive closed pattern since b only appears in the set of objects where

at least an item of acd appears. In fact, h(acd) = abcd.

Actually, Definition 4 gives an explicit expression of the disjunctive closure operator,

free from the connection operators linking P (I) and P (O). This definition structurally

characterizes the disjunctive closure of any pattern X and, hence, allows to straight-

forwardly compute it from any extraction context. To the best of our knowledge, our

work is the first one allowing the extraction of a concise representation of frequent

patterns based on a disjunctive closure operator, and, hence exploring the disjunctive

search space. We will denote by DCPK the set of disjunctive closed patterns extracted

from a context K. Thanks to the closure operator h, the disjunctive search space is

partitioned into distinct disjunctive equivalence classes. In the latter classes, disjunc-

tive closed (resp. essential) patterns are the largest (resp. minimal) elements, w.r.t. set

inclusion.

The following propositions allow to establish the relation between the smallest dis-

junctive closed pattern containing a pattern I and h(I ).

Proposition 1. Let I ⊆ I. h(I ) is the smallest disjunctive closed pattern containing I:
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h(I ) = min⊆{f ∈ DCPK | I ⊆ f}.

Proposition 2. Let I ⊆ I. Supp( ∨ I ) = Supp( ∨ h(I )).

Proposition 3 makes possible to deduce the disjunctive closure of a pattern using

the disjunctive closure of one of its subsets, while Proposition 4 establishes the link

between disjunctive closed patterns and frequent essential patterns.

Proposition 3. Let X ⊆ I and Y ⊆ I be two patterns. We then have:
(X ⊆ Y ⊆ h(X )) ⇒ (h(Y ) = h(X )).

Proposition 4. Let I ⊆ I and FPK be the set of frequent patterns. We then have:

(I ∈ FPK) ⇒ (∃ f ∈ DCPK and I1 ∈ FEPK s.t. h(I1) = h(I ) = f and I1 ⊆ I ).

Proof. (Sketch) The proof is based on the fact that the set FEPK is an order ideal in

(2I , ⊆) whose elements are the minimal ones in their associated disjunctive equiva-

lence classes.

In the remainder of the paper, we will denote by EDCPK (Essential Disjunctive

Closed Patterns) the subset of DCPK whose elements have at least a frequent essential

pattern as generator. Thanks to Proposition 4, it is easy to show that the disjunctive

closures of the patterns belonging to BD+(FPK) are contained in EDCPK.

Example 5. Consider the context of Table 1. Within the disjunctive lattice sketched by

Figure 1, different sets of patterns are indicated. The essential patterns are shown with

bold letters, while the disjunctive closed patterns are underlined. The set FEPK in-

duces an order ideal structure, as shown in Figure 1 for minsup = 1. Let BD−(FEPK)

be the negative border of FEPK equal to min⊆{I ∈ P (I) \ FEPK}. The elements
belonging to this border are in italic. An example of a disjunctive equivalence class,

induced by the disjunctive closure operator, is also sketched. Its minimal element is the

essential pattern a and its largest one is the disjunctive closed pattern abcd. Please
note that if, for example, a pattern is in bold letters and is also underlined, then this

means that it is both an essential pattern and a disjunctive closed one. As an indication,

the patterns belonging to BD+(FPK) are encircled.

 
! 

(a, 7) (b, 3) (c, 3) (d, 3) 

(bc, 5) (bd, 5) (cd, 5) (ab, 7) (ac, 7) (ad, 7) 

(bcd, 6) ( abc , 7) ( abd , 7) ( acd , 7) 

(abcd, 7) 

!"#$%&'#&$
('#)*$
+"),#$%-$
-&#./#01$
#++#01()*$
,)11#&0+$

2$'(+3/041(5#$
#./(5)*#04#$4*)++$

Fig. 1. The associated disjunctive lattice where each node contains a disjunctive pattern with its

disjunctive support.
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4.2 New disjunctive closure-based concise representation

It is commonly known that the definition of a concise representation is closely related to

the way the whole set of frequent patterns will be generated starting from its elements.

Suppose we have at hand the set EDCPK where each element is provided with its

disjunctive support (as it is the case in [8]). We need to analyze the “tools” that will be

of help in such a regeneration process. To the best of our knowledge, only the formula

shown in Lemma 1 makes the link between the disjunctive support of a pattern and its

conjunctive one. This formula requires knowing beforehand the disjunctive supports of

the subsets of a given candidate to be able to compute its conjunctive support. Hence, an

APRIORI-like regeneration is naturally advocated. This manner of regeneration consists

in finding the conjunctive supports of 1-patterns, 2-patterns, and so on.

Let X be a pattern to which we are interested in retrieving its conjunctive support.

Reaching X is conditioned by the fact that all its subsets (and more precisely, the im-

mediate ones) are proven to be frequent. Indeed, the set of frequent patterns is an order

ideal [7]. Hence, if a subset of X is infrequent, then X will necessarily be infrequent.

Assume now that all subsets of X are frequent. At this step, the main information we

have about each subset consists in its disjunctive closure (cf. Proposition 1) and, con-

sequently, its different supports (cf. Lemma 1). If X is included in the closure of one

of its immediate subsets, then we have its disjunctive closure and, hence, its disjunctive

support (cf. Proposition 3). We can thus compute its conjunctive support. Please note

that in this case, X is obviously not an essential pattern. If X is included in none of

its subsets’ closures, then X is necessarily an essential pattern. However, the closure of

X is required to correctly compute its conjunctive support and then deduce if X is fre-

quent or not. Nevertheless, how can we ensure that such a closure belongs to EDCPK?

Indeed, X can be an infrequent pattern and, at the same time, the unique generator of

its disjunctive equivalence class. Hence, its closure will necessarily not be in EDCPK
(4). This important part was missed in [8], what motivates a careful scrutiny to correct

the representation and make it really exact.

At this step of the treatment, to correctly regenerate the whole set of frequent pat-

terns, it is clear that we need the disjunctive closures of frequent patterns (i.e., EDCPK),

augmented by the closures uniquely generated by essential patterns belonging to the

negative border of FEPK. These latter closures do not belong to EDCPK, but they

bring key information when an infrequent essential pattern is reached. They are also

necessarily sufficient because once an infrequent pattern is discovered all its supersets

will not be treated. Hence, an important result is that EDCPK is not sufficient to ensure

the exact regeneration of the whole frequent pattern set, what makes the claim of the

authors in [8] incorrect. As characterized in the remainder, some closures should then

be added to ensure that some candidates will not be erroneously considered as frequent

whereas they are actually infrequent. These closures will form the set ADCPK (Added

Disjunctive Closed Patterns). An interesting question will be: how can we reduce the

cardinality of ADCPK without affecting the exact regeneration of the whole frequent

pattern set?

4 If X is not the unique essential pattern of its disjunctive equivalence class C, then its closure

can belong to EDCPK if C contains at least a frequent pattern.
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Let X be an infrequent essential pattern belonging to BD−(FEPK). Let us have a

look at the formula establishing the link between the conjunctive and disjunctive sup-

ports:

Supp(X ) =
∑

∅⊂X′⊆X

( − 1)|X
′|−1Supp(∨X ′) = (−1)|X|−1Supp(∨X ) +

∑

∅⊂X′⊂X

( − 1)|X
′|−1Supp( ∨ X ′).

Suppose that |X| is even. Hence, ( − 1)|X|−1 = -1. Assume now that we did not

compute the disjunctive closure f of X . Then, two cases can arise: either X is covered

by at least an element in EDCPK or is not covered at all (i.e., ∀ f ′ ∈ EDCPK, X ! f ′).

In the latter case, it is obvious that X is infrequent (cf. Proposition 4). Let us analyze

the former case. Let f1 be the smallest closure in EDCPK covering X . It is clear that f
⊆ f1 (otherwise, the closure of X will never be f ) (5). Hence, Supp(∨f1) ≥ Supp(∨f )

= Supp( ∨ X ). Hence, if we use Supp( ∨ f1) in the formula instead of Supp( ∨ X ), the

support value we obtain will be lower than or equal to the exact support of X (6). This

does not affect the final decision about the frequency status of X since it is infrequent

and the possible decrease of its support will maintain its infrequency status. Hence, if X
is an infrequent pattern of even size belonging to BD−(FEPK), we need not compute

its disjunctive closure, what consists in a very interesting pruning.

Example 6. Consider the extraction context depicted by Table 1 for minsup = 2. Ap-

plying an extraction process, we obtain EDCPK = {(b, 3), (c, 3), (d, 3), (abcd, 7)},
where each couple represents a disjunctive closed pattern and its disjunctive support.

Let us regenerate the set of frequent patterns. We begin by 1-patterns, i.e., a, b, c and

d. The smallest closure containing a is abcd. Hence, its disjunctive support is equal to
7, which also corresponds to its conjunctive support. It is the same for the remaining 1-

patterns. Thus, we find that their associated conjunctive supports are respectively equal

to 7, 3, 3 and 3. We hence have the four candidates frequent. We then handle candi-

date 2-patterns. Consider the case of bc whose subsets are proven to be frequent. The

smallest closure in EDCPK containing bc is abcd. However, abcd is not the actual

closure of bc. Nevertheless, this does not affect the final decision about the frequency
status of bc. Indeed, three cases should be distinguished: (i) if bc was frequent, hence

its closure must belong to EDCPK, (ii) if bc is not covered by the elements of EDCPK

then bc is necessarily infrequent, otherwise, (iii) since |bc| = 2, then (-1)|bc|−1 = -1

and hence taking a largest closure (i.e., abcd), instead of the actual one (i.e., bc) will

decrease the result obtained thanks to Formula (1) (cf. Lemma 1), and, hence, bc will

always be considered as infrequent and no status change can arise. Thus, the closure of

bc is not required in the representation when bc is infrequent. Note that the applica-

tion of Formula (1) is required independently from the frequency status of bc since we

cannot guess its status beforehand only if it contains an infrequent subset what is not

the case here.

Unfortunately, such a pruning cannot be applied when X is of odd size. Indeed,

in this case, ( − 1)|X|−1 = +1. Thus, using Supp( ∨ f1) instead of Supp( ∨ X ) will

5 f can be equal to f1 if it also has a frequent essential pattern as generator.
6 The computation of the conjunctive support of X is inevitable since we cannot beforehand

predict whether it is frequent or not.
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probably lead to the increase of Supp(X ). Consequently, if X is infrequent and we

augment its conjunctive support, then this may lead to a support value greater than

or equal to minsup what clearly falsifies its frequency status. In this situation, we can

further reduce the cardinality of ADCPK by only maintaining the closure f of X if it is

included in at least an element of EDCPK. Indeed, a pattern X is eligible to be frequent

only if it is covered by a pattern of EDCPK (cf. Proposition 4). This can simply be done

once f is computed by set inclusion operations with maximal elements of EDCPK.

Example 7. Now consider the context of Table 1 for minsup = 1. EDCPK = {(b, 3), (c,
3), (d, 3), (bc, 5), (bd, 5), (cd, 5), (abcd, 7)}. As in the previous example, we begin by
1-patterns, i.e., a, b, c and d. We find that their associated conjunctive supports are
respectively equal to 7, 3, 3 and 3. We then treat candidate 2-patterns and we find that

the different candidates are frequent. We now reach candidate 3-patterns. The unique

candidate is bcd since all its subsets are proven to be frequent. bcd hence fulfills the

order ideal property of frequent patterns. It is also not contained in the closure of its

subsets (cf. Figure 1). bcd is hence an essential pattern. If we will apply the same re-

generation process to bcd, abcd will be considered as the disjunctive closure of bcd
since it is the smallest one in EDCPK containing it. The conjunctive support of bcd
will then be equal to 1. However, this is not true because abcd is not the actual disjunc-
tive closure of bcd. The latter should be equal to bcd. Since |bcd| = 3, (-1)|bcd|−1

= +1 and hence taking a largest closure (i.e., abcd), instead of the actual one (i.e.,

bcd), will augment the conjunctive support of bcd, actually equal to 0, which shifts

its status from infrequent to frequent. The problem arises because EDCPK only con-

tains closures having at least a frequent essential pattern as generator. This is not the

case of h(bcd) equal to bcd whose unique generator is obviously bcd. Such a closure
necessarily does not belong to EDCPK since bcd is infrequent (its conjunctive sup-

port is equal to 0). Hence, its closure must be added to the representation to ensure not

including bcd with the set of frequent patterns during the regeneration process.

We now give the formal definition of the set ADCPK that ensures the new repre-

sentation being exact.

Definition 5. Let EPK be the set of the essential patterns that can be extracted from

a context K. The set ADCPK is defined as follows: ADCPK = {h(X ) | (X ∈
BD−(FEPK)

⋂
EPK) ∧ (( − 1)|X| = -1) ∧ (∀X ′ ⊆ I, h(X ′) = h(X ) ⇒

Supp(X ′) < minsup) ∧ (∃f ∈ EDCPK s.t. h(X ) ⊂ f )}.

To summarize, ADCPK contains closures generated by infrequent essential patterns

of odd sizes belonging to BD−(FEPK). These closures have all their corresponding

essential patterns infrequent and are covered by at least one element of EDCPK. It

is important to mention that in ADCPK, we did not consider the disjunctive closures

of infrequent non-essential patterns belonging to BD−(FEPK) since they are already

included in EDCPK (cf. Proposition 3).

The concise representation EDCPK
⋃
ADCPK will be denoted DCPK rep.

Theorem 2. DCPK rep is an exact concise representation of FPK.

The proof of Theorem 2 can be treated as a naive algorithm for deriving frequent pat-

terns and their associated supports.
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In addition to the exact retrieval of frequent patterns as well as their various sup-

ports, DCPK rep presents three other main properties:

1. Homogeneity: DCPK rep only involves disjunctive closed patterns (vs. FEPK
⋃

BD+(FPK)). Hence, it ensures the homogeneity of the representation since all its ele-

ments are provided with the same kind of support; the disjunctive one. They also have

the same structural properties. Indeed, they are the top elements of their associated

equivalence classes within the disjunctive search space.

2. Small size: In [8], the size of EDCPK is shown to be significantly smaller than those

of the best known concise representations. In addition, the size of ADCPK is very

small since its elements must fulfill many easy-to-check constraints. Hence, the size of

DCPK rep will be, in most cases, smaller than those of the other representations.

3. Low regeneration cost: It is worth mentioning that our concise representation allows

retrieving the conjunctive support faster than from (closed) non-derivable patterns [2,

3]. Indeed, for a pattern X s.t. |X| = n, the retrieval process of Supp(X ) from these rep-

resentations requires the costly evaluation of 2n deduction rules based on Bonferroni-

inequalities [9]. The computation cost for inferring supports is then awfully high. While

the retrieval of Supp(X ) from our concise representation only needs to evaluate a unique

inclusion-exclusion identity. Furthermore, it allows the straightforward retrieval of the

disjunctive and negative supports of frequent patterns.

5 Experimental results

We compare, through various experiments, the size of our concise representation to

those of the exact ones based on frequent closed, (closed) non-derivable and essential

patterns. This is done in the most critical cases, i.e., for strongly correlated datasets (7).

Indeed, within such datasets, the ratio between the cardinality of the frequent pattern set

and those of concise representations is high. Thus, we are in the most interesting cases.

Moreover, equivalence classes extracted from sparse datasets are often reduced to the

associated generators and cannot be compacted anymore. This makes the size reduction

rates brought by concise representations meaningless in such datasets. Due to lack of

space, we only summarize the main results in this section.

All experiments were carried out on a PC equipped with a 1.73GHz Centrino Duo

Core and 2GB of main memory, and running the Linux version Fedora Core 6 (with

2GB of swap memory). Results are shown in Table 5. The abbreviation “FPK set”(resp.

“FCPK rep” (8), “NDPK rep”, “CNDPK rep”, and “FEPK rep”) is used to stand

for the set of frequent patterns (resp. frequent closed, non-derivable, closed non-derivable

and essential pattern-based concise representation). It is important to note that in the ex-

perimental results given in [3], the authors have chosen a specific interval of minsup for

each dataset to extract CNDPK rep. However, we noticed that their program abruptly

comes to an end with an execution error beyond these intervals. Therefore, we use the

symbol “-” to designate a case where an execution error occurred. At a glance, we can

also deduce the following assertions:

1. Necessity to set up concise representations: Indeed, their respective sizes w.r.t. that

7 These datasets are available at: http://fimi.cs.helsinki.fi/data.
8 Source codes for extracting frequent (closed) patterns are available at:

http://fimi.cs.helsinki.fi/src.
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of the set of frequent patterns clearly show their utility and potential benefits. In particu-

lar, even for highminsup values, the cardinality of the introduced concise representation

is considerably reduced.

2. Effectiveness of the proposed concise representation: Indeed, for CHESS, CON-

NECT and PUMSB datasets, the size of DCPK rep is significantly reduced compared

to those of the remaining concise representations, while offering different kinds of pat-

terns’ supports.

3. Scalability of DCPK rep: It is easily observable that, in most cases, the cardinality

of DCPK rep is less sensible to the variation of minsup than those of the other concise

representations.

4. Absence of an outstanding concise representation: For example, in some cases, the

size of DCPK rep is slightly greater than the size of the other concise representations

(e.g., MUSHROOM for minsup = 5%).

minsup (%) |FPK set | |FCPK rep| |NDPK rep| |CNDPK rep| |FEPK rep| |DCPK rep|

CONNECT

90 27, 127 3, 486 199 177 398 22
70 4, 129, 839 35, 875 545 491 1, 710 161
50 88, 324, 400 130, 112 1, 397 - 5, 063 589
30 1, 331, 673, 367 460, 356 3, 221 - 14, 083 1, 986

MUSHROOM

40 565 140 146 117 151 91
20 53, 583 1, 197 1, 143 731 1, 258 941
10 574, 431 4, 885 4, 347 2, 655 6, 530 5, 457

5 3, 755, 511 12, 843 11, 569 6, 546 24, 407 20, 554

CHESS

90 622 498 95 93 118 43
70 48, 731 23, 892 684 669 1, 482 420
50 1, 272, 932 369, 450 3, 425 3, 341 14, 272 1, 971
30 37, 282, 962 5, 316, 467 15, 147 - 147, 777 8, 824

PUMSB

90 2, 607 1, 467 586 460 788 318
80 142, 156 33, 308 3, 642 2, 136 6, 251 1, 079
70 2, 698, 654 241, 259 7, 875 4, 564 18, 318 2, 143
60 19, 529, 991 1, 074, 627 21, 323 - 54, 644 5, 550
50 165, 903, 540 7, 121, 264 47, 764 - 232, 581 11, 551

Table 2. Size of the different concise representations for benchmark datasets.

6 Discussion

First of all, let us make an alignment between the disjunctive search space and the

conjunctive one. We will hence find that an essential pattern is the mapping of the

concept of minimal generator (aka key pattern and free-set in the literature, see [6]

for references) when the conjunctive search space is considered. While the disjunctive

closed patterns are the mapping of conjunctive ones [1].

The concepts of essential and disjunctive closed patterns can be considered as par-

ticular cases of composite items [10] where the disjunction of items is used to compose

new items, the composite ones. This is an attempt towards making useful infrequent

items in some applications. For example, consider the context of Table 1 and let minsup

= 4, b and c are hence infrequent items since their support is equal to 3. Nevertheless,

the support of b∨c is equal to 5 and, hence, Supp(b∨c) ≥ minsup. b∨c will be consid-

ered as a new item (a composite one) even if, actually it is composed of two items. It

will be used during the mining process since it is frequent what makes b and c useful.
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It is important to make the link between our work and that of Zhao et al. Indeed, in

[11], the authors proposed connection operators to link P (I) and P (O) for the case of

disjunctive Boolean expressions. Nevertheless, their definition of the operator linking

P (O) to P (I) depends on that ensuring the opposite direction and was not indepen-

dently given from any other operator. Furthermore, they neither proposed the expres-

sion of the resulting closure operator nor carried out a thorough analysis of inherent

structural properties.

The disjunction operator (i.e., the operator ∨) has also been used to define some

concise representations only exploring the conjunctive search space, like those based

on disjunction-free sets and (generalized) disjunction-free generators [12] (9). This re-

quired the introduction of what is called disjunctive rule. Such a rule has a premise part

composed by a conjunction of items and a conclusion part, distinct from the premise

one, containing a specified number of items linked using the disjunction operator [12].

Some works [13, 14] were interested in using disjunction within association rules to

define what is called generalized association rules. These rules grasped the interest of

many researchers since they offer wealthier types of knowledge in many applications.

In addition to the inclusive disjunction operator, i.e., the operator ∨, the authors in

[13] were also interested in the exclusive disjunction operator, denoted ⊕. In [14], the

author mainly focusses on association rules having conclusions containing mutually

exclusive items, i.e., the presence of one of them leads to the absence of the others,

what is expressed in [13] using the operator ⊕. Other forms of generalized association

rules were also described in [15].

7 Conclusion and future work

In this paper, we presented a new disjunctive closure operator as well as its main prop-

erties. Based on this operator, we introduced a new concise representation which cor-

rects the claim of [8] where the associated representation can miss some cases. This

required the addition of few further elements what ensures the correctness of the whole

regeneration process of frequent patterns. In addition to interesting compactness rates,

our concise representation allows a straightforward computation of the disjunctive and

negative supports. The experimental results showed that, in most cases, its size is signif-

icantly smaller than those of the best known concise representations. It is worth noting

that our approach can easily be extended when negative items are handled.

Other avenues for future work mainly address the following points: First, due to

space limitations here, we intend to address as next step the complexity time issue

(generation and derivability) of our representation vs. those of the literature. In this

respect, other algorithms for mining conjunctive closed patterns could be adapted to

disjunctive ones, both breadth-first search algorithms and depth-first ones. Second, a

structural characterization of disjunctive closed patterns w.r.t. existing frameworks like

the k-free sets [12] will be done. Another important task consists in overcoming the

lack in the literature of semantics’ studies related to concise representations. The study

of the possible extension of our representation to other pattern classes should also be

examined. Finally, the extraction of generalized association rules will be thoroughly

9 We did not use these representations in our experiments since NDPK rep (and consequently,

CNDPK rep) is shown in [2] to provide better results.
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addressed. Indeed, setting up a theoretical framework that includes different kinds of

operators is of paramount importance for jumping beyond standard association rules.
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An FDP-Algorithm for Drawing Lattices
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Abstract. In this work we want to discuss an algorithm for drawing
line diagrams of lattices based on force directed placement (FDP). This
widely used technique in graph drawing introduces forces acting on nodes
and lines. A balanced state of the system will result in a diagram fulfill-
ing the desired properties due to the underlying physical model. In our
framework the aim was to maximize the conflict distance. In contrast
to existing programs our approach provides attribute additive diagrams
since forces act on

V
-irreducibles only. Another relevant aspect is a care-

ful initialization that helps to minimize the number of edge crossings.

1 Motivation

We observe a growing demand on visualizations of concept lattices for repre-
senting knowledge in FCA. Several programs [1, 7, 15] use diagrams for explor-
ing and analyzing database structures. Unfortunately, the automatic layout of
the diagrams remains a difficult task. In order to gain the acceptance of the
user, who is in general not an expert, the drawings should be easily readable.
However, nobody knows exactly what that means since it is obviously not pos-
sible to mathematize human esthetic sensations. Nevertheless, there exist some
algorithms for drawing lattices with the computer [1, 9, 19] based on different ap-
proaches. In this work we want to present such an attempt combining the FCA
view on diagram layouting with tools developed in the theory of graph drawing.

2 Preliminaries

2.1 How to Draw a Diagram

The graph drawing community developed a variety of methods to classify layout
algorithms [5]. First we have the drawing conventions declaring general con-
straints of the resulting drawings. In our attempt this includes the following:

1. line diagrams, a common principle for drawing lattices automatically,
2. upward diagrams, sometimes also called Hasse-diagram, a common method

in order to avoid arrows on diagram lines,
3. attribute additive diagrams, a principle introduced more generally in [11].
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While the first two conventions are canonical in lattice drawing algorithms, the
third is not. Also layer diagrams [9] or hybrid diagrams [2] are employed. The
first alternative seems less applicable for our purpose since in general it does
not emphasize the grid structure of a lattice. The second however offers some
advantages in case of non-distributive lattices1. Nevertheless it still adheres to
the layer convention.

The second technique to create algorithms is the employment of esthetic criteria.
They are mostly given by optimization tasks whose compliance is supposed to
increase the diagrams quality, i.e. readability. Examples include

– minimize the number of slopes,
– maximize the smallest angle between incident lines,
– put the nodes onto an orthogonal grid.

There is little empirical analysis about the importance of that criteria. Two
studies were made [16, 17] but only for general lattices. They highlighted the
criterion of minimizing the number of edge crossings. Therefore we tried to em-
phasize it in our algorithm. The second criterion taken into our consideration is
maximizing the conflict distance [12], i.e. the least distance between a node and
a non-incident line.

Finally, diagram algorithms are distinguished in classes characterizing the way
how the actual layout process is done. The layer method (see [5] for an overview)
is fairly prominent [2] as well as force directed methods (introduced in [8], see [5]
for an overview) implemented in [19] or a combination of both [9]. We decided
to implement a force directed method since it is a natural way to maximize the
conflict distance. Unlike other attempts, we keep the diagram attribute additive,
thereby better satisfying the esthetic criterion of displaying symmetries.

2.2 Diagrams of Lattices

We consider diagrams in the usual way (see for instance [14] for a formal defi-
nition). Instead of the lattice V = (V,≤) itself we draw only its graph (V,≺)
(where ≺ denotes the upward neighbourhood relation in V). A line diagram
(briefly diagram) is an injective mapping pos fulfilling the upward drawing con-
vention that assigns a point pos(v) in the Euclidian plane (called node) to each
lattice element v. An element e = (v, w) of ≺ is mapped to a straight line segment
between pos(v) and pos(w), for convenience we write pos(e) for the image.

Next we want to remind the already mentioned attribute additivity [11, 18]. Since
we consider lattices instead of concept lattices in this work, we sloppily define:
A diagram of a lattice V is attribute additive if the

∧
-irreducibles m ∈ M(V)

are assigned to vectors vec(m) and all elements v are mapped to the sum of the
vectors of

∧
-irreducibles greater or equal than them, i.e.

pos(v) =
∑

m≥v

vec(m).

1 That can be easily observed at the lattice Mn. Hybrid diagrams do not push the
0-element of the lattice disproportional downwards.
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Finally we introduce the conflict distance due to [12]:

Definition 1 Let G = (V, E) be a simple graph and pos(G) a diagram of it.
Let v ∈ V be a vertex and e ∈ E be a non-incident line w.r.t. v. The node-
line-distance between pos(v) and pos(e) is the least Euclidian distance between
pos(v) and any point w ∈ pos(e). The conflict distance of pos(G) is the smallest
of all node-line-distances in pos(G).

2.3 Left-Relations on Lattices

Left-relations give a possibility to characterize planar lattices and to describe
plane diagrams of them [20–22]. They are closely related to conjugate orders [6].
Intuitively, a left-relation on a diagram describes, whether a lattice element v is
left or right of another element w incomparable to v. In contrary, comparable
elements are considered to be above or below each other. We do not need a formal
definiton here but only one result given in [21] which explains the heuristics we
use in Section 3.1, namely the first planarity condition (FPC). In Figure 1 an
intuitive explanation for the necessity of the FPC is given.

Definition 2 [21] A conjugate relation2 R on a lattice V fulfills the first pla-
narity condition (FPC) if the implication mi R mk R mj =⇒ mk > (mi ∧ mj)
holds for all

∧
-irreducibles mi, mk, mj ∈ M(V).

Proposition 1 [21] Let L be a left-relation on a lattice V, then the following
equivalence holds:

L satisfies the FPC ⇐⇒ V is planar.

0V

mi ∧ mj

mi

mj

mk

0V

mi ∧ mj

mj

mi

mk

Fig. 1. When considering a diagram of a lattice, the necessity of the FPC is obvious
for its planarity: If mi L mk L mj or mj L mk L mi holds then also mk > (mi ∧ mj).
Otherwise every chain of diagram edges from mk to the bottom element of the lattice
intersects with a chain of edges from either mi or mj to mi ∧ mj .

2 That is a relation satisfying R ∪ R−1=‖, where ‖ denotes the incomparability rela-
tion in V.
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3 The FDP-Algorithm

Force Directed Placement (FDP) is a widely used technique for drawing diagrams
of graphs [8, 10, 13] and is also applied for the layout of lattice diagrams [19, 9].
Nodes and sometimes also edges are considered as physical bodies which interact
by a set of repulsive and attractive forces. If the system is in a balanced state,
i.e. a local minimum of the appropriate energies, then the resulting diagram
will hopefully be nicely drawn w.r.t. the properties that determine the forces. In
general an FDP-algorithm consists of three parts:

– choice of an adequate model,
– determination of an initial state,
– seeking for a balanced state using an optimization algorithm.

In many cases attention is rather put on the optimization process, for instance
with simulated annealing or genetic algorithms. The models are kept simple
and the initial state is rather arbitrary. The two layout styles provided by [19]
distribute the lattice elements on layers. This may work well if either a global
minimum of the included energies is found or if several minima are found and
ranked by a quality function acting on the respective diagrams.

Our approach tries to include a more sophisticated initialization. This is done by
applying a heuristics to minimize the number κ of edge crossings in the diagram.
The final optimization step is not allowed to shift any node out of its surrounding
cell. Therefore, κ does not change as well as the left-relation of the diagram.

3.1 Initialization

As mentioned already this is the crucial step of our approach. Since the diagram
is determined just by the coordinates of the

∧
-irreducibles we only have to assign

vectors to them. We distinguish between the coatoms and other
∧

-irreducible
elements. The first are distributed on a parable

y = −0.09x2 − 1.75

which was derived heuristically from the position of the
∧

-irreducibles in suit-
able diagrams of the boolean lattices B4 and B5. In case of an even number of
coatoms they obtain the coordinates given by the x-component ±0.9,±2.7, . . .,
if otherwise an odd number occurs, we assign 0,±1.8,±3.6, . . .. All other vectors
are obtained by

pos(mi) = ∆i +
∑

mj>mi

pos(mj),

i.e. the mean of the vectors of
∧

-irreducibles mj situated above mi. If the
∧

-
irreducible elements above mi form a chain then the respective coordinates will
lay on a line in the initial diagram. The symbol ∆i represents a small shift which
is necessary when two

∧
-irreducibles share the same upper neighbour.3

3 Otherwise they would obtain the same diagram vector.
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Finally we have to clarify in which way the nodes of the
∧

-irreducibles are sorted.
We mentioned already that we want to minimize the number of edge crossings in
the diagram. Since there exists no efficient analytical algorithm for that purpose
we introduce a heuristical model called planarity enhancer.

The underlying idea is the following: Similar concepts, i.e. concepts sharing sim-
ilar intents should be positioned more closely than non-similar ones. This is mo-
tivated by the FPC, see Proposition 1. It refers to the fact that, in a plane
diagram, a

∧
-irreducible n should be drawn “inbetween” m1 and m2 only if it is

greater than the infimum m1∧m2, i.e. if m1∧n ≥ m1∧m2 or m2∧n ≥ m1∧m2.
Hence pairs (m, n) of elements with a large infimum, i.e. with a small cardinal-
ity of M(m ∧ n)4 shall be drawn close together. In order not to favor those∧

-irreducible elements situated near the bottom of the lattice we only count∧
-irreducibles not included in M(m ∨ n). Based on these ideas, we define the

sup-inf-distance between two incomparable
∧

-irreducibles m and n as follows:

dSI(m, n) := |M(m ∧ n) \ M(m ∨ n)|− 1.

This allows us to create a complete weighted graph ΓSI where M(V) is the
vertex set and each edge between m and n obtains the weight dSI(m, n). This
graph can be considered as a 2-dimensional physical body with rings instead
of nodes and springs instead of edges. The spring force is due to the standard
physical model given as F = −k · x, where k is the spring constant and x the
displacement of the idle state. The springs are thought to be in rest position if
their length is equal to the weight in the appropriate graph. This results in a
system energy

ESI =
∑

mi,mj∈M(V)

(|pos(mi) − pos(mj)|− dSI(mi, mj))2.

We find the force acting on a vector pos(m) by differentiating the last formula
to each

∧
-irreducible m yielding

FSI(pos(m)) = −2 ·
∑

n∈M

|pos(m) − pos(n)|− dSI(m, n)
|pos(m) − pos(n)| · (pos(m) − pos(n)).

After reaching an equilibrium state of this system by applying a robust minimizer
we do a linear regression of the emerged scatter plot, followed by an orthogonal
projection of the nodes onto the obtained line. The sorting of the nodes repre-
senting the attributes finally gives their sorting relation [20]. This is a relation
indicating in which order the

∧
-irreducibles with common upper neighbour shall

be sorted from left to right.

4 With M(v) we denote the set of
V

-irreducibles greater or equal than v.
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3.2 The Model

Implemented Forces

Since we want to draw attribute additive diagrams the energies and forces do
not act on the node of an element v ∈ V itself but on the vectors vec(m) of the∧

-irreducibles m ∈ M(v). Therefore, the systems energy is the sum of the ones
inherent in the vectors of the elements of M(V). Equivalently, the resulting force
is a vector of forces on vectors on

∧
-irreducibles (see Figure 2). This yields

E =
∑

m∈M

E(vec(mi)) and F = −∇E = (F (vec(m1)), . . . F (vec(m0)))T .

! !

! !

!w0

w1 w2

w3 w4 w5

w6vec(m1)
vec(m2) vec(m3)

Fig. 2. The force acting on the node w2 affects the nodes w0, w1, w4 and w5 too. Since
the latter three contain only one of the

V
-irreducibles m2 or m3, the resulting force is

half the original.

The aim of the model is to maximize the conflict distance. It is therefore based
on a repulsive force Frep. Since we want to avoid the occurence of any conflict,
the following definition on the graph (V,≺) of a lattice is obvious:

Frep = −∇Erep, Erep =
∑

v∈V

∑

e∈≺,v/∈e

1
d(pos(v), pos(e))

.

Thereby d(pos(v), pos(e)) is the distance between a node and an edge introduced
in Definition 1. A node positioned on a non-incident line causes Erep to be
infinite, hence this never results in a stable state.

To prevent the diagram from blowing up we need an attractive force Fatt which
minimizes the edge length. This is done due to the physical model of a spring
supplying the formulas

Fatt = −∇Eatt, Eatt =
∑

e∈≺
|pos(e)|2.

Finally, we employ a gravitative force Fgrav to ensure the upward-drawing-
constraint. It acts on vectors ni = vec(mi) of

∧
-irreducibles only. Since this
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force is supposed to be dependent on the angle ϕ(n) between the vector of an∧
-irreducible and a horizontal line, we define as follows:

Fgrav(ni) = −dEgrav

dni
,

dEgrav(ni)
dϕ(ni)

=
sin2 ϕ(ni) − sin2 ϕ0

sin2 ϕ(ni)
·






1 , ϕ(ni) ∈ [0, ϕ0]
0 , ϕ(ni) ∈ [ϕ0, π − ϕ0]

−1 , ϕ(ni) ∈ [π − ϕ0, π]

This formula seems to be quite clumsy. However, the underlying idea is to push
“nearly horizontal” vectors stronger downwards than the more slanted ones (see
Figure 3). The gravitative force may not act if the vectors are “vertical enough”,
i.e. if their angle is between ϕ0 and π − ϕ0, which is chosen by (see Figure 3 for
an explanation)

ϕ0 :=
π

|M(B(K))| + 1
.

! "

ϕ(n1) ϕ(n2) ϕ(n3)

n1

n2

n3

Fgrav(n1) Fgrav(n3)

ϕ0 1V

n1

n2

n3

n4

Fig. 3. left: The diagonal lines represent ϕ0 and π − ϕ0. The nodes n1 and n3 are
pushed down by the gravitative force, but not n2.
right: If all attribute concepts are coatoms then their vectors can be assigned, s.t. the
angles between two of them and to the horizontal dashed line are all equal to ϕ0.

Integrating by ϕ0 in consideration of the reasonable boundary condition given
by ϕ(ni) ∈ {ϕ0, π−ϕ0} =⇒ E(ni) = 0 to make the energy function continuous
in (0, π) yields

E(ni) =
{

ϕ(ni) + cotϕ(ni) sin2 ϕ0 + E0 , 0 ≤ ϕ(ni) ≤ ϕ0

−ϕ(ni) − cotϕ(ni) sin2 ϕ0 + E1 , π − ϕ0 ≤ ϕ(ni) ≤ π

with E0 = E1 − π = −ϕ0 − sin ϕ0 cosϕ0.

The total energy and the total force respectively are obtained as a linear com-
bination of its components, i.e.

E = r · Erep + a · Eatt + g · Egrav,

F = r · Frep + a · Fatt + g · Fgrav.

CLA 2007 64 Montpellier, France



Calculation of the Forces

The calculation of the repulsive force demands the observation of various cases.
Firstly we have to distinguish how a node and a non-incident line are related to
each other in the plane. We discover the three possibilities given in Figure 4.

"

w

w2

w1 "

w

w2

w1

"
w

w2

w1

Fig. 4. The three cases of node-edge-relationship.

Secondly we must take into consideration which of the sets M(v), M(v1) and
M(v2) contain the

∧
-irreducible m. The alternatives are depicted in Figure 5.

#

"
pos(v)

pos(v2)

pos(v1)
F3 #

#"
pos(v)

pos(v2)

pos(v1) F4

$
"

pos(v)
pos(v2)

pos(v1)

F5

$

$

"
pos(v)

pos(v2)

pos(v1)
F7

Fig. 5. Four possibilities of forces acting between a node and a non-incident line de-
pending on the containment of a

V
-irreducible m in the sets M(v), M(v1) and M(v2)

of the respective lattice elements (shaded).

After some calculation we find the following table determining the repulsive
force for each case. Due to abbreviation reasons we write n instead of pos(m)
for attribute vectors, w instead of pos(v) for nodes and f instead of pos(e) for
vectors of diagram lines. The symbol ew denotes the unit vector of a node w,
furthermore n+(z) is the vector arising from the vector z by turning by π/2 in
positive direction of rotation and l either +1 in case of the node w being situated
left of the line f and −1 otherwise.

F3 F4 F5 F7

case 1 e(w1−w) e(w1−w) e(w−w1) 0
case 2 0 e(w2−w) e(w−w2) e(w−w1)

case 3 −
q

(w2−w)2−|h|2
|f |2 · n+(f)·l

|f | −n+(f)·l
|f |

n+(f)·l
|f |

q
(w1−w)2−|h|2

|f |2 · n+(f)·l
|f |

Table 1. Summary of all occuring forces dd(w,f)
dni

for the different cases.
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The appropriate repulsive force acting on an attribute vector ni is given by

Frep(ni) = −dErep(ni)
dni

= −
∑

v∈V

∑

e∈≺,v/∈e

d
(

1
d(w,f)

)

dni

=
∑

v∈V

∑

e∈≺,v/∈e

1
d(w, f)2

· dd(w, f)
dni

.

For the attractive force we gain the formula

Fatt(ni) = −
∑

e∈≺

d|f |2
dni

= 2 ·
∑

v1v2 ∈≺,
mi ∈ v1\v2

f,

and finally for the gravitative force

Fgrav(ni) = −dEgrav(ni)
dni

= n+(ni)·
sin2 φ(ni) − sin2 φ0

y(ni)2
·
{

1 , 0 < φ(ni) < φ0

−1 , φ0 < φ(ni) < π
.

3.3 The Minimizing Algorithm

This step requires robustness rather than speed. We definitely want to avoid a
node stepping out of its cell in order to keep the shape of the initialized diagram.
Running time is no issue, the calculation of the local minimum is done in less
than a second in most cases. We chose the well known conjugate gradient method
as optimization algorithm (see for instance [4]).

4 Results

Instead of displaying some arbitrary chosen diagrams we just give the drawings of
all lattices with four

∧
-irreducible elements. The calculation of all diagrams took

less than 10 seconds. We also produced the respective diagrams of lattices with
five

∧
-irreducible elements. The process of determining all 13596 lattices and

drawing their diagrams took 25 minutes on an ordinary PC, which is an average
of about 0.1 seconds per diagram. Unfortunately they are not publishable due
to space limitations.

CLA 2007 66 Montpellier, France



CLA 2007 67 Montpellier, France



CLA 2007 68 Montpellier, France



CLA 2007 69 Montpellier, France



5 Conclusion

We presented an algorithm for drawing lattice diagrams designed in three steps.
The initialization serves for implementing some esthetic criteria whose compli-
ance is desired for the resulting drawing. In our particular approach we chose
minimization of the number of edge crossings as such an criterion. The sec-
ond step, namely the choice of a model, aims to maximize the conflict distance,
thereby considering particular drawing conventions. Here we chose the attribute
additivity. Finally, the optimization step seeks for a minimal energy state (i.e.
a maximal conflict distance) while keeping the properties of the initial state
and the model. Ino ur algorithm the underlying left-relation and the attribute
additivity are preserved.

We think that our approach is fairly convenient for drawing lattice diagrams. The
framework of an initialization employing esthetic criteria and an FDP-algorithm
including drawing conventions gives a clear image of the desired properties of
the resulting diagram. This modularity seems to be the main advantage of this
approach.

As already mentioned, diagrams with few edge crossings are favoured by users.
Therefore a drawing algorithm should emphasize that issue. Although our ap-
proach contains a very simple initialization heuristics only, all planar lattices
with four

∧
-irreducibles are indeed drawn without edge crossings.

Layer assignment is a favoured way of lattice drawing algorithms. Even though
we think that layer diagrams are satisfactory and user preferred for many (in
particular distributive) lattices, one should not restrict to this convention in
general.

Despite these advantages of our approach we do not think that the results are
superior to those of other algorithms. In the following we want to give some
possibilities that could improve the diagrams quality:

• The involvement of additional or different constraints like the visualization
of chains (by chain decomposition) or the hybrid convention could result in
more symmetrical diagrams.

• The initialization step can be improved by including techniques given in [20–
22] to improve the quality of layouts of planar lattices. Also, we recently try
to find strategies to characterize and draw “nearly planar” lattices as well.

• It may be useful to produce several diagrams that can be compared by some
set of quality functions (proposed for instance in [3]).
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What can lattices do for math. teaching & education?
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Abstract. A reasonable size example coming from cognitive psychology is re-

analyzed with standard tools of FCA and Lattice Analysis. Developmental

shifts / classifications are explored on a descriptive and graphical viewpoint,

through attribute implications and unglued decomposition in regular intervals.

This assesses child similarities in performance and behavior, while comparing

intervals focuses on what children miss collectively to make further progress.

Keywords: (nested) line diagrams, (relative) canonical basis of implications,
unglued decomposition, developmental shifts, construction of natural numbers.

Introduction

A first aim behind this paper is to address two topics of the conference CLA’07 :
“visualizing inherent properties in data sets” / “classifying systems based on
relationships among objects and attributes through the concept of mathematical
lattices” and to make this address concrete on a real example. In such a way the
graphical outputs do not reduce to usual small models though staying still readable.

Secondly, to try convincing the researchers in educational / cognitive sciences that
basic tools of Lattice Theory [Bi67] and Formal Concept Analysis (FCA, [GW99]) –
which we usually mix together in French as Analyse Latticielle [D99]- can be most
useful for describing their data and help in modeling underlying processes. All over
the years, we have had many collaborations in applying Lattice Analysis to topics
from the social and medical sciences (see [D99] and application papers quoted there)
up to genetics (see [C&Al01], [Do&Al01], and [D&A01]), but not with that many
cognitive scientists, although FCA has well spread in their close community of AI.

Third motivation, to try sharing our experience in visualizing lattice properties with
our computer program (GLAD: General Lattice Analysis & Design, see [D83-96]).
Instead of giving the program code which has been asked sometimes in conferences
and surrounding communities -but would not make sense since it’s now of an oldish
system dependent conception- it seems to us far better to display convincing examples
following carefully chosen  features and to illustrate specifications through examples.

Last, as we did already twenty years ago with a paper attesting the usefulness of
Lattice Theory and some of its standard tools to formalize and generate experimental
designs (by characterizing them as partition sublattices see [D86]), it’s a bow to the
celebrated paper by G. Birkhoff: “What can lattices do for you?” ([Bi70]) which
primed our own interest in applications of Lattice Theory to surrounding disciplines.
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To follow these objectives, we will come back to a data set that Dr. Camilo
Charron collected  -and analyzed with statistical methods in his thesis (see [Cha98])-.
This example can be classified between cognitive sciences / developmental &
educational psychology. A small data subset has been extracted from a chapter
devoted to “developmental shifts and knowledge transformations along the
construction of natural and relative numbers” in children (4-14 years old).

Naturally, we will not enter deeply in the questions of semantics and
interpretations, referring to the original work -or subsequent papers- to get more
precise descriptions of the psychological and educational setting. We will follow a go-
between attitude, linking separated topics and communities: to say enough about the
content so that a user of FCA can understand the kind of specific questions
encountered there, and reciprocally to illustrate and comment the tools and techniques
with simple words so that psychologists can foresee the kind of drawbacks they could
get after a small investment in papers on FCA giving them more abilities and insights.

Basic data and original questions

Out of the eight groups of children under study, only three are kept here (age
4.5 / 5.5 / 6.5 years old). They are -in French- denoted MS:”moyenne section”,
GS:”grande section” and CP:”cours préparatoire”, the latter being the first year of
elementary school, the others being the last two years of nursery school. Each group
comprises 31 children, which passed a series of ten –“à la Piaget”- experiments to
evaluate their mastering of operations and relations on natural numbers. Hence for

each group of children the basic data consists in a binary table C
31

xA
10
!{0,1}, for

which (c,a)=1 whenever the child “c” masters attribute “a”, and (c,a)=0 otherwise.
The ten attributes kept here concern only properties of natural numbers, operations
and relations: for instance order-ct  means mastering: [a>b & c=d implies a+c > b+d].

A:order
B:equality
C:order-ct
D:equality-ct
E:addition

F:difference
G:class-equiv.
H:counting
I:identity-c

J:commutativ.

(ct:conservation by translation,   c:conservation)

Table 1. The attributes describing properties and operations on natural numbers.

As claimed in the thesis “The aim is to detect shifts [ruptures] of development
along the construction of natural and relatives numbers…”, which is made precise
later with additional hypothesis: “Child developments will be partially ordered, which
will be assessed by child profiles [patrons de réponses] that will be genetically
ordered and structured by exact [as opposed to association rules] implications.
Implications will point out shift and / or knowledge transformations”. The main
questions will be taken in charge naturally by implications which are one of the basic
tools of FCA ([GW99 §2.3]), and these cognitive questions have an intensional

nature. We will try to show that other natural questions relative to child classifications
can also be raised, addressing more extensional –and educational- questions.
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Lattice and analysis toolkit

The prerequisites for mastering the analysis and understanding the graphics comprise
a few standard theorems and properties of FCA (see [GW99]) and applications of
lattice analysis ([D99]). They will not be repeated here in mathematical terms, that
would be useless and redundant. However they will be commented in everyday
words, as a reminder and so that not-lattice-minded-users can foresee the content.

The basic data -for each group- can be seen as a binary relation I"C
31

xA
10

which is

represented by a so-called “context” (C
31

,A
10

,I"C
31

xA
10

) keeping tracks of the children

and attribute labels, where (c,a)#I means children “c” masters attribute “a”. For a

subset B"A
10

 of attributes let B
$
:={c#C

31
/cIa all a#B} be its extension. For a subset

D"C
31

 of children let D
%
:={a#A

10
/dIa all d#D} be its intension. As B

$%$
=B

$
 (all

B"A
10

) and D
%$%

=D
%
 (all D"C

31
), the pair of maps B!B

$
 (all B"A

10
) and D!D

%
 (all

D"C
31

) defines a Galois connection between the power sets of A
10

 and C
31

, and two
closure operators in them, that gives the matching extensions / intensions. In words,
by the Galois / concept lattice construction the context is unfolded in a concept

system which can be drawn, each concept being defined both in extension / intension,
and the organization of concepts being driven upwards by the join operation (defined
by intersection of intensions), and dually downwards by the meet operation (defined
by intersection of child groups). These underlying mathematical structures are known
since the first 1940 edition of [Bi67], and papers by O. Ore (see [O44]) and others.

Now a lattice can become really cumbersome and complex to draw, so that it is

most often useful to label it minimally by locating each attribute a#A at (a
$
,a
$%

) i.e.

the higher concept to which it belongs, and dually to locate each child c#C at (c
%$

,c
%
)

that is the lowest concept having c in its extension. Pointing to any lattice element, its
intension can be reconstructed by taking all attributes above it along the ordered
lattice, and its extension comprises all children below it. A second drawing
simplification introduced since the beginning of FCA [Wi82] is to start a lattice
drawing for only a subset of attributes, and to introduce the remaining in a nested line

diagram erasing lines parallel to those that are grafting these remaining attributes.
The duality between extensions / intensions is also carrying implications between

attributes (symmetrically between children, that are meaningful in a social network

perspective: who is together with whom?). When two attributes a,b#A are such that

a
$
"b

$
 -so that a<b in the lattice- this can be read as a simple (premise) implication

a ! b. When (ab)
$%

=abcd, this indicates that ab ! cd holds in the data. Both kind of
implications can be deciphered graphically in the lattice. The simple ones will define
the (pre)order of attributes, while the latter will be recognized by: the meet of a and b
will “capture” c,d upwards. Fortunately, there is a canonical basis of implications

summarizing all those holding in the data, which was the main result of [GD84-86]
(see also [D84-87] for a more latticial version and [G84-87] for a nice algorithm).

Another procedure that will be used is the lattice unglued decomposition [GW99
§4.2]. The original idea came from classes of lattices encountered in Mathematics -
distributive, modular- since they are decomposable in maximal atomistic intervals, a
construction that have been generalized to arbitrary lattices using tolerances (i.e.
similarities respecting lattice operations as lattice congruences do) and the lattice
cover relation. In words, it is a way to look at the lattice “from further” by considering
faithful similarities between attributes, and symmetrically upwards between children.

CLA 2007 74 Montpellier, France



Intra-group results and analysis

For the first group (“MS”, average age 4.5 years) the order of attributes –weighed
with the % of the attribute’s extension / the 31 children- is displayed in Fig. 1 (top
left). It should be noted that three attributes are somehow “easy” for that group since
they are already mastered by almost all children (counting 94%, equality 90%, order

84%). Many other attributes imply some of the latter, creating an attribute order of
length one. In particular, the “most difficult” attributes for this group of children
(identity-c, commutativ. 26%, and difference 6%) imply all three easy attributes.

A nested line diagram of the lattice is unfold (top right), along commutativ. and
difference -meaning that the lines parallel to the one joining commutativ. to its upper
cover have not been drawn for simplifying the drawing. First remark completing the
fact that there are many order relationships / dependence between pair of attributes,
the lattice has 53 elements, which is small as compared to the 2

10
=1024 subsets of A

10
,

that would be observed if there were a complete independence of the 10 attributes.

In the powerset of attributes this means that the closure operator B|!B
$%

 (all B"A)
that generates the intensions, at the same time generates a lot of equivalence and
implications between conjunctions of attributes. This can be summarized by the
canonical basis of implications, which is listed at left hand side below the order of
attributes in Fig. 1, together with the identification number 1-21 and the
extensions / supports. The implications are also grafted into the nested line diagram of
the lattice, where they can be located by their identification number and intension,
which is obtained from the list by taking the union of their premise and conclusion.

Hence for instance, the first simple implication (n°-6) at the list top, is G ! AH,
and means that the 19 children mastering G=class-equiv. master A=order &
H=counting as well. It can be located at the top right of the lattice and also deciphered
in the lattice structure by the fact that the intension of the element labelled G is GAH,
since collecting G and H along the lattice lines above G. As for non-simple
implication with complex premises, for instance below implication n°-6 is located

implication n°-7 -which reads ACEH ! G- indicates that the eight children that
master A=order & C=order-ct & E=addition & H=counting master class-equiv.
In the basis list, the implications have been ranked by extension’s decreasing order.
Within the lattice, closer their intension is to the lattice top, bigger their intension is
obviously. Dually, closer to the bottom they have smaller extensions. Now some
implications could be understood as natural / obvious / “by construction”. Thus, that

D=eqality-ct ! B=equality will not surprise anybody, even if their percentage
extensions 58% / 90% may require some comments. Other implications may come
from sampling questions: after all 31 children for exploring and assessing something
definite on a universe with 2

10 
elements is not a lot… Hence, the basis of implications

should be scanned thoroughly by the researcher with all these considerations in mind.

On a “macro level”, the lattice is decomposable in six intervals (see Fig. 2) by
unglued decomposition, which is quite a strong since rare property for arbitrary
lattices. These intervals are ordered along a 2x3 product of chains. This gives a macro
scaling of attributes of “similar difficulty level” –regarding that group of children-,
with the easy attributes counting-equality-order to which is now added class-equiv. at
the top, which are followed downwards by more difficult attributes scaled in two
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Fig. 1. Attribute order (top left) and nested line diagram of the lattice (right) along
difference & commutativ., with canonical basis of 21 implications and their supports.

Fig. 2. Unglued decomposition in the direct product of 2x3 intervals. Each interval
groups together the attributes of similar difficulties. Dually the children are grouped
and scaled in homogeneous groups regarding their level of performance.
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distinct directions, order-ct above addition on the one hand, and (idendity-c, equality-

ct) on the other, which are themselves refined by commutativ. then difference. Notice
that in that 2x3 direct product of intervals, commutativ. is below order-ct, while
difference is below all intervals, hence with maximum difficulty level for that group.
However this doesn’t mean that difference is made comparable with addition in the
lattice order relation: it is below in the 2x3 lattice of intervals i.e. for the “macro”
difficulty levels that are made similar & scaled by the similarity (tolerance) relation.

The 2x3 interval product structures the (pre)order of children in terms of similar level
of performance. The maximum element of the bottom interval is the lower cover of
the element labeled 121 (close to the top) of which the intension is ABH, and
extension comprises 23 out of the 31 children. This means that the five other intervals
structure the nine remaining children, some of which being in difficulties: for instance
child 121 (at the top) may require special attention and support, and the same is true
for kids 115 / 103 (top right), or 122 / 105 / 116 / 177 (top left), but with different
programs. An interesting outcome of this analysis could be to make proposals to
constitute homogeneous groups of children of “similar level of performance”.

A teacher aware of this information in real time could consequently define
strategies for planning games and exercises for training the kids regarding their
specific needs. Besides personalized cares as before, the teacher may want to train
bigger groups of children, if possible made homogeneous. For example, the fifteen
children that belong to the interval containing child 116 and commutativ. (bottom left,
between child 107 and equality & counting) share the property of “not mastering
class-equiv. and addition”: all of them should benefit of special games / training
specifically oriented to master these two attributes. Hence, looking within intervals
reveals the specificity of performances for children of similar level, while comparing
intervals can focus on what they miss or require to collectively make further progress.

For the second group (“GS”, age 5.5 years) the global structure is quite different.
Counting and order are now mastered by all the children, hence become superfluous
regarding the lattice structure, and create eight obvious implications (expelled from
the basis, see Fig 3, top left). There is only one simple implication left identity-

c ! equality & class-equiv., a rather poor order structure between attributes, although
the lattice is quite small (61 out of the potential 2

8
=256 elements). Five attributes are

mastered by more than 87% of the children, commutativ. and difference are no more
under-represented, with now 48% and 58%, respectively. This contributes to the fact
that the lattice has many elements below them: they associate in similar ways with
other attributes (as opposed to what is occurring for “MS”-group), along nearly
isomorphic intervals (ideals). Out of the twelve implications whose extensions are at
least ten, after having removed superfluous A, H from their premises, nine have two

attributes (ex: FG ! B). As compared with the younger “MS”-group, it could be said
that the general structure for the group of “GS”-children explodes in the direction of
pairwise independence between attributes, almost without order relationships between
them, but global independence and combinatorial explosion are tamed and reduced by
a series of rather simple premise implications going in all directions. This explosion
will perhaps not surprise teachers and parents who know that grande-section, which is
the last year of école maternelle before the more academic universe of école primaire,
is a special turn in the curriculum of children, a year of all discoveries…
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Fig. 3. Nested line diagram of the lattice (group 2: “GS”), with canonical basis of
implications (18 out of 26, counting & order being confused with the top generate 8

obvious implications) and supports. Here, only  (I ! ABGH)  has a simple premise.

As for the third group (“CP”, age 6.5 years), 12 kids (out of 31) master all the
attributes (to be compared with only one and three for the younger “MS” and “GS”
groups, respectively), and most of the others are close -even very close- to the bottom.
This is reassuring: a majority of these children now master almost all the 10 attributes.
Moreover, five attributes receive more than 80%, while the others get between 58%-
74%. After removing the three superfluous attributes (confused to the top with 100%),

it remains only nine implications in the canonical basis, with only difference ! class-

equiv. ! order and commutativ. ! order which scale and order the attributes (see
Fig. 4). These three simple implications control the lattice unglued decomposition
downwards (see Fig. 5), in a chain of three totally ordered intervals.

At the top, there are only two children (321,326) who do not master order –and a
fortiori the attributes implying order- and are somehow in difficulty: they should be
helped specifically. The middle interval (between children 320,328 up to order)
contains 10 children. They should be trained about difference to try collectively to
master it and move down to the bottom interval. Downwards there are 18 children
who all master difference, which is still the more difficult attribute for this older
group. In this bottom interval, a small group of five kids (306,317,318,319,327) may
have an interest in working first commutativ. As compared with “GS”, this group is
far from displaying independence, and the analysis shows that three subgroups could
be profitably distinguished to be first trained on order, or commutativ. and difference.
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Fig. 4. Attribute preorder and the canonical basis of implications (9/16,
equality & counting being confounded). There are only three simple implications.

Fig. 5. Unglued decomposition in three intervals down-generated by the implications:

 class-equiv, commutativ. ! order  and  difference ! class-equiv, respectively.
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Inter-group analysis and conclusion

The three groups of children have been put together in a C
93

xA
10

 table, for which the
lattice L

123
 is represented by a nested line diagram in Fig. 6. As for the previous “CP”

group, the lattice appears to be linearly unglued in three intervals, where the middle
one –between child 204 to counting see Fig 7- comprises 35 children, and can be seen
as down generated by order-ct (60%) and addition (52%). The top one is up generated
by children 121,122 who do not master counting, while the bottom interval can be
seen as down generated by the two challenging attributes commutativ. (47%) and
difference (41%). This structure scales the children in three levels of performance: to
master counting or not, and the same question with commutativ. and difference.

Now, it is interesting to scan through all children’ labels to notice first that older
children have a tendency to be located down in the lattice: they know more,
fortunately... But to study this distribution of ages spread along the lattice may also
give teachers the idea to organize small groups gathering together children of
different forms, because they would have the same or homogeneous performances.
Hence, the interval between child 204-class-equiv. comprises children of the three
forms who all master class-equiv. but not commutativ. nor difference, so that they
could benefit from activities to get them. This may help in organizing some “groupes
de niveaux” (level groups) in a same school, in the direction of more open education.

Coming back to intensional questions, one may raise the following one: because of
the institutional gap between école maternelle and école primaire, but also due to the
kind of explosion that was stated for the “GS” group, could it be possible to
summarize in a compact way the shift between groups 1+2 (“MS”+”GS”) and group 3
(“CP”)? A direct answer is available with the notion of relative canonical basis of

implications (see [Do&Al01] and GLAD [83-96]) expressing how the lattice L
123

 –
mixing together the three groups- is projected onto the lattice L

3
 (which is a sub-semi-

lattice of L
123

), and that will be denoted by B
3/123

. We have used this notion for years,
specially in genetics. The relative basis B

3/123
 is listed in Fig. 8 where each implication

is weighed by its “123”-premise’s extension and “3”-intension’s extension, so that
their difference shows how many “12”-children will be pushed down onto the 3-
intension. The first two implications come partly from the fact, that B and H are
superfluous with 100% among “3”-children, and assess (see Fig. 8) that respectively
55 and 60 “12”-children are “pushed” to BH from B and H. Similarly, 57 and 43
“12”-children are “pushed” to ABH and DBH. Many of the remaining implications
contain ABH in their premise, so that BH can be erased to get simple premise, since

A ! BH. Hence the fifth implication may be simplified to A:order & F:difference ! 
G:class-equiv. which concerns 19 children. Interestingly the five remaining
implications in the basis have only C:order-ct or I:indentity-c –or their conjunction-
as a conclusion. Thus, the gap between “MS”+”GS” and “CP” can be characterized
with a few implications expressing either that equality and counting are fully
mastered, or how class-equiv., order-ct and identity-c are better mastered in “CP”.

Before concluding, it should be added that the lattice L
123

 has a structural property
which is interesting, even if it could not be seen easily but was discovered through a
program: out of its 124 intensions, 114 have a unique minimal generator. In words,

for any such intension B
$%
"A there is exactly one subset Bo"B

$%
 such that Bo

$%
=B

$%
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Fig. 6. Nested line diagram of the lattice (groups 1,2,3: 93 kids) with canonical basis
of implications and their supports. A child’s first digit indicates his / her group (1-3).

Fig. 7. Attribute order and lattice decomposition into three intervals, generated by

order-ct, addition ! counting and difference, commutativ. ! counting & order.
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and which is minimal for this property. Consequently, the lattice is “nearly” join-

distributive (see GW99 p. 228), which means that collectively, the children’
performances behave “nearly” like if it was structured on an abstract convexity space.
A lot of literature on convexity lattices has been written. They have many different
characterizations (see for instance [M85]). In particular in such a convexity lattice, for

any Bo
$%

 and its unique minimal generator Bo, (Bo
$%

\{b}) is an intension for all
“extreme points” b of Bo, so that the interval up-generated by the upper covers of

Bo
$%

 is Boolean. This expresses a property of local independence of extreme points.

In other words the implication Bo ! Bo
$%

 indicates that the set Bo of “extreme points

of Bo
$%

” implies what is collected “inside” their hull for the convexity structure.
The convexity structure provides a model for these three group behavior, but that

can be also formulated as a model for each individual: a child c#C belongs to such or

such a group’s extension -say B
$
 -if and only if the children “c” masters a specific and

unique set of keys (“extreme” attributes Bo). This provides a fine description of the
minimal prerequisites which are sufficient although necessary for mastering these
mathematical concepts and finding one’s path in the natural number construction.

Relative basis B
3/123

86 31 55 B ---> H
91 31 60 H ---> B
86 29 57 A ---> BH
70 27 43 D ---> BH
37 18 19 ABFH ---> G
27 18  9 BEHI ---> C
24 16  8 ABEFGH ---> C
27 16 11 ABFGHI ---> C
21 15  6 ABCEGHJ ---> I
25 14 11 ABFGHJ ---> CI

  |  #3 |
  |    (#123-#3)
  #123

Fig. 8. The relative canonical basis of implication B
3/123

 summarizes how the elements
of L

123
 are  "pushed down"  onto its (sub-semi)lattice L

3
 in a minimal way. The

difference of extents (#123-#3) indicates the number of such children (groups 1,2).

For concluding, this note re-analyzes data on the construction of natural numbers in
children of 4.5-6.5 years old, with a descriptive method based on orders and lattices.
The three groups behave quite differently in terms of attribute orders. While the “GS”
order is almost an antichain of pairwise incomparable attributes, the two others -“MS”
and “CP”- have a rich structures which are emphasized as they generate unglued
decompositions of the lattices. Surprisingly the same properties apply to the lattice
L

123
 that mixes together the three groups. This provides a scaling of the attribute

orders in subsets of similar difficulties. Dually this structures the children in terms of
homogeneous sub-groups, which would be most interesting for training the kids on
specific target attributes. In the same manner a close examination of L

123
 can give rise

to proposals for defining small groups mixing together children of different forms in
the direction of a more open school. The shift between “MS+GS” to “CP” has been
characterized through a relative basis of implications, and L

123
 behaves like convexity

lattices that provides minimal keys as a model for describing child performance.
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Abstract. The paper presents a method of evaluation of questionnaires.
The method is supported by formal concept analysis. The role of formal
concept analysis consists in providing an expert with a structured view
on the data collected from the questionnaires. The method resulted from
experiments with IPAQ (International Physical Activity Questionnaire).
The structured view on data provided by the method suggests to the ex-
pert various hypotheses which can later be tested using statistical meth-
ods. However, the structured view on data itself proved to be sufficiently
informative quite often. The paper presents experiments with evaluation
of IPAQ.

1 Introduction and problem setting

Questionnaires are being used in many areas of human activities. The aim is
to reveal patterns of behavior and various kinds of dependencies among vari-
ables being surveyed. Descriptive statistics and statistical hypotheses testing are
among the tools traditionally used for evaluation of questionnaires. A practical
disadvantage of the traditional statistical approaches is the need to formulate
hypotheses to be tested. Without any prior structured view on the data con-
tained in the questionnaires, formulation of relevant hypotheses is a difficult
task. Another disadvantage of traditional statistical approaches is the limitation
regarding what statistics can tell about data and how statistical summaries can
be understood by experts in the field of inquiry who are not experts in statistics.

This paper presents results on evaluation of questionnaires monitoring phys-
ical activities of a population and the role of formal concept analysis in this
! Supported by grant No. 1ET101370417 of GA AV ČR, by grant No. 201/05/0079

of the Czech Science Foundation, by institutional support, research plan MSM
6198959214, and by grant No. 6198959221 ’Physical activity and inactivity of in-
habitants of the Czech Republic in the context of behavioral changes’ of the MSM.
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evaluation. The paper is a continuation of previous studies regarding the IPAQ
questionnaire, see [16, 17]. IPAQ is a standardized international questionnaire,
see [20]. At the beginning of our study, there was a need for an alternative means
of evaluation of questionnaires formulated by experts (domain experts) from the
Faculty of Physical Culture of the Palacky University, Olomouc, who are involved
in a world-wide project of monitoring physical activities in today’s population.
The experts struggled with classical statistical techniques and were looking for
alternative methods of evaluation of the questionnaires. It turned out that basic
methods of formal concept analysis (FCA) [11] are quite useful for the domain
experts. Putting briefly, a concept lattice and its parts provide the experts with
an easy-to-understand hierarchical view on the data. In terms of FCA, the basic
idea is the following. The objects are the individuals (or their groups) being
surveyed in the questionnaires, the attributes correspond to the variables being
monitored by the questionnaires. The corresponding concept lattice or its parts
reveals to the domain expert the groups in dependence on the attributes and the
expert can see various dependencies between attributes, how large the groups
are etc. Therefore, the concept lattice provides the expert with a first insight
into the data. Such an insight is crucial. Very often, this insight is what the
expert needs to see. Furthermore, based on this insight, the expert can pursue
more detailed inquiries including those based on classical statistical techniques.
In particular, the present study focuses on considering groups of individuals as
objects. The groups are based on sharing common attributes specified by the
expert. The groups can be seen as aggregates. Instead of having an attribute
by an individual, we then naturally come to relative frequencies of attributes
within the specified groups. This way, one comes from data tables with yes/no
attributes (i.e. ordinary formal concepts) to data tables with numbers from the
unit interval [0, 1] interpreted as relative frequencies. We use particular fuzzy
concept lattices for building concept lattices from such data tables. The concept
lattices provide an expert with an aggregate hierarchical view on the data. The
advantage of taking groups and the relative frequencies instead of individuals
and original attributes is conciseness of the description provided by the result-
ing concept lattice which is what the experts asked for. The disadvantage, as
with any other method which involves aggregation and summarization, is loss
of information. We present our method, experimental results, as well as a brief
description of the software tool we used.

2 The questionnaire

Each questionnaire consists of questions to be answered by respondents mostly
by selection from possible answers. From the point of view of FCA, we can take
the set of respondents as the set of objects and single questions as attributes.
The questions need not be yes/no questions. Rather, some questions like those
concerning age and education are many-valued. Correspondingly, a filled-in ques-
tionnaire can be represented by a many-valued context. Such context can be
transformed to an ordinary formal context 〈X, Y, I〉 via conceptual scaling [11].
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Typically, such a formal context contains many objects and a manageable
number of attributes. The corresponding concept lattice is too large for an expert
to comprehend. In addition, the expert might not be interested in the formal
concepts from this concept lattice. Rather, the expert might want to consider
aggregates of the individual respondents as objects in the formal context with the
aggregates defined by having the same attributes on a set S of attributes specified
by an expert, such as those regarding age, sex, etc., with S being a subset of the
set Y of all attributes. Attributes from S will be called characteristic attributes.

The aggregates we consider are equivalence classes of individual respondents.
For respondents x1, x2 ∈ X , put

x1 ≡S x2 if and only if {x1}↑ ∩ S = {x2}↑ ∩ S.

Clearly, ≡S is an equivalence relation on X and x1 ≡S x2 means that x1 and x2

have the same attributes from S, i.e. are indistinguishable by the attributes from
S. We call the classes [x]≡S of ≡S aggregate objects and denote, furthermore,

– by X1 the set of all classes of ≡S , i.e. X1 = X/ ≡S, by Y1 the set of those
attributes from Y not included in S, i.e. Y1 = Y − S.

Now, for each class [x]≡S from X1 and each attribute y ∈ Y1, we consider the
relative frequency of objects in having attribute y and denote it by I1([x]≡S , y)
or simply by I1(x, y). That is, we put

I1(x, y) =
|{x1 ∈ [x]≡S : x1 has y}|

|[x]≡S |
We can consider I1 a fuzzy relation which will indeed be the case in this study.

Namely, we will consider a particular concept lattice associated to 〈X1, Y1, I1〉,
called a lattice of crisply generated fuzzy concepts [4]. For technical reasons, we
round the degrees assigned by I1 to those from the scale {0, 0.01, . . . , 0.99, 1}.

Remark 1. An important remark is in order. Interpreting degrees of membership
of a fuzzy relation by relative frequencies is not typical. It may even seem not
appropriate because degrees in fuzzy logic are typically degrees associated to
graded collections and relationships. However, as we will see, the way we use the
degrees with frequential interpretation is all right from the semantical point of
view. In fact, the only thing which matters in our manipulation with the degrees
is a comparison of the degrees, i.e. a comparison of relative frequencies.

In addition, the expert might want not to include aggregate objects [x]≡S

which contain less than m objects with m being prescribed by an expert (this
requirement was suggested by our domain expert).

Example 1. Consider the following illustrative example. Let the ordinary formal
context be given by Tab. 1. Consider S = {SEXMale, SEXFemale, JOByes,
JOBno} as the set of characteristic attributes.

Using the above-described transformation, we obtain a formal fuzzy context
with 4 aggregate objects Fno (women who do not have a job), Fyes (women who
have a job), Mno (men who do not have a job), Myes (men who have a job),
depicted in Tab. 2.
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Table 1. Original context.

1 2 3 4 5 6 7 8 9 10 11 12 13 14 15 16
1 1 0 1 0 0 0 0 1 0 0 0 1 0 1 0 0
2 1 0 1 0 1 0 0 0 0 0 1 0 0 1 0 0
3 1 0 1 0 0 0 0 1 0 0 1 0 0 1 0 0
4 1 0 1 0 0 0 0 1 0 0 1 0 0 1 0 0
5 1 0 1 0 0 0 0 1 0 0 1 0 0 1 0 0
6 1 0 0 1 0 0 1 0 0 1 0 0 0 1 0 0
7 1 0 0 1 1 0 0 0 0 0 1 0 0 1 0 0
8 1 0 0 1 0 0 0 1 0 0 1 0 0 1 0 0
9 1 0 0 1 0 0 0 1 0 0 1 0 0 1 0 0
10 0 1 1 0 1 0 0 0 0 1 0 0 0 1 0 0
11 0 1 1 0 0 0 1 0 0 0 1 0 0 1 0 0
12 0 1 1 0 1 0 0 0 0 0 1 0 0 1 0 0
13 0 1 1 0 1 0 0 0 0 1 0 0 0 1 0 0
14 0 1 1 0 1 0 0 0 0 1 0 0 0 1 0 0
15 0 1 1 0 0 1 0 0 0 1 0 0 0 1 0 0
16 0 1 0 1 0 0 0 0 1 1 0 0 0 1 0 0
17 0 1 0 1 1 0 0 0 0 1 0 0 0 1 0 0
18 0 1 0 1 1 0 0 0 0 1 0 0 0 1 0 0
19 0 1 0 1 1 0 0 0 0 1 0 0 0 1 0 0

attributes:1 - SEXMale, 2 - SEXFemale, 3 - JOByes, 4 - JOBno, 5 - AGE15-24, 6 -
AGE25–34, 7 - AGE35–44, 8 - AGE45–54, 9 - AGE55–65, 10 - BMIunder (Body Mass
Index =body weight [kg] / body height [m]2), 11 - BMInormal, 12 - BMIover, 13 -
BMIobesity, 14 - PAlow, 15 - PAmoderate, 16 - PAhigh

Table 2. Fuzzy context derived from the formal context from Tab. 1.

1 2 3 4 5 6 7 8 9 10 11 12
Fno 0.75 0 0 0 0.25 1 0 0 0 1 0 0
Fyes 0.67 0.17 0.17 0 0 0.67 0.33 0 0 1 0 0
Mno 0.25 0 0.25 0.5 0 0.25 0.75 0 0 1 0 0
Myes 0.20 0 0 0.80 0 0 0.80 0.20 0 1 0 0

attributes: 1 - AGE15-24, 2 - AGE25-34, 3 - AGE35-44, 4 - AGE45-54, 5 - AGE55-
65, 6 - BMIunder, 7 - BMInormal, 8 - BMIover, 9 - BMIobesity, 10 - PAlow, 11 -
PAmoderate, 12 - PAhigh
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3 Concept lattices from the derived contexts with
relative frequencies

Given a formal fuzzy context 〈X1, Y1, I1〉 consisting of a set X1 of aggregate
objects, a set Y1 of their attributes, and a fuzzy relation I1 with I1([x]≡S , y) rep-
resenting relative frequency of attribute y in class [x]≡S , we use so-called crisply
generated fuzzy concept lattice B(X1, Y1, I1) for displaying the information con-
tained in the questionnaire. Due to the limited scope, we refer the reader to [4]
for a detailed information on crisply generated concept lattices.

Let us recall that a crisply generated concept lattice is a part of a fuzzy
concept lattice [2, 15] generated from the arrow operators by crisp (i.e. ordinary)
sets of objects (or dually, attributes). In a fuzzy setting, the deriving arrow
operators are defined as follows. Let L be a scale of truth degrees such as our
L = {0, 0.01, . . . , 1}. For fuzzy sets A ∈ LX1 of objects and B ∈ LY1 of attributes,
define sets A↑ ∈ LY1 of attributes and B↓ ∈ LX1 of objects by

A↑(y) =
∧

[x]≡S∈X1

(A([x]≡S ) → I1([x]≡S , y)),

B↓([x]≡S ) =
∧

y∈Y1

(B(y) → I1([x]≡S , y)).

Here, → is a suitable residuum (corresponds to implication connective). Note,
however, that for the crisply generated formal concepts which are of interest in
our approach, it does not matter, which residuum → one takes. Namely, for all
the residua, the corresponding crisply generated concept lattices are isomorphic,
see [4]. Now, a crisply generated fuzzy concept lattice B(X1, Y1, I1) is the set of
all fixpoints of the arrow operators which are generated by a crisp set of objects,
i.e.

B(X1, Y1, I1) = {〈A, B〉 |A↑ = B, B↓ = A, and
A = C↑↓ for some crisp C ∈ LX1}.

Note that C being crisp means that C([x]≡S ) = 0 or C([x]≡S ) = 1 for each
[x]≡S ∈ X1.

Remark 2. Formal concepts 〈A, B〉 from B(X1, Y1, I1) can be interpreted as fol-
lows. A is a collection of aggregate objects (i.e. classes of individual respondents).
B is a fuzzy set such that every aggregate object (class of individual respondents)
from A has attribute y with relative frequency at least B(y). Strictly speaking,
A is a fuzzy set, too, and we should say that {[x]≡S |A([x]≡S ) = 1} is the set of
aggregate objects such that for B, every [x]≡S ∈ A has attribute y with relative
frequency at least B(y). For aggregate objects [x]≡S with A([x]≡S ) < 1, high
A([x]≡S ) indicate that the relative frequencies of y’s are close to B(y).

Note that crisply generated fuzzy concept lattices are isomorphic to Krajči’s
one-sided fuzzy concept lattices defined in [14] as well as to the fuzzy concept
lattices defined in [7].
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4 Evaluation of the questionnaire

This concept lattice B(X1, Y1, I1) is suitable for further analysis. A frequent ex-
pert request is to find out common properties for groups of respondents (i.e.
aggregate objects) which we represent by characteristic attributes. For this pur-
pose, we find the smallest concept, which include all request aggregate objects
(in degree 1). For the expert, it is important how many and which respondents
are contained in such a concept. The number of respondents is sum of the num-
bers of objects contained in the aggregate objects which are present in the extent
of the formal concept.

No less important are characteristics of respondents represented by the con-
cept. This is given by characteristic attributes, which characterize aggregate ob-
jects included in this concept in degree 1. For example, if there is an aggregate
object in the extent corresponding to attributes SEXFemale and JOBno, and
and aggregate object corresponding to attributes SEXMale and JOByes, we can
see, that this concept relates to women who do not have a job and simultaneously
to men who do have a job.

Another type of information is contained in the intent B. A degree B(y)
expresses the precentage of objects which are present in the extent (in degree
1) and have attribute y. Both high and low values of B(y) are interesting for
the expert. For example the concept whose extent is described above and which
has in its intent attribute SMOKINGno to degree 0.42 and attribute DOGyes to
degree 0.65, we can see, that at least 42% of women without a job and working
men do not smoke and at least 65% of women without a job and working men
have a dog.

By passing down the concept lattice we can examine common attributes of
different subsets of aggregate objects. A comparison of concepts created from
aggregate objects is also interesting for the expert. For example, if the expert is
about to examine the influence of physical activity on population, then compar-
ing a concept which is characterized by aggregate objects SEXMale and PAlow,
and SEXFemale and PAlow, with a concept, which is characterized by aggregate
objects SEXMale and PAhigh, and SEXFemale and PAhigh is of interest.

5 IPAQ

International Physical Activity Questionnaire (IPAQ) is an appropriate instru-
ment with acceptable measurement properties for monitoring of physical activity
(PA) among 18 to 65 year old adults in diverse (international) populations ([1],
[20]).

Every participant is filling out the time spent on performing physical ac-
tivities including walking, including personal data (sex, age, body weight and
height) and lifestyle characteristics (education, job time, type of housing - own
house apartment, family status - living alone × in family × in family with chil-
dren, smoking - yes × no, ownership of a car, a dog, a bike or weekend house,
participation in an organized PA). The most important result from the IPAQ is
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the finding how many adults (%) meet the category “low”, “moderate” or “high”
level of PA in relation to the guidelines of healthy lifestyle and health support.
However, complex and transparent description of groups of adults with different
PA level is necessary. This description should include environmental, social, and
somatic factors determining the lifestyle of the participants. Simple and multi-
ple correlation analysis did not show (−0.15 ≤ rS ≤ +0.15) deeper associations
between PA level and personal data and lifestyle characteristics of participated
adults. Therefore, it is not possible to say that smokers or obese adults are less
physically active than non-smokers or non-obese adults, due to very low corre-
lations between PA level and smoking or body weight. This is the reason why
we are looking for a “suitable tool” that will allow complex and transparent
characterization of groups of adults with regard to their PA level and lifestyle
characteristics. Formal concept analysis proved useful for this purpose [16].

Are there any differences between groups of females with low and high level of
PA in relation to the guidelines of healthy lifestyle and health support? Are there
any similarities in personal data or lifestyle characteristics in these two groups of
females? Are any of these characteristics more typical for group of females with
high level of PA than for group of females with low PA level? These are the types
of questions formal concept analysis helps the expert with in looking for answers.
The whole questionnaire data was transformed into an ordinary formal context
that included 4510 objects (participants) and 47 attributes. The next step was to
create agregate objects. The set of characteristic attributes contains attributes
SEXMale, SEXFemale, PAlow, PAmoderate and PAhigh. As explained earlier,
this way we come to a fuzzy context with 6 aggregate objects and 42 attributes.
The aggregate objects are MLo (men with low PA), MMo (men with moderate
PA), MHi (men with high PA), FLo (women with low PA), FMo (women with
moderate PA), FHi (women with high PA). The resulting fuzzy concept lattice
contains 54 concepts.

Evaluation of this concept lattice helps answer the questions formulated
above. If the expert is interested in data related to women, he/she will work
with the part of the concept lattice depicted in Fig. 1. This part contains formal
concepts with extents with aggregate objects FLo, FMo, and FHi in degree 1.
For instance, there is obviously high number of females who showed at least
moderate PA level. This result is strongly influenced by everyday walking (50%
of female spend more than 65 minutes per day). Ownership of a car or a dog,
living in house, living alone, smoking and participation in an organized PA more
than 3 times per week are attributes that do not affect the level of PA (Tab. 3).
Females characterized as high active are more walking and have more optimal
body weight (BMI index). We can also see that more females with low level of
PA have a job. Different value of attribute Age 15-24 can indicate a fact that
physical activity of young people is smaller (Tab. 3).

On the other hand we can be interested in finding features that are shared
by more aggregate objects. For example, what is common for women and men
with high physical activity. In this case we can examine the intent of a concept
whose extent contains aggregate objects MHi and FHi in degree 1 (Tab. 4).
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Fig. 1. The set of concepts of females differentiated according to health supported PA
level, n=sum of cardinality of objects in extent in degree 1, x% = (n/N) ∗ 100 where
N is sum of cardinality FLo, FMo and FHi, ie. number of woman in questionnaire

Table 3. Differences between high and low active group of females

1 2 3 4 5 6 7 8 9 10 11 12 13
FHi (n=1699) 0.51 0.08 0.64 0.21 0.43 0.08 0.29 0.52 0.43 0.17 0.30 0.65 0.40
FLo (n=94) 0.52 0.09 0.61 0.18 0.40 0.10 0.24 0.60 0.36 0.31 0.10 0.78 0.52

attributes: 1 - Living in house, 2 - Living alone, 3 - Ownership of a car, 4 - Smoking,
5 - Ownership of a dog, 6 - Organized PA ≥ 3 per week, 7 - Ownership of a weekend
house, 8 - BMI under, 9 - BMI normal, 10 - Walking low, 11 - Walking middle, 12 -
Job yes, 13 - Age 15-24

Table 4. Attributes shared by women and men with high PA

1 2 3 4 5 6 7 8 9 10 11 12
FHi,MHi 0.84 0.64 0.65 0.21 0.37 0.49 0.52 0.17 0.09 0.43 0.04 0.01

attributes: 1 - Ownership of a bicycle, 2 - Ownership of a car, 3 - Job yes, 4 - Smoking,
5 - Ownership of a dog, 6 - Living in house, 7 - Walking high, 8 - Walking low, 9 - BMI
under, 10 - BMI normal, 11 - BMI over, 12 - BMI obesity
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These are examples of how our approach via formal concept analysis assists
the expert in evaluating the questionnaire data. A detailed description of the
interpretation of the data is beyond the scope of this paper.

6 Software tool

We used a software tool which is developed in the Department of Computer
Science at Palacky University, Olomouc, to create the fuzzy context and to
browse the corresponding fuzzy concept lattice. This software tool supports the
whole process of the processing and evaluation of IPAQ questionnaire. The basic
overview of functions that are supported and their succession is in Fig. 2.

Fig. 2. Base screen of application

The processing of the questionnaire consists of the following steps.

– Reading of data. IPAQ questionnaire is recorded in the form of MS Ex-
cel file. The columns of this file contain respondents’ answers to individual
questions. The software tool allows to specify which columns are included in
the processing.

– Scaling. The answers to some questions may be in the form of many-valued
attributes. For example, the values in the column Age may be in the interval
from 18 to 69. Due to this fact it is necessary to transform the original file
to the form in which each column contains only 0 or 1. This process is called
scaling. Our software tool allows one to specify the bivalent attributes and
the scale for each column in data source file.

– Creating aggregate objects. It is possible to interactively specify the set
of characteristic attributes. The user also chooses the residuated lattice in
this step including the number of truth degrees.
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The fuzzy context is created after these steps. We can examine the fuzzy
concept lattice and its concepts. Our software tool does not create the concept
lattice as a whole. Instead, it supports an interactive navigation in the concept
lattice. It shows the information related to the current concept and its direct
neighbors. A user selects next steps by choosing an ancestor or successor of the
current concept. He/she can move from a more general concept to a more special
concept and vice versa. He/she can also specify the content of the extent or the
intent and move to the appropriate concept. We can see the user’s screen in
Fig. 3.

Fig. 3. Navigation in fuzzy concept lattice

The navigation in the concept lattice needs the calculation of the current
concept and its neighbors only. This calculation is relatively fast and does not
depend on the size of the whole concept lattice. Due to this fact the navigation
proceeds on-line and the user can modify the course of navigation interactively,
based on information gained. The user can also specify additional constraints to
be satisfied by formal concepts which are to be presented to him/her.

CLA 2007 105 Montpellier, France



7 Conclusions

We presented a way formal concept analysis can help in evaluation of question-
naires. The proposed method has been tested on evaluation of IPAQ question-
naire. The method provides an expert with a structures view on the questionnaire
data with some elementary statistics and enables the expert to see important
relationships in the data.
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Abstract Since the arrival of digital cameras, many people are faced
to the challenge of organizing and retrieving the overwhelming flow of
photos their life produces. Most people put no metadata on their pho-
tos, and we believe this is because existing tools make a very limited
use of them. We present a tool, Camelis, that offers users with an or-
ganization of photos that is dynamically computed from the metadata,
making worthwhile the effort to produce it. Camelis is designed along
the lines of Logical Information Systems (LIS), which are founded on
logical concept analysis. Hence, (1) an expressive language can be used
to describe photos and query the collection, (2) manual and automatic
metadata can be smoothly integrated, and (3) expressive querying and
flexible navigation can be mixed in a same search and in any order. This
presentation is illustrated by experiences on a real collection of more
than 5000 photos.

1 Introduction

Formal Concept Analysis (FCA) has been recognized as a good paradigm for
information retrieval [GMA93,ML02] because it makes it possible to tightly com-
bine querying and navigation in a same search. Querying alone is not satisfying
because it requires from users to know the query language, and to have a precise
idea of what they search for. Navigation, by leading users to the result step by
step, is more interactive, but the navigation structure is most often very rigid so
that only one or a few paths exist to each object (e.g., file hierarchy, hyperlink
graph). In FCA, the concept lattice plays the role of the navigation structure.
Each concept combines a query as a set of attributes (the intent), and a naviga-
tion place as a set of objects (the extent). Attributes can be added to the query
in any order, so that a concept can be reached through several paths.

Logical Information Systems (LIS) [FR04] have been introduced (1) to com-
bine querying and navigation, (2) to be reasonably efficient on large collections
of objects, (3) to make use of an expressive language for object descriptions and
queries, and (4) to be generic w.r.t. the kind of objects and the language. Because
of (3) it becomes necessary to do complex reasoning to see whether an object
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description match a query (e.g., the object description is a string, and the query
is a regular expression). Logics are the right things to encapsulate representation
and reasoning facilities. So we defined a generalization of FCA, Logical Concept
Analysis (LCA) [FR00], where logical formulas can be used instead of sets of
attributes. This makes FCA an instance of LCA, where object descriptions and
queries are sets of attributes.

Camelis1 is a complete implementation of a logical information system. It
is generic in that a logic module can be plugged in so as to cover different
application needs. It uses specific data structures and algorithms so that it is
efficient up to 10,000 objects. It has a graphical interface that displays at all
time the query that led to the current concept, its extent, and properties to be
added or removed from the current query in order to reach neighbour concepts.
Both browsing and defining the context are possible through this interface.

Among the various existing applications of Camelis, the most convincing is
the management of a photo collection. Indeed, photos can be described along
many facets like date, location, event, visible persons, visible objects, etc. A file
hierarchy enforces a strict order between these facets, making some search hardly
possible. Tag-based systems like Flickr are limited because a photo tagged with
’Sydney’ as location will not be answer to a query containing ’Australia’; and
a photo tagged with ’formal concept analysis’ will not be answer to ’...concept
analysis’. These limitations are easily solved by dedicated logics: here, a taxon-
omy of locations, and a logic of string patterns. In this paper, we illustrate the
capabilities of Camelis and LIS on a real context, the personal photo collection
of the author. It contains more than 5,000 photos, and has been incrementally
defined since 2003, along the arrival of new photos.

Section 2 assumes an existing context, and presents all the facilities pro-
vided by Camelis to browse and retrieve photos, from querying by formulas
and querying by objects, to different kinds of navigation: i.e., downward and up-
ward, backward and forward, and sideward. Section 3 illustrates the incremental
definition of the context with the arrival of a new pack of photos. Section 4
compares Camelis with related tools.

2 Retrieving Photos

In this section, we assume the existence of a logical context representing a col-
lection of photos and their metadata. The process of building such a context
is developed in Section 3. We recall the basics of Logical Concept Analysis
(LCA) [FR00,FR04], whose principles are the same as in FCA, except that logical
properties partially ordered by a subsumption relation are manipulated instead
of unrelated attributes.

Definition 1 (logical context). Let L = (L,!) be a logic, i.e. a set of prop-
erties L partially ordered by a subsumption relation !. A logical context is a

1 See http://www.irisa.fr/LIS/ferre/camelis/.
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triple K = (O,L,D), where O is a set of object identifiers, and D is a mapping
from objects to their description as a set of logical properties.

In our application, object identifiers are file paths or URLs to photos, and
their logical description is a set of properties such as location, date, event, etc.
These properties are either taxonomic terms or valued attributes over various
concrete domains such as date intervals or string patterns. The subsumption
ordering is fixed for concrete domains, and designed by hand for taxonomies.

– location: Montpellier ! France ! ’European Union’
– date: date = 24 oct 2007 ! date in sep 2007 .. jun 2008
– event: event is "conference CLA" ! event contains "conference"

An object can be in the extent of a property without having it explicitely in
its description, through subsumption.

Definition 2 (extent). Let K = (O,L,D) be a logical context, and p ∈ L a
property. The extent of property p is defined by the set of objects whose descrip-
tion entails p:

extent(p) = {o ∈ O | ∃d ∈ D(o) : d ! p}.

Hence, object descriptions can be kept small and precise at the same time. For
instance, an object described with some date d will be in the extent of any date
interval containing d. Here lies the main benefit of logics w.r.t. attributes. A sim-
ilar benefit can be obtained with conceptual scaling [GW99], but only for finite
domains (e.g., locations), and with redundancy in the scaled context [CFRD06].

Logical properties can be combined by boolean operators and , or ,not so as
to form more complex queries. Their extent is defined inductively as follows for
every queries q1, q2:

extent(q1 and q2) = extent(q1) ∩ extent(q2)
extent(q1 or q2) = extent(q1) ∪ extent(q2)
extent(not q1) = O \ extent(q1)

This definition makes every pair (q, extent(q)) an inf-semiconcept of a logical
context whose logic is extended with boolean operators. These semi-concepts
play the role of both query and navigation place in the following, founding the
combination of querying and navigation presented in the introduction.

In the next sections we present the many different ways information can
be retrieved in Camelis. This is illustrated on a logical context made of 5,480
photos described by an average of 10 properties each, taken among a set of 28,143.
This later figure is not the number of available properties, which is infinite, but
the number of properties used so far.

2.1 The Graphical Interface

The graphical interface of Camelis can be seen in Figure 1. At every time, the
current query and its extent are displayed respectively as a text field at the top
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Figure1. A screenshot of the graphical interface of Camelis.

and as a thumbnail list at the right. The query is editable, and the extent can be
scrolled page by page (the page size can be customized). At the left is displayed
a set of property trees, where the hierarchical relations match the subsumption
relations between logical properties. As a logic can be any partial ordering, not
necessarily a tree, the same property can appear several times. This is not a
problem as tree nodes are expanded on demand.

These trees provide a feedback about the current extent, and a support for
navigation. Each visible property has a count (numbers at the left), and a color
that depends on the context and the current query. Let K be a logical context,
q be the current query, and p be a property. The count of p is the number of
objects in the current extent that have p as a property:

count(p) = |extent(q) ∩ extent(p)|.

A property is not shown if its count is 0, because it tells nothing about the cur-
rent extent. In order to get fewer properties in the property trees it is possible
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to set a minimum count on each property to control the way it is expanded. A
property is red- or orange-colored if it is shared by all objects in the extent, i.e. if
its count is equal to the size of the extent. This means the set of orange/red prop-
erties is the intent associated to the current extent, and red properties are those
properties also occuring in the query. Because the count of properties depends
on the current extent, property trees need to be recomputed each time the query
changes. This makes the navigation trees very dynamic and informative. Specific
data structures are used to make their computation efficient, i.e. linear in the
size of the context (see [FR04,PR05] for data structures and algorithms). The
following sections show how these informations can be used to navigate among
photos along various directions, and to get feedback about selected extents.

2.2 Navigating Downward in the Concept Lattice

Firstly, suppose I2 want to find some photos from a trip in Australia for
ICFCA’04. I first expand the property Location, and find I have photos from
Europe (4859), Africa (162), and Australia (148). After selecting the property
Australia3:

– the query becomes Australia,
– the property Australia becomes red because it is now part of the query,

and it is automatically expanded to show sub-locations of Australia,
– the properties Europe and Africa are no more visible, because no more

relevant (count = 0),
– the extent displays the first page of the 148 selected photos.

The sub-location ’New South Wales’ becomes orange, which means this is the
only region of Australia where I have taken photos. More precisely I find that I
have been mainly in Sydney (105), and in the Blue Mountains (18).

Now I expand the property Type and see there are different types of pho-
tos: e.g., buildings (29), animals (34), plants (6). I get interested in Australian
living things, so I select both Animal and Plant, which leads me to the refined
query Australia and (Animal or Plant), whose extent contains 40 photos.
One of these photos is a portrait, which I do not want, so I select the nega-
tion of Portrait with the help of a contextual menu. This leads me to the
new query Australia and (Animal or Plant) and not Portrait (39 pho-
tos). By expanding more properties, I discover that these photos were taken
in February and March 2004 in New South Wales, that 5 photos of 3 different
species of marsupials are present: e.g., kangooroo, koala, wallabi.

These 3 navigation steps led to semi-concepts with more and more precise
queries, and hence smaller and smaller extents. This is called downward nav-
igation, and its principle is to combine with a and the current query and a
refinement. A refinement can be a single property, a disjunction of properties,

2 The pronoun I is used to emphasize a personal experience in the use of Camelis.
3 French words can be seen in screenshots because it is my real photo collection, but

english translations are used in the text for better understanding.
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or the negation of a property. When a refinement uses only properties that are
relevant and not colored, the new semi-concept is always strictly smaller but not
empty. This is a big advantage compared to purely querying systems, where it
is common to get empty results.

Figure 1 shows the interface obtained after the previous navigation opera-
tions. At this stage, I can either browse the 39 photos in Camelis, or launch a
diaporama in an external application.

2.3 Navigating Backward and Forward in the Query History

Like in web browsers, it is possible to navigate backward and forward in the query
history. This is mainly useful for opening parentheses on the path of a navigation.
Imagine that, while browsing the extent at the end of previous section, I find
a photo of a koala, and want to look at all other photos of koala. I first select
the property ’koala’, which leads me to a new semi-concept with 2 photos,
and then I can move back to the previous semi-concept. When moving back,
scrolling positions are remembered, so that I can go on easily in my browsing of
Australian animals and plants.

2.4 Navigating Upward in the Concept Lattice

During downward navigation, I sometimes want to remove or generalize some
properties in the query so as to get larger extents: this is upward navigation.
For instance, I realise I have not enough photos of animals and plants. If I want
to remove the last refinement, the back button is a simple way to achieve this.
But if I want to remove the first refinement Australia, I would need to move 3
steps backward, and re-select the last 2 refinements. I could also edit the query
by hand, but users usually prefer to navigate rather than editing queries.

Besides, orange and red properties are shared by all extent objects, and so
cannot be used for downward navigation. This makes them available for up-
ward navigation. When a red property is selected, it is removed from the query.
For instance, if I select Australia, the new query is (Animal or Plant) and
not Portrait (282 photos from many locations). When an orange property
is selected, it replaces more specific properties in the query. For instance, if I
select Pacific, the new query is (Animal or Plant) and not Portrait and
Pacific. In this latter case, the property Pacific becomes red because it is
in the new query, and the property Australia becomes orange because this
generalization gives no additional photo.

2.5 Navigating Sideward

We show in this section that downward and upward navigation can be combined
in 2 forms of sideward navigation. From the previous query Australia and
(Animal or Plant) and not Portrait, we first select the property Plant to
reach the query Australia and not Portrait and Plant (6 photos). This is
our starting point for sideward navigation.
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At this point, I see that 1 photo has also the type Landscape, which interests
me. So I select this property (downward navigation), and as the result has only
1 photo, I generalize it by removing the property Plant from the query (upward
navigation). We have done a sidestep from Australian plants (6 photos) to Aus-
tralian landscapes (80 photos), replacing in the query the property Plant by the
property Landscape. From there, I perform a new sidestep from the property
Landscape to the property Building, now watching 28 photos of Australian
buildings. These steps are suggested and supported by photos sharing two prop-
erties. This illustrates the relevance of assigning several types to photos, which
is very common in this photo context. The same would apply to persons visible
on photos, as a photo often shows several persons.

The same does not apply to locations, as a photo cannot be taken in 2 incom-
parable locations (e.g., in Australia and Europe). However it is still possible to
navigate sideward among locations, through the taxonomy of locations. Suppose
I want to find building photos from other locations. I first generalize Australia
by Location in the query (upward navigation), and then browse suggested loca-
tions before selecting Spain (downward navigation). I thus have done a sidestep
from Australia to Spain, and find 18 photos, which appear to be mainly churches
taken in the north-west of Spain in 2003.

The latter form of sideward navigation is a downward-upward combination,
and can be qualified as contextual because it relies on objects sharing some prop-
erties. The former form of sideward navigation is an upward-downward combi-
nation, and can be qualified as logical because it relies on subsumption relations
between properties.

2.6 Querying by Formulas

Most useful queries can be reached by a succession of navigation steps, but not
all. Indeed the logic allows the expression of string patterns (e.g., on events) and
arbitrary intervals (e.g., on dates), and the navigation trees cannot display them
all. However it is always possible to use these patterns and intervals by directly
editing the query. For instance, suppose I want to find ICFCA-related photos, I
enter event contains "ICFCA" in the query field, and find myself in the same
situation as if I had selected the corresponding property in the navigation trees.
I find that the 68 photos in the extent are scattered in 3 different years (2004,
2006, 2007) and in 3 different locations (Dresden, Clermont-Ferrand, Sydney),
and they show people from the FCA community. I can further refine my search to
photos taken since 2006 by modifying the query into event contains "ICFCA"
and date in 2006... I now find that both year 2004, and location Sydney have
disappeared from the navigation trees as they are no more relevant to the new
query. The result can be seen in Figure 2.

It can be observed in Figure 2 that the 2 properties used in the query are
now visible. Each time a new property is given by a user, it is inserted in the
property trees for future use. Indeed, if a user has found this property useful,
she or another user may well find it useful on another occasion. Now, if a user is
not satisfied by this behaviour, she can still hide it, as well as any other property
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Figure2. Another screenshot of the graphical interface of Camelis.

by the way. Conversely it is possible to directly insert a new property, without
having to use it in a query. This possibility for users to show and hide properties
at will help them customizing navigation trees to their taste.

2.7 Querying by Examples

In all previous sections the query is modified either by selection of features, or
by direct edition. In this section we present how a query can be determined by
the selection of a subset of photos, thus supporting querying by examples. The
principle is to make the query be the intent of the subset of photos.

Definition 3 (intent). Let K = (O,L, d) be a context, and O ⊆ O be a subset
of objects. The intent of O is the set of most specific properties that are shared
by all objects in O:

intent(O) = Min!{p ∈ X | ∀o ∈ O : ∃d ∈ D(o) : d ! p},
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where X is the set of visible properties in the property trees.

Suppose I start with the query Australia and not Portrait. While brows-
ing photos in the result, I see interesting photos of buildings (e.g. 2 photos of the
Opera, and 1 photo of the Harbour Bridge), and I would like to find more. By
selecting them I move to a new query that is the conjunction of the properties
of the intent of those 3 photos. As usual with this form of navigation, the intent
query is very specific so that I get no more photos. The properties making the
intent query are red in the trees, and I find some of them are very specific: e.g.,
a precise date (22 feb 2004), a precise location (Sydney). At this stage, I can use
upward navigation to generalize the query. By removing in the query properties
related to date and event, the query becomes Sydney and Building, and I find
29 photos. I further generalize the query by replacing the property Sydney by
Australia, but find no more photos. One more generalization by removing the
location, and I now find 933 photos of buildings around the world, mostly in
Europe. I can also navigate downward to find photos of modern buildings, or
sideward to find buildings in different countries.

A special case of querying by examples is when selecting only one photo.
Then there is only one object in the extent, because there is enough properties
to uniquely characterize each photo, and the query contains all the object prop-
erties, which are more easily read as red properties in the navigation trees. So
this is an easy way to access the full description of any object.

3 Describing Photos

This section shows how the context that is used in Section 2 can be built in a
reasonably efficient way. An important practical need is that this building can
be done incrementally upon the arrival of new photos, and that everything that
is done can be undone. The parts of a logical context that can be updated are
(1) the set of objects (i.e., adding and removing photos), (2) the description of
objects (i.e., adding and removing properties to objects), and (3) the taxonomic
parts of the logic (i.e., moving a property downward and upward in a taxonomy).

3.1 Importing Photos along with Intrinsic Properties

Suppose after I took part to CLA’07, I get a new folder of photos taken during
this event. In order to add these new photos to my photo context, I apply the
command Import files to this folder so that each photo it contains becomes a
new object in the context. These new objects comes with an initial description
that is automatically computed from the file location and contents. The proper-
ties making this initial description are called intrinsic. The intrinsic properties
of photos are the file location as a string, and the date. From there it is easy
to select the newly imported photos by setting the query to the appropriate file
location property (e.g., file contains "My Photos/CLA2007/").
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3.2 Adding Extrinsic Properties to Photos

The state of the art in image analysis [DLW05] makes it possible to make intrinsic
low-level properties of photos, such as orientation, intensity, dominant colors or
textures [ML02]. However, most high-level properties such as event or visible
persons, which are the most useful, cannot be determined automatically from
their contents, and have to be given manually by users [HSS02]. Those properties
are called extrinsic. In fact there is no strict borderline between intrinsic and
extrinsic properties. For instance, the location could be made instrinsic with
the help of a GPS-equiped camera and a geographical information system, but
these features are rarely available. Some properties (e.g., sunset) could be made
instrinsic, but probably not all. The borderline is fixed as a trade-off between
the cost of manually giving properties, and the cost of developping property
extraction algorithms. The advantage of extrinsic properties is that they can be
customized at will to the needs of users, and the design of the interface make
it efficient enough as I experienced with the rich description of more than 5,000
photos.

The principle for efficiently giving new properties to photos is based on copy
and paste. A set of photo thumbnails is first selected, and is then pasted on
a set of properties, which can be either selected in the navigation trees, or di-
rectly entered in a text field. Removing properties is simply done by pasting on
the negation of these properties. All my new photos of CLA’07 have the same
event and location, so I paste all of them into event is "conference CLA’07"
and Montpellier. Both properties are new, and are then inserted in the prop-
erty trees: event is "conference CLA’07" is placed under event contains
"conference", but Montpellier is placed at the highest level because it is a
new location. The taxonomy of locations is updated with Montpellier by the
drag-and-drop of Montpellier under France, which enforces a subsumption re-
lation between the 2 locations.

Other properties, e.g. types, persons, objects, are added in the same way.
When a property already exists, it is enough to find and select it in the property
trees. Otherwise it is enough to write it. In the latter case, either it is a valued
attribute and it is automatically inserted, or it is a taxonomic term and it can be
moved once and for all in a taxonomy. I have observed that after some number
of photos I less and less often need to write new properties, and that I can rely
on the property trees to maintain consistency in the use of properties. Of course
the fact that I am the single user helps a lot to have a consistent vocabulary,
but we could imagine a collaborative system under the principles of Wikipedia

or Flickr to incrementally develop shared taxonomies.

4 Related Tools

Among applications for organizing and retrieving photos, Flickr and Picasa

are among the most famous. In Picasa, the organization of photos is limited to
making albums as collections of photos. So each album can be seen as a property,
and because a photo can be put in several albums, a photo can be given several

CLA 2007 117 Montpellier, France



properties. However there is no hierarchy between those properties, and they
cannot be combined in queries: e.g., it is not possible to get the intersection,
union or difference between 2 albums. Navigation is limited to the usual file
system hierarchy. In Flickr, any set of properties, called tags or sets, can be
given to photos, and each photo can also have a date, a geolocation, and an
owner. The basic queries are conjunctions of tags, but advanced search allows
for negation of tags, and an interval of dates. However, the different properties
cannot all be mixed in a same query: e.g., “all photos from this author taken in
this area about some subject”. The navigation is limited to a cloud of tags, where
the size of each tag is related to its global frequency. This would correspond to
our initial navigation trees, where each tree would be limited to its root, i.e., a
flat list of tags.

There also exists tools in the FCA community. Bibsonomy [HsSS06] is
similar in its working and appearance to Flickr, except it applies to book-
marks and bibliographical references instead of photos. It formalizes the meta-
data as a triadic context that links together resources, tags, and users. Im-

ageSleuth [DVE06] is certainly the tool the most similar to Camelis w.r.t.
presentation and navigation. It displays the current semi-concept, the extent as
a set of thumbnails and the intent; it provides downward and upward navigation,
querying by attributes, and querying by examples. It also uses perspectives (sets
of attributes), which are in fact simple cases of 2-levels taxonomies: the 1st level
is made of perspectives like Location or Person for photos, and the 2nd level is
made of attributes such as concrete locations or persons. It also provides a way
to reach similar concepts according to some distance. According to the definition
of this distance, we can say that our sideward navigation are a way to reach such
similar concepts.

The main advantages we have compared to these tools are brought by the
use of logic. Logic enables to express different kinds of properties (e.g., dates,
string patterns), and to organize them according to a well-defined subsumption
relation. Logic enables users to create and customize several taxonomies. Logic
enables to express complex queries where all kinds of properties can be freely
combined with all boolean operators. This expressiveness is nevertheless acces-
sible through navigation as illustrated in Section 2. Another major advantage of
Camelis is to provide very informative navigation trees from any query, and to
support all forms of navigation and querying : navigation downward, upward,
sideward, backward and forward, querying by formulas and by examples. Fi-
nally, we successfully manage a collection of photos 10 times larger than the
example given for ImageSleuth, and we think this is because we do not need
to compute the concept lattice. The navigation trees supporting navigation and
reflecting the concept lattice are computed on the fly.

5 Conclusion

Camelis has greatly benefited from several years of application on my collec-
tion of photos. This makes it a mature implementation of Logical Information

CLA 2007 118 Montpellier, France



Systems (LIS), and solves the problem of organizing and retrieving photos in a
rich and flexible way. Camelis has also deeply changed the way I take and share
photos with friends. I can quickly build customized diaporamas. For instance,
to present my region Brittany to a group of foreigners, I selected all buildings
and landscapes of this region, except those showing relatives. I am not reluctant
to take photos that are irrelevant to the current event because I know I can
easily find them afterwards: e.g., the photo of an animal during a conference
event. This allows me to progressively gather collections of photos on various
themes: e.g., I have got photos for 51 different species of animals, 17 different
music instruments, and 255 named persons.

Besides photos, Camelis is also applied to music files (whose tags are auto-
matically extracted as intrinsic properties), and to sets of bibliographical refer-
ences (imported from BibTEX files and DBLP search results).
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[FR04] S. Ferré and O. Ridoux. An introduction to logical information systems.
Information Processing & Management, 40(3):383–419, 2004.

[GMA93] R. Godin, R. Missaoui, and A. April. Experimental comparison of navi-
gation in a Galois lattice with conventional information retrieval methods.
International Journal of Man-Machine Studies, 38(5):747–767, 1993.

[GW99] B. Ganter and R. Wille. Formal Concept Analysis — Mathematical Foun-
dations. Springer, 1999.

[HSS02] E. Hyvönen, A. Styrman, and S. Saarela. Ontology-based image retrieval.
In XLM Finland Conf., pages 15–27, 2002.

[HsSS06] A. Hotho, R. J schke, C. Schmitz, and G. Stumme. BibSonomy: A social
bookmark and publication sharing system. In A. de Moor, S. Polovina, and
H. Delugach, editors, ICCS Work. Conceptual Structures Tool Interoperabil-
ity. Aalborg University Press, 2006.

[ML02] J. Martinez and E. Loisant. Browsing image databases with Galois’ lattices.
pages 791–795. ACM, 2002.

[PR05] Y. Padioleau and O. Ridoux. A parts-of-file file system. In USENIX Annual
Technical Conference, General Track (Short Paper), 2005.

CLA 2007 119 Montpellier, France



Concept Analysis on structured, multi-valued
and incomplete data

David Grosser, Henri Ralambondrainy

Laboratoire IREMIA, Université de la Réunion,
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Abstract. This paper presents an approach to Concept Analysis of
structured, multivalued and incomplete data currently present in life
science knowledge bases. We are concerned with tree structured objects,
whose size may be variable. We focus on the composition relations be-
tween attributes in the learning process. The interest of the method is
the ability to take into account both structural and value parts of the ob-
jects. An application on a coral knowledge base illustrates the advantages
of the method.

1 Introduction

One of the essential issues in classification science concerns biological specimens
and taxa representations and analysis [9]. This is particularly the case in marine
environment for groups like corals, hydroids or sponges for which descriptions
of specimens and taxonomy are particularly complex. Descriptions are often
multi-valued due to variability inside of same species, structured to take into
account characters dependencies and noisy or incomplete [4]. In the context of the
”Knowledge Base on corals project”[5], we have developed a specific knowledge
representation and analysis system: IKBS (Iterative Knowledge based System),
to achieve identification, classification and conceptual analysis from systematic
morphological descriptions.

To deal with such descriptions, we present a method for Concepts Analysis
from structured, multivalued and incomplete objects. Formal Concept Analysis
(FCA) [7] has been successfully applied to a range of knowledge engineering
problems [14]. Traditional FCA methods and tools are usually concerned with
objects described by binary contexts. Extracting concepts from more complex
contexts is a recent and challenging trend of research on FCA [13]. Indeed, real-
world data are often complex and difficult to be transformed in a binary format
without loss of information. One key difficulty lies in the presence and man-
agement of relational attributes such as references or part-of relations between
objects. For example, in [12] methods are proposed to find relational concepts in
structured datasets in which individuals are described both by their own features
and by their relations to other. Such data are currently found in relational or ob-
ject oriented databases, or software models such as UML. In a similar research
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trend, [3] shows how FCA can be used to support Ontology Engineering and
how ontologies can be exploited in FCA applications as background knowledge
to assure consistency and scalability of the results [3].

In our approach, we are concerned with tree structured objects corresponding
to specimen descriptions. The object’s structure is defined in a model that repre-
sents all characteristics (attributes, relations and values) and background knowl-
edge of a particular concept, corresponding to a taxa (family, genus, species).
However, the size of each object may be different from others (different special
schemas called skeletons) because of inapplicable attributes and dependencies
between them. In this paper, we focus on using some background knowledge and
particularly the composition relations between attributes in the Concept Anal-
ysis process. The interest of the method is the ability to take into account both
structural and value part of the objects.

The paper is organized as follows: Section 2 recalls results on Galois connec-
tion on semilattices. Section 3 gives the knowledge representation model used to
describe objects. Section 4 presents a way to make Concept Analysis on struc-
tured and multivalued objects. The approach is illustrated by an application
example in Section 5.

2 Preliminaries

In this section, we recall some results on Galois Connection (GC) between semi-
lattices that will be used in further sections.

Let P and Q be ordered sets. We recall that a pair GC = (f, g) of maps
f : P → Q and g : Q → P is a Galois Connection (GC) between P and Q if,
for all p ∈ P and q ∈ Q : f(p) ≤ q ⇐⇒ p ≤ g(q). The mapping h = g ◦ f
and k = f ◦ g are closure operators in P and Q. Any pair (p, q) such that
(p = g(q), q = f(p)) is called concept [7].

The definition of GC between lattices can be found in [1] and GC between
semilattices has been studied by [8] [10] [6], it is useful because it gives a suitable
framework for concepts analysis for data which are not binary.

We denote by O a set of objects, and Γ a meet semilattice. Let δ : O → Γ be
the mapping which associate every element o ∈ O with its description δ(o) ∈ Γ.
The context K = (O, Γ, δ) is called pattern structure in [8]. The descriptor δ
induces a GC between (P(O);⊂,∪) and (Γ ; <,∧) by means of the map, such
that for γ ∈ Γ ext(γ) = {o ∈ O|γ ≤ δ(o)} and for L ⊂ O int(L) = ∧l∈Lδ(l).
The GC is denoted by GC = (ext, int). A concept or pattern concept is a pair
c = (L, γ) such that γ = int(L) and L = ext(γ). The subset L is called the
extension of the concept c and γ its intension.

3 Knowledge representation model

The knowledge representation model is made of the descriptive model and its
instances, the structured objects.
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3.1 Attributes

The descriptive model represents all the observable characteristics (objects, at-
tributes and values) pertaining to individuals belonging to a particular taxa. It
is organized in a structured schema forming a tree. Each node of the tree is a
component of the description defined by a list of attributes with their respective
definition domain and a set of meta-data as rules, comments, hyperlinks and
pictures. See Figure 1 for an overview of a descriptive model structure com-
posed by two components, ”identification” and ”description”, itself composed
by ”colony”, ”microstructure” and so on.

Fig. 1. Partial description of the genus Astrocoeniidae Stylocoeniella

Moreover, this component defines a particular boolean property, called ”pos-
sible absence”. It means that the component should necessarily be described or
could be described in an object instance of the model. The attributes noted from
A to G in the Figure 1 are ”contingent”, the other are ”necessary”.

Two types of attributes are considered. First, basic attributes that are usual
attributes whose types are qualitative (ordinal, nominal, boolean) or quanti-
tative (discrete or interval), and hierarchical attribute (also called taxonomic
attribute) for which values are organized in a hierarchy. Second, structured at-
tributes formed using any kind of distinct attributes.

3.2 Objects

In this section, we are concerned with the structures of objects and we shall
define the meet semilattice of the structured description space of objects.
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Notation We suppose given a set of basic attributes names, AQ = {Aq}q∈Q

and their corresponding domains DQ = {Dq}q∈Q. A structured attribute is
recursively defined as a sequence A :< A1, . . . , Al, . . . , Ap > of basic or structured
attributes. We say that Al is a component of A. A structured attribute is used
to describe composite objects. We assume that a structured attribute A called a
schema is given for describing a collection of objects. The set of attributes that
composes A is denoted A = {Aj}j∈J . A structured attribute A is represented
by a rooted tree M = (A,U) where the set of nodes and edges are denoted by
A and U , respectively. The root of M is A, and the nodes are the attributes,
basic attributes are the leaves. If (B, B′) ∈ U is an edge, it means that B or B′

is a component of the other.

Skeleton Let O be a set of objects described by a schema M = (A,U). A
skeleton represents the structure of an object. In the Figure 1, missing parts
of the object are represented with a cross, and ? means that the component
is undefined or unknown. In [11] to deal with unknown and missing values, an
incomplete context is defined as Ki = (O, A, {+, ?,−}, J) with an extension of
KLEENE-logic is proposed. In our approach, we use a semi-lattice to represent
missing and unknown values. We give the formal definition of a skeleton:

S = {+ = ”existing, present”,− = ”missing, absent”, ∗ = ”unknown,undefined”},

a skeleton is a labeled rooted tree M using the alphabet S i.e. each node Aj ∈ A
of M is assigned a symbol from S. A map σ : A → S defines a labeled rooted
tree Hσ :

Hσ = (Aσ,U) with Aσ = {(Aj , σ(Aj))j∈J}.
The skeleton nodes satisfy the following properties: the descendants of a missing
(respectively unknown) node must be missing (respectively unknown). If a node
is present, its children may be present, absent or unknown. Then, all the labeled
rooted trees Hσ defined from a mapping σ ∈ SA are not a valid representation
of a skeleton object, it leads to:
Definition 1. Let B :< Bl >l∈L be any structured attribute. The mapping
σ ∈ SA is said to be consistent, if it satisfies the following conditions:
1) σ(B) = − ⇒ σ(Bl) = − for l ∈ L, 2) σ(B) = ∗ ⇒ σ(Bl) = ∗ for l ∈ L. The
set of consistent maps is denoted SA

c .

We denote by H the set of skeletons related to consistent maps of SA
c .

Order Skeletons are defined from mapping σ ∈ SA
c . To order the skeleton space

H, it suffices to define an order on SA
c . The set S = {+,−, ∗} is ordered as

follows ∗ < + and ∗ < −. In the context of information orderings, it means that
+ and − is more defined or precise than ∗. Let us notice that + and − are not
comparable. Then SA is pointwise ordered, for maps s, s′ ∈ SA

s ≤ s′ ⇐⇒ ∀Aj ∈ A, s(Aj) ≤ s(Aj)

The set SA has a minimum element σ∗ such as: ∀Aj ∈ A, s∗(Aj) = ∗. The
set SA

c ⊂ SA inherits the pointwise order.
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Semilattice We will define a semilattice structure on the skeleton set H. The
ordered set (S = {+,−, ∗}, <) is a meet semilattice, because ∗ = + ∧S −. It
means that an undefined value is interpreted as a missing or existing node. Then
SA is also a meet semilattice, ∧SA in SA is defined from ∧S as follows :

∀Aj ∈ A, s ∧SA s′(Aj) = s(Aj) ∧S s′(Aj).

Unfortunately, SA
c is not a meet semilattice for ∧SA because SA

c is not stable
under ∧SA . Consider B =< B1, B2 > and σ, σ′ ∈ SA

c such as: σ(B) = +, σ′(B) =
−; σ(B1) = +, σ′(B1) = −; σ(B2) = −, σ′(B2) = −. Then, we have: σ(B) ∧SA

σ′(B) = + ∧S − = ∗; σ(B1) ∧SA σ′(B1) = + ∧S − = ∗; σ(B2) ∧SA σ′(B2) =
− ∧S − = −

We see ( Figure 2) that the value − of the child B2 of B is not equal to
his father’s value ∗, σ ∧SA σ′ is not consistent (we will say that the node B2 is
inconsistent for σ∧SA σ′ ). Next proposition defines an operator ∧ that associates

+

+

- -

-

- *

*

- *

*

*

Fig. 2. Inf operator applied on simple skeletons.

a greatest lower bound in SA
c to any σ, σ′ ∈ SA

c .

Proposition 1. Let σ, σ′ ∈ SA
c . The set SA

c is a meet semilattice such that:

σ ∧ σ′ =
∨

([σ∗, σ ∧SA σ′] ∩ SA
c )

Proof. The set of all lower bounds of {σ, σ′} is the interval [σ∗, σ ∧SA σ′] in SA.
The set [σ∗, σ∧SA σ′]∩SA

c is not empty because the minimum element σ∗ ∈ SA
c .

We are going to define the upper bound σ∧σ′ of {σ, σ′} in SA
c . Let B :< Bl >l∈L

be any structured attribute. Notice that if σ∧SA σ′(B) = −, the node B does not
lead to inconsistency. Hence, σ ∧SA σ′(B) = − ⇒ σ(B) = σ′(B) = − as σ, σ′ ∈
SA

c for l ∈ L, σ(Bl) = σ′(Bl) = − and σ ∧SA σ′(Bl) = −. Any inconsistency
node Bl is such that σ(Bl) ∧SA σ′(Bl) = − with σ(B) ∧SA σ′(B) = ∗. It means
that the father B is present in one skeleton and missing in the other one and the
child Bl is missing in the two skeletons (if B is indefinite in the two skeletons,
all children will be indefinite because σ and σ′ are consistent). In this case, we
define σ ∧ σ′(Bl) = ∗. To sum up, we have σ ∧ σ′(Aj) = σ ∧SA σ′(Aj) for all
consistent nodes Aj , and σ ∧ σ′(Aj) = ∗ for all inconsistent nodes Aj . It is easy
to see that σ ∧ σ′ is the greatest consistent lower bound of {σ, σ′}.

As (SA
c ; <,∧) is a meet semilattice, then the set of skeletons set (H; <,∧) is a

meet semilattice, such that for Hσ, Hσ′ ∈ H :

Hσ ∧ Hσ′ = Hσ∧σ′
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The procedure that computes σ ∧ σ′(Aj) is given below:

Procedure σ ∧ σ′(Aj) =
∧

(σ(Aj), σ′(Aj))

– If Aj is a basic attribute then return σ(Aj) ∧S σ′(Aj);
– elseif Aj :< Al >l∈L is a structured attribute,

• If σ(Aj) = σ′(Aj) = + then { σ ∧ σ′(Aj) = +; For l ∈ L, σ ∧ σ′(Al) =∧
(σ(Al), σ′(Al)); } elseif σ(Aj) = σ′(Aj) = − then return − else

return ∗;

The skeleton Hσ∧Hσ′ is built from the root down by applying, in breadth-first
way, the procedure

∧
(σ(A), σ(A)). It stops when all common present structured

attributes have been processed. Then, descendant of missing nodes must be
labeled with − and descendant of unknown nodes with ∗. The procedure

∧
,

only on common present nodes, computes the greatest lower bound recursively
this leads us to the definition of the skeleton level. Let l(Aj) be the level
number of the node Aj i.e. the length of the unique simple path from the root
to Aj .

Definition 2. The level ν(Hσ) of the skeleton Hσ is the largest level number of
present nodes in Hσ : ν(Hσ) = max{l(Aj)|σ(Aj) = +, Aj ∈ A)

4 Concepts Analysis on structured and multivalued data

In the Section 2, GC on semilattices has been introduced, and in previous sections
a semilattice structure has been built on the skeleton set. Here, we apply these
results to concepts determination for structured data.

Let denote by Hσo the skeleton of the object o, where σo : A → S. The
mapping d : O → H associates every element o ∈ O with its description
d(o) = Hσo . Consider the semilattice skeleton (H; <,∧) and (P(O);⊂,∪). The
pair GC = (int, ext) of maps ext : H −→ P(O) and int : P(O) −→ H, is a GC
such as, for any Hσ ∈ H :

ext(Hσ) = {o ∈ O|Hσ ≤ Hσo}

and for L ⊂ O
int(L) =

∧

l∈L

Hσl = H∧l∈Lσl .

The structure context is Ks = (O,H, d), and the set of concepts induced by GC
will be denoted by C.

Let r be the height of the rooted tree M = (A,U) i.e. the largest level number
of a node, and let k be an integer such that 1 ≤ k ≤ r. and

– Ak = {Aj ∈ A|l(Aj ≤ k} the set of attributes with a level less or equal to k,
– Mk = (Ak,Uk) the rooted tree such that the eight is k,
– SAk

C the set of consistent mappings σk : Ak → S,
– Hk = {Hσk} the semilattice skeleton defined by Mk,
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– dk the mapping dk : O → Hk such that dk(o) = Hσk
o
, the subtree of Hσo

limited to nodes whose levels are less or equal to k.
– GCk = (intk, extk) the GC, related to the context Kk = (O,Hk, dk), such

that extk(Hσk) = {o ∈ O|Hσk ≤ Hσk
o
} and intk(L) =

∧
l∈L Hσk

l
= H∧l∈Lσk

l
,

– Ck the set of concepts induced by GCk

The relationship between the set of concept Ck and C is precised by the
following proposition

Proposition 2. Let k be an integer 1 ≤ k ≤ r, and let ck ∈ Ck be a concept
induced by GCk. If the level ν(intk(ck)) of the skeleton intk(ck) is strictely less
than k then it exists one concept c ∈ C induced by GC, such that its intension
int(c)k, limited to nodes whose levels are less or equal to k, is intk(ck) and
ext(c) = extk(ck). Conversely, if c ∈ C is a concept such that its level ν(int(c)) <
r then, for any integer k such that ν(int(c)) ≤ k ≤ r, ck = (intk(c), ext(c)) is a
concept of Ck.

Proof. Let us note that for any skeleton Hσ, the projection of Hσ on Ak is
Hσk . Let ck ∈ Ck, and denoted by L = ext(ck) and Hσk = int(ck) =

∧
l∈L Hσk

l
.

Consider that the level ν(Hσk) is strictely less than k then nodes Aj ∈ Hσk , such
that l(Aj) = k, is missing or unknown. There is an unique consistent skeleton
Hσ ∈ H, such that its projection on Ak is Hσk . Hσ is obtained by labeling the
descendants of missing nodes, whose level is greater or equal to k, by − and
the descendants of unknown nodes of Hσk , whose level is greater or equal to k.,
by ∗. Consider that level ν(Hσk ) < k, and Hσk =

∧
l∈L Hσk

l
, this means that

the objects of the extension L of ck have not present nodes in common such
that the level is greater than k, then Hσ =

∧
l∈L Hσo , is the intension of L and

c = (Hσ, L) is a concept of C with the same extension than ck.
Let c ∈ C whose intension is int(c) = Hσ =

∧
o∈ ext(c) Hσo , whose level

ν(int(c) is strictely less than r. Let denote by Hσk the projection of Hσ at the
level k. The level of Hσ is strictely less than r, then, for k such that ν(int(c)) ≤
k ≤ r, we can state that Hσk =

∧
o∈ ext(c) Hσk

o
. And ck is a concept of Ck such

that its intension is Hσk and its extension ext(ck) = ext(c) .

This proposition gives a top down algorithm for structure concepts search. If ck

is a concept of Ck, we can derive concepts c of C from ck as follows

Procedure {c} = DeriveConcepts(Hσk = int(ck), ext(ck))

– Compute A+
k = {Aj ∈ Ak|σk(Aj) = +, l(Aj) = k};

– If A+
k = ∅ then return c = ck,

– elseif {ck+1} = ConceptAnalysis(Kk+1 = (ext(ck),Hk+1, dk+1));
– For each ck+1 do DeriveConcepts(int(ck+1), ext(ck+1));

The procedure {ck+1} = ConceptAnalysis(Kk+1 = (ext(ck),Mk+1, dk+1))
extracts concepts ck+1 from the extension of ck. One can show that it may be
implemented using a standard Formal Concept Analysis algorithm applied to
the observations of ck using only the attributes of A+

k .
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4.1 Semilattice on object values

In this section, we deal with the values of objects, we construct a meet semi-
lattice structure on the values space of objects. Assume that is given a set
of basic attributes names, AQ = {(Aq}q∈Q and their corresponding domains
DQ = {Dq}q∈Q. For any object o, a basic attribute is valued in Dq only if the
attribute is present.

Denote by Γq = Dq∪{⊥}∪{∗}}where ⊥ is interpreted as ”undefined” or ”not
applicable” values and will be used as the values for missing basic attributes, ∗
means that the value is unknown because the corresponding basic attribute is
unknown. Denote by ΓQ = 0q∈QΓq. We assume that each set Dq ∈ DQ is a meet
semilattice according to the type of the basic attribute, it means that :

vq, v
′
q ∈ Dq ⇒ vq ∧ v′q ∈ Dq.

Consider (Γq; <,∧, ∗)q∈Q as the meet semilattice with ∗ as the minimum and
the element ⊥ is not comparable with vq ∈ Dq, vq ∧ ⊥ = ∗. Then ΓQ = 0q∈QΓq

is a meet semilattice as product of meet semilattice such as, for

v = (vq)q∈Q, v′ = (v′q)q∈Q ∈ ΓQ : v ∧ v′ = (vq ∧ v′q)q∈Q ∈ ΓQ.

For example, for any categorical attribute (Aq, Dq), we will consider Dq ∪⊥
as an antichain, and the meet semilattice Γq has ∗ as minimum. If the type of
a basic attribute is real interval, the domain is the set of values u = [u, u] with
u, u ∈ R such that u ≤ u. The order relation chosen is the dual order of ⊂, and
the ∧ operator is such that u ∧ v = [u ∧ v, u ∨ v].

The partial valuation function vq related to the basic attribute Aq associates
to each object o, a value vq ∈ Γq such as:

σ(Aq) = ∗ ⇐⇒ vq = ∗; σ(Aq) = − ⇐⇒ vq = ⊥; σ(Aq) = + ⇐⇒ vq ∈ Dq.

The valuation function v : O → ΓQ is such as;

v(o) = (vq(o))q∈Q with vq(o) ∈ Γq

The value context is Kv = (O, ΓQ, v).
Let δ : O → Γ = H×ΓQ be the mapping d× v which associates every object

o with its skeleton d(o) = Hσo and its values v(o) = (vq)q∈Q taken on the basic
attributes:

δ(o) = d × v(o) = (Hσo , v(o)) ∈ Γ = H× ΓQ.

The conditions that the values must verify, lead us to

Definition 3. Let Hσ ∈ H be a skeleton and let v = (vq)q∈Q ∈ ΓQ, and let Aq

be any basic attribute. (Hσ, v) is said to be consistent if σ and v satisfies the
following conditions:

σ(Aq) = ∗ ⇐⇒ vq = ∗; σ(Aq) = − ⇐⇒ vq = ⊥; σ(Aq) = + ⇐⇒ vq ∈ Dq.
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In previous sections, we have shown how to provide the skeleton set H and ΓQ

with a meet semilattice structure. The description space Γ = H× ΓQ is a meet
semilattice as a product of the meet semilattices H and ΓQ. The greatest lower
bound of the description of o and o′ is written:

δ(o) ∧ δ(o′) = (Hσo∧σo′ , v(o) ∧ v(o′))

we shall ask the question : is this description consistent ? The next proposition
shows that ∧ preserves the consistency property

Proposition 3. If (Hσ, v) and (Hσ′ , v′) are consistent then (Hσ∧σ′ , v ∧ v′) is
consistent.

Proof. Let v = (vq)q∈Q and v′ = (v′q)q∈Q be values related to consistent descrip-
tions (Hσ, v) and (Hσ′ , v′). Assume Aq a basic attribute such that σ∧σ′(Aq) = ∗.
Then, the first possibility is σ(Aq) = σ′(Aq) = ∗ ⇐⇒ vq = v′q = ∗, because the
descriptions are consistent, then we have vq∧v′q = ∗. Or Aq is missing in one skele-
ton and present in the other one. Let us suppose that σ(Aq) = + ⇐⇒ vq ∈ Dq,
and σ′(Aq) = − ⇐⇒ v′q = ⊥. We always have vq ∧ v′q = vq ∧ ⊥ = ∗,
and conversely, if Aq is a basic attribute such that σ ∧ σ′(Aq) = −, then
σ(Aq) = σ′(Aq) = −, and vq = v′q = ⊥,then we have vq ∧ v′q = ⊥. (Hσ∧σ′ , v ∧ v′)
is consistent.

4.2 Concepts

The goal of the previous sections has been to define a complex context K =
(O, Γ, δ) for structured, and multi-valued and incomplete data.

Let Γ (O) be the meet semilattice generated by the descriptions of the objects
Γ (O) = {∧l∈Lδ(l)|L ⊂ O} = {∧l∈L(Hσl , v(l))|L ⊂ O}. Consider the semilattice
(Γ (O), <,∧) and (P(O),⊂,∪). The pair GC = (int, ext) of maps
ext : Γ (O) −→ P(O) and int : P(O) −→ Γ (O), is a GC such as, for L ∈ P(O) :

int(L) =
∧

l∈L

(Hσl , v(l)) = (H∧l∈Lσl ,∧l∈Lv(l))

which is a consistent description according to the previous proposition, and for
any (Hσ, ν) ∈ Γ (O) :

ext((Hσ , ν)) = {o ∈ O|(Hσ , ν) ≤ (Hσo , v(o))} = {o ∈ O|Hσ ≤ Hσo , ν ≤ v(o)}.

The set of concepts induced by GC is denoted by C. The relationship between
skeleton concepts of C and complex concepts of C is made precise below:

Proposition 4. Let L be a set of objects, σL = ∧l∈Lσl and vL = ∧l∈Lv(l). If
γ = (HσL , L) ∈ C is a skeleton concept, and if we have for any basic attribute
Aq, σL(Aq) 3= + then Υ = ((HσL , vL), L) is a complex concept of C.

Proof. The proof is easy as we can notice, that all basic values are missing or
unknown if the corresponding basic attributes are missing or unknown.
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5 Application: concepts extraction from coral base

A straight-forward application is conducted on coral description base. The con-
cepts lattice is extracted from information about the structure of objects. One
concept is exhibited with its resulting multi-values properties. We consider for
this application a subset of 10 descriptions extracted from the coral genera base
(16 families, 58 genera, 185 species). The whole knowledge base is actually made
of 10 models corresponding to the 10 main coral families present in the south-west
of the Indian ocean and about two thousands descriptions (see Figure 1). In order
to use classical FCA methods, each structured attribute B is coded by two bina-
ries attributes B+ and B− to express the presence or absence of a component.
For a given object o, an unknown state is represented by B + (o) = B − (o) = 0.
Following table shows the resulted context:

A B C D E F G

Object n° Family Genus
Monocentric
corralites Coenosteum

Pluricentri
c corralites Septal teeth Synapticuls

Intercorallite
s pillars Columella

1 Astrocoeniidae Stylocoeniella + + - + - + +
2 Pocilloporidae Pocillopora + + - + - - +
3 Pocilloporidae Stylophora + + - + - - +
4 Pocilloporidae Seriatopora + + - + - - +
5 Pocilloporidae Madracis + + - + - - +
6 Siderastreidae Psammocora + + - + + + +
7 Siderastreidae Siderastrea + - - + + - +
8 Fungiidae Fungia + - - + + - +
9 Faviindae Faviinea Leptoria - - + - - - -
10 Acroporidae Acropora + + - + - - +

Fig. 3. An example of corals data set

We used the Galicia platform [12] and the Bordat algorithm [2] with the
classical inf operator ∧SA to build the concepts semilattice (Figure 4) on the
previous context. Each concept is presented with its intension, extension and
the associated skeleton. We verify that C2, C3, C8 and C9 are inconsistent con-
cepts: for them, the structured attribute A is undefined whereas at least one of
its subpart is defined. At this stage, a concept regroups objects having similar
skeletons. The interest to use the consistent inf operator ∧ (see proposition 1)
is that inconsistent concepts are not computed. The concept C11 groups the
different Pocilloporidae family’s genera and the quite near genus Acropora of
the Acroporidae family. From the expert’s point of view, this analysis is mean-
ingful to organize taxonomies, according to M. Pichon, an nternational coral
expert. From the extension of skeleton concepts, further analysis such as Con-
cept Analysis on multivalued contexts or clustering methods can be performed.
For example, Figure 5 gives the intension of the concept C11 computed, using
IKBS system, from the complete objects description of the extension of C11.
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Fig. 4. Concepts semilattice build upon structured objects with ∧SA .

Fig. 5. Intension of the concept C11
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6 Conclusion

In this paper, we presented an approach which allows Concept Analysis to deal
with structured, multivalued and incomplete data. This kind of analysis is useful
to extract knowledge from observations in Life Sciences and to help experts in the
Knowledge Bases building process. However, the number of consistent concepts
generated may be huge due to model’s complexity. We are exploring strategies
to reduce the concepts research space by using datamining methods such as
clustering or suitable distances on structured and multi-valued objects.
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Abstract. The product of textual criticism is an edited text that the ed-
itor believes comes as close as possible to a lost original manuscript called
the archetype. Usually, the editor compares different manuscripts of a sin-
gle text, and represents it as an inverted tree showing all the steps in the
transmission of a specific text, reconstructed by establishing relationships
with other manuscripts. This tree is called the “stemma codicum”(cf. [7]).
Because of the graphic proximity of the stemma with a semi-lattice, we pro-
pose to use two lattice construction techniques in order to reconstitute the
filiation tree of manuscripts. First, we try the traditional methods to build
the lattice of a binary relation (cf. [13]). Then a more specific solution to the
problem is proposed. These techniques are finally tested on a real corpus of
manuscripts by Rimbaud, “Les Effarés” (cf. [17]).

1 Introduction

In this paper, we use lattices as a pattern for the construction of the family tree
of manuscripts within the framework of the critical edition.As far as possible, the
editor must try to reconstitute , the original manuscript1 as the author wrote it,
starting from the various preserved manuscripts. The corpus is made up with many
manuscripts which are copied from each other. To do so, it appears interesting to
draw up a family tree of these manuscripts called the “stemma codicum”.

As can be seen on Figure 1, the stemma is a kind of graph or a tree. We will
extract our stemma from a lattice by pruning vertices and edges. The lattice is built
starting from a binary relation between the manuscripts and their differences. This
information is contained in the collation table2. Two methods are proposed to carry
out the lattice pruning:

– An expert (in this case an editor) orders the most relevant concepts (in this
case the “differences” between the manuscripts) according to his judgment.

– An algorithm helps the expert by removing the lattice vertices which have not
enough “difference” on each level. After many iterations, the lattice becomes a
tree or a graph representing a stemma.

This paper is organized as follows: In section 2, we persent philological methods
for the establishment of stemma. In section 3, we describe visualization techniques
for the building of the stemma which are tested in section 4 on a real corpus of
poems.

1 The original manuscript or archetype is the most recent common ancestor of all
extant manuscripts in an textual tradition.

2 collation is the comparison between a manuscript and the other manuscripts from the
corpus for the sake of producing a list of the differences
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Fig. 1. Stemma codicum established by Reydellet in connection with Poems of Venance
Fortunat [6]

2 Some philological methods to establish the stemma
codicum

A text which was copied several times constitutes a “textual tradition” and all
the specimens that have reached us are called the “witnesses”. Usually, the editor
compares different witnesses of a single text, and makes a selection of variants
(“readings”) taken from many sources to restore the original manuscript. The editors
use a stemma codicum to evaluate readings, and vice versa.

Historically, several methods have been developed in order to try to visualize
the genealogical relations between manuscripts. One of these methods, formalized
by Lachmann[7] is now called the common error method. If an error is introduced
into a manuscript, it is likely that the “descendant” of that text will show the same
common error. So, a family of manuscripts is composed of the texts that have the
same reading. Although this method has been largely criticized, both this method
and its improvements have become indispensable to describe the history of the text

Another historical method is the method of Don Quentin[9]. He came up with
the idea of reconstituting the sequence of the manuscripts by means of a three
by three comparison. In fact, he assembled small chains of three manuscripts, one
being between the other two and assembled these small chains in order to infer the
complete tree.

After some counting, we notice that the number of different diagrams is expo-
nentially dependent on the number of manuscripts. It is therefore impossible to
consider all the stemmas, their construction and their comparison. This can explain
why editors had difficulties formalizing both stemmas and their use. Thanks to the
new visualization possibilities offered by lattices, the “stemmatization”methods can
be modified and adapted to model the history of the text.
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3 Lattice construction starting from binary relations

3.1 Algorithms and software

The last few years, Galois lattices of binary relations have been fields of important
research in formal concept analysis (FCA) in particular for the visualization of many
problems. FCA was basically inspired by the work of Birkhoff[3], Galois lattices
were described by Barbut and Monjardet[1] and the whole approach was formalized
by Ganter and Wille[11]. The lattice construction starting from binary relations
and their visualization by the intermediary of the Hasse diagram allows greater
comprehension of the binary table. Many algorithms have been developed for this
construction:

– Those which build lattices in an incremental way i.e. they can update the lattice
concept when a new object is added without re-computing the whole lattice
• Godin[12]*
• Carpineto and Romano[4]*
• Norris[15]

– The other algorithms have to know the whole binary table before computing
the lattice
• Chein[5]
• Ganter[10]
• Bordat[2]*
• Nourine and Raynaud[16]*

A detailed description of these algorithms and a comparison of lattice algorithms
has been done in Guénoche[13] and Kuznetzov[14]. The methods which interest us
are those followed by a * symbol because they can generate the Hasse diagram of
Galois lattices.

In the experimentation, we need to visualize the lattices in a Hasse diagram to
analyze them. With this purpose we opt for using two software for lattices repre-
sentation:

– ConExp (Concept Explorer of Yevtushenko[19]) combines the creation and the
visualization of the binary table in a simple tool. A view of the ConExp interface
is in Figure 5. The diagrams can be exported to the JPEG or GIF format. With
ConExp, it is possible to carry out many operations of Ganter and Wille[11].

– Galicia is the interactive lattice construction tool of Valtchev et al.[18]. Simple
and valued contexts can be analyzed. The binary relations and the objects can
also be described and stored. The lattices can be saved in JPEG, SVG or PDF
formats (cf. Fig. 4).

3.2 Simple example

For the example, let us reduce the manuscripts to three sentences. Let there be the
three following sentences, which correspond to the same sentence of manuscripts
that were copied one from the other.

Mns1 =“Here is a sentence invented for the example”
Mns2 = “This is a sentence invented for the example”
Mns3 = “Here is a sentence built for the example”

There are two variant places here: (Here/This) and (invented/built), correspond-
ing to four variants, as summarized in the collation table 1:
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No of variant place Variants Manuscripts Variants Manuscripts
1 Here Mns1,Mns3 This Mns2
2 invented Mns1,Mns2 built Mns3

Table 1. Collation table of our three manuscripts

Manuscripts/variants Var1 Var1b Var2 Var2b

Manuscript1 × ×
Manuscript2 × ×
Manuscript3 × ×

Table 2. Binary table

To obtain a binary table, we assign to the three manuscripts a boolean value
according to the presence or absence of each variant (cf. Table 2).

From this table, we assume that the history of the text is summarized in the
following way:

– Either (a) manuscript 2 is the nearest manuscript to the original. So here,
manuscript 1 is copied from manuscript 2. The scribe modifies This in Here.
Manuscript 3 is copied from manuscript 1, and another scribe modifies invented
in built. On the other hand, if the first scribe modifies Here in This, there is
little chance that the following scribe could find again Here by modifying This.
It is not a credible assumption and one can say that the manuscript 1 is an
intermediate between the manuscripts 2 and 3.

– Or (b) manuscript 1 is the nearest manuscript to the original and manuscripts
2 and 3 are copied from it

– Or (c) manuscript 3 is the nearest manuscript to the original, then manuscript
1 is copied from it and manuscript 2 copied from manuscript 1.

According to the information contained in the sentences, it is not possible to choose
between these three stemmas in Figure 2 without the help of external information
as datation or codicologic studies3.

Mns2

!!
Mns1

!!
Mns3

Mns1

""!!!!!!!!!

##"""""""""

Mns2 Mns3

Mns3

!!
Mns1

!!
Mns2

(a) (b) (c)

Fig. 2. Three possible stemmae

We now associate the binary table (cf. Table. 2) to the lattice (cf. Fig. 3) obtained
by the previous algorithms (cf. 3.1). We note that we obtain a perfect representation
of the manuscripts and their variants; indeed the lattice shows that manuscripts 1
3 Codicologic information are for example: the color of the ink, the order of the page

who can be modified over the time...
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Var1

$$$$$$$$$$$$$

&&&&&&&&&&&&&!"#$%&'(Mns1,Mns2,Mns3

Fig. 3. Lattice

and 2 have Var2 (invented) as their common variant. To obtain the stemma starting
from the Hasse diagram, two methods are proposed:

– the editor must remove the less significant variants until the lattice becomes
a tree. In our example, if the editor assumes that Var1 is more judicious than
Var1b, he obtains Figure 4 and this choice is called “emendation”4. After if the
editor prefers Var2b to Var2, we obtain the Hasse diagram of Figure 5 which
corresponds to the preceding stemma (c).

Fig. 4. Lattice using Galicia by removing Var1b
Fig. 5. Lattice using
ConExp by removing
Var1b and Var2

– An algorithm helps the editor by removing the lattice vertices witch have not
enough relevance.

Algorithm 1

1. We delete the vertice which have the least variants by level

4 emendation, a correction made to a text in the belief that the author’s original wording
has been wrongly altered
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2. We delete the variant of the same variant place which is contained in the
previous deleted vertice.

3. We reiterate the process until the editor decides to stop it or as long as the
graph remains connected.

4. REM: If the vertices have the same number of variants, we keep the variant
of the same variant place which is contained in most manuscripts to begin
the iteration.

As in our example, there are only 2 variant places, so the algorithm keeps
only Var1 and Var2. Actually, in the first variant place, Var1 is contained in
manuscripts 1 and 3 whereas Var1bis is contained in manuscript 2 only, so the
algorithm keeps Var1. Finally, we obtain the stemma (b) of the Figure 2. In this
algorithm, the editor must constantly be able to impose his expert point of view
on the interface which will be taken into account when realizing the stemma.

4 Application to a real corpus

We test this method on a real corpus of Rimbaud poems, “Les Effarés” or “Petit
Pauvre” put together by Steve Murphy (cf. [17]). Here we consider five versions of
this poem:

– GM reproduction of Gentleman’s Magazine (1878)
– L Lutèce printed book (1883)
– JA Manuscripts’ autograph5 of Jean Aicard (1871)
– PD Manuscripts’ autograph in Demeny’s collection (1871)
– PV Copy of P. Verlaine (1872)

After collation (cf. Table 3) we use the same method described above, and in-
vestigate 14 different variants.

Variant place Line GM L JA PD PV
1 titre Petits Pauvres Les Effarés Les Effarés Les Effarés Les Effarés
2 5 dos culs culs culs culs
3 7 cinq Les cinq cinq cinq
4 9 beaux lourd lourd lourd lourd
5 11-17 Ils voient Ils voient I ls voient Ils voient
6 16 gros gras gras gras
7 17 Chante Chante Chante Grogne
8 23-25 boulanger médianoche médianoche minuit sonne médianoche
... ... ... ... ... ... ...

Table 3. Collation table of poems

With ConExp, we achieve a lattice that we will use to find the stemma. Initially,
the visualization shows that common variants of L and PV (cf. Fig. 6) represent 10
variants out of 14. A high score of common variants means a close relation between
these two manuscripts, for L is assumed to be a reconstruction from memory by
Verlaine.

The second diagram (cf. Fig. 7) shows us that the two manuscripts JA and PD
have the second hightest score of common variants. They are manuscripts that are
the oldest and closest by date, which may explain their proximity.
5 An autograph is a document written entirely in the handwriting of its author
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Fig. 6. Hasse diagram of Les Effarés. Relation between manuscripts PV and L

Fig. 7. Hasse diagram of Les Effarés. Relation between manuscripts JA and PD
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To attempt to extract a family tree (stemma) from the Hasse diagram (cf. Fig.
8), we cannot extract the most significant variants, because they are almost all
legitimate and undoubtedly by the author himself. We use the algorithm which
involves in removing the least significant vertices i.e. those which have fewer variants
on each level. Then we obtain Figure 9. If we continue the extraction as long as
the “lattice” remains connected, we finish in removing vertice 4 and the dotted line
edges. In this corpus, the stemma probably represents the proximity of the poems
rather than a hypothetical filiation.

Fig. 8. Hasse diagram of Les Effarés using Galicia

5 Prospects and Conclusion

In future work, we therefore plan to write a program designed to be used as a stemma
construction aid for the textual scholar. In all cases, the editor may interact with the
program to improve the results using human insight. This interaction is necessary
if we want to persuade editors of the usefulness and the interest of the system. The
use of lattices is necessary to visualize the relations between manuscripts and their
variants and providing the editor with the required interactions.

However, many tasks remain:

– Sometimes the corpus contains more than one hundred manuscripts and one
thousand variants. Under these conditions, how can we optimize the visualiza-
tion?

– Many statistical and probabilistic aspects must also be considered during the
automatic lattice pruning.

– Methods based on phylogenetic trees are already used for drawing stemmas (cf.
[8]); how can we combine these two methodologies ?
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Abstract. A concept lattice may have a size exponential in the number
of objects it models. Polynomial-size lattices and/or compact represen-
tations are thus desirable. This is the case for planar concept lattices,
which has both polynomial size and representation without edge cross-
ing, but a generic process for drawing them efficiently is yet to be found.
Recently, it has been shown that when the relation has the consecutive-
ones property (i.e, the matrix of the relation can be rapidly reorderd
so that the 1s are consecutive in every row), the number of concepts
is polynomial and these can be efficiently generated. In this paper we
show that a consecutive-ones relation |R| has a planar lattice which can
be drawn in O(|R|) time. We also give a hierarchical classification of
polynomial-size lattices based on structural properties of the relation R,
its associated graphs Gbip and GR, and its concept lattice L(R).3

Keywords: consecutive-ones matrix, consecutive-ones relation, planar
lattice, polynomial lattice, chordal-bipartite graph, Ferrers dimension.

1 Introduction

There is a strong relationship between concept lattices and graphs, which enables
to use the rich mine of graph results. For example, [4] presented a very efficient
algorithm to generate the concepts when the relation has the consecutive-ones
property. They used the natural association between a finite context (O,P,R)
and a bipartite graph Gbip = (O + P, E), where xy ∈ E iff (x, y) ∈ R. Another
interesting feature is that these consecutive-ones relation have a few O(|R|)
concepts, and can be recognized and reorganized in very efficient O(|R|) time
([8]). This relationship was also illustrated by [5] who defined an encoding graph
GR which is the complement of Gbip (i.e., GR = (O + P, F ), O and P are
cliques and ∀x ∈ O, ∀y ∈ P, xy ∈ F iff (x, y) #∈ R). GR was then used by [3] for
generating all the concepts in the general case.

In [6], the problem of restricting a relation to a relation which has a poly-
nomial number of concepts was addressed by suggesting to embed the relation
3 This research has been developped on june 2007, while E. Eschen was invited at

Clermont-Ferrand by University Blaise Pascal. Corresponding author A. Sigayret.
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into a relation whose graph GR is weakly chordal. In this case, the lattices L(R)
have O(|R|) concepts.

To avoid handling exponential lattices, a O(|O+P|) size substructure called
Galois sub-hierarchy has been defined. There are several algorithms that com-
pute the Galois sub-hierarchy in at least O(|O + P|.|P|2) (see [1]).

Recently, [20] discussed about a characterization of the planar lattices as
having a Ferrers dimension at most to two (see Theorem 1 below). Also concerned
whith the number of concepts, he pointed out that these lattices have at most
O(|P3|) concepts. However, actually obtaining a planar drawing remains difficult.

Graph results enables us to remark that relations with Ferrers dimension at
most two are a supercase of consecutice-ones relations, and a subcase of relations
for which graphs Gbip are weakly chordal. This gives the idea that there is an
interesting hierarchy of classes of concept lattices which need to be researched.

In this paper, we address two closely related problems:
• We discuss how to obtain an efficient planar drawing of the lattice for the
sub-class of planar lattices whose relations have the consecutive-ones property.
• We study a hierarchical classification of polyomial size concept lattices, and
give precise bibliographical references. This hierarchy combines results is based
on Graph Theory, Order and Lattice Theory, and matrix patterning that should
be helpful for further work on lattice representations.

2 Background

An undirected graph G = (V,E) is said to be chordal (or triangulated) if it has no
chordless cycle of length greater then 3. A graph G is said to be weakly chordal
if it and its complement, G, has no chordless cycle of length greater then 4. A
bipartite graph is a graph G = (V1+V2, E), where V1 and V2 are independent sets
(i.e., each induces an edgeless subgraph). A chordal-bipartite graph is a graph
that is bipartite and weakly chordal. The neighborhood of a vertex v in a graph
G = (V,E) is denoted and defined as N(v) = {x ∈ V |vx ∈ E}. A bipartite graph
is a chain graph if for each Vi i ∈ {1, 2}, the neighborhoods of vertices of Vi can
be totally ordered by set containment (i.e., for any pair of vertices u, v ∈ Vi,
either N(u) ⊆ N(v) or N(v) ⊆ N(u); equivalently, the graph has no induced
2K2).4

A relation R ⊆ (O × P) is said to be a Ferrers relation if ∀x1, x2 ∈ O,
∀y1, y2 ∈ P, (x1, y1) ∈ R and (x2, y2) ∈ R implies (x1, y2) ∈ R or (x2, y1) ∈
R. The Ferrers dimension of a relation R is the minimum number of Ferrers
relations the intersection of which is R. The chain dimension of a bipartite
graph is the minimum number of chain graphs the intersection of which yields
the graph. Therefore, the Ferrers dimension of a relation R is equal to the chain
dimension of Gbip. A chain graph is a graph with chain dimension 1; thus R is
a Ferrers relation iff Gbip is a chain graph.

4 A 2K2 of an undirected graph G is a quadruple of vertices x,y,z,t such that xy and
zt are the only edges of G whose enpoints both are in {x,y,z,t}.
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Planar lattices ar characterized by their Ferrers dimension:
Theorem 1. ([2],[7],[11]) The following are equivalent:
– The Ferrers dimension of R is at most 2;
– L(R) has a planar representation;
– The order dimension of L(R) is at most 2;
– L(R) has a conjugate order.

When GR is chordal ([5]), the corresponding matrix of a R presents a very
specific pattern, called a staircase, as the rows are totally ordered by inclusion
(see an example in Figure 1). We then have:
Theorem 2. The following are equivalent:
– R is a Ferrer relation;
– R has a staircase matrix;
– Gbip is a chain graph;
– GR is chordal;
– L(R) is a chain.

a b c d e f
1 × × × × ×
2 × × ×
3 × ×
4 × ×
5 ×

Fig. 1. A staircase matrix of a relation, and its concept lattice which is a chain.

3 Consecutive-ones lattices

Consecutive-ones lattices are planar. A relation is said to have the consecu-
tive-ones property (for rows) if the columns of its binary matrix can be ordered
such that in each row all the ones are consecutive. Figure 2 shows such a relation
and the corresponding concept lattice. Planarity of consecutive-ones lattices is
a direct consequence of Theorem 1 applied to the following observation.

Observation 3 If a relation has the consecutive-ones property, then its Ferrers
dimension is at most 2.

Proof: Let M be a consecutive-ones matrix of a relation R. Let F1 be the
relation obtained from M by: for each row, changing to one each zero that occurs
before the sequence of ones in the row. Let F2 be the relation obtained from M
by: for each row, changing to one each zero that occurs after the sequence of
ones in the row. By Theorem 2, F1 and F2 are Ferrers relations, and clearly
R = F1 ∩ F2. Thus, the Ferrers dimension of R is at most 2. ♦

Note that Observation 3 is also implied by a characterization of a larger class
of relations (see [15]), those of Ferrers dimension 2 for which F1∪F2 is complete
(which corresponds to the interval digraphs).
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a b c d e f
1 × × × × ×
2 × × ×
3 × ×
4 ×
5 × × ×
6 ×
7 × × ×
8 × ×
9 ×

Fig. 2. A consecutive-ones relation and the associated concept lattice. In the matrix,
objects and properties are ordered such that in each row all the 1s are consecutive.
The margin of the Lattice drawing gives the coordinates of the concepts, as computed
by a execution of algorithm PlaCoL (see below).

All the planar lattices do not have the consecutive-ones property, as illustrated
in Figure 3. In the matrix of this example the columns can not be reordered
to obtain a consecutive-ones matrix: columns a and b must be consecutive (be-
cause of object 1) and so do columns b, c, and d (because of object 3); thus no
permutation of the columns can erase the hole on row 5.

a b c d e
1 × ×
2 ×
3 × × ×
4 ×
5 × ×

Fig. 3. A relation which has not the consecutive-ones property, and the corresponding
planar lattice.

Unfortunately, the Ferrers dimension does not give much insight towards an
efficient generic process for generating a planar drawing. We now present an
algorithm, which we call PlaCoL (for PLAnar drawing of Consecutive-Ones
Lattices), that use the specificity of a consecutive-ones matrix to efficiently build
a planar representation of the lattice. With a slight modification, this algorithm
computes the Galois sub-hierarchy.

The algorithm. We use as input a consecutive-ones matrix in which the rows
are ordered by increasing value of starting column SC. The rows sharing the
same SC are ordered by decreasing value of ending column EC; thus, defining
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one of the staircases s of the matrix. Note that several rows may have the same
EC value and the same SC value. The algorithm contructs for each staircase a
chain of the lattice each concept of which is associated with a row of the matrix
(see [4] for more explanation on this process). Tables HEAD and TOP memorize
the concepts from which an edge has to be drawn respectively to a concept of a
later chain (lateral edge) or to the top. The edges from the bottom to the atoms
are drawn online. For example, on the matrix M of Figure 2, PlaCoL first
generates the bottom ∅ × P as M [1, f ] = 0. Staircase 1 (rows 1-4) successively
generates the elements of the first chain 1× abcde ∼ 1234× a. Staircase 2 (rows
5-6) generates chain 15× bcd ∼ 12356× b and the lateral edges outgoing the first
chain. Staircase 3 (rows 7-9) generates chain 7× def ∼top and the lateral edges
outgoing staircase 2. PlaCOL ends by drawing the incoming edges of the top.
The position of each concept is determined by its chain number (abscissa) and
its intent size (ordinate) as described below.

Algorithm PlaCoL
Input: A consecutive-ones matrix in the form described above.
Output: A planar drawing of the corresponding concept lattice.
Process:
If the first row of the matrix ended with a zero then

Generate bottom = ∅ × P;
ABSCISSA(bottom)← 1; ORDINATE(bottom)← 0;
Create an egde from bottom to the first concept generated next;

// else the first concept generated next will be the bottom.
For each staircase s do:

Let t be the first row of s;
For each list R of rows of s sharing the same EC do:

Let r be the last row of R;
If ∃i ∈ [t .. r] | SC(i)=SC(s) then

Let u be the first such row i;
If SC(r)<SC(s) then A ←∅ else A ←[u .. r];
B ←[SC(s)..EC(r)];
Create concept A×B;
TOP(s)← A×B;
ASBCISSA(A×B)←s;
ORDINATE(A×B)←|P|− |A|; // i.e., 0 or (r − u)
If A×B is not the first concept generated for staircase s then

// Edge between consecutive concepts of same chain.
Create an edge from the previously generated concept to A×B;

If ∃i ∈ R | SC(i)<SC(r) then // Create a lateral edge.
Let q be the last such row in R, h the corresponding staircase;
Create edge from HEAD(q) to A×B;
TOP(h)←A×B;

else if A×B first concept of s and extent(bottom) empty then
Create an edge from bottom to atom A×B;
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If s is not the last staircase and EC(r)≥SC(s + 1) then
Insert rows R in staircase s + 1;
// preserving increasing order on EC, and on SC.
HEAD(r)←A×B;

If r is the last row of the last staircase then
If the intent of the last generated concept is P

then this concept is the top element;
else generate the top concept O × ∅;

For each staircase s do:
Create an edge from TOP(s) to the top element.

We first prove that Algorithm PlaCoL actually generates the concepts in an
order compatible with a planar drawing.

Lemma 4 Algorithm PlaCoL constructs successive chains (first one with bot-
tom, last one with top, each chain labeled by its generating staircase), which
yields a partition of the lattice in which a concept is generated only after all its
ancestors have been generated.

Proof: The first staircase, s = 1, generates all the concepts that contain the
first property SC(1) (corresponding to the first column). By Theorem 2, these
concepts form a chain of concepts ordered by increasing size of extent [t .. r].
By construction of the matrix, all the concepts generated afterwards will not
have SC(1) in their intents, and thus, will not be ancestors of any concept of
the first chain; thus the first generated chain is actually a chain of the lattice
containing exactly those concepts with SC(1) in their intent. Recursively, each
staircase s generates the concepts the intents of which contain SC(s) and not
SC(1) through SC(s − 1); this corresponds to a chain in which each concept
will not be an ancestor of a previously generated concept. As each concept is
generated once (see [4]), this yields a partition of the lattice into chains; i.e., a
linear extension which respects the claimed property on concepts. ♦

We now know that the only edges that can be created in Algorithm PlaCoL
will be edges going up from a given concept to another concept higher either in
the same chain or laterally to a concept generated by a later staircase. There
remains to prove that these lateral edges are non-crossing edges.

Theorem 5. Assume an execution of Algorithm PlaCoL on a consecutive-ones
matrix, resulting in a corresponding concept lattice diagram. If the diagram has
an edge from a concept Cs of generated chain s to a concept Cu of generated
chain u #= s, then u > s and this induces no crossing edge that is impossible to
avoid.

Proof: Let Cs and Cu be concepts respectively generated by two different stair-
cases s and u. Suppose the diagram contains an edge e from Cs to Cu.
– By Lemma 4, s > u is impossible.
– If u = s + 1, there is no obstacle.
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– If u > s + 1 there will be at least one intermediate chain t. Let S be the first
concept generated by chain s and S′ its last concept. We similarly define T , T ′,
U , and U ′, for chains t and u. Four exclusive situations could occur, which are
illustrated by Figure 4:
Case 1. e is a transitivity edge and therefore is not in the diagram of L(R).
Otherwise, e is not a transitivity edge: next cases.
Case 2. T is a descendent of Cs – i.e., there is an edge S′′–T with S′′ descen-
dent of Cs in chain s. Thus edge e can be drawn below edge S′′-T and there
is no crossing. Otherwise, e is forced to cross some non-transitivity edge of an
intermediate chain t: next cases.
Case 3. Cu is not a descendent of any concept of t. Note there may be some edge
from a concept T ′′ of t to a concept U ′′ of u which is a descendent of Cu, but it
does not matter. Since Cu is not a descendent of T , the rows of T (i.e., the last
objects in its extent) have not been used to construct Cu, i.e., EC(T )<EC(Cu).
As we are not in case 2, T is not a descendent of Cs (nor an ancestor) and
then EC(T )>EC(Cs). As a consequence EC(Cs)<EC(Cu) which contradicts the
existence of the edge e.
Case 4. Otherwise, Cu is a descendent of some concept Ct of t. Let I =
intent(Cs) ∩ intent(Ct). Since Cu is a descendent of both Cs and Ct, we have
intent(Cu) ⊂ I #= ∅. If I=intent(Ct), then intent(Ct)⊂intent(Cs) and Ct is a
descendent of Cs. Then e is a transitivity edge. If I ⊂ intent(Ct), there must
exist a concept X such that intent(X) = I, X is a descendent of Cs and Ct, and
X is on chain t. Since, intent(Cu) ⊂ I = intent(X), Cu is a descendent of X.
Then e is a transitivity edge. This last case is thus impossible. ♦

Fig. 4. Different situations for the proof of Theorem 5.

We now prove that all the edges of the diagram are actually provided by
Algorithm PlaCoL. For this we need the following lemma:

Lemma 6 In the diagram of a consecutive-ones lattice, each concept different
from top has at most one incoming edge from concepts of a previous chain gen-
erated by Algorithm PlaCoL.

Proof: Suppose the diagram has both edge Cs–Cu and edge Ct–Cu. If Cs,
Ct, and Cu be concepts generated by three different staircases s ≤ t ≤ u. This
corresponds exactly to the case number 4 of Theorem 5, and thus, is impossible.
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If Cs and Ct are generated by the same staircase, and thus, are in the same chain.
W.l.o.g. Cs is an ancestor of Ct. As a consequence, edge Cs–Cu is a transitivity
edge. ♦

Theorem 7. Algorithm PlaCoL provides all the edges of the diagram.

Proof: Recall, by Lemma 4, PlaCoL partitions the concepts of the lattice
in to a collection of chains. Suppose the diagram contains an edge e=C1–C2.
Either C1 and C2 are in the same chain of this partition or not. Concepts C1

and C2 are generated by the same staircase iff they are in a same chain; then
e is created by the algorithm iff C1 and C2 are consecutive. If C1 and C2 have
been generated by two different staircases i and j respectively, then i < j, and
this means that rows of staircase i have been inserted in the following staircases
until (at least) staircase j. Algorithm PlaCoL detects whether there exists such
an insertion and, if yes, selects the most recent such staircase q (i.e., of highest
index) and the corresponding concept, which is given by HEAD. By Lemma 6,
such a situation occurs at most once for each concept and the algorithm creates
a lateral edge. Finally, each highest concept of a chain will be linked to the top,
unless this highest concept is an ancestor of a concept of another chain. TOP
ensures there will be no created edge between top and a concept that has been
proven to be a ancestor of some concept of a later chain. Thus, each edge of the
diagram is generated exactly once. ♦

Complexity analysis. As a consecutive-ones lattice has at most O(|R|) con-
cepts ([4]) and, by Lemma 6, the diagram of a consecutive-ones concept lattice
has at most O(|R|) edges, each of them is generated without extra cost. Thus,
Algorithm PlaCoL has the same O(|R|) complexity as Algorithm CONS-1.

Drawing the diagram. The above considerations do not ensure a correct pla-
nar drawing of the lattice, as some pair of edges that could be drawn without
crossing may cross in an incautious drawing. Fortunately, this problem can be
solved by choosing for each concept C an ordinate value y(C) that is a function
of the size of its intent: y(C) = |P| − |intent(C)|. As intent(C) is an interval,
its size is computed in constant time. Note that the ordinates can be computed
using the extent instead of the intent, especially when Algorithm PlaCoL is
modified to give the whole extent label (see below).

Furthermore, each edge is drawn when its ending point is reached and, at
this time, its starting point is memorized in HEAD; there is thus no need to
memorize all the previously generated concepts – an expensive constraint for
many lattice generating algorithms.

The abscissa of a concept is given by the number of the chain to which this
concept belongs. With this, the bottom’s abscissa is 1 and the top’s abscissa is
the number of staircases in the input matrix. We may chose several values both
for the initial abscissa and for the increment.

If we want to set bottom and top on the same vertical line, all the coordinates
can be rotated accordingly, using a simple mathematical formula: if (x0, y0) are
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the coordinates of bottom and (x1, y1) the coordinates of top, we will rotate
all the coordinates by angle θ = ArcSin((x1 − x0)/

√
(x1 − x0)2 + (y1 − y0)2 ).

Consequently, the previously verticality will have a new π
2 +θ direction; the other

edges, which had a direction in interval ]0,+π
2 [, will have a direction in ]θ, θ+ π

2 [,
which remains correct because 0 < θ ≤ +π

2 . Other changes to coordinates may
be chosen, as desirable for different purposes; in particular, for the respect of
attribute-additivity (see [14]).

Concept labeling. In order to obtain a time complexity of O(|R|), Algorithm
CONS-1 only labels the intent of each concept. A complete labeling of the extent
would have an elementary cost corresponding to the size of each generated extent.
This is due to the fact that a consecutive-ones matrix ensures each intent is an
interval, but this is not true for the extents, as a concept created by a set R of
rows of a staircase u can use rows of a previous staircase s without using any
row of some intermediate staircase t (in other words, some row of s has an EC
greater or equal to the EC of the rows in R, but no row of t does).

It is possible to memorize and update a list of the rows whose ECs are
not outdated, and this can be done in O(|O|) per concept. Consequently, the
total complexity of Algorithm CONS-1, as well of Algorithm PlaCoL, would
be O(|O|.|R|), if we want a complete labeling of the extents.

On the other hand, for lattice drawing, the concepts need to be labeled only
by the introduced objects and/or properties. Then, in Algorithm PlaCoL we
chose to label the intent with the introduced objects. Computation of a concept
C is determined by the set R of rows defined within a given augmented staircase
s by a common value of EC. This will determine the introduced objects of
intent(C). Intent(C) is partitioned into three sets. The first set corresponds to
the rows that have been inserted in s and inherited from a previous staircase; they
are characterized by a SC value different than SC(s). The second set corresponds
to the rows that have been used to create a previous concept of the same chain;
they are characterized by a EC bigger then the smallest EC of R. The last
set corresponds to the rows that have not been previously used. The objects
introduced by C are exactly the ones of the third set, which are computed with
no extra-cost by Algorithm PlaCoL.

We can provide the corresponding introducer-labeling for the properties,
making a few slight changes in Algorithm PlaCoL; this will have no impact
on the complexity. As all the rows of the same staircase share the same SC and
are ordered by decreasing value of EC, only the last concept of a chain may intro-
duce a property. As the concepts of a chain have no descendent in a previously
generated chain, a concept cannot introduce a property that is in the intent of
some concept of a chain that is generated later. Thus, the last concept of each
chain s is the introducer of properties in interval [SC(s) ..SC(s + 1)[, except for
the last chain l (in which the last concept introduces [SC(l) ..EC(l)]). If z is the
first column of the matrix with no 1, the properties of [z .. |P|] are introduced by
bottom. Each property p of the remaining interval ]EC(l) .. z[ is introduced by
the last concept of the last chain whose row’s EC is bigger than p; this can be
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determined in a lazy way by preprocessing the column that labels each staircase
with the appropriate list of properties from ]EC(l) .. z[.

Galois sub-hierarchy. As a consequence, Algorithm PlaCoL can also be mod-
ified to compute the Galois sub-hierarchy: using the introducer-labeling, all the
concepts whose intent and extent are both empty will be dismissed. The remain-
ing concepts are the elements of the sub-hierarchy. When a concept is dismissed,
it is replaced by its highest maintained ancestor in the same chain for the out-
going edges and by its lowest maintained descendent in the same chain for the
incoming edges; bottom and top are managed accordingly. Thus, using elemen-
tary techniques, the total complexity remains the same: the Galois sub-hierarchy
is computed in O(|R|) time, which is better than the generic algorithms ([1]),
and should be refinable to O(|O + P|).

Figure 5 give a planar drawing of the lattice of Figure 2 with the standard
labeling of the concepts.

Fig. 5. A standard planar drawing of the lattice of Figure 2.

4 A hierarchy of polynomial concept lattices

In this section, we present a hierarchical classification of polynomial-size concept
lattices using a known hierarchy of bipartite graph classes: {chain} ⊂ {biconvex}
⊂ {convex} ⊂ {ATE-free} ⊂ {chordal-bipartite} ⊂ {bipartite} (for more infor-
mation on these graph classes, see [19], [9], and [10]5). This classification shows
that studying the length of cycles in graphs ([12]) is important for concept lat-
tices.
1. The smallest class corresponds to the lattices that are simply a chain, as in
Figure 1. This corresponds to the situation of Theorem 1.
2. The second class corresponds to matrices that have the consecutive-ones prop-
erty for the objects as well as for the properties.
5 Note the use of ‘bichordal’ for chordal-bipartite, ‘bigraph’ for bipartite graph, ‘di-

graph’ for directed graph.

CLA 2007 150 Montpellier, France



Matrix M RelationR Bipartite graph Gbip Co-bip. graph GR LatticeL(R)
1 staircase Ferrers dim.= 1 chain graph chordal chain, size O(|O|)
2 doubly consecutive-ones biconvex
3 consecutive-ones convex size O(|R|)
4 see [10] Ferrers dim.≤ 2 chain dim. ≤ 2 circular-arc planar
5 ATE-free
6 Γ -free chordal-bipartite weakly chordal
7 polynomial size

Fig. 6. The hierarchy of polynomial-size concept lattices. The smaller class is above.

3. A wider class corresponds to the consecutive-ones property; as shown above,
the corresponding lattices are planar. Gbip is convex.
4. The next class is the class of planar lattices. They are characterized by The-
orem 1, which is difficult to handle (see e.g., [20]). [10, 17, 18] indirectly give
another characterization of planar lattices by setting an equivalence between a
Ferrers dimension ≤ 2 relation and a pattern in the matrix. They also prove
that the graphs Gbip in this case are exactly the interval containment bipartite
graphs. In [17, 16], the graphs GR are characterized as circular-arc co-bipartite
graphs.
5. The previous class of bipartite graphs is properly contained in a subclass
of chordal-bipartite graphs, the class of ATE-free chordal-bipartite graphs (see
[10]).
6. In [6], it is proved that a concept lattice for which Gbip is chordal-bipartite
(equivalently, weakly chordal and bipartite) has O(|R|) concepts. All the previ-
ous classes we present are included in this one, and thus, have polynomial-size
concept lattices. Testing whether a graph is chordal-bipartite can be done in
min{O(|O+P|2), O(|R|.log(|O+P|))} time (see e.g., [19] for a discussion), and
this can be performed directly on the matrix M . These graph algorithms com-
pute a doubly lexical ordering of the matrix and search for a specific forbidden
pattern called a Γ 6. Every doubly lexical ordering has no Γ iff the corresponding
graph is chordal-bipartite. We know how important is the use of total orders on
objects or properties for concept generation: arbitrary order such as lectic (i.e.
lexical) order of [13] or structural order as domination of [3].
7. Our largest class is the one of polynomial size concept lattices.

5 Conclusion

For a relation which has a planar representation, we have provided new insight
which can help insert it into a hierarchy of relation classes; in particular, we
have shown that the subclass of consecutive-ones lattices are endowed with easy
drawing algorithms.

Moreover, any given binary relation can easily be embedded into a consecutive-
ones relation by adding or removing 1s, thus restricting the number of concepts

6 For h<i, j<k, M[h,j]=M[h,k]=M[i,j]=1 and M[i,k]=0 forms a Γ of matrix M.
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to a tractable (polynomial) number, as well as yielding a fast algorithm for draw-
ing a planar representation. However, we do not know how to do this efficiently
while adding or removing a minimum or even minimal set of 1s, a question we
leave open.

Another question would be to relax the planarity condition to allow an ‘al-
most planar representation’. As discussed in this paper, it turns out that planar
lattices correspond to bipartite graphs with no cycles of length strictly more than
four. It would be interesting to relax this condition to allow cycles of length six
but not more.
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Abstract. Multi-layer neural networks have been successfully applied
in a wide range of supervised and unsupervised learning applications. As
they often produce incomprehensible models they are not widely used
in data mining applications. To avoid such limitations, comprehensive
models have been previously introduced making use of an apriori knowl-
edge to build the network architecture. They permit to neural network
methods to deserve a place in the tool boxes of data mining specialists.
However, as the apriori knowledge is not always available for every new
dataset, we hereby propose a novel approach that generates a concept
semi-lattice from initial dataset, to directly build the neural network ar-
chitecture. Carried out experiments showed the soundness and efficiency
of our approach on various UCI.

1 Introduction

Neural network (also called connexionnist network) technique is one of the most
used techniques in machine learning. Feed-forward neural networks have been
applied to solve many problems: handwritten caracters recognition, molecular
biology, etc. There exists a plethora of architectures and algorithms about neu-
ral networks. But it is very difficult to choose those which are the best for a given
task [7]. Finding the architecture of the network to be used for solving a given
problem is a very complicated task. In fact there is no existing exact method
for defining the number of layers, the number of neurons in each layer and the
connections between neurons [7]. Define the topology of neural network consists
of answering certain questions: how many hidden layers? how many neurons per
layer? which connection policy? how to define each unit threshold? Moreover,
only the decision aspect of the neural model (which consists in using the model
in the decision task) is used and no importance is given to its descriptive aspect
(how decision is taken). Besides, the intelligibility of learned model is fundamen-
tal in datamining [3]; the absence of an explanation capability limits its use [1].
Black box neural network is usually not comprehensible. In [1] authors enhance
the transparency of the network in the decompositional extraction rules process.
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The topology becomes important for the intelligibility of the neural model and
in the process of extracting rules from neural network model.

When tackling a supervised classification problem, the widely used approach
(ad’hoc) to define a feed-forward network topology consists in using three layers:
input, hidden, output. The number of neurons of the input layer is the number of
variables or attributes. The number of neurons of the output layer is the number
of classes. The number of neurons in the hidden layer is calculated as the mean
of the number of input units and the output units. In the literature, different
approaches have been reported to build the network topology. These research
works could be divided into two groups:

1. Search an optimal network to minimize the number of units in the hidden
layers [11]. This technique brings out a constructive solution to the problem
without an apriori knowledge. Its main limitation is the intelligibility of the
resulting network, the network is a black box i.e. no semantic is associated
to each node.

2. Use a set of apriori knowledge on the problem domain and build neural
network from this knowledge [13]. The main advantage here is that the result
is a comprehensive network i.e. each node in the network represents one
variable in the rules set and each connexion between two nodes represents
one dependence between variables. But it is not possible to use it when the
apriori knowledge is not available.

The aim of this paper is to introduce CLANN, an approach based on concept
lattices which goes beyond the limitations of the existing approaches. Concept
lattices is an ordered graph composed by formal concepts. Given an input matrix
(also called formal context) specifying a set of objects and their corresponding
properties, a formal concept is a pair containing both a subset of objects (X)
and a subset of properties (Y), such that Y is the set of all properties shared
by the objects of X, and X is the set of all objects that share the properties of
Y. In fact concept lattices has been extremely used in supervised classification
[10]. The use of the concept lattices [5] in classification proceeds in two phases:
the first phase called the training phase consists in selecting interesting concepts
among the set of concepts or in extracting rules. Selected concepts and/or rules
are then used to take decision about new objects in the second phase [10].

CLANN uses directly the Hasse diagram of the built semi-lattice to define
the architecture of the neural network. Within data mining domain, concepts
and connexions defined in this diagram are generally used to extract rules into
the formal context. Here concepts and connexions are used to define neurons and
their connexions. We believe that this approach can be helpful when the apriori
knowledge is not available.

Many constraints (or heuristics) presented in the literature can be used to
prune the concept lattices in order to reduce the number of generated concepts.
The CLANN approach has two main advantages: first it finds a comprehensive
model when the knowledge is not available, secondly it is possible to justify
the built neural network topology. Another advantage of this approach is the
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possibility to easily extract rules from the network. Carrying out experimenta-
tions of this method using benchmarks from UCI repository shows interesting
results in terms of precision, and also that CLANN can be better than many
comprehensive models such as C4.5 and IB1.

The rest of this paper is organized as follows: the next section presents some
notions used in Formal Concept Analysis (FCA). The third section presents
the CLANN approach. Experimentation and obtained results are described in
section four. Related works about extracting rules in trained neural networks
end this paper.

2 PRELIMINARIES

2.1 FCA basic notions

This section presents some important notions used in FCA. More notions about
FCA could be found in [5].

A formal context is a triplet C = (O, A, I) where O is a non empty fi-
nite set of objects, A a non empty finite set of attributes (or items) and I
is a binary relation between elements of O and elements of A (formally I ⊆
{(o, a) /o ∈ O and a ∈ A}). A context C can be represented as binary matrix M
(where Mi,j = 1 ⇐⇒ (o, a) ∈ I, 0 otherwise) or transactions database (a row
o is the collection of attributes which are verified by the object o). A(resp. O)
is also called set of items (resp. transactions). Table 1 is an example of con-
text. We denote in the next sections the set {a, b, c, d} (resp. {1, 2, 3, 4}) as abcd
(resp.1234). The objects in table 1 could be divided into two parts: a set of ex-
amples O+ (for instance O+ = {1, 2, 3, 4, 5, 6} for the context table 1) and the
set of counterexamples O− (for instance O− = {7, 8, 9, 10} for the context table
1).

Table 1. Example of context presented as boolean matrix; two-class (+ and -) data
indicated by class column.

Objects a b c d e f class

1 1 1 1 1 1 +
2 1 1 1 1 +
3 1 1 1 1 +
4 1 1 1 +
5 1 1 1 1 +
6 1 1 1 +
7 1 1 1 -
8 1 1 1 -
9 1 1 1 -
10 1 1 1 -
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Let f and g be two applications defined as follows: f : 2O −→ 2A, such
that f(X) = X ′ = {a ∈ A / ∀o ∈ X , (o, a) ∈ A} , X ⊆ G and g : 2A −→ 2O,
such that g(Y ) = Y ′ = {o ∈ O / ∀a ∈ Y , (o, a) ∈ I} , Y ⊆ A; a pair (X, Y ) is
called concept iff X = Y ′ and Y = X ′. X (resp. Y ) is called extension (resp.
intention) of the concept, an intention of concept is also called description.

Let (X1, Y1) and (X2, Y2) be two concepts, and ≤ a relation defined on a
entire set of concepts extracted from the context. (X1, Y1) ≤ (X2, Y2) if X1 ⊆
X2 (Y1 ⊇ Y2). (X1, Y1) is called successor of (X2, Y2) and (X2, Y2) predecessor
of (X1, Y1) if there is no concepts between them. The relation ≤ defines an order
relation on the entire set L of concepts [5]; the set of all concepts L with the
order relation ≤ define the concept lattices.

A lattice is a partially ordered set (or poset) in which every pair of elements
has a unique supremum (the elements’ least upper bound; called their join) and
an infimum (greatest lower bound; called their meet). A semilattice is a partially
ordered set (poset) closed under one of two binary operations, either supremum
(join) or infimum (meet). Hence we speak of either a join-semilattice or a meet-
semilattice. If an ordered set is both a meet- and join-semilattice, it is also a
lattice.

2.2 Supervised classification

In a supervised classification process, the system works into two phases [10]:
training (learning) phase and testing (evaluation) phase. The dataset is sepa-
rated into two subsets, the first subset is used to build and train the model
during the training phase while the second is used to evaluate the model during
the testing phase. For instance, the dataset of table 1 could be divided into two
subsets {1, 2, 5, 6, 9, 10} as training set and {3, 4, 7, 8} as test set. In the litera-
ture, different techniques were reported for supervised classification problem [7]:
instance-based learning, decision trees, artificial neural network, support vec-
tor machine, bayesian network, . . . We are here concerned with artificial neural
network.

2.3 Feed-forward neural networks

Neural networks is a set of interconnected neurons (also called units), which
exchange information with one to another and communicate with the external
environment. Different type of neural networks were reported in the literature
[2]: the feed forward neural networks (perceptron, multilayer perceptron, ...) and
the reverse feed forward neural networks (for instance the ”Adaptive resonance
theory” networks). More notions about artificial neural networks can be found
in [2]. A feed forward neural network is composed of different layers:

1. The input layer is composed of neurons which receive information from out-
side.

2. The internal layer is composed of units which make intermediate treatment;
it could be composed of many layers.
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3. The output layer is formed by units which make decision.

A neuron is a process unit which has an internal memory, communicates with the
external environment. Its state is defined as a function of its inputs; this function
is called activation function [2]. The connexions between neurons define the
architecture of the network. The neuron can also be called unit, it is active if its
internal state value is 1 and inactive if this value is 0. After defining the network
topology, the connexion weights between units are trained by backpropagation
[12]. The connexion weights between two units a and b define the effect of the
neuron a on the neuron b.

3 CLANN APPROACH

We describe in this section the different steps of our new approach as shown by
figure 1. The process of finding the architecture of neural networks are three-
folds: (1) build a join semi-lattice of formal concepts by applying constraints
to select relevant concepts; (2) translate the join semi-lattice into a topology of
the neural network, and set the initial connections weights; (3) train the neural
network.

 

Learning 

 
 

 
 
 
 
semi - lattice 

 

 
 
 
 
 
 
Neural network topology  
 

 
 

Training
data

Translation 

and setting

Neural classifier

Training
dataHeuristics

Fig. 1. Neural network topology definition.

3.1 Semi-lattice construction

There are many algorithms [8] which can be used to construct concept lattices;
few of them build the Hasse diagram. Lattice could be processed using top-down
or bottom-up techniques. In our case, a levelwise approach presents advantage to
successively generate concepts of the join semi-lattice and the Hasse diagram. For
this reason, we choose to implement the Bordat algorithm [8] which is suitable
here. Concepts included in the lattice are only those which satisfy the defined
constraints.
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Algorithm 1 Modified Bordat algorithm
Require: Binary context K
Ensure: concept lattices (concepts extracted from K) and the Hasse diagram of the

order relation between concepts.
1: Init the list L of the concepts (G, {}) (L← (G, {}))
2: repeat
3: for concept c ∈ L such that his successors are not yet been calculated do
4: Calculate the successors c′ of c.
5: if the specified constraint is verified by c′ then
6: add c′ in L as successor of c if c′ does not exit in L else connect c′ as

successor of c.
7: end if
8: end for
9: until no concept is added in L.

10: derive the neural network architecture as described in section 3.3 from the concept
semi-lattice.

3.2 Constraints

In order to reduce the size of lattice and then the time complexity, we present a
few constraints regularly used to select concepts during the learning process.

Frequency of concept. A concept is frequent if it contains at least α (also
called minsupp is specified by the user) objects. The support s of a concept
(X, Y ) is the ratio between the cardinality of the set X and the total number of
objects (|O|) (s = 100×|X|

|O| %). Frequency is an anti-monotone constraint which
helps in pruning the lattice and reduce it computational complexity. Support
could be seen as the minimal number of objects that the intention of one concept
must verified before being taken in the semi-lattice. The figure 3.2 presents
a semi-lattice built from the class ”+” examples of the table 1 (a) and the
equivalent topology of the neural network (b); the specified minsupp value is
30%.

 {},{123456} 

{e},{12356} {c},{2346} {bd},{1345} 

{ce},{236} {ae},{2356} {bde},{135} 

 

Output 

a f b c d e
 

Internal 

Input 

(a)
(b)

Fig. 2. (a) Join semi-lattice with minsup=30% and (b) network topology.
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Validity of concept. Many techniques are used to reduce the size of lattice.
The following notions are used in order to the select concepts: a concept (X,Y ) is
complete if Y recognize all examples in dataset. A concept (X, Y ) is consistent
if Y throws back all counterexamples (formally, the set of consistent concept is
{(X, Y )/Y ∩O− = {}} where O = O+∪O−). To reduce the restriction imposed
by these two constrains, others notions are used:

1. Validity. A concept (X, Y ) is valid if its description recognizes most ex-
amples; a valid concept is a frequent concept on the set of examples O+;
formally the set of valid concepts is defined as {(X, Y ) / |X+| ≥ α} where
0 < α ≤ |O+|.

2. Quasi-consistency. A concept (X, Y ) is quasi-consistent is if it is valid
and its extension contains few counterexamples. Formally the set of quasi-
consistent concepts is defined as {(X, Y ) / |X+| ≥ α and |X−| ≤ β}.

Height of semi-lattice. The level of a concept c is defined as the minimal
number of connexions from the supremum concept to c. The height of the lattice
is the greatest value of the level of concepts. Using levelwise approach to gener-
ate the join semi-lattice, a given constraint can be set to stop concept generation
at a fixed level. The height of the lattice could be performed as the depth with-
out considering the cardinality of concepts extension (or intention). In fact at
each level, concept extensions (or intentions) do not have the same cardinality.
The number of layers of the semi-lattice is a parameter corresponding to the
maximum level (height) of the semi-lattice.

3.3 From Semi-Lattice to Neural network

Mapping Hasse diagram of lattice into neural networks is described as following:

– Each lattice concept becomes one unit (or node) in the neural network; a
node is thus seen as a group of objects which verify a given set of attributes.

– A layer of n units (n is the number of attributes) is created as the input
layer of the system; each neuron of this layer is connected to any neuron of
the first hidden layer (concepts in the semi-lattice, with no successor) inside
internal layers.

– The supremum concept of lattice is translated into the neural unit repre-
senting the output of the network; this concept is the one whose extension
contains all the training set of objects.

– Other concepts are rewritten as hidden units (or hidden layers). The units
which do not have successor constitute the first hidden layer.

– There is a connection between two neurons if and only if there is a link
between their associated concepts in the join semi-lattice.

3.4 Connection weights and threshold

Connection weights are initialized as follows:
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– Connection between two nodes, that derived directly from the semi-lattice
is initially weighted to 1. This implies that when the node (or neuron) is
active, all its predecessors are active too.

– Connection between an input layer unit and hidden layer unit is weighted as
follows: 1 if the attribute associated by the input layer node appears in the
intention Y of concept associated to the hidden layer node, and -1 otherwise.

– Threshold is set to zero for all nodes (or units).

These connection weights are modified during the training process, using the
learning algorithm (which is the backpropagation algorithm [2] in our case).
The activation function is also a parameter of CLANN approach. We choose to
implement the sigmoid function among those reported in the literature [2].

4 EXPERIMENTATIONS AND RESULTS

This section presents the experimental comparisons conducted with our method.
CLANN has been implemented in C++, and run on a personal computer Pen-
tium IV (1,8Ghz, 1Go RAM and 80Go Hard Disk) in the Linux fedora core
environment. Table 2 describes the two-class datasets with contain nominal at-
tributes, taken from UCI repository 3. We use the Weka binarization procedure
”NominalToBinary” to convert multivalued attribute to binary one.

Dataset #Nominal attributes #Binary attributes training test data-size
Spect 23 23 80 187 267

Chess end-of-game 36 38 10-CV 10-CV 3196
Tic-tac-toe 9 27 10-CV 10-CV 958

Monsk1 7 15 124 432 556
Monsk2 7 15 168 432 600
Monsk3 7 15 122 432 554

Table 2. Experimented Datasets; ’10-CV’ indicates that training and test data are
defined by 10-fold cross validation technique

Neural network obtained from the Hasse diagram of the join semi-lattice are
trained with backpropagation algorithm using 500 iterations. Activation func-
tion used in the experiments is the sigmoid function (f(x) = 1

1+exp(x) ). The ex-
perimentations were done using 10-fold cross validation for datasets with none
already defined test set as Chess and Tic-tac-toe. For other datasets, our model
is built and trained using provided training dataset, and evaluate on test set.
CLANN results are depicted by three tables : 3, 4 and 5. These tables present
the accuracy rate which is the percentage of correctly classified test objects.
Table 3 shows the results obtained on one dataset (SPECT) with the different
constraints and various parameter values. Considering the frequency or validity
3 available on the web site http://www.ics.uci.edu/AI/ML/MLDBRepository.html
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constraint, when the minimum support (δ or α) decreases, the accuracy rate
increases. This is certainly due to the fact that the number of hidden nodes also
increases when the minimum support decreases. With a high number of hidden
nodes, the neural network model produces good perfomance. Considering the
quasi-consistency constraint, when its minimum value decreases, the accuracy
rate slightly decreases. The effect of this constraint is not so significant in our
case. Considering the semi-lattice height constraint, the accuracy rate slightly
increases until level 2, and then significantly decreases. Thus it is not necessary
to build more than two levels from of the semi-lattice. We choose to use this
constraint (setting the default value to 1) in order to compare CLANN to other
machine learning classifiers.

Table 3. Results obtained from SPECT database using different constraints.

Constraints Generalization Constraints Generalization
α=10, β=10 93,74% δ=20 93,59%
α=20, β=10 92,60% δ=30 93,59%
α=30, β=10 91,30% δ=40 90,65%
α=40, β=10 90,4% δ=50 89,84%
α=10, β=50 93,90% height=1 93,60%
α=20, β=50 93,90% height=2 93,90%
α=30, β=50 92,40% height=3 92,40%
α=40, β=50 88,40% height=4 90,65%

Table 4 presents accuracy rates of CLANN and four other classifiers taken
from the Weka datamining tool 4 among which two decision tree method (C4.5
and ID3), one instance based learning method (IB1), and one neural network
method (MLP). MLP is built with the ad-hoc method as described in the section
1 and trained using gradient backpropagation algorithm [12]. Considering the
accuracy rate average over the datasets used, CLANN is never the last classifier
when ranking them on the accuracy rate. It is always better than at least one
other classifier. MLP outperforms all the other classifier in terms of accuracy
rates, however it is not a comprehensible model for datamining. CLANN results
are comparable to decision-tree ones, and CLANN outperforms IB1. Considering
the SPECT dataset, CLANN significantly outperform all those classifiers.

Table 5 presents comparative results between CLANN and other constructive
neural networks models [11] among which Tiling, Upstart, Tower, Distal. Those
constructive neural networks are still non compresensible model for data mining.
Our comparison is only to analyse the soundness of our approach. The three
first algorithms construct the neural model by successive addition of neurons
until the network has a maximum number (specified by the user) of layers or the
desired accuracy is obtained. The parameters used are described as following: the
maximum number of layer is 10 and the desired accuracy is 100% (default value

4 available on the web site http://www.cs.waikato.ac.nz/ml/weka/
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Table 4. Accuracy rate of CLANN versus other standard models

Dataset CLANN MLP C4.5 ID3 IB1
Spect 93,90% 65,77% 66,7% 65,24% 66,31%
Chess 93,60 % 99,30% 98,30% 97,80% 89,90%

Monsk1 82,70% 100% 100% 92,59% 89,35%
Monsk2 78,91% 100% 70,37% 86,57% 66,89%
Monsk3 83,61% 93,52% 100% 89,81% 81,63%

Tic-tac-toe 83,57% 96,86% 93,21% 93,84% 81,63%
Average 86,05% 92,56% 88,10% 87,64% 79,29%

used in their implementation), added unit is trained by Pocket Perceptron with
racket modification [11]. Distal uses one hidden layer and clusters the training
set into disjoint groups and each group becomes one neural unit of the hidden
layer. Distal is similar to our approach. They differ by the fact that: Distal uses
only one hidden layer, Distal uses disjoint group while the node extension in
CLANN may overlap and furthermore each node in CLANN model is clearly
characterized by an intention.

Table 5. Classification rate of CLANN versus other constructive neural network models

Dataset CLANN Tiling Upstart Tower Distal
Spect 93,90% 89,60% 83,29% 71,40% 93,90%
Chess 93,60% 93,90% 90,65 92,40% 89,74%

Monsk1 82,70% 83,13% 77,78% 85,85% 90,23%
Monsk2 78,91% 77,13% 87,30% 66,90% 89,10%
Monsk3 83,61% 74,91% 87,22% 82,08% 86,46%

Tic-tac-toe 83,57% 98,40% 99,89% 100% 95,85%
Average 86,05% 86,17% 87,67% 83,11% 90,88%

From table 5, considering the accuracy rate average, Distal outperforms all
the classifiers, CLANN outperforms Tower and is comparable to Tiling and Up-
start. As shown in the previous comparison, CLANN is better on the SPECT
dataset. CLANN outperforms Distal on CHESS dataset. In addition of these re-
sults, CLANN built a comprehensive model and is more suitable for data mining
than the other constructive approaches. In fact concept lattices can be useful in
rules extraction process [6]. The other constructive neural network model as well
as MLP are seen as black box by the user, and their interpretation remains a
difficult task. Providing explanation when dealing with datamining applications
brings up an added-value [1, 3], which will be easily obtained with CLANN than
other methods.

KBANN [13] is not compared to CLANN because the apriori knowledge
about the previous dataset (table 2) are not available.
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5 RELATED WORKS

To the best of our knowledge, KBANN [13] is the only algorithm able to build
comprehensive neural network. KBANN derives from the knowledge provided
by the user as set of rules, the network topology. Unlike KBANN, CLANN does
not need apriori knowledge, its model is based on semi-lattice built directly from
data.

Research works about rules extraction from neural networks presented two
main algorithms for this task. These algorithms [1] execute on neural model
according to the assumptions which stipulate that neurons are maximally active
(activation near 1 or 0) and that training does not significantly alter the meaning
of the neuron, implicite rules present in the model after mapping Hasse diagram
into neural network will not significantly change after training. These algorithms
are:

1. Subset. Its principle [1] consists of clustering internal links of hidden and
output units, into subsets of links, and then using only the subsets of links
whose the sum of weights is greater than the unit threshold. Extracted rules
are in written in the form ”If...then...”

2. MofN. It assumes that individual links are not important and weights form
small number of clusters. It clusters the connections for each hidden and
output neuron and delete those clusters which can not affect the unit result.
It finds the average weight for each remaining cluster and retrain the bias
of each cluster. Finally a single rule for each hidden and output neuron X
is derived. The rules are in the form ”If N of the M antecedents are active
then X is active”.

Each of these algorithms could be applied to extract rules in CLANN model.
As the architecture of CLANN model is based on semi-lattice, extracting

rules using concept lattices approaches [9] could also be applied. Each node of
CLANN model contains a closed set and the connexion weight between two
nodes could help to weight the extracted rules.

6 CONCLUSION

This work proposes an approach to define a constructive comprehensive neural
network without an apriori knowledge. Experiments conducted has shown the
soundness and efficiency of our approach.

CLANN is limited to the binary data set. Binarization techniques could be
applied on dataset such that CLANN is able to handle nominal, discrete and
continuous values. Various approaches are proposed in the literature to deal with
many-valued context directly when generating concept lattice. Further research
will focus on those approaches. Many constraints are also presented but it is
not easy to define the default values. Extensive experimental study is currently
ongoing to find out the default values. Computational complexity of CLANN is
similar to those of Weka MLP, this complexity will be further explicitly explored.
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CLANN is also limited to two-class supervised classification problem. Ongoing
research is dealing with multi-class design, constraint criteria setting and rules
extraction from CLANN topology.

Acknowledgment

This research is partially supported by the French Embassy service SCAC (Ser-
vice de la Coopération et d’Action Culturelle) in Yaounde. Thanks to the anony-
mous reviewers for their helpful comments.

References

1. R. Andrews, J. Diederich, A. B. Tickle. Survey and critique of techniques for ex-
tracting rules from trained artificial neural networks. Knowledge-Based Systems
8(6): 373-389, 1995.

2. Y. Benani. Apprentissage Connexionniste, Editions Herms Science, Paris 2006.
3. M.W. Craven and J.W. Shavlik. Using Neural Networks for Data Mining. Future

Generation Computer Systems, 13(2-3): 211-229, 1997.
4. S. Gallant. Perceptron based learning algorithms. IEEE Transactions Neural Net-

works, 1:179-191, 1990.
5. B. Ganter and R.Wille. Formal Concepts Analysis: Mathematical foundations.

Springer - Verlag,1999.
6. G. Gasmi, S. Ben Yahia, E. Mephu Nguifo, Y. Slimani. A new informative generic

base of association rules. Advances in Knowledge Discovery and Data Mining,
3518:81-90,2005.

7. J. Han, M. Hamber. Datamining: Concepts and Techniques. Morgan Kauffman Pub-
lishers, London, 2001.

8. S. Kuznetsov, S. Obiedkov. Comparing Performance of Algorithms for Generating
Concept Lattices, JETAI 14(2/3):189-216,2002.

9. J.L Guigues and Vincent Duquenne, ’Familles minimales d’implications informatives
resultant d’un tableau de donnes binaires, Mathmatiques et sciences sociales, 95:5-18
1986.

10. E. Mephu Nguifo, P. Njiwoua. Treillis de concepts et classification supervisée. Tech-
niques et Sciences Informatiques, 24:449-488, 2005.

11. R. Parekh, J. Yang, V. Honavar. Constructive Neural-Network Learning Algo-
rithms for Pattern Classification. IEEE Transactions on Neural Networks, 11(2):
436-451, 2000.

12. D.E. Rumelhart, G. E. Hinton, R. J. Williams. Learning representations by back-
propagating errors. Nature,323: 318-362, 1986.

13. J.W. Shavlik, G. Towell. Kbann: Knowledge based articial neural networks, Arti-
ficial Intelligence, 70:119-165, 1994.

CLA 2007 164 Montpellier, France



A Proposal of Description Logic
on Concept Lattices!

N.V. Shilov1,2 and S.-Y. Han1

1 School of Computer Science and Engineering
Chung-Ang University 410, 2nd Engineering Building 221,

Heukseok-dong, Dongjak-gu Seoul 156-756, Korea
shilov@cau.ac.kr, hansy@cau.ac.kr

2 A.P. Ershov Institute of Informatics Systems,
Lavren’ev av., 6, Novosibirsk 630090, Russia,

shilov@iis.nsk.su

Abstract. There are two major formalisms that are developed around
concepts: (1) Formal Concept Analysis (FCA) by R. Wille and B. Ganter,
and (2) Description Logic (DL) that goes back to the universal termi-
nological logic by P.F. Patel-Schneider. It has been demonstrated that
FCA constructs (upper and lower derivatives, formal concepts) are ex-
pressible in DL. Present paper demonstrates how to interpret (positive)
DL concepts over concept lattices in a compatible manner.

1 Introduction

Two major formalisms developed around concepts are

– Formal Concept Analysis (FCA) by R. Wille and B. Ganter [4, 12],
– Description Logics (DL) that go back to P.F. Patel-Schneider [2].

Description Logic (DL) is a set of knowledge representing languages closely
related to modal [3] and program logics [6]. These languages can be used for de-
scription of the terminological knowledge in a structured way. They have become
a cornerstone of the W3C-endorsed Web Ontology Language (OWL) [7]. DL ba-
sic notions are concept and role terms. Concept terms correspond to formulas
of modal and program logics. An interpretation assigns sets of objects (that
are called concepts in DL) to concept terms. The most important DL notion is
knowledge base. A knowledge base is a collection of (subsumption) statements
between pairs of concept terms and pairs of role terms. In this way DL represents
that a concept is a subconcept of another one, a role is a subrole of another role.

! This research is supported in parts by (a) MIC(Ministry of Information and
Communication), Korea, under the Foreign Professor Invitation Program of the
IITA(Institute for Information Technology Advancement), (b) by joint grant RFBR
05-01-04003-a - DFG project COMO, GZ: 436 RUS 113/829/0-1, (c) by Integration
Grant n.14 Siberia Branch, Russian Academy of Science.
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Formal concept analysis is an algebraic framework for data representation
and analysis. It takes an input matrix that specifies a relation between objects
and attributes. Then FCA finds corresponding ‘closed’ sets of attributes and
‘closed’ sets of objects. Every pair of corresponding ‘closed’ sets of objects and
attributes forms a formal concept3. The set of attributes in each formal concept
can be interpreted as a set of necessary and sufficient conditions for defining the
set of objects in the concept. The family of formal concepts obeys the mathe-
matical axioms defining a lattice, and is called a concept lattice.

To the best of our knowledge, there are few research on combination of Formal
Concept Analysis with Description Logic [9, 1, 8]. Roughly speaking, all these
attempts can be classified as follows:

– accelerating one formalism by another,
– emulating one formalism by another.

The dissertation [9] and paper [1] attempted to accelerate DL by variants
of a so-called attribute exploration technique that goes back to FCA. A vari-
ant suggested by [9] is called Relational Exploration. It allows determining all
‘attribute implications’ that follows from knowledge base presented in terms of
a simple description logic FLE. (This logic admits concept intersections, exis-
tential and universal restrictions.) A variant of attribute exploration proposed
by [1] can deal with a partial context and any description logic that is closed
under complement and conjunction. An algorithm developed in the cited paper
constructs a complete extension of a given partial knowledge base and at the
same time it guarantees a minimum communication with knowledge engineers.

In contrast, paper [8] has attempted to emulate DL universal restriction in
FCA by some algebraic fix-point construction and to demonstrate its utility for
analysis of relational data.

The present paper discusses two variants of a ‘combination’ of DL and FCA.
The first variant is sketched in brief since it has been discussed in full details in
a recent workshop paper [11]. This variant emulates FCA in DL by extending
language of any description logic L by upper and lower derivatives that come
from FCA. The resulting description logic is denoted by L/FCA. Paper [11] has
proved that L/FCA can be expressed in L(¬,−) – another variant of L that is
closed with respect to role complement and inverse.

A new variant of a ‘combination’ of DL and FCA emulates a particular
description logic – (positive fragment of) Attribute Language with Complements
(ALC) [10] – by algebraic operations on concept lattices. This emulation can
be considered also as a usage of concept lattices as domains for terminological
interpretations, i.e. as a conceptual semantics for ALC. Informal soundness of
this emulation is supported by a compatibility of the conceptual semantics with
the standard semantics of ALC.

The paper is organized as follows. The next section introduces basic notions
of Description Logic. Then Section 3 presents basic definitions and some facts of
Formal Concept Analysis. In Section 4 we present our proposal of a description
3 For explicit distinction with DL, we use here a combined term ‘formal concept’.
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logic on concept lattices. Section 5 discuses the compatibility of the conceptual
semantics of ALC with the standard one. Topics for further research are discussed
in Conclusion.

2 Basics of Description Logics

There are many variants of description logics, but we define only some of them.

Definition 1. Syntax of every description logic is constructed from disjoint al-
phabets of concept, role, and object symbols CS, RS, and OS, respectively. The
sets of concept terms (or concepts) CT and role terms (or roles) RT are defined
by induction. Usually definition admits the following clauses.

– (Concept terms)
• the top concept " and the bottom concept ⊥ are concept terms;
• any concept symbol is a concept term;
• for any concepts X and Y their union (X $Y ) and intersection (X %Y )

are concept terms;
• for any concept X its complement (¬X) is a concept term;
• for any role R and any concept X the universal (∀R. X) and the exis-

tential (∃R. X) restrictions are concept terms;
– (Role terms)

• the top role ∇ and the bottom role ) are role terms;
• any role symbol is a role term;
• for any roles R and S their union (R $ S), intersection (R % S), and

composition (R ◦ S) are terms;
• for any role R its complement (¬R), inverse (R−), and transitive closure

(R+) are role terms.

Concept and role terms altogether form the set of terminological expressions.

Definition 2.

– For any concepts X and Y , any roles R and S the following expressions are
called terminological sentences: X

.
+ Y , X

.= Y , R
.
+ S, and R

.= S. A
TBox is a set of terminological sentences.

– For any concept X, any role R, and any object symbols a and b the following
expressions are called assertional sentences: a concept assertion a : X and a
role assertion (a, b) : R. An ABox is a set of assertional sentences.

– A knowledge base is a finite set of terminological and assertional sentences.
Every knowledge base consists of an appropriate TBox and ABox.

Definition 3. Semantics of any description logic is defined in Kripke-like ter-
minological interpretations. Every terminological interpretation is a pair (D, I),
where D is a set (that is called domain) and I is a mapping (that is called
interpretation function). This function maps object symbols to elements of D,
concept symbols to subsets of D, role symbols to binary relations on D: I =
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IOS ∪ ICS ∪ IRS, where IOS : OS → D, ICS : CS → 2D, and IRS : RS → 2D×D.
The unique name assumption holds for this function: I(a) .= I(b) for all differ-
ent object symbols a and b. The interpretation function can be extended to all
terminological expressions as follows.

– (Concept semantics)
• I(") = D and I(⊥) = ∅;
• I(X $ Y )) = I(X) ∪ I(Y ) and I(X % Y ) = I(X) ∩ I(Y );
• I(¬X) = D \ I(X);
• I(∀R. X) = {s ∈ D : ∀t ∈ D(if (s, t) ∈ I(R) then t ∈ I(X))},

I(∃R. X) = {s ∈ D : ∃t ∈ D((s, t) ∈ I(R) and t ∈ I(X))};
– (Role semantics)

• I(∇) = D2 and I()) = ∅;
• I(R$S) = I(R)∪ I(S), I(R%S) = I(R)∩ I(S), I(R ◦S) = I(R) ◦ I(S)

(righthand side ‘◦’ is composition of binary relations);
• I(¬R) = D2 \ I(R), I(R−) = (I(R))−, and I(R+) = (I(R))+

(righthand side ‘+’ is transitive closure of binary relations);
• I(R!X) = {(s, t) ∈ I(R) : s ∈ I(X)},

I(R?X) = {(s, t) ∈ I(R) : t ∈ I(X)}.

Definition 4. Semantics of sentences is defined in terminological interpreta-
tions in terms of satisfiability relation as follows:

– (D, I) |= a : X iff I(a) ∈ I(X);
– (D, I) |= X

.
+ Y iff I(X) ⊆ I(Y );

– (D, I) |= X
.= Y iff I(X) = I(Y );

– (D, I) |= (a, b) : R iff (I(a), I(b)) ∈ I(R);
– (D, I) |= R

.
+ S iff I(R) ⊆ I(S);

– (D, I) |= R
.= S iff I(R) = I(S).

This satisfiability relation can be extended on knowledge bases in a natural way:
(D, I) |= KBase iff (D, I) |= φ for every sentence φ ∈ KBase. In the case of
(D, I) |= KBase, the terminological interpretation (D, I) is said to be a (ter-
minological) model for the knowledge base KBase. Let us say that a knowledge
base KBase entails a sentence ψ (and write4 Kbase |= ψ) iff (D, I) |= ψ for
every model (D, I) of KBase.

Definition 5. A concept X is said to be coherent (or satisfiable) with respect to
a knowledge base KBase iff there exists a terminological model (D, I) for KBase
such that I(X) is not empty. A knowledge base KBase is said to be satisfiable
iff the top concept " is coherent with respect to KBase.

Attribute Language with Complements (ALC) [10] is a particular example
of description logic. In simple words, ALC adopts role symbols as the only role
terms, concept symbols – as elementary concept terms, and permits ‘Boolean’
constructs ‘¬’, ‘$’, ‘%’, universal and existential restrictions ‘∀’ and ‘∃’ as the
only concept constructs. The formal definition follows.
4 When KBase is empty then ‘|= ψ’ can be written instead of ‘∅ |= ψ’.
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Definition 6. ALC is a fragment of DL that comprises concepts that are defined
by the following context-free grammar:

CALC ::=
CS|"|⊥|(¬CALC)|(CALC $ CALC)|(CALC % CALC)|(∀RS. CALC)|(∃RS. CALC)

where metavariables CS and RS represent any concept and role symbols, respec-
tively. Semantics of ALC is defined in the standard way in accordance with Def-
inition 3.

Many description logics can be defined as extensions of ALC by concept
and/or role constructs. For example, the website [13] uses the following approach:
for any collection of concept and/or role constructs C&R, let ALC(C&R) be a
closure of ALC that admits all concept and/or role constructs in C&R.

Definition 7. A variant of DL is a description logic L with syntax that

– contains all concept and role symbols CS and RS,
– is closed under concept constructs ‘¬’, ‘$’, ‘%’, ‘∀’ and ‘∃’.

From the viewpoint of the above definition, ALC is the smallest variant5 of DL.

Definition 8. Let L be a variant of DL and C&R be a collection of concept
and/or role constructs. Then let L(C&R) be the smallest variant of DL that
includes L and is closed under all constructs in C&R.

For instance, ALC(¬,−) is an extension of ALC where any role symbol can
be negated and/or inverted.

The following definition takes into account DL variants without role con-
structs for so-called domain restriction and range restriction.

Definition 9. A concept term is said to be positive if it does not use the con-
cept complement construct. For every DL variant L the positive fragment of L
comprises all positive concept terms of L and all role terms of L. The positive
fragment of DL variant L is denoted by L+.

For example ALC+, the positive fragment of ALC, comprises concepts that are
defined by the following context-free grammar:

CALC+ ::=
CS|"|⊥|(CALC+ $ CALC+)|(CALC+ % CALC+)|(∀RS. CALC+)|(∃RS. CALC+).

The following lattice-theoretic characterization of semantics of concept con-
structs ‘"’, ‘⊥’, ‘$’, ‘%’, ‘∀’, and ‘∃’ is easy to prove.

Proposition 1. Let (D, I) be a terminological interpretation and P (D) = (2D,
∅, ⊆, D, ∪, ∩) be the complete lattice of subsets of D. Then ALC+ semantics
enjoys the following properties in P (D):
5 Of course, ‘smaller’ description logics can be defined by means of stronger syntax

restrictions.
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– for any concept symbol I(p) is an element of the lattice P (D);
– I(") = supP (D) and I(⊥) = inf P (D);
– I(X $ Y ) = sup(I(X), I(Y )), and I(X % Y ) = inf(I(X), I(Y ));
– I(∀R. X) = sup{S ∈ P (D) : ∀s ∈ S∀t ∈ D((s, t) ∈ I(R) ⇒ t ∈ I(X))},

I(∃R. X) = sup{S ∈ P (D) : ∀s ∈ S∃t ∈ D((s, t) ∈ I(R) & t ∈ I(X))}.

3 Basics of Formal Concept Analysis

Basic Formal Concept Analysis (FCA) definitions below follow monograph [4],
but we use a little bit different notation.

Definition 10. A formal context is a triple (O,A, B) where O and A are sets
of ‘objects’ and ‘attributes’ respectively, and B ⊆ O × A is a binary relation
connecting objects and attributes. Let us say that a formal context (O,A, B) is
homogeneous6 iff O = A, i.e. the set of objects coincides with the set of attributes.
A symmetric context is a homogeneous context with symmetric binary relation7

Every terminological interpretation (D, I) and every role term R define a
formal context (D,D, I(R)). It implies that every terminological interpretation
(D, I) defines a family of homogeneous formal contexts (D,D, I(R)) indexed by
role symbols R ∈ RS or by role terms R ∈ RT .

Vise versa, there is a number of ways to define a terminological interpretation
for given formal contexts. For example, if we have a family of formal contexts
(Oj , Aj , Bj) indexed by elements of some set J , then we can adopt the set of
indexes J as the alphabet role symbols RS, a set of symbols {oj : j ∈ J} ∪ {aj :
j ∈ J} as the alphabet of concept symbols CS, and define a terminological
interpretation (D, I) as follows:

– D = ∪j∈J(Oj ∪Aj),
– I(j) = Bj ⊆ (Oj ×Aj) ⊆ D ×D for every j ∈ J ,
– I(aj) = Aj ⊆ D and I(oj) = Oj ⊆ D for every j ∈ J .

Two major algebraic operations for formal contexts are upper and lower
derivations. These operations are used in the definition of a notion of a formal
concept, its extent and intent.

Definition 11. Let (O,A, B) be a formal context.

– For every set of objects X ⊆ O its upper derivation X↑ is the following set
of attributes {t ∈ A : for every s ∈ O, if s ∈ X then (s, t) ∈ B}, i.e. the
collection of all attributes that all objects in X have simultaneously.

– For every set of attributes Y ⊆ A its lower derivation Y ↓ is the following
set of objects {s ∈ O : for every t ∈ A, if t ∈ Y then (s, t) ∈ B}, i.e. the
collection of all objects that all attributes in Y have simultaneously.

6 ‘Homogeneous context’ is our own term.
7 Recall that a binary relation B is symmetric, if (x, y) ∈ B ⇔ (y, x) ∈ B for all x

and y. ‘Symmetric context’ is also our own term.
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– A formal concept is a pair (Ex, In) such that Ex ⊆ O, In ⊆ A, and Ex↑ =
In, In↓ = Ex; components Ex and In of the formal concept (Ex, In) are
called its extent and its intent respectively.

Definition 12. For every formal context K = (O,A, B)

– let FC(K) be the set of all formal concepts over K, "K be a formal concept
(O,O↑), and ⊥K be a formal concept (A↓, A);

– let 5K be the following binary relation FC(K):
(Ex′, In′) 5K (Ex′′, In′′) iff Ex′ ⊆ Ex′′ and/or8 In′′ ⊆ In′;

– let supK be the following operation on subsets of FC(K):
supK{(Exj , Inj) ∈ FC(K) : j ∈ J} = ((∪j∈JExj)↑↓ , ∩j∈JInj);

– let infK be the following operation on subsets of FC(K):
infK{(Exj , Inj) ∈ FC(K) : j ∈ J} = (∩j∈JExj , (∪j∈JInj)↓↑).

The following fact is a part of the Basic Theorem on Concept Lattices [4]
(Theorem 3).

Fact 1 For any formal context K an algebraic system (FC(K),5K ,"K ,⊥K ,
supK , infK) is a complete lattice.

The definition below makes sense due to the above theorem.

Definition 13. For every formal context K let the concept lattice CL(K) be a
complete lattice (FC(K),5K ,"K ,⊥K , supK , infK).

The next fact is a corollary of the Basic Theorem on Concept Lattices.

Fact 2 Every complete lattice is isomorphic to some concept lattice.

For example, for any set D the complete lattice P (D) = (2D, ∅,⊆, D,∪,∩) is
isomorphic to the concept lattice of a homogeneous context K '=

D = (D,D, .=). A
particular isomorphism is a function ι : 2D → FC(K '=

D) that maps every subset
S ⊆ D to a formal concept (S, S). Let us remark that for every S ⊆ D, ι(S) =
(S, S), i.e. permutation of ι(S). – Let us refer this observation by complement
property of the powerset concept lattice.

4 Towards Description Logics on Concept Lattices

One can observe that ‘concepts’ in Description Logic and in Formal Concept
Analysis are of different nature. The former are just subsets of domains in ter-
minological interpretations, the later are compatible pairs of object and attribute
sets in formal contexts.

We see two opportunities to combine these two formalizations of ‘concepts’.
The first opportunity is ‘integration’ of basic constructions of Formal Concept
Analysis to a framework of Description Logic. The second opportunity is to
‘interpret’ concept terms by formal concepts.
8 These two conditions are equivalent each other.
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The first opportunity has been examined in a workshop paper [11]. But there
was criticism after publication of [11], that the paper has adopted a pure set-
theoretic approach to concepts. As a consequence of this, a lattice-theoretic
structure (that is very special advantage of Formal Concept Analysis) has been
lost. Hence it is important to investigate the second opportunity of combination
of FCA and DL and develop (in a compatible manner) a description logic directly
on concept lattices. Below we present our proposal of a particular variant of
description logic on concept lattices.

Syntax of description logics on concept lattices is the same as in Definition 1.
Semantics of description logics on concept lattices comes from lattice-theoretic
characterization of semantics of ‘positive’ concept constructs that is given in
Proposition 1 and the complement property of the powerset concept lattice. Con-
ceptual interpretation is a formal context provided by an interpretation function.

Definition 14. Conceptual interpretation is a four-tuple (O,A, B, I) where (O,
A, B) is a context, and I is an interpretation function. This function maps object
symbols to elements of O, attribute symbols to elements of A, concept symbols
to formal concepts in FC(O,A, B), role symbols to binary relations on O ∪ A:
I = IOS ∪ IAS ∪ ICS ∪ IRS, where IOS : OS → O, IAS : AS → A, ICS : CS →
CL(O,A, B), and IRS : RS → 2(O×O)∪(A×A). The unique name assumption
holds for this function: I(o′) .= I(o′′) and I(a′) .= I(a′′) for different object and
attribute symbols o′, o′′, a′, and a′′. A conceptual interpretation (O,A, B, I) is
said to be homogeneous (symmetric), if (O,A, B) is a homogeneous (symmetric
respectively) context.

Definition 15. Semantics of any description logic on concept lattices is de-
fined by means of conceptual interpretations. Let (O,A, B, I) be a conceptual
interpretation, K be a formal context (O,A, B), and CL(K) be a concept lat-
tice (FC(K),5K ,"K , ⊥K , supK , infK). The interpretation function I can be
extended to all role terms in a terminological interpretation ((O ∪ A), I) in the
standard manner in lines with the definition 3 so that I(R) is a binary relation
on (O∪A) for every role term R. The interpretation function I can be extended
to all concept terms as follows.

– I(") = supK FC(K) and I(⊥) = infK FC(K);
– I(X $ Y ) = supK(I(X), I(Y )), and I(X % Y ) = infK(I(X), I(Y ));
– Let K be a symmetric context and I(X) = (Ex, In) ∈ CL(K).

Then I(¬X) = (In,Ex).
– Let I(X) = (Ex′, In′) ∈ CL(K). Then

• I(∀R. X) = supK{(Ex, In) ∈ CL(K) :
∀o ∈ Ex ∀a ∈ In ∀o′ ∈ O ∃a′ ∈ A

((o, o′) ∈ I(R) ⇒ o′ ∈ Ex′, (a, a′) ∈ I(R), and a′ ∈ In′)},
• I(∃R. X) = supK{(Ex, In) ∈ CL(K) :
∀o ∈ Ex ∀a ∈ In ∃o′ ∈ O ∀a′ ∈ A

((a, a′) ∈ I(R) ⇒ (o, o′) ∈ I(R), o′ ∈ Ex′, and a′ ∈ In′)}.
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Proposition 2.

1. For any conceptual interpretation (O,A, B, I), for every positive concept
term X, semantics I(X) is an element of FC(O,A, B).

2. For any symmetric conceptual interpretation (D,D, B, I), for every concept
term X, semantics I(X) is an element of FC(D,D, B).

Proof. By induction on structure of a (positive) concept. It is trivial in all cases
but exploits (a) completeness of concept lattices (i.e. sup always exists), and
(b) that permutation of extent and intent of a formal concept is also a formal
context in every symmetric context. !

It follows from the above proposition that in general the positive fragment
ALC+ is ‘the smallest’ description logic on concept lattices, while ALC is ‘the
smallest’ description logic on symmetric concept lattices.

5 ALC on a powerset concept lattice

Let (D, I) be a terminological interpretation. We remarked in section 3 (after
fact 2), that the powerset lattice P (D) = (2D,⊆, ∅, D,∪,∩) is isomorphic to the
concept lattice of a homogeneous formal context K '=

D = (D,D, .=). A particular
isomorphism is a function ι : 2D → FC(K '=

D) that maps every subset S ⊆ D
to a formal concept (S, S). This isomorphism defines conceptual interpretation
(D,D, .=, (ιI)) where (ιI) equals to I on all object symbols and on all role sym-
bols, but on concept symbols it is ‘induced’ by ι: (ιI)(p) = (I(p), I(p)) for
every concept symbol p. The following proposition demonstrates that semantics
of ALC in terminological interpretation (D, I) and in conceptual interpretation
CL(D,D, .=, (ιI)) are closely connected.

Proposition 3. For every ALC concept term Z and every terminological inter-
pretation (D, I), the following equality holds: (ιI)(Z) = ι(I(Z)).

Proof. Since ι(I(Z)) = (I(Z), I(Z)), hence we have to prove that (ιI)(Z) =
(I(Z), I(Z)). The proof proceeds by induction on structure of a concept term.

Basis of induction: Z is ⊥, ", or a concept symbol. For concept symbols proof
follows from the definition of (ιI). For ⊥ and " proofs are similar to each other,
so let us present just one of them: (ιI)(") = supK !=

D
{(S, S) : S ⊆ D} = (D, ∅).

Induction hypothesis: let us assume that (ιI)(Z) = (I(Z), I(Z)) for every
positive concept term that has at most k ≥ 0 concept constructs ¬, $, %, ∀, ∃.

Induction step: Z is (1) (¬X), (2) (X $ Y ), (3) (X % Y ), (4) (∀R. X), or (5)
(∃R. X), where concept terms X and Y contain at most k constructs ¬, $, %,
∀, and ∃. Let us remark that proofs for cases (2) and (3) are very similar to each
other, as well as proofs for cases (4) and (5). So we present proofs for cases (1),
(2) and (5) only.

Case Z ≡ (¬X): Let (ιI)(X) = (Ex, In). Then (ιI)(Z) = (In,Ex). By
induction hypothesis, In = I(X) and Ex = I(X). But I(Z) = I(X) and I(Z) =
I(X) = I(X). Hence (ιI)(Z) = (In, Ex) = (I(X), I(X)) = (I(Z), I(Z).
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Case Z ≡ (X $ Y ): (ιI)(Z) = supK !=
D

((ιI)(X) , (ιI)(Y )) = (by induction

hypothesis) = supK !=
D

((I(X), I(X) ) , (I(Y ), I(Y ) )) = ((I(X)∪I(Y )) , (I(X)∩
I(Y ) )) = ((I(X) ∪ I(Y )) , (I(X) ∪ I(Y ) )) = (I(Z), I(Z)).

Case Z ≡ (∃R. X): Let (ιI)(X) = (Ex′, In′). Then (ιI)(Z) =
= supK !=

D
{(Ex, In) ∈ CL(K '=

D) : ∀o ∈ Ex ∀a ∈ In ∃o′ ∈ D ∀a′ ∈ D

((a, a′) ∈ I(R) ⇒ (o, o′) ∈ I(R), o′ ∈ Ex′, and a′ ∈ In′)} =
(by induction hypothesis and

the complement property of the powerset concept lattice)
= supK !=

D
{(S, S) : S ⊆ D and ∀o ∈ S ∀a ∈ S ∃o′ ∈ D ∀a′ ∈ D

((a, a′) ∈ I(R) ⇒ (o, o′) ∈ I(R), o′ ∈ I(X), and a′ ∈ I(X) )}.
Let us denote the righthandside set of formal concepts by SX . Since I(∃R.X) =
I(∀R.(¬X)), then (I(∃R.X), I(∃R.X)) = (I(∃R.X), I(∀R.(¬X))) ∈ SX . Hence
(ιI)(Z) 8K !=

D
(I(∃R.X), I(∀R.(¬X))). At the same time it follows from propo-

sition 1, that I(∃R.X) is the greatest subset S of D such that ∀o ∈ S ∃o′ ∈
D ((o, o′) ∈ I(R) & o′ ∈ I(X)). Hence (ιI)(Z) = (I(∃R.X), I(∃R.X)) =
(I(Z), I(Z)). !

Informally speaking, the above proposition states that semantics of ALC on
concept lattices that is defined in Definition 15 is compatible with the standard
Kripke-like set-theoretic semantics of ALC that is given in Definition 3. Due to
this interpretation of the proposition, we would like to refer it as the compati-
bility property, and consider as a strong evidence for a naturalness of Definition
15.

Definition 16. A concept term X is said to be a tautology, if I(X) = D for
every terminological interpretation (D, I). A concept term X is said to be a
conceptual tautology, if I(X) = "(O,A,B) for every conceptual interpretation
(O,A, B, I). Conceptual tautology problem for a particular description logic is
an algorithmic problem to decide for an input concept term (in the given logic)
whether it is a conceptual tautology.

It follows from the compatibility property that every conceptual tautology is a
tautology. But we do not know yet whether the inverse implication holds. We
also do not know whether the conceptual tautology problem for ALC or the
positive fragment of ALC is decidable.

6 Conclusion

The present paper presents a variant of a description logic on concept lattices.
It expands a research on an emulation-based combination of Description Logic
and Formal Concept Analysis that has been started by a workshop paper [11].
The cited paper has discussed how to emulate basic constructs of Formal Con-
cept Analysis in terms of Description Logic. It has been demonstrated in [11]
that FCA can be ‘integrated’ by Description Logic at least from a viewpoint of
‘abstract’ expressive power. More formally it can be explained as follows.
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Assume that S is a finite collection of set-theoretic (in)equalities written in
terms of uninterpreted symbols for individual objects and attributes, for sets of
objects and attributes, for formal contexts and concepts, with aid of set-theoretic
operations, upper and lower derivative, intent and extent operations. Then S can
be translated to a description logic knowledge base KBase(S) so that KBase(S)
is satisfiable iff there S is ‘consistent’, i.e. there exists a formal context that
realizes all (in)equalities of S simultaneously. Since the satisfiability problem is
decidable for many description logics, the realization problem for collections of
(in)equalities of this kind can be solved (as a rule) automatically (i.e. by some
algorithm).

The present paper defines a particular variant of description logic on concept
lattices that emulates major Description Logic constructs in terms of operations
on concept lattices. The paper demonstrates that one of the basic description log-
ics ALC with the standard set-theoretic semantics can be naturally interpreted
on powerset concept lattices. Hence the proposed approach to Description Logic
on concept lattices can be considered compatible with the standard Kripke se-
mantics.

Application of ALC/FCA and FC-ALC to the knowledge representation and
processing will be illustrated with examples and discussed in the full version of
publication. Algorithmic and reasoning issues9 for description logics extended
by upper and lower derivatives, for ALC on concept lattices, interpretation of
ALC on concept lattices in terms of standard description logics are topics for
further research.

Acknowledgement. We would like to thank Prof. Karl Erich Wolff, Prof.
Bernhard Ganter, and Prof. Franz Baader for discussions at early stage of this
research. We are especially obliged to anonymous review of our paper who found
out a mistake in Proposition 2, and suggested a correction. We follow this cor-
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Abstract. Concept lattices are the central notion of formal concept
analysis. They are applied in many different areas such as data min-
ing, knowledge representation or ontology engineering and are subject
to ongoing research. In order to understand better the nature of con-
cept lattices it is useful to consider their links to other mathematical
notions. For example, a concept lattice can be viewed as a special kind
of poset or closure system. In this paper we consider another view of
concept lattices by establishing a link to propositional formulas and a
special closure property of relations. The main result is an elementary
derivation of a Horn formula that uniquely represents a concept lattice
based on prime implicates. Using the derived Horn representation, we
reestablish the #P-completeness of the concept counting problem and
find that the Horn representation is closely related to the stem base of a
concept lattice.

1 Introduction

Concept lattices structure the formal concepts of their corresponding formal
contexts in a hierarchical manner. They form a central element of formal concept
analysis (FCA) and are used in many applications to structure object-attribute
data in an informative way. To fully determine a concept lattice, it suffices to
know one of the closure systems of concept intents or concept extents (as a
formal concept is determined uniquely by its intent or extent, respectively). Our
goal in this paper is to derive a conjunctive normal form (CNF) Horn formula
which is satisfied exactly by the concept intents of a given context.
Relationships between FCA and Horn formulas have been pointed out by several
other authors during the recent years. In [3] Horn functions of general closure
systems are constructed (for example the closure systems of concept intents) in
order to achieve a translation of certain notions of FCA (in case of [3] that of
domination) into a logical framework. For our representation of concept lattices
by Horn formulas we decided on different initial conditions and definitions so that
the Horn formulas produced by our approach differ from those of [3] in decisive
aspects. In [2] the authors show that if a formal context is viewed as a theory in
the sense of propositional logic, the attribute implications holding in the context
are equivalent to the empirical Horn approximation or Horn least upper bound
(as defined in [18]) of that theory. Equivalence here means that the attribute
sets respecting all the attribute implications are in one-to-one correspondence

CLA 2007 177 Montpellier, France



with the tuples of the resulting Horn theory. Thus a link between FCA and
knowledge compilation is established. The authors stop at this point, but their
result eventually entails an equivalence of concept lattices and certain Horn
formulas. In contrast to [2] where the authors introduce an artificial attribute
that is satisfied by no object, we can do without such extensions and provide a
direct translation of FCA notions into propositional logic.
The paper is organized as follows: In Section 2 we recall the necessary basic
definitions and facts from FCA and propositional logic. The derivation of the
Horn formula is accomplished in Section 3 and we discuss the relationship of our
result to attribute implications and the counting of concepts in Section 4. We
close the paper with a summary in Section 5.

2 Basic Definitions and Facts

We now give the basic definitions and facts that we use from formal concept
analysis and propositional logic. The notions from propositional logic are well
known and only repeated to make the paper self contained. Concerning the FCA
terminology we follow the notations from [5].

2.1 Formal Concept Analysis

Let G be a set of objects, M a set of attributes and I ⊆ G ×M an incidence
relation between G and M . For g ∈ G and m ∈ M , gIm is read as “object g
has the attribute m” or dually “attribute m is satisfied by object g”. The triple
K = (G,M, I) is called a (formal) context. We consider the usual derivation
operators: For A ⊆ G and B ⊆ M

A′ = {m ∈ M | gIm ∀g ∈ A}
B′ = {g ∈ G | gIm ∀m ∈ B}.

A set B ⊆ M is an intent of (G,M, I) if and only if B = B′′. M is always an
intent of (G,M, I) as all objects in the empty set trivially have all attributes.
Also the set {g}′ is an intent for each object g and is called object intent of
g ∈ G. It is well known that every intent of (G,M, I) (except for M) is an in-
tersection of object intents. This fact forms the basis for our derivation of the
Horn representation of a concept lattice.

2.2 Propositional Logic

We first introduce the syntactical objects of propositional logic as far as needed
for the later discussion and then define their semantics. A lower case letter
or an indexed lower case letter, x or xi, respectively, is a variable. We will
only use variables that can take values in {0,1} and call these propositional
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variables. Furthermore, we use the symbols ∨,∧, and ¯ as well as ( and ). If x is
a propositional variable, then x̄ is called its negation. A literal is a propositional
variable (called positive literal) or its negation (called negative literal). A clause
is a string of the form (x1 ∨ x2 ∨ · · · ∨ xn), where each xi, i ∈ {1, . . . , n} is a
literal. A clause is Horn if it contains at most one positive literal. It is called
definite Horn if it contains exactly one positive literal. We will denote the set of
literals of a clause C by lit(C). A formula in conjunctive normal form (CNF) is
a string of the form

C1 ∧ C2 ∧ · · · ∧ Cn,

where each Ci, i ∈ {1, . . . , n} is a clause. If every clause in a CNF formula F is
Horn, F is called a Horn formula.
Let X = {x1, x2, . . . , xn} be a set of n propositional variables with a fixed num-
bering and LX = {x, x̄ : x ∈ X} be the set of literals over X. An assignment is
a mapping A : X −→ {0, 1}. An assignment A can be extended to an assignment
Ā : LX −→ {0, 1} by setting

Ā(x) =
{

A(x) : x is a positive literal
1−A(x) : x is a negative literal. (1)

By Equation (1), an assignment Ā on the set of literals is determined uniquely
by an assignment A on the set of variables. Therefore we will represent an
assignment Ā : LX −→ {0, 1} by the underlying assignment A : X −→ {0, 1}.
With this convention we will use the notation A(x) for x ∈ LX (instead of Ā(x))
throughout the remainder of this paper. An assignment A satisfies a clause C
over X if there is at least one literal x in C with A(x) = 1. We then call A a model
of C and write A |= C. An assignment A is called a model of a CNF formula F
over X if A satisfies every clause in F . In this case we write A |= F . The set of
all models of a formula F is denoted by Mod(F ). We write A )|= F if A is not
a model of F . An assignment A can be represented by a tuple t ∈ {0, 1}n by
setting ti = A(xi) for each variable xi. This representation is unique and we will
identify assignments and their representing tuples in the following. In particular,
we will write t(x) instead of A(x) and t |= F instead of A |= F . Throughout
the remainder of the paper we will refer to a set of tuples R ⊆ {0, 1}n as an
n-ary relation (or simply relation if the arity is not of interest). When we refer
to the conjunction of tuples we mean the entry-wise application of the logical
∧-operation, for example

(1, 0, 0, 1) ∧ (0, 1, 0, 1) = (0, 0, 0, 1).

The essential notion needed in the following is that of a prime implicate. We
will use prime implicates to construct a CNF formula that is equivalent to a
given relation.
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Definition prime implicate: Let R be a relation. A clause C is called implicate
of R if R ⊆ Mod(C). C is called prime implicate if no clause D with lit(D) ⊂
lit(C) is an implicate of R.

It is a well known fact that the CNF formula F that consists of the conjunction
of all prime implicates of a relation R is equivalent to R in the following sense:

t ∈ R ⇐⇒ t |= F ( that is R = Mod(F ) ) (2)

3 Derivation of the Horn Representation

With the definitions from Section 2 we are now ready to derive the Horn repre-
sentation of a concept lattice. We first note a special property of Horn clauses.

Lemma 1: Let t(i), i ∈ {1, . . . , k} be k n-ary tuples and C a Horn clause in
the propositional variables x1, x2, . . . , xn. It holds that

∀i ∈ {1, . . . , k} t(i) ∈ Mod(C) =⇒
k∧

i=1

t(i) ∈ Mod(C).

This is a well known fact which follows for example from [1], Lemma 3. A rela-
tion R is called ∧-closed if with every two tuples t(1), t(2) ∈ R also t = t(1) ∧ t(2)

is an element of R. We continue with an important and well known fact about
∧-closed relations which dates back to [10, 15] and can also be found in [9], [11],
and [13] in a more general form than the one we prove. Our formulation however
is sufficient and more appropriate for our considerations.

Proposition 1: R is ∧-closed if and only if all prime implicates of R are Horn
clauses.

Proof: Let R be ∧-closed and C an arbitrary prime implicate of R. Assume
that C contains at least two positive literals y and z. If we denote the disjunc-
tion of the remaining literals by D we have C = (y ∨ z ∨ D). By definition
R ⊆ Mod(C). If every tuple in R was a model of D, then D would be an im-
plicate of R. This cannot happen because C is a prime implicate. Therefore R
contains a nonempty set of tuples T with T∩Mod(D) = ∅. To fulfill the condition
t |= C for a t ∈ T , either t(y) = 1 or t(z) = 1 must hold. If we had t(y) = 1 (or
analogously t(z) = 1) for all t ∈ T , then (y∨D) (or (z ∨D), respectively) would
be an implicate of R and C could not be a prime implicate. This implies the
existence of tuples t(y) with t(y)(y) = 1 and t(y)(z) = 0 and t(z) with t(z)(y) = 0
and t(z)(z) = 1 in T . Let t∗ = t(y) ∧ t(z). For t∗ it holds that

t∗ )|= D

t∗(y) = 0
t∗(z) = 0
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and therefore t∗ /∈ Mod(C). This means that t∗ /∈ R, which is a contradiction to
the precondition that R is ∧-closed.
Now let R be a relation whose prime implicates Cj , j ∈ {1, . . . , k} are all Horn.
Consider two arbitrary tuples t(1) and t(2) in R. Let t∗ = t(1) ∧ t(2). According
to Lemma 1 t(1) ∈ Mod(Cj) and t(2) ∈ Mod(Cj) implies t∗ ∈ Mod(Cj) for all
j ∈ {1, . . . , k}. From R = Mod(

∧k
j=1 Cj) =

⋂k
j=1 Mod(Cj) it follows that t∗ ∈ R

which proves the ∧-closedness of R.

For the purpose of our derivation of a Horn representation of a concept lat-
tice we now provide an obvious translation of a formal context K = (G,M, I)
into a |M |-ary relation. Let m1,m2, . . . , m|M | be the attributes in the cross ta-
ble of K. We associate with every attribute mi a propositional variable xi and
replace the crosses in the table by ones and the empty cells by zeroes. The row
corresponding to an object g ∈ G now represents a tuple from {0, 1}|M | denoted
by tg. Finally, the tuple tM which contains only ones is added to the table. The
relation gained from a context K by this translation is denoted by RK . Table 1
illustrates the translation by an example.

K m1 m2 m3 m4 RK x1 x2 x3 x4

a X X ta 0 1 1 0
b X tb 0 0 0 1
c X X tc 0 1 0 1
d X X X td 1 1 0 1

tM 1 1 1 1

Table 1. A formal context K and its corresponding relation RK

Remark: By adding tM to RK , we ensure that we arrive at a definite Horn
representation (called pure Horn representation in [3]), that is each clause in
the representation contains exactly one positive literal. This is what makes our
approach different from [3] and turns out to yield a very nice correspondence to
attribute implications as described in Section 5.

The result of our translation procedure is a |M |-ary relation RK which con-
tains one tuple for each object intent as well as the tuple tM that corresponds
to the intent consisting of all attributes. Recall that all other concept intents
are intersections of object intents. The intersection of object intents translates
exactly to the conjunction of their corresponding tuples. Consider for example
the objects a and c from Table 1. Their object intents are {a}′ = {m2,m3}
and {c}′ = {m2,m4}. The concept intent resulting from their intersection cor-
responds to the tuple t = ta ∧ tc :

{a}′ ∩ {c}′ = {m2,m3} ∩ {m2,m4} = {m2}
ta ∧ tc = (0, 1, 1, 0) ∧ (0, 1, 0, 1) = (0, 1, 0, 0)
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With this procedure we can inductively construct to each concept intent a cor-
responding tuple by simply computing the conjunction of the tuples belonging
to the involved object intents. We add all thus constructed tuples to RK and
call the resulting relation R̂K . Obviously there is a bijection between concept in-
tents of K = (G,M, I) and tuples in R̂K . Also, because we collected all possible
conjunctions of tuples from RK in R̂K , R̂K is ∧-closed. In fact it is exactly the
∧-closure of RK . By Proposition 1, R̂K can be represented by the Horn formula
FK consisting of its prime implicates. This formula is the Horn representation
of the concept lattice we wanted to derive.

Definition Horn representation: Let C1, C2, . . . , Ck be the prime implicates
of R̂K . The formula

FK = C1 ∧ C2 ∧ · · · ∧ Ck

is called Horn representation of the concept lattice defined by K = (G,M, I).

Note that we use all prime implicates of R̂K in the above definition. In general,
FK can contain redundant prime implicates. If these are removed, the obtained
formula is still equivalent to R̂K in the sense of (2). We use all prime implicates
in our definition of a Horn representation for reasons of uniqueness. The Horn
representation of the context from Table 1 for example is

FK = (x̄1 ∨ x2) ∧ (x̄1 ∨ x4) ∧ (x̄3 ∨ x2) ∧ (x̄3 ∨ x̄4 ∨ x1).

The tuples of R̂K correspond to the concept intents of K bijectively. The hier-
archical order of the concept intents is given by B1 ≤ B2 ⇐⇒ B1 ⊇ B2 for two
concept intents B1 and B2 (see [5]). It corresponds to the following order on R̂K :

t(1) ≤ t(2) ⇐⇒ t(1) ∧ t(2) = t(2)

The concept extent corresponding to the intent represented by the tuple t ∈ R̂K

is denoted by t′ and can be determined by

t′ = {g ∈ G | tg ∧ t = t}.

In theory, FK can be computed from RK directly, that is one does not need to
determine the (possibly exponentially sized) ∧-closure of RK .

Proposition 2: The prime implicates of R̂K are exactly the Horn prime impli-
cates of RK .

Proof: Let C be a Horn prime implicate of RK . Because of R ⊆ Mod(C) it
follows from Lemma 1 that R̂K ⊆ Mod(C). Therefore C is an implicate of R̂K .
C is also a prime implicate of R̂K , because for all D with lit(D) ⊂ lit(C) there
is a tuple t ∈ RK (and in particular t ∈ R̂K) satisfying t )|= D.
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Let now conversely C be a prime implicate of R̂K . According to Proposition 1
C is Horn. Because of R̂K ⊇ RK , C is an implicate of RK . Assume that C is no
prime implicate of RK . Then there is an implicate D of RK with lit(D) ⊂ lit(C).
C is a prime implicate of R̂K and therefore there is a tuple t ∈ R̂K that is no
model for D. This tuple is a conjunction of tuples t(i) ∈ RK and as C is Horn so
is D. Lemma 1 implies the existence of a tuple t(i

∗) ∈ RK with t(i
∗) /∈ Mod(D).

But this is a contradiction to our presupposition of D being an implicate of RK ,
which completes the proof.

Proposition 2 shows that it suffices to compute the prime implicates of RK ,
select those that are Horn, and their conjunction is exactly the Horn representa-
tion FK . However, there are several complexity results from propositional logic
that imply limitations for the practical implementation of such a procedure.
From a result shown in [12] it follows that there exist contexts K = (G,M, I)
containing only join-irreducible objects (called characteristic models in [12]) so
that the shortest Horn formula equivalent to R̂K is exponential in |G|. Thus a
method running in input polynomial time that computes the Horn representa-
tion of any concept lattice from its context does not exist. Another result in
[8] states that a Horn formula that is equivalent to an ∧-closed n-ary relation
R can be found in O(|R|n (|R| + n)) time. Moreover, the constructed formula
contains no more than |R|n clauses. This means that we can obtain a Horn for-
mula that is equivalent to FK in O(|R̂K | |M | (|R̂K | + |M |)) time. However, the
input to this algorithm would be the relation R̂K which may be exponentially
larger than RK . Thus, the algorithm from [8] cannot be used to generate a Horn
formula representing the concept lattice of a given context in time polynomial
in the size of the context. As in general large relations can be equivalent to
short Horn formulas, the time complexity of such an approach would not even
be polynomial relative to the input and output size. In [13] it is proved that
the computation of a Horn formula that is equivalent to R̂K and takes RK as
input is at least as difficult as the generation of all the transversals of a hyper-
graph. To our knowledge the complexity of this hypergraph problem is still open.

4 Discussion

In this section we discuss the relationship of our result to certain areas and
problems of Formal Concept Analysis.

4.1 Counting of Concepts

In the previous section we derived a Horn formula FK that represents the intent
set of a formal context K = (G,M, I) and therefore is also a representation of
its concept lattice. If we count the models of FK we actually count the concepts
of K = (G,M, I) and our result thus offers a possibility to determine the size
of a concept lattice. However, in [4] a theorem is proven which implies that the
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counting of the models of a definite Horn formula is #P -complete in general,
that is for a definite Horn formula there is a nondeterministic Turing machine
whose number of accepting computation paths equals the number of models of
that formula and that runs in polynomial time (see for example [16] for a rigorous
definition of the complexity class #P ). This is in accordance with [14], where
the #P -completeness of the determination of the size of a concept lattice is also
proved. The fact that the counting of concepts is #P -complete also follows easily
from the #P -completeness of the counting of ideals of a poset which was proved
in [17]. If (P,≤) is an arbitrary poset, then the formal context (P, P, )≤) contains
as many concepts as there are ideals in (P,≤). This also answers the question
raised in [14] whether the #P -completeness also holds for distributive concept
lattices because the concept lattice of (P, P, )≤) is always distributive.

4.2 Attribute Implications

We defined RK in such a way that tM ∈ RK . This causes all clauses of FK

to contain exactly one positive literal and they can be equivalently written as
implications:

(x̄1 ∨ x̄2 ∨ · · · ∨ x̄k ∨ y) ⇐⇒ x1 ∧ x2 ∧ · · · ∧ xk −→ y

If we write instead of the propositional variable xi the attribute mi which it
represents, we can translate our Horn representation to a set of attribute impli-
cations. We recall some basic definitions from FCA concerning attribute impli-
cations (see [5]).

Definition attribute implications: The implication X −→ Y is equivalent to
Y ⊆ X ′′. A set T ⊆ M is said to respect an implication X −→ Y if X )⊆ T or
Y ⊆ T . A set of attributes T respects a set of implications L if it respects every
single implication in L.
An implication X −→ Y follows from an implication set L if every set T ⊆ M
that respects L also respects X −→ Y . An implication X −→ Y holds in a
context (G,M, I) if every concept intent of (G,M, I) respects the implication
X −→ Y .

Because all concept intents of K = (G,M, I) respect all the implications ob-
tained from the prime implicates of R̂K by definition, the set of all these impli-
cations is complete for K, that is all attribute implications holding in K follow
from it. Merging implications with the same premise which can generally occur
in FK , we obtain the set H of attribute implications. We illustrate this procedure
using the Horn representation of the context K from Table 1:

Horn Representation Implications Merged Implications

FK = x̄1 ∨ x2 ∧ {m1 −→ m2 H = {m1 −→ m2,m4

x̄1 ∨ x4 ∧ m1 −→ m4 m3 −→ m2

x̄3 ∨ x2 ∧ m3 −→ m2 m3,m4 −→ m1}
x̄3 ∨ x̄4 ∨ x1 m3,m4 −→ m1}
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Unfortunately H can contain redundant implications because the set of prime
implicates it is based on can be redundant. Recall that an implication base of
K is a set of implications that is complete for K and minimal in the sense that
it does not contain redundant implications. Therefore, if the redundant impli-
cations are removed from H an implication base of K is the result. In FCA the
usual implication base of interest is the stem base or Duquenne-Guigues base
first described in [6]. Its definition is based on the notion of a pseudo intent (see
[5]).

Definition pseudo intent: A subset P ⊆ M of attributes is called pseudo
intent of a context (G, M, I) if

(1) P )= P ′′

(2) ∀Q ⊂ P, Q pseudo intent =⇒ Q′′ ⊂ P .

In the above definition M is considered to be finite. The stem base is then
defined as:

Definition stem base: The set of implications

L = {P −→ P ′′ | P is a pseudo intent of (G,M, I)}

is an implication base of the context (G,M, I) and is called stem base of the
context.

When comparing H to the stem base L of K = (G,M, I), we can see imme-
diately that for each premise P of the stem base there must be a premise X
of H satisfying X ⊆ P . This is because the premises in H correspond to prime
implicates and every implication holding in K = (G,M, I) is an implicate of R̂K

and thus must contain a prime implicate. We can see this already in our simple
example:

H = {m1 −→ m2,m4 L = {m1 −→ m2, m4

m3 −→ m2 m3 −→ m2

m3,m4 −→ m1} m2,m3,m4 −→ m1}

The premise of the last implication in L is a superset of the premise of the last
implication in H. We have already seen that each pseudo intent contains the
premise of an implication in H. Moreover, we have the following conjecture.

Conjecture: Each premise in H is contained in a pseudo intent.

We believe that this conjecture is true but could not find a rigorous proof for
this claim up to now. However, Proposition 3 shows that there is a subset of
premises in H each of which is not only contained in a pseudo intent but is a
pseudo intent itself.
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Proposition 3: Let X −→ Y be an implication in H. If X ∪ Y is closed (that
is (X ∪ Y )′′ = X ∪ Y ) then X is a pseudo intent.

Proof : Let R ⊂ X. Because X −→ y is a prime implicate for all y ∈ Y it follows
that R )−→ y and thus R′′ ∩ Y = ∅. Because X −→ Y is equivalent to Y ⊆ X ′′

we obtain X∪Y ⊆ X ′′. On the other hand we have X ′′ ⊆ (X∪Y )′′ = X∪Y and
thus X ′′ = X ∪ Y which implies R′′ ⊂ X. Therefore X satisfies the definition of
a pseudo intent.

For the case when X ∪ Y is not closed we have not been able to prove that
X is contained in a pseudo intent nor could we construct a counterexample.
Thus, the question whether our conjecture is true or not is currently open.
We close this section with a remark about the minimality of the Duquenne-
Guigues base. The comparison of H and L from our example context shows that
both contain the same number of implications but the last implication in H has
a shorter premise. In general, the stem base L allows for a more compact repre-
sentation (that is one that uses less attributes), which can be computed from L
in the following way: First L is translated into a Horn formula FL (for example
by using the translation of FK to H demonstrated above backwards). Then for
each clause it is checked whether it contains a subclause that is an implicate of
FL. If so, the clause is replaced by that subclause. When iterated, this procedure
yields a formula consisting of prime implicates that is equivalent to L and the
translation back into a set of implications is the desired compact representation
of L. The basics of such a method that requires at most quadratic time in the
length of the input formula FL can be found for example in [7].

5 Summary

We suggested a representation of a concept lattice by a special Horn formula.
This formula was constructed as a conjunction of the prime implicates of a
relation RK that was derived from the formal context K = (G,M, I). Theoret-
ically, the Horn representation can be computed from the context directly but
several results from propositional logic imply limitations for the practical im-
plementation. We believe that despite of this drawback our result is interesting
insofar as it reveals a close relationship between FCA and propositional logic
that can be exploited to tackle research questions in both scientific areas. By
using the Horn representation we reproduced the #P -completeness of the con-
cept counting problem. Also we pointed to a close relationship between the Horn
representation and the stem base of a formal context.
In our future research we hope to find more links between FCA and propositional
logic so that one can use the knowledge and formalism in the one area to solve
problems and gain insights in the other one.
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Abstract. Boolean factor analysis aims at decomposing an objects ×
attributes Boolean matrix I into a Boolean product of an objects × fac-
tors Boolean matrix A and a factors × attributes Boolean matrix B, with
the number of factors as small as possible. This paper is a continuation
of our previous paper where we proved that formal concepts of I are
optimal factors for Boolean factor analysis. In particular, we concentrate
on the implications of the proof. Namely, on the fact that finding factors
can be reduced to the set covering problem for which there exist efficient
approximation algorithms. In this paper, we present the algorithm for
finding factors which results this way and present several experiments
on factorizing Boolean matrices.

1 Introduction and problem setting

The present paper concerns factor analysis of Boolean data and is a continuation
of [4]. In [4], we proved that formal concepts are optimal factors in Boolean factor
analysis and outlined some implications of the insight provided by the proof. The
aim of this paper is to elaborate on one of those implications. Namely, on the fact
that the problem of finding factors in Boolean factor analysis can be reduced to
the well-known set covering problem. For the set covering problem, there exists
an efficient approximation algorithm. This algorithm can thus be used for finding
factors in Boolean factor analysis. Moreover, the algorithm can be sped up due
to some specific features of Boolean factor analysis. In this paper, we present
the thus resulting algorithm for finding factors in Boolean factor analysis. The
main focus of the paper is on presenting examples on on Boolean factor analysis
and experiments with the algorithm.

The idea of factor analysis is rooted in Spearman’s monumental development
of a psychological theory involving a single general factor and a number of spe-
cific factors [18]. Today, factor analysis is a well-established branch of statistical
! Supported by grant No. 1ET101370417 of GA AV ČR, by grant No. 201/05/0079

of the Czech Science Foundation, and by institutional support, research plan MSM
6198959214.
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data analysis with applications in numerous fields and with support in several
software packages, see e.g. [1, 7, 10]. According to Harman [10, p. 4], “The prin-
cipal concern of factor analysis is the resolution of a set of variables linearly in
terms of (usually) a small number of categories or ‘factors’. . . . A satisfactory so-
lution will yield factors which convey all the essential information of the original
set of variables. Thus, the chief aim is to attain scientific parsimony or economy
of description.”

The problem of factor analysis can be described as follows. Suppose we are
given an n × m matrix I describing relationships between n objects and m
variables. Each entry Iij of the objects×variables matrix I contains the value of
j-th variable on i-th object. The aim is to find k new variables, called factors, an
n×k matrix A describing a relationship between objects and factors, and a k×m
matrix B describing a relationship between factors and original variables, in such
a way that I can be obtained from A and B. In case of linear factor analysis,
I is required to be (approximately) equal to the usual matrix product A ◦ B of
A and B. In addition, one requires that the number k of factors be less than
the number m of original variables, attaining thus the dimension reduction of
the space in which the objects are described. Every A’s entry Ail, called factor
loading, represents a value of l-th factor on i-th object; every B’s entry Blj ,
called factor score, represents the manifestation of j-th variable on l-th factor.

Several extensions of linear factor analysis have been proposed to deal with
data for which linear resolution of the original variables in terms of factors is
not appropriate, see e.g. [7, 10]. A particular example of such data is represented
by Boolean variables (attributes), called also binary variables (attributes), yes-
or-no variables (attributes). In this case, entries of I are 1s and 0s, i.e. Iij = 1
or Iij = 0 with 1/0 indicating that the i-th object has/does not have the j-
th variable (attribute). That is, I is a so-called Boolean matrix. For instance, a
patient (object) has or does not have headache (variable, attribute). The question
of whether the methods of factor analysis are appropriate for Boolean variables
has been discussed since 1940s, see e.g. Section 7 of [13]. It has been argued
that common methods of factor analysis, both linear and non-linear are not
appropriate to handle Boolean variables, see e.g. [13, 16, 19].

A promising way to reveal factors in Boolean data is provided by Boolean
factor analysis (BFA), see e.g. [8, 14, 17]. In BFA, a decomposition of an n×m
matrix I with Iij ∈ {0, 1} is sought into a Boolean matrix product A ◦ B of an
n× k matrix A with Ail ∈ {0, 1} and a k ×m matrix B with Blj ∈ {0, 1} with
k as small as possible. Note that a Boolean matrix product A ◦B is defined by

(A ◦B)ij =
k∨

l=1

Ajl ·Blj . (1)

where
∨

denotes maximum. Using Boolean matrices for the objects×factors and
the factors×variables relationships, and using Boolean matrix product has the
following advantage:

– One does not have to deal with the problem of rounding off real values to 0
and 1 which is the case when using common methods of factor analysis.
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– Clear interpretability of factors. Namely, with the Boolean matrix product,
I = A◦B says: “an object i has an attribute j if and only if there is a factor
l such that l applies to i and j is one of the manifestations of l”.

Several methods for BFA can be found in the literature. Perhaps the most
advanced one is based on using Hopfield-like associative neural networks, see
[8, 17]. In this approach, factors correspond to stable points (attractors) of an
associative neural network. [12] presents a different approach which is based on
using genetic algorithms for the search of factors. Yet another approach, which
served as an inspiration for our paper is presented in [11] where the authors try
to exploit methods of formal concept analysis [5, 9] for BFA.

In [4], we presented several results on factorizing a Boolean matrix I using
formal concepts associated to I. The main result says that formal concepts are
optimal factors in BFA, meaning that for every decomposition of I into A ◦ B
with k factors, i.e., A and B are n×k and k×m Boolean matrices, there exists a
decomposition of I which uses formal concepts as factors such that the number
of the formal concepts is at most k. In addition, we pointed out in [4] that the
problem of finding a smallest set of factors in BFA can be reduced to set covering
problem for which there exists an efficient approximation algorithm.

In this paper, we present the thus resulting algorithm for finding factors in
BFA. The main aim of this paper is to present examples on BFA and experiments
with the algorithm.

2 Formal concepts as optimal factors and the reduction
to set covering problem

Recall first basic notions and notation from formal concept analysis (FCA) [5,
9]. Let X = {x1, . . . , xn} and Y = {y1, . . . , ym} be sets of objects and attributes,
and I be a binary relation between X and Y . The triplet 〈X, Y, I〉 is called a
formal context. Using the well-known fact that a binary relation between X and
Y can be represented by an n × m Boolean matrix, we denote both the binary
relation and its corresponding Boolean matrix by I. That is, for the entry Iij

of (matrix) I we have Iij = 1 iff 〈xi, yj〉 belongs to (relation) I and Iij = 0 if
〈xi, yj〉 do not belong to (relation) I. A formal concept of 〈X, Y, I〉 is any pair
〈C,D〉 of sets C ⊆ X and D ⊆ Y such that C = D↓ and D = C↑ where

D↓ = {x ∈ X | for each y ∈ D : 〈x, y〉 ∈ I}
is the set of all objects sharing all attributes from D, and

C↑ = {y ∈ Y | for each x ∈ C : 〈x, y〉 ∈ I}
is the set of all attributes shared by all objects from C. The set of all formal
concepts of 〈X, Y, I〉 is denoted by B(X, Y, I). Under a natural partial order,
B(X, Y, I) happens to be a complete lattice, so-called concept lattice of 〈X, Y, I〉
[9, 20]. It is a well-known fact that formal concepts of 〈X, Y, I〉 are just maximal
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rectangles of matrix I which are full of 1s. For instance,



1 1 0 0 0
1 1 0 0 1
1 1 1 1 0
1 0 0 0 1





is a Boolean matrix representing a formal context with X = {x1, . . . , x4}, Y =
{y1, . . . , y5}, and relation I for which 〈x1, y1〉 ∈ I, 〈x1, y2〉 ∈ I, 〈x1, y3〉 '∈ I,
etc. The bold 1s form a maximal rectangle, with rows 1, 2, 3, and columns 1
and 2. Correspondingly therefore, 〈{x1, x2, x3}, {y1, y2}〉 is a formal concept in
〈X, Y, I〉. This “geometrical” way of looking at formal concepts proves to quite
useful in FCA.

Let
F = {〈A1, B1〉, . . . , 〈Ak, Bk〉} ⊆ B(X, Y, I),

i.e. F is a set of formal concepts associated to I. Denote by AF and BF the
n× k and k ×m Boolean matrices defined by

(AF )il =
{

1 if xi ∈ Al,
0 if xi '∈ Al;

and (BF )lj =
{

1 if yj ∈ Bl,
0 if yj '∈ Bl.

That is, the l-th column (AF ) l of AF consists of the characteristic vector of Al

and the l-th row (BF )l of BF consists of the characteristic vector of Bl.
We are interested in a decomposition of I into AF ◦BF . If I = AF ◦BF , F

can be seen as a set of factors and we call the formal concepts from F factor
concepts. The l-th factor, i.e. formal concept 〈Al, Bl〉, applies to the i-th object
if xi ∈ Al; the j-th attribute yj is a manifestation of the l-the factor if yj ∈ Bl.
Note that decomposing I by means of formal concepts has been proposed in [11].
However, the particular way of using formal concepts as factors is not described
explicitly in [11].

Two questions then arise. First, does there always exist a F ⊆ B(X, Y, I)
such that I = AF ◦BF? Second, to what extent is it optimal to consider formal
concepts from B(X, Y, I) as factors?

For the first question, it is a well-known fact of formal concept analysis
that if we put F = B(X, Y, I) (with any indexing of formal concepts), then
I = AF ◦ BF . In this sense, factorization using formal concepts is universal,
see [4]. Note that putting F = B(X, Y, I) is not practically useful because the
number |B(X, Y, I)| of all formal concepts is usually larger than the number |Y |
of the original attributes. A better way consists in taking F = O(X, Y, I) or
F = A(X, Y, I) where
O(X, Y, I) = {〈{x}↑↓, {x}↑〉 |x ∈ X} and A(X, Y, I) = {〈{y}↓, {y}↓↑〉 | y ∈ Y }

are the sets of object-concepts and attribute-concepts, respectively. In both of
these cases we have I = AF ◦BF but still, this may not be the optimal decom-
position.

The second question is answered by the following theorem which was proven
in [4]. The theorem says that for any decomposition of I there is always at least
as good a decomposition which uses formal concept as factors.
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Theorem 1 (formal concepts are optimal factors). Let I = A◦B for n×k
and k ×m Boolean matrices A and B. Then there exists F ⊆ B(X, Y, I) with

|F| ≤ k

such that for the n× |F| and |F|×m Boolean matrices AF and BF we have
I = AF ◦BF .

The proof is instructive and we therefore summarize its main points. First,
observe that I = A ◦ B means that I can be written as a

∨
-superposition of

rectangles consisting of 1s. For instance, in case of I = A ◦B being
(

1 1 0 0 0
1 1 0 0 1
1 1 1 1 0
1 0 0 0 1

)
=

(
1 0 0 1
1 0 1 0
1 1 0 0
0 0 1 0

)
◦

(
1 1 0 0 0
0 0 1 1 0
1 0 0 0 1
0 1 0 0 0

)
,

the corresponding decomposition can be rewritten as a
∨

-superposition
(

1 1 0 0 0
1 1 0 0 1
1 1 1 1 0
1 0 0 0 1

)
=

(
1 1 0 0 0
1 1 0 0 0
1 1 0 0 0
0 0 0 0 0

)
∨

(
0 0 0 0 0
0 0 0 0 0
0 0 1 1 0
0 0 0 0 0

)
∨

(
0 0 0 0 0
1 0 0 0 1
0 0 0 0 0
1 0 0 0 1

)
∨

(
0 1 0 0 0
0 0 0 0 0
0 0 0 0 0
0 0 0 0 0

)

of rectangles I1, I2, I3, I4, i.e. Boolean matrices whose 1s form rectangles. The
l-th Boolean matrix I l results as a Boolean matrix multiplication of the l-the
column of A (n× 1 matrix) and the l-th row of B (1×m matrix). Second, each
such a rectangle is contained in a maximal rectangle of I, i.e. in a formal concept,
and a

∨
-superposition of these maximal rectangles gives I. Denoting therefore

the collection of all these formal concepts by F yields the conclusion. Note that
since two distinct rectangles may be contained in a single maximal rectangle, we
may have |F| < k.

Using our example, consider formal concepts 〈A1, B1〉 = 〈{x1, x2, x3}, {y1, y2}〉,
〈A2, B2〉 = 〈{x3}, {y1, y2, y3, y4}〉, 〈A3, B3〉 = 〈{x2, x4}, {y1, y5}〉, of I. Then,
each of the rectangles corresponding to I ls is contained in some of the max-
imal rectangles corresponding to 〈A1, B1〉, 〈A2, B2〉, or 〈A3, B3〉. Putting now
F = {〈A1, B1〉, 〈A2, B2〉, 〈A3, B3〉}, we have I = AF ◦ BF . Denoting by (AF ) l

and (BF )l the l-th column of AF and the l-th row of BF , I = AF ◦ BF can
further be rewritten as I = (AF ) 1 ◦ (BF )1 ∨ (AF ) 2 ◦ (BF )2 ∨ (AF ) 3 ◦ (BF )3 ,
which shows a

∨
-decomposition of I into maximal rectangles. With our example,

we have
(

1 1 0 0 0
1 1 0 0 1
1 1 1 1 0
1 0 0 0 1

)
=

(
1 1 0 0 0
1 1 0 0 0
1 1 0 0 0
0 0 0 0 0

)
∨

(
0 0 0 0 0
0 0 0 0 0
1 1 1 1 0
0 0 0 0 0

)
∨

(
0 0 0 0 0
1 0 0 0 1
0 0 0 0 0
1 0 0 0 1

)
.

Remark 1. In factor analysis, factors considered to represent general categories,
sometimes called concepts, of which the original variables are particular manifes-
tations. The problem of interpretability of factors is a part of the whole process
of factor analysis. From this point of view, interpretation of formal concepts as
factors in BFA is clear for a user. Namely, the notion of a formal concept results
as a mathematical formalization of the notion of a concept as worked out in the
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traditional logic. A formal concept 〈Al, Bl〉 can be seen as a “unit of thought”
consisting of a collection Al of objects to which it applies (concept’s extent)
and a collection Bl of attributes to which it applies (concept’s intent). Clear
interpretability is one of the advantageous features of having formal concepts as
factors.

Consider now the following problem we call the BFA Problem [4]:

INPUT: Boolean matrix I,
OUTPUT: smallest F ⊆ B(X, Y, I) for which I = AF ◦BF .

As mentioned in [4], BFA Problem is reducible to the set covering optimiza-
tion problem, for which we refer to [6]. Recall that in the set covering optimiza-
tion problem we are given a set U and a collection S ⊆ 2U of subsets of U with⋃
S = U . The goal is to find a set C ⊆ S with the fewest sets (i.e. with |C| as

small as possible) such that C covers U , i.e. such that U =
⋃
C. The set covering

optimization problem is a difficult problem. It is NP-hard and the corresponding
decision problem is NP-complete. However, there exists an efficient greedy ap-
proximation algorithm for the set covering optimization problem which achieves
an approximation ratio ≤ ln(|U|) + 1, see [6].

The idea of the proof of Theorem 1 allows us to see that I = AF ◦BF means
that I is covered by the rectangles corresponding to 〈Al, Bl〉’s from F . Conse-
quently, the BFA Problem is reducible to the set covering problem by putting
U = {〈xi, yj〉 | Iij = 1} and S = {C × D | 〈C,D〉 ∈ B(X, Y, I)}. That is, the set
U to be covered is the set of all pairs for which the corresponding entry Iij is
1, and the set S of sets which can be used for covering U is the set of “rectan-
gular sets” of positions corresponding to formal concepts 〈C,D〉 ∈ B(X, Y, I).
The above-mentioned greedy approximation algorithm can therefore be used
to find approximately optimal solutions for the BFA Problem. However, the
particular nature of the BFA Problem enables us to speed up the algorithm.
It is easy to see that if I = AF ◦ BF , then F needs to contain all formal con-
cepts from B(X, Y, I) which are both object concepts and attribute concepts, i.e.
O(X, Y, I) ∩A(X, Y, I) ⊆ F . Therefore, one can include O(X, Y, I) ∩A(X, Y, I)
in F right in the beginning. Recall that the set O(X, Y, I) of all object concepts
and the set A(X, Y, I) of all attribute concepts is defined by

O(X, Y, I) = {〈{x}↑↓, {x}↑〉} and A(X, Y, I) = {〈{y}↓, {y}↓ ↑〉}.
The resulting algorithm for computing the factors follows:

Algorithm 1 (Compute factor concepts)

INPUT: I (Boolean matrix)
OUTPUT: F (set of factor concepts)
set S to B(X, Y, I)
set U to {〈xi, yj〉 | Iij = 1}
set F to ∅
for each 〈C,D〉 ∈ S:

if (〈C,D〉 ∈ O(X, Y, I) ∩A(X, Y, I)):
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add 〈C,D〉 to F
remove 〈C,D〉 from S
for each 〈x, y〉 ∈ C ×D:

remove 〈x, y〉 from U
while (U '= ∅):

do select 〈C,D〉 ∈ S that maximizes (C ×D) ∩ U :
add 〈C,D〉 to F
remove 〈C,D〉 from S
for each 〈x, y〉 ∈ C ×D:

remove 〈x, y〉 from U
return F

3 Experiments with Boolean factor analysis

In this section, we present experiments on factorization of Boolean matrices. In
the experiments, we employed the algorithm described in the end of the previous
section.

Experiment 1 The first experiment concerns analysis of factors which determine
attributes of European Union countries. We have taken information from the
Rank Order pages of the CIA World Factbook 20063 and created a Boolean ma-
trix consisting of 27 rows (EU countries) and 141 columns (yes/no attributes).
The attributes are scaled versions of the numerical values taken from the Fact-
book.

The total number of formal concepts present in the matrix is 3963. From
this amount of concepts, Algorithm 1 computes only a small number of factor
concepts. In particular, we obtained a set F of 49 factor concepts, i.e. formal
concepts for which I = AF ◦BF . That is, the 27×141 matrix I has been decom-
posed into a Boolean product of a 27 × 49 Boolean matrix AF representing a
relationship between EU countries and the factors and a 49×141 Boolean matrix
BF representing a relationship between the factors and the original attributes.
The factor concepts can be considered factors explaining completely the original
141 attributes. Note that the original attributes are socio-economic attributes.
However, due to the limited scope, we restrict ourselves to listing the numbers of
attributes and factors and leave the socio-economic interpretation of the factors
to a future work, to be done possibly with an expert economist.

Experiment 2 We have used Algorithm 1 to compute factor concepts from large
data sets. In the case of large data sets, it seems to be of interest whether there
is a set of factors which approximately explain the data.

Here we present the results for the well-known MUSHROOM data set which
can be found at the UCI Machine Learning Repository4. The MUSHROOM

3 https://www.cia.gov/library/publications/download/
4 http://www.ics.uci.edu/˜mlearn/
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database is presented as a collection of so-called “item sets”, i.e. it is a collec-
tion of sets of items. The collection can be transformed into a Boolean matrix
with rows corresponding to items sets, attributes corresponding to items and
table entries indicating whether an item set given by the row contains an item
given by the column. The MUSHROOM database contains 8124 objects and 119
attributes. The corresponding Boolean matrix contains 238710 formal concepts.

Let us thus turn our attention to factor concepts which approximately explain
the data. That is, our aim is to find a set F of factor concepts such that I is
approximately equal to AF ◦BF . From the perspective of the results presented
in this paper, solutions to the approximate factorization problem can be looked
for by a slight modification of Algorithm 1. Recall that Algorithm 1 finishes its
computation if each 1 in from the input table is covered by at least one factor.
We might modify the halting condition of the algorithm so that

– it stops if the number of found factors exceeds threshold n; or
– it stops if the found factors cover “almost all 1s” present in the input matrix.

In either case, we obtain a set F of factor concepts so that AF ◦ BF ≤ I. It is
desirable to have AF ◦ BF as close to I as possible while having a reasonable
number of factors at the same time. The closeness of AF ◦ BF will be assessed
as follows. For I and F ⊆ B(X, Y, I), define A(I,F) by

A(I,F) =
Area(F)

Area(B(X, Y, I))
,

where
Area(G) = |{〈i, j〉 | (AG ◦BG)ij = 1}|

for each G ⊆ B(X, Y, I). Hence, Area(G) is the number of 1s in the matrix given
by a set of rectangles G. As a consequence, Area(B(X, Y, I)) is the number of 1s
in the input matrix. A(I,F) will be called a degree of approximation of I by F .
Furthermore, A(I,F) · 100 is the percentage of 1s in the input matrix I which
are covered by factors from F . Clearly, if F is a set of the exact factor concepts,
i.e. AF ◦ BF = I, then Area(B(X, Y, I)) = Area(F) which yields A(I,F) = 1.
Observe that A(I,F) ∈ [0, 1] and in addition, A(I,F) = 1 iff I equals AF ◦BF ,
i.e., iff the factors completely explain the data.

Our experiments with the MUSHROOM data set have shown that most of
the information contained in the data set can be expressed through a relatively
small number of factor concepts. The results of our experiment can be depicted
by a graph shown in Fig. 1. The graph shows a relationship between the number
of factor concepts and the degree of approximation of the original data set. We
can see from the picture that even if we take a relatively small number of factor
concepts, we achieve high degree of approximation. For instance, if we take first
6 factor concepts returned by Algorithm 1, we get F (I,F) ·100% = 51.89%. This
means that more than half the information contained in the MUSHROOM data
set can be explained by six factors. The growth of the degree of approximation is
rapid for first 10 factor concepts. The growth of the degree of approximation is
shown in Table 1. The tables say that, for instance, if we wish to achieve 90.36%
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Fig. 1. Relationship between the number of factors and the approximation of the orig-
inal Boolean matrix.
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Table 1. Number of factor concepts vs. degree of approximation

factors (n) 1 2 3 4 5 6

fidelity (%) 16.78 26.03 34.35 41.29 47.51 51.89

factors (n) 10 20 45 60 100 119

fidelity (%) 60.44 73.07 90.36 94.98 99.76 100.00

approximation then it suffices to take 45 factor concepts which is significantly
less than the number of the original attributes; 95% is guaranteed if we use 60
factor concepts, etc.

4 Conclusions and future research

We presented an algorithm for finding factors in Boolean factor analysis. The
algorithm is based on a theorem, proven in our earlier paper, that the problem
of BFA can be reduced to a problem of a covering of entries containing 1s in a
given Boolean matrix I with maximal subrectangles of I which consist of 1s. This
way, the problem of BFA is reducible to a particular instance of a set covering
problem for which there exists an approximation algorithm. The algorithm can
be sped up by further insight provided by formal concept analysis. We presented
examples of Boolean factor analysis and experiments with the algorithm.

Future research will include the following problems:

– As we have seen, further insight provided by the particular nature of the set
covering problem can speed up the greedy approximation algorithm. One
such speed up results from the inclusion of mandatory concepts which we
presented. Other ways of improving the algorithm as well as looking for other
algorithms need to be investigated.
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– Approximate decomposition, i.e. looking for A and B such that I is approx-
imately equal to A ◦B, cf. the above experiments with MUSHROOM data.
Both theoretical insight and experiments are needed in this direction.

– We did not impose any restrictions on F except for I = AF ◦ BF . It might
be desirable to look for F such that the number of attributes in the formal
concepts’ extents are restricted in one way or another. For instance, all formal
concepts from F have approximately the same number of attributes, this
means the level of generality of all factors is approximately the same. In
general, a question of what is a good set F of factor concepts needs to be
investigated. A small number of factor concepts, considered in this paper as
the only criterion, might not always be the best one by itself.

– New factors can be seen as new attributes using which the objects are de-
scribed. Since the number of new attributes (factors) is less than or equal to
the number of the original attributes, a general question is this: Can we use
the new attributes for more efficient reasoning and manipulation of objects?
For instance: Is it useful to extract association rules over the objects which
contain the new attributes? Is it useful to construct decision trees to classify
objects using the new attributes?

– Another topic relates to the question of whether there are connections be-
tween formal concept analysis, concept lattices and related structures on the
one hand, and associative neural networks on the other hand. In the light of
[8] and the present paper, this question should be pursued. Useful hints in
this respect could be provided by [2] and its followers such as [15].

– The last remark we want to make concerns the possibility to extend factor-
ization of Boolean matrices to matrices containing more general entries, such
as numbers from the unit interval [0, 1], instead of just 0 and 1, expressing
degrees to which attributes apply to objects. This is possible using an ex-
tension of formal concept analysis to the setting of fuzzy logic, see e.g. [3].
A paper on this topic is in preparation.
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Abstract. In [14] a generalisation of Formal Concept Analysis was in-
troduced with data mining applications in mind, K-Formal Concept
Analysis, where incidences take values in certain kinds of semirings, in-
stead of the standard Boolean carrier set. The construction leading to the
pair of dually (order) isomorphic lattices can be further manipulated to
obtain the three other types of Galois Connections providing a fuller set
of tools to interpret any relations between data. We relate this result to
previous descriptions of certain instances of such Galois Connections in
qualitative data analysis and provide concrete examples of them related
to Rmax,+-semimodules in quantitative data analysis.

1 Motivation: Lattices related to an Incidence

Data analysis results improve when many different tools are offered to the prac-
titioner. Consider then the modal operators ([13], def. 3.8.2; [6]) introduced by a
Boolean matrix, I ∈ 2G×M , over a set of objects, A ∈ 2G and, dually, over sets
B ∈ 2M of attributes operated by the converse relation It ∈ 2M×G as listed in
Table 1. Formal Concept Analysis adepts may recognise the extent and intent
polars in the sufficiency operators for a relation, [[I ]] (A) = A′, [[It]] (B) = B′ ,
but also their closure operators, [[It]][[I ]](A) = A′′ , [[I ]] [[It]] (B) = B′′ .

Perhaps less known is that the pairs of operators in the first and second
rows of Table 1 define the neighbourhood lattices: For a formal context (G, M, I)
define the span of a set of objects as: span(A) := 〈I〉(A) = (A)I

∃ . This is the
set of attributes related to some g ∈ A 1. Similarly, define for its dual context
(M,G, It) the content of a set of attributes, content(B) = [It] (B) = (B)∀I , as
the set of objects which can be completely described by the attributes in B .
Next consider the set N(G, M, I) (for Ger. Nachbar, neighbour) of neighbour
pairs, (A,B) ∈ N(G, M, I), such that span(A) = (A)I

∃ = B ⇔ A = (B)∀I =
content(B) . Then we can state the:
! This work has been partially supported by a grants from the Spanish Government-

Comisión Interministerial de Ciencia y Tecnoloǵıa project TEC2005-04264/TCM.
1 The second, operator notation is closer to Galois connection theory as explained

below and relates better to normal notation in Formal Concept Analysis.
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Table 1. Modal operators over a relation and its converse for sets of objects A ⊆ G
and attributes B ⊆ M . The misalignment in the first two rows is intentional.

possibility operator over G necessity operator over M

〈I〉 (A) = {m ∈ M | (∃g ∈ G)[g ∈ A ∧ gIm] }
ˆ
It˜

(B) = { g ∈ G | (∀m ∈ M)[mItg ⇒ m ∈ B) }

necessity operator over G possibility operator over M

[I] (A) = {m ∈ M | (∀g ∈ G)[gIm ⇒ g ∈ A) }
˙
It¸

(B) = { g ∈ G | (∃m ∈ M)[m ∈ B ∧ mItg] }

sufficiency operator over G sufficiency operator over M

[[I]] (A) = {m ∈ M | (∀g ∈ G)[g ∈ A ⇒ gIm) }
ˆˆ

It˜˜
(B) = { g ∈ G | (∀m ∈ M)[m ∈ B ⇒ mItg) }

dual sufficiency operator over G dual sufficiency operator over M

〈〈I〉〉 (A) = {m ∈ M | (∃g ∈ G)[g /∈ A ∧ g"I"m] }
˙˙

It¸¸
(B) = { g ∈ G | (∃m ∈ M)[m /∈ B ∧ m "I"t g] }

Theorem 1 (Fundamental theorem of Neighbourhood lattices [6]). The
neighbourhood lattice, N(G, M, I), is a complete lattice in which infimum and
supremum are given by:

∧

t∈T

(At, Bt) =




⋂

t∈T

At,




(

⋂

t∈T

Bt

)∀

I




I

∃




∨

t∈T

(At, Bt) =

(((⋃
At

)I

∃

)∀

I

,
⋃

t∈T

Bt

)

Conversely, a complete lattice V is isomorphic to N(G, M, I) if and only if there
are mappings2 σ : G → V and κ : M → V such that σ(G)∪ {0} is join-dense in
V and κ(M)∪{1} is meet-dense in V and gIm is equivalent to σ(g) ! κ(m) for
all g ∈ G and all m ∈ M .

This result shows that N(G, M, I) is isomorphic to B(G, M, #I#) [6], but the draw-
ing and interpretation in terms of neighbourhood pairs must differ, since the
systems of spans and contents are now order isomorphic: if (A1, B1), (A2, B2)
are neighbour pairs, they are ordered by the relation: (A1, B1) ≤ (A2, B2) ⇐⇒
A1 ≤ A2 ⇐⇒ B1 ≤ B2 .

In a different train of thought and with algebraic applications in mind, when
considering finite incidences to be represented by Boolean matrices, I = [Iij ] and
sets of objets by Boolean (column) vectors, we may write: 〈I〉(A) =

∨
j Iij ∧ aj ,

[I] (A) =
∧

j Iij → aj , 〈〈I〉〉 (A) =
∨

j Iij ∧ xj and [[I]] (A) =
∧

j aj → Iij , where
→ indicates the logical conditional. It is clear that definition of the possibility
operator can be understood in terms of matrix multiplication in the Boolean
algebra where ∨ is addition and ∧ multiplication, so that we could write for
proper finite sets of objects and attributes with cardinals |G| = g, |M | = m,

2 Our names for the neighbour pair-creating functions to avoid those already taken by
Formal Concept Analysis.
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an incidence I ∈ 2g×m and a set of objects A ∈ 2g×1, 〈I〉 (A) = It · A with
the conventional multiplication betwen boolean matrices. But that is not at all
apparent in the case of the other operators.

The question arises when considering a particular incidence whether there
are any more lattices related to it, and if so what their properties are. For in-
stance, are there analogues of the constructions and methods in Formal Concept
Analysis for the composition of the other operators? Are there similar operators
on typical domains for data mining like N0 or R+

0 ? Do these operators admit a
matrix representation?

In this paper we try to answer affirmatively to the questions posed above,
providing analogues for the three other types of lattice stemming from incidences
taking values in reflexive semifields. For that purpose apart from the wider scope
of Galois connections between arbitrary orders in section 2, we reformulate in
section 3 the construction of Galois connections in idempotent semimodules
which are idempotent analogues of vector spaces and provide examples and a
linear algebraic setting for concrete instances of these in section 4.

2 Galois Connections and Adjunctions

Let P = 〈P,≤P〉 and Q = 〈Q,≤Q〉 be partially ordered sets. We introduce the
following naming conventions for the purpose of clarification 3 :

Definition 1. 1. (λ, ρ) is a type OO Galois connection or (Galois) adjunc-
tion (on the left), and write (λ, ρ) : P ! Q iif: ∀p ∈ P, q ∈ Q λ(p) ≤Q
q ! p ≤P ρ(q) , that is, the functions are covariant, and we say that λ is
the lower or left adjoint while ρ is the upper or right adjoint .

2. (ρ,λ) : P "Q is a type II Galois connection or (Galois) adjunction (on
the right) iff: ∀p ∈ P, q ∈ Q ρ(p) ≥Q q ⇔ p ≤P λ(q) , both functions are
covariant, ρ is the upper adjoint, and λ the lower adjoint.

3. (ϕ, ψ) is a type OI Galois connection, or Galois Connection proper, and
write (ϕ, ψ) : P ⇀↼Q iff: ∀p ∈ P, q ∈ Q ϕ(p) ≥Q q ⇔ p ≤P ψ(q) , that is,
both functions are contravariant. For that reason they are sometimes named
contravariant or symmetric adjunctions on the right. Note that (ψ, ϕ) is also
a type OI Galois connection.

4. (.,.′) is a type IO, or co-Galois connection, and write (.,.′) : P ⇁↽Q
if: ∀p ∈ P, q ∈ Q .(p) ≤Q q ⇔ p ≥P .′(q) , that is, both functions are
contravariant. For that reason they are sometimes named contravariant or
symmetric adjunctions on the left. (.′,.) is also a co-Galois connection.

Our classification of Galois connections stresses the compositions with order-
and dual order-isomorphisms, or anti-isomorphisms. We take the type OO
Galois connection to be a basic adjunction composed with an even number of

3 For a revision of the genesis and importance of Galois Connections and adjunctions
see [3], as well as a discussion of the different notation and nomenclatures for these
concepts. See [4] for an early tutorial with mathematical applications in mind.
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anti-isomorphism for the domain or range orders. Consequently, a type II Ga-
lois connection, is a basic adjunction with an odd number of anti-isomorphisms
composed on both the domain and range orders. To obtain contravariance we
compose with an odd number of anti-isomorphism on the ranges to obtain a
type OI Galois connection. Finally, to obtain a co-Galois connection, we com-
pose with an odd number of anti-isomorphisms only on the domain, i.e. to get a
a type IO Galois connection.

Table 2 summarises briefly the main properties of all types of Galois connec-
tions. Furthermore, as a sort of graphical summary, we introduce the diagram to

Table 2. Summary of Galois connections and their properties, for P, Q posets.

Left Adjunction: (λ, ρ) : P ! Q Galois connection: (ϕ, ψ) : P ⇀↼Q
∀p ∈ P, q ∈ Q λ(p) ≤Q q ! p ≤P ρ(q) ∀p ∈ P, q ∈ Q ϕ(p) ≥Q q ⇔ p ≤P ψ(q)

IP ≤ ρ ◦ λ and IQ ≥ λ ◦ ρ IP ≤ ψ ◦ ϕ and IQ ≤ ϕ ◦ ψ
λ = λ ◦ ρ ◦ λ and ρ = ρ ◦ λ ◦ ρ ϕ = ϕ ◦ ψ ◦ ϕ and ψ = ψ ◦ ϕ ◦ ψ

λ monotone, residuated ϕ antitone
ρ monotone, residual ψ antitone

λ join-preserving, ρ meet-preserving ϕ join-inverting, ψ join-inverting

co-Galois connection: ((,(′) : P ⇁↽Q Right Adjunction: (ρ, λ) : P "Q
∀p ∈ P, q ∈ Q ((p) ≤Q q ⇔ p ≥P (′(q) ∀p ∈ P, q ∈ Q ρ(p) ≥Q q ⇔ p ≤P λ(q)

IP ≥ (′ ◦ ( and IQ ≥ ( ◦(′ IP ≥ λ ◦ ρ and IQ ≤ ρ ◦ λ
( = ( ◦(′ ◦ ( and (′ = (′ ◦ ( ◦(′ ρ = ρ ◦ λ ◦ ρ and λ = λ ◦ ρ ◦ λ

( antitone ρ monotone, residual
( antitone λ monotone, residuated

( meet-inverting, (′ meet-inverting ρ meet-preserving, λ join-preserving

the upper left-hand corner of Figure 1 as the pattern that carries the structures
described in ([3], §1.2) and llustrated at the top left of Figure 1:

– A closure system, ρ(Q) = P , the closure range of the right adjoint (see
below).

– An interior system, λ(P ) = Q, the kernel range of the left adjoint (see below).
– A closure function (also “closure operator” [6,2]) γP = ρ ◦ λ ≥P IP , from

P to the closure range ρ(Q), with adjoint inclusion map ↪→P , where IP
denotes the identity over P .

– A kernel function (also “interior operator” [6], “kernel operator”) κP =
λ ◦ ρ ≤Q IQ, from Q to the range of λ(P ), with adjoint inclusion map ↪→Q ,
where IQ denotes the identity over Q.

– a perfect adjunction (λ̃, ρ̃) : P ! Q, that is, an order isomorphism between
the closure and kernel ranges P and Q .

However, a Galois connection proper can be seen in the top right of Figure 1)
whose ranges are both closure systems and both compositions closure operators
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Type OO: Type OI:
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#̃′

$$
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&& P
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$

##!!!!!!!!!!!!!!!!!!!! Q
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λ

%%""""""""""""""""""""

λ(Q) = P
$̃ !!

↪→P

&&

)(P ) = Q
λ̃

$$

↪→Q

&&

Type IO: Type II:
Co-Galois connection, ((,(′) : P ⇁↽Q Right Adjunction, (), λ) : P "Q

Fig. 1. Diagrams visually depicting the maps and structures involved in the adjunction
on the left (λ, )) : P ! Q (top left), Galois connection (ϕ, ψ) : P ⇀↼ Q (top right), the
co-Galois connection ((,(′) : P ⇁↽ Q (bottom left) and the adjunction on the right
(), λ) : P " Q (bottom right) between two partially ordered sets (adapted from [3,13]).
Closure operators are denoted by γP , γQ , interior (kernel) operators by κP , κQ , clo-
sure systems by P , Q and interior (kernel) systems by P , Q .

due to the dualisation of the second set (we write γQ for the new closure oper-
ator), resulting in the well-known perfect Galois connection, (ϕ̃, ψ̃) : P ⇀↼Q , a
pair of dual order isomorphism between closure ranges lying at the heart of For-
mal Concept Analysis. The diagrams in the bottom left and right show analogue
structures for co-Galois connections and right adjunctions respectively.

As an example of all the above, consider P = 2G, Q = 2M the powersets of a
set of objects G and a set of attributes M . Then for each relation R ∈ 2G×M

we have (adapted from [4]):

– a Galois connection (type OI) (· R, · R) : 2G ⇀↼ 2M , with dually isomorphic
(closure) lattices of object and attribute sets at the heart of Formal Concept
Analysis.

– a left adjunction (type OO) (· R
∃ , · ∀R) : 2G ! 2M , with closure system

(
2M

)∀
R

that we call the neighbourhood lattice of objects.
– a right adjunction (type II) (· R

∀ , · ∃R) : 2G " 2M , with closure system
(
2G

)R

∀
that we call the neighbourhood lattice of attributes.
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– a co-Galois connection (type IO) (· R
−, · −R) : 2G ⇁↽ 2M , with dually isomor-

phic (kernel) lattices of object and attribute sets.

3 Galois Connections between Idempotent Semimodules

It is not straightforward to describe the examples in section 2 in the algebra
of Boolean matrices. For this purpose, we develop the more encompassing the
concept of a Galois connection between two idempotent semimodules next.

3.1 Idempotent Semirings and Semifields

Basic definitions. A semiring S = 〈S,⊕,⊗, ε, e〉 is a structure where the
additive structure, 〈S,⊕, ε〉, is a commutative monoid and the multiplicative
structure, 〈S\{ε},⊗, e〉, a monoid whose multiplication distributes over addition
from right and left and whose neutral element is absorbing for⊗, ∀x ∈ K, ε⊗x =
ε . On any semiring S left and right multiplications can be defined: La : S →
S, b 2→ La(b) = ab, and Ra : S → S, b 2→ Ra(b) = ba . A commutative semiring
is a one whose multiplicative structure is commutative.

For instance, let S = 〈S,⊕,⊗, ε, e〉 be a semiring. Then the semiring of
(square) matrices over S is Mn(S) = 〈Sn×n,⊕,⊗, E , E〉 , with Sn×n denoting
the set of square matrices over the semiring with matrix operations: (A⊕B)ij =
Aij ⊕ Bij , 0 ≤ i, j ≤ n and (A ⊗ B)ij =

⊕n
k=1 Aik ⊗Bkj , 0 ≤ i, j ≤ n, null

element the matrix E , Eij = ε, 0 ≤ i, j ≤ n and unit E, Eii = e, 0 ≤ i ≤ n,
Eij = ε, 0 ≤ i, j ≤ n, i 3= j . Such semirings are not commutative in general even
if S is, except for M1(S) = S .

A semifield is a semiring whose multiplicative structure 〈S\{ε},⊗〉 is a group,
that is, there is an operation, ·−1 : S\{ε}→ S\{ε} such that ∀a ∈ S, a⊗ a−1 =
a−1 ⊗ a = eS . For commutative semifields, whose multiplicative structure is a
commutative group, we have (a⊗ b)−1 = a−1 ⊗ b−1 .

An idempotent semiring or dioid (for double monoid), D , is a semiring
whose addition is idempotent, ∀a ∈ D, a ⊕ a = a , that is, whose additive
structure 〈D,⊕, ε〉 is an idempotent semigroup . Compared to a ring, an idem-
potent semiring crucially lacks additive inverses. All idempotent commutative
monoids 〈D,⊕, ε〉 are endowed with a natural order ∀a, b ∈ D, a 4 b ⇐⇒
a⊕ b = b , which turns them into ∨-semilattices with least upper bound defined
as a ∨ b = a ⊕ b . Moreover, the neutral element for the additive structure of
semiring D is the infimum for this natural order, εD = ⊥D . Hence all dioids are
sup-semilattices 〈D,4〉 with a bottom element.

A dioid whose multiplicative structure is a group is an idempotent semifield.
The formula for the infimum in such case was already put forward by Dedekind
[3]: the meet law is: a ∧ b = a−1 ⊗ (a ⊕ b) ⊗ b−1 , hence idempotent semifields
are already lattices. In this paper, we focus on two idempotent semifields4:

4 We use : = (read “becomes”) to pass from abstract to concrete algebra.
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1. The maxplus semifield, Rmax,+ = 〈R ∪ {−∞ },max,+,−∞, 0 〉 with inverse
·−1 : =−· is an idempotent commutative semifield.

2. The minplus semifield, Rmin,+ = 〈R∪ {∞ },min,+,∞, 0 〉 is an idempotent
commutative semifield, with the same inverse as the previous example.

Complete Semirings and Dioids. A semiring S is complete, if for any index
set I including the empty set, and any {ai}i∈I ⊆ S the (possibly infinite) sum-
mations

⊕
i∈I ai are defined and the distributivity conditions:

(⊕
i∈I ai

)
⊗ c =⊕

i∈I (ai ⊗ c) and c ⊗
(⊕

i∈I ai

)
=

⊕
i∈I (c⊗ ai), are satisfied. Note that for

c = e the above demand that infinite sums have a result. A dioid D is complete,
if it is complete as a naturally ordered set 〈D,4〉 and left (La) and right (Ra)
multiplications are lower semicontinuous, that is, residuated: ∀a, b ∈ D, a 4
b,∀c ∈ D,Lc(a) 4 Lc(b),Rc(a) 4 Rc(b) . This implies that infinite sums are
defined in terms of suprema:

⊕
i∈I ai = supDi∈I{ai} , ∀{ai}i∈I ⊆ D , with the

convention that
⊕

i∈∅ ai = ε . A less strict definition is: a dioid D is said to be
boundedly complete5 if every set M ⊆ D order-bounded from above has a least
upper bound sup M ∈ D .

In a complete idempotent semiring, D, because it is a sup-semilattice 〈D,∨〉
with bottom element ε, the infima of subsets also exist, hence D is in fact a
complete lattice . Further, for a complete idempotent semifield, this infimum can
be computed from the supremum as: ∀a, b ∈ D, a ∧ b = (a−1 ∨ b−1)−1 and
multiplication also distributes with respect to this infimum. For instance, the
Boolean semiring, B = 〈B,∨,∧, 0, 1 〉, with B = {0, 1} is complete, idempotent
and commutative.

A complete idempotent semiring D can never be a semifield unless it is iso-
morphic to the Boolean semifield B. For instance, its maximal element 9D sat-
isfies 9D ⊗ 9D = 9D, hence it cannot have an inverse. Rmax,+ is incomplete
because its bottom has no inverse in the sense that ∞+ (−∞) = −∞ 3= 0 . For
a similar reason, Rmin,+ is incomplete: its bottom has no inverse: −∞ +∞ =
∞ 3= 0 . (The apparent incongruence between these sums is about to be solved.)

The Completion of Idempotent Semifields. Let a lattice-ordered group
G = 〈G,4,⊗〉 be a lattice 〈G,4〉 endowed with a group operation such that the
multiplications on either side are isotone (or lower semicontinuous):

a, b, c ∈ G, a 4 b ⇒ c⊗ a 4 c⊗ b, a⊗ c 4 b⊗ c

A lattice-ordered group G is said to be conditionally complete if it is condition-
ally complete as a lattice. Every conditionally-complete lattice-ordered group is
commutative in the product operation. Also, lattice-ordered semigroups which
are not singletons have no least, nor greatest elements. For instance, dioids are
lattice-ordered semigroups for the natural order, hence they are commutative in
the product and incomplete, lacking bottom ⊥ or top 9 elements, or both. How-
ever, we may complete a lattice ordered group with the canonical enlargement
construction as follows:
5 Also conditionally complete or simply complete in the context of dioids [5].
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Construction 2 (([9,10,11,12]) Canonical enlargement of a lattice-ordered
group). For any lattice-ordered group G = 〈G,4,⊗〉: adjoin two elements ⊥ and
9 to G to obtain G = G∪{⊥,9} and extend the order to G as ⊥ 4 a 4 9,∀a ∈
Ḡ . Then extend the product to two different operations, upper,

·
⊗ , and lower,

·
⊗ , multiplications:

a
·
⊗ b =






⊥ if a, b ∈ G ∪ {⊥,9},with a = ⊥, or b = ⊥;
9 if a, b ∈ G ∪ {9},with a = 9, or b = 9;
a⊗ b if a, b ∈ G;

(1)

a
·
⊗ b =






9 if a, b ∈ G ∪ {⊥,9},with a = 9, or b = 9;
⊥ if a, b ∈ G ∪ {⊥},with a = ⊥, or b = ⊥;
a⊗ b if a, b ∈ G;

(2)

to obtain the structure G = 〈G,4,
·
⊗,

·
⊗〉, known as the canonical enlargement of

G = 〈G,4,⊗〉 . In this structure,
·
⊗ and

·
⊗ are associative and commutative over

G , as the original ⊗ was over G , and the isotony of the product with respect to
the natural order extends to G . Furthermore, if e is the unit element of 〈G,⊗〉,
it is similarly the unit of 〈G,

·
⊗〉 and 〈G,

·
⊗〉 .

This is the basis for the completion of idempotent semifields, to follow:

Construction 3. The top completion [5] of a dioid D is another dioid D =
〈D,

·
⊕,

·
⊗, ε, e〉 where: D = D ∪ {9} and in which

·
⊗ coincides with its definition

in construction 2 when D is considered as bearing a lattice-ordered (multiplicative
semi-)group, and we extend ⊕ with the extra top-element:

a
·
⊕ b =

{
9 if a = 9 or b = 9;
a⊕ b, if a, b ∈ D;

(3)

Construction 4 (Top Completion of an idempotent semifield). Given
an (incomplete) idempotent semifield D, on its top enlargement as a dioid by
construction 3, D , we extend the notation for the inverse with the following
conventions: ε−1 = 9,9−1 = ε . In that way we have two related complete
idempotent semifield structures:

– a complete lattice for the natural order 〈D,4〉, the one we have been focusing
on, D = 〈D,

·
⊕ = ∨,

·
⊗,⊥, e〉, and

– a complete lattice for the dual of the natural order, 〈D,4d〉 = 〈D,:〉
Dd = 〈D,

·
⊕ = ∧,

·
⊗,9, e〉 where the meet is defined (on D) as above and

the definition of
·
⊗ follows that in construction 2 .

Using constructions 2, 3 and 4, already invoked by Moreau [9] we have:

– The top completion of Rmax,+ is Rmax,+ = 〈R ∪ {−∞∞},max,
·
+,−∞, 0〉,

the completed Maxplus semifield.
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– The top completion of Rmin,+ is Rmin,+ = 〈R∪ {−∞,∞},min,#,∞, 0〉 the
completed Minplus semifield .

Note that in this notation we have −∞
·
+∞ = −∞ and −∞#∞ = ∞, which

solves several issues in dealing with the separately completed dioids, as promised.
In the completed structure, we have the following De Morgan-like relations

between the multiplications, their residuals and inversion:

Property 5 ([12], lemma 2.2). In the top enlargement S of any commutative
semifield S we have:

(a
·
⊕ b)−1 = a−1 ·

⊕ b−1 (a
·
⊕ b)−1 = a−1

·
⊕ b−1 (4)

(a
·
⊗ b)−1 = a−1 ·

⊗ b−1 (a
·
⊗ b)−1 = a−1

·
⊗ b−1

Furthermore if S is idempotent, the residuals

a
·
⊗ b 4 c ⇔ b 4 a

·
\ c ⇔ a 4 c

·
/ b a

·
⊗ b 4d c ⇔ b 4d a

·
\ c ⇔ a 4d c

·
/ b (5)

can be expressed in terms of the multiplications as:

a
·
\ c = a−1 ·

⊗ c = (a
·
⊗ c−1)−1 c

·
/ a = c

·
⊗ a−1 = (c−1

·
⊗ a)−1 (6)

a
·
\ c = a−1

·
⊗ c = (a

·
⊗ c−1)−1 c

·
/ a = c

·
⊗ a−1 = (c−1 ·

⊗ a)−1

3.2 Semimodules over Reflexive Idempotent Semifields

Basic definitions. A semimodule over a semiring is defined in a similar way to
a module over a ring [1,8,7] a left S-semimodule, Y, is an additive commutative
monoid 〈Y,⊕, εY〉 endowed with a map (λ, y) 2→ λ⊗y such that ∀λ, µ ∈ S, y, z ∈
Y , and following the convention of dropping the symbol for the scalar action and
multiplication for the semiring we have:

(λµ)y = λ(µy) εSy = εY (7)
λ(y ⊕ z) = λy ⊕ λz eSy = x

The definition of a right S-semimodule, X , follows the same pattern with the
help of a right action, (λ, x) 2→ x ⊗ λ and similar axioms to those of (7.) A
(K,S)-semimodule is a set M endowed with left K-semimodule and a right S-
semimodule structures, and a (K,S)-bisemimodule a (K,S)-semimodule such
that the left and right multiplications commute. For a left S-semimodule, Y, the
left and right multiplications are defined as: LSλ : Y → Y, y 2→ LSλ (y) = λy, and
RY

y : S → Y, λ 2→ RY
y (λ) = λy . And similarly, for a right S-semimodule.

For instance, the semimodule of finite matrices Mg×m(S) = 〈Sg×m,⊕, E〉 is a
(Mg(S),Mm(S))-bisemimodule for finite g and m, with matrix multiplication-
like left and right actions and componentwise addition, and so are the set of
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column vectors Mm×1(S) and the set of row vectors M1×g(S) . For the com-
pleted semifields of Rmax,+ and Rmin,+, we have:

(A
·
⊗B)ij : = nmax

k=1
(Aik ·

+Bkj) (C
·
⊗D)ij : =

n
min
k=1

(Cik #Dkj)

A left, right D-semimodule X over an idempotent semiring D inherits the
idempotent law: ∀v ∈ X, v ⊕ v = v, which induces a natural order on the
semimodule: ∀v, w ∈ X, v ≤ w ⇐⇒ v ⊕ w = w , whereby it becomes a
∨-semilattice, with εX the minimum. In the following we systematically equate
idempotent D-semimodules and semimodules over an idempotent semiring D .
When D is a complete idempotent semiring, a left D-semimodule, X is complete
(in its natural order) if it is complete as a naturally ordered set and its left and
right multiplications are (lower semi)continuous. Trivially, it is also a complete
lattice, with join and meet operations given by: v ≤ w ⇐⇒ v ∨ w = w ⇐⇒
v ∧ w = v . This extends naturally to right- and bisemimodules.

As in the semiring case, because of the natural order structure, the actions
of idempotent semimodules admit residuation: given a complete, idempotent left
D-semimodule, Y, we define for all y, z ∈ Y , λ ∈ D the residuals

(
LDλ

)#
: Y →

Y, z 2→
(
LDλ

)#
(z) = λ\z,

(
RY

y

)#
: Y → D, z 2→

(
RY

y

)#
(z) = z/y, and likewise

for a right semimodule, X .
If D is idempotent (resp. complete), then finite matrix semimodules are idem-

potent (resp. complete) with the componentwise partial order their natural order.
For D a completed idempotent semifield as per construction 4, the left and right
residuals of

·
⊗ and

·
⊗ are:

(A
·
\B)ij =

m⊕

k=1

(
A−1

ki

·
⊗Bkj

)
(B

·
/ C)ij =

p⊕

k=1

(
Bik

·
⊗C−1

jk

)
(8)

(A
·
\B)ij =

m⊕

k=1

(
A−1

ki ·
⊗Bkj

)
(B

·
/ C)ij =

p⊕

k=1

(
Bik ·

⊗C−1
jk

)

with summations those of the dioid corresponding to the multiplication.
There is a remarkable operation that changes the character of a semimodule

while at the same time reversing its order by means of residuation: let D be a
complete dioid, and X be a complete right D-semimodule, its opposite semim-
odule is the complete left D-semimodule X op = 〈X,

op
⊕,⊥X op〉 with the same

underlying set X, addition defined by (x, z) 2→ x
op
⊕ z = x∧ z where the infimum

is for the natural order of X , bottom element ⊥X op = 9X , and left action:
D ×X → X (λ, x) 2→ λ

op→ x = x/λ . Consequently, the order of the opposite
is the dual of the original order.

It is easy to see that Rmin,+ is precisely the complete, idempotent semiring
opposite to Rmax,+ , taken as a semimodule, Rmin,+ = (Rmax,+)

op
and vicev-

ersa, Rmax,+ = (Rmin,+)
op

, since opposition of semimodules is an involution.
Finally, for an element of a semimodule over and idempotent semifield, x ∈ X,

we define the inverse as (x−1)i = x−1
i (which is not felicitous, given that x−1⊗x
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is not defined in general.) However, with the precautions taken for Rmax,+, Rmin,+

we can write: (x−1)i : =−xi .

Basic construction of Galois connections over reflexive semimodules.
The following construction is due to Cohen et al. [1]. Let D be a complete dioid;
for a bracket 〈· | ·〉 : Y ×X → Z between left and right D-semimodules, Y and X
respectively, onto a D-bisemimodule Z and an arbitrary element ϕ ∈ Z, which
we call the pivot, define the maps, ·∗ϕ : Y → X and ∗

ϕ· : X → Y :

y∗ϕ =
∨
{x ∈ X | 〈y | x〉 ≤ ϕ } ∗

ϕx =
∨
{ y ∈ Y | 〈y | x〉 ≤ ϕ } (9)

Proposition 1 ([1], th. 42).
(
·∗ϕ, ∗

ϕ·
)

: Y ⇀↼X is a type OI Galois connection.

Note that X and Y are both already complete lattices as well as free vector
spaces. However, the closure lattices Y = ∗

ϕ(X) and X = (Y)∗ϕ do not generally
agree with their ambient vector spaces in their joins, but only in their meets.
A reflexive dioid, (D,ϕ), is a complete dioid such that (〈· | ·〉 : D ×D → D,ϕ)
with 〈λ | µ〉 = λµ induces a perfect Galois connection under construction (9),
that is, a pair of mutually inverse order isomorphisms: ∀λ ∈ D, ∗ϕ(λ∗ϕ) = λ, and
(∗ϕλ)∗ϕ = λ . In reflexive dioids X and Y are actually (join-)subsemimodules of
the corresponding spaces ([1], prop. 28).

This construction is affected crucially by the choice of a suitable pivot ϕ: if
we consider the bracket to reflect a degree of relatedness between the elements
of each pair, only those pairs (y, x) ∈ Y ×X are considered by the connection
whose degree amounts at most to ϕ . Therefore we can think of the pivot as a
maximum degree of existence allowed for the pairs.

Finally, ϕ need not be unique: if (D,ϕ) is reflexive, for any λ ∈ D invertible,
(D,ϕλ) is reflexive. Cohen et al. [1] prove that idempotent semifields are reflexive,
and suggest that for the Boolean semiring we must choose ϕ = 0B, the bottom
in the order. For other semifields any invertible element may be chosen, e.g.
ϕ = eD .

4 Galois Connections Generated by Matrices over
Completed Idempotent Semifileds

In this section we provide an easy way to build all possible Galois connections
between two semimodules over an idempotent semifield. We use the Moreau
notation troughout to prove that it simplifies things considerably. For all of this
section, consider a completed, reflexive idempotent semiring (D, eD) , and let Y
and X be left and right semimodules over D or its opposite.

Definition 6. For Y ∼= D1×n,X ∼= Dn×1 and bracket 〈· | ·〉OI : Y × X →
D, 〈y | x〉OI = y

·
⊗x we define a conjugation to be the Galois connection of type

OI obtained from the maps in equation 9, and we write simply: (·∗, ∗·) : Y ⇀↼X .
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Table 3. Brackets between left and right free semimodules defined over a complete
idempotent semifield and its opposite.

With range in D With range in Dop

〈· | ·〉OI : D1×n ×Dn×1 → D [· | ·]OI : (Dop)1×n × (Dop)n×1 → Dop

〈y | x〉OI = y
·
⊗x [y | x]OI = y

·
⊗x

〈· | ·〉OO : D1×n × (Dop)1×n → D [· | ·]OO : (Dop)1×n ×D1×n → Dop

〈y | x〉OO = y
·
/ x = y

·
⊗x∗ [y | x]OO = y

·
/ x = y

·
⊗x∗

〈· | ·〉IO : (Dop)n×1 × (Dop)1×n → D [· | ·]IO : Dn×1 ×D1×n → Dop

〈y | x〉IO = (x
·
⊗ y)∗ = y∗

·
⊗x∗ [y | x]IO = (x

·
⊗ y)∗ = y∗

·
⊗x∗

〈· | ·〉II : (Dop)n×1 ×Dn×1 → D [· | ·]II : Dn×1 × (Dop)n×1 → Dop

〈y | x〉II = y
·
\x = y∗

·
⊗x [y | x]II = y

·
\x = y∗

·
⊗x

By Equation (9): y∗ = y
·
\ eD , ∗x = eD

·
/ x . For any other invertible element

ϕ we have the ϕ-conjugations: y∗ϕ = y
·
\ϕ = y

·
\(eD

·
⊗ϕ) = y∗

·
⊗ϕ and ∗

ϕx =

ϕ
·
⊗ ∗x . Hence, the conjugations in Rmax,+ are: y∗ : =−yt, ∗x : =−xt .

Consider Table 3.We claim:

Proposition 2. 1. The brackets in the left column generate all possible types
of Galois connections between Y and X by composition with adequate conju-
gations.

2. The brackets in the right column generate all possible connections between
the conjugates of Y and X by composition with adequate conjugations.

Proof. For 1) Bracket 〈· | ·〉OI generates the conjugations above, which are Ga-
lois connections of type OI by Proposition 1. 〈· | ·〉II generates another type OI
between (Dop)n×1 and Dn×1, hence pre-composing with a conjugation between
D1×n and (Dop)n×1 as defined previously obtains a right adjunction, type II, be-
tween D1×n and Dn×1. The procedure is exactly the same for type OO and type
IO connections. For 2) the procedure is exactly the same starting from [· | ·]OI
which is the one generating the Galois connection proper between (Dop)1×n and
(Dop)n×1 . =>

The following proposition states, essentially, that the Galois connections over D
and its opposite are essentially inverses (as expected from the inversion of orders
between the opposite semifields):

Proposition 3. For all brackets above, for k ∈ {OI,OO,IO,II} we have:

〈y | x〉k = (
[
y−1 | x−1

]
k
)−1 [y | x]k = (〈y−1 | x−1〉k)−1 (10)

Note that such Galois connections can be built being D either a scalar or a
matrix semiring. Hence, considering the brackets in Table 4, we claim, with a
similar proof:
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Table 4. Brackets between left and right free semimodules defined over a complete
idempotent semifield and its opposite with the aid of matrices defined over each semi-
field.

With range in D With range in Dop

〈· | ·〉ROI : D1×g ×Dm×1 → D [· | ·]ROI : (Dop)1×g × (Dop)m×1 → Dop

〈y | x〉ROI = y
·
⊗R

·
⊗x [y | x]ROI = y

·
⊗R

·
⊗x

〈· | ·〉ROO : D1×g × (Dop)1×m → D [· | ·]ROO : (Dop)1×g ×D1×m → Dop

〈y | x〉ROO = (y
·
⊗R)

·
/ x = y

·
⊗R

·
⊗x∗ [y | x]ROO = (y

·
⊗R)

·
/ x = y

·
⊗R

·
⊗x∗

〈· | ·〉RIO : (Dop)g×1 × (Dop)1×m → D [· | ·]RIO : Dg×1 ×D1×m → Dop

〈y | x〉RIO = (x
·
⊗ ∗R

·
⊗ y)∗ = y∗

·
⊗R

·
⊗x∗ [y | x]RIO = (x

·
⊗ ∗R

·
⊗ y)∗ = y∗

·
⊗R

·
⊗x∗

〈· | ·〉RII : (Dop)g×1 ×Dm×1 → D [· | ·]RII : Dg×1 × (Dop)m×1 → Dop

〈y | x〉RII = y
·
\(R

·
⊗x) = y∗

·
⊗R

·
⊗x [y | x]RII = y

·
\(R

·
⊗x) = y∗

·
⊗R

·
⊗x

Proposition 4. 1. For a given R ∈Mg×m(D) , the brackets in the left column
generate all possible types of Galois connections between the appropriate Y
and X by composition with adequate conjugations.

2. For a given R ∈Mg×m(Dop) , the brackets in the right column generate all
possible connections between the appropriate Y and X by composition with
adequate conjugations.

Proof. The proof is straightforward following the steps of proposition 2 and a
property similar to that for the brackets above. The proof for type OI Galois
connections can be found in [1], §4.5, as well as that of type IO. =>

5 Conclusion

In this paper we have provided algebraic formulae for the construction of Galois
connections of all four different types viz. left and right adjunctions, Galois con-
nections proper and co-Galois connections, between semimodules over idempo-
tent, reflexive semifields. Although such semifields turn out to be incomplete, we
have supplied a construction allowing their completion and, further, a notation,
reminiscent of one introduced by Moreau, for expressing all Galois connection
operators in matrix algebra.

The main scheme of combining a basic Galois connection proper plus the
Cohen-Gaubert-Quadrat conjugation is already looming in [1,5]. Similarly, the
use of the Moreau notation is already present in [10] in relation to co-Galois
connections (type IO) and the completions of certain idempotent semigroups
but was not explored systematicatically there. Of course, this is exactly the way
the right-axiality (R∀

∃) and the co-Galois connection (R−
−) where introduced in

[4], but only for subsets of 2G and 2M , whose generalisation for other semirings
is not straightforward. All in all, this shows directly that K-Formal Concept
Analysis is just one of the cases here described and indirectly the same holds for
standard Formal Concept Analysis.
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6. G. Gediga and I. Dütsch. Approximation operators in qualitative data analysis.
Technical Report CS-03-01, Department of Computer Science, Brock University,
St. Catharines, Ontario, Canada, May 2003.

7. J. S. Golan. Power Algebras over Semirings. With Applications in Mathematics
and Computer Science, volume 488 of Mathematics and its applications. Kluwer
Academic, Dordrecht, Boston, London, 1999.

8. J. S. Golan. Semirings and Their Applications. Kluwer Academic, 1999.
9. J. J. Moreau. Inf-convolution, sous-additivité, convexité des fonctions numériques.
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K = (G, M, I) G
M I G × M

G d1 d6
M

(I, E) E
I

({IR, SearchEngine, Web}, {d1, d2, d3})

CK K = (G, M, I)
≤K

L = 〈CK,≤K〉
L
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K0 →
K1 → . . . → Ki → Ki+1 → . . . Ki = (Gi, Mi, Ii)

i K0 = (G0, M0, I0) G0 = ∅
M0 = ∅ I0 = ∅

Q Q Q = {wordi|i > 0}
DOC(Q)

Q DOC(Q) = {docj |j ≥ 0}

Ki Ki+1 Ki
+Q−−→ Ki+1

Q

Gi+i = Gi ∪
DOC(Q)

Mi+i = Mi ∪
{wordi|i ∈ DOC(Q)}

Ii Gi Mi Ii+1

Gi+1 Mi+1

Ki+1 Gi

(g, m) ∈ Ii g ∈ Gi+1 (g, m) ∈ Ii+1

(g, mi) ∈ Ki (g, mi+1) ∈ Ki+1

mi ⊆ mi+1

Q0 K0
Q0−−→ K1

Qi Ki
+Qi−−−→ Ki+1

C
C

Ki
+intent(C)−−−−−−−→ Ki+1

Ki Ki+1 Ki
−C−−→ Ki+1
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C Gi+i =
Gi \ extent(C)

C
Mi+i = Mi \ {wordi|i ∈ intent(C)}
Ii+1 Gi+1 Mi+1 Ii

extent(C)
intent(C)

Gi

→
→ → → → →

→

×
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K0 K0
+−−−−−−−−−−−−−−→ K1

K1 K2 K1
−−−−−−−−−−−−−−−−−−−−→ K2

C intent(C)
= {carpineto, romano, castel}

K2

K2
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C intent(C) = {carpineto, romano, giovanni, claudio}
C K3

K3 K2
+−−−−−−−−−−−−−−−−−−−−−−−−−−→ K3

K3

K3
+−−−−−−−−−−−−−−−−−−→ K4

K4 K3
+−−−−−−−−−−−−−−−−−−−→ K4
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Abstract. Within maintenance software methodologies that analyze ex-
isting applications, Relational Concept Analysis (RCA) is an efficient
approach to build abstractions in any language, using the existing re-
lations between different software artifacts. Nowadays, there are several
RCA-based tools, where a critical aspect is the lack of genericity in the
FCA mapping to translate input (and output) data to (and from) for-
mal/relational contexts. Most of the tools provide specific translators
that can be used only with the analyzed application domain and their
code needs to be changed when the framework of analysis evolves. Using
Model-Driven Engineering, we propose a generic encoding/decoding pro-
cess, which performs this translation with only the configuration of an en-
coder/decoder tool. This approach eases the integration of a FCA/RCA
process in a tool and facilitates its usage on a wide range of input data
formats.

1 Introduction

Within maintenance software methodologies that analyze existing applications,
Relational Concept Analysis (RCA) [1] is an efficient approach to build ab-
stractions in any language, such as modeling languages (UML) or programming
languages (Java), that provide specialization-generalization mechanism between
different software entities. Abstractions are built for entities using the existing re-
lations between them. Nowadays, there are several tools implementing the RCA
process. Starting from contexts and relational contexts, these tools automati-
cally build a set of lattices (called Concept Lattice Family (CLF)) that contains
new abstractions.

However, when applied in real case studies, these tools must cope with two
main difficult tasks. The first task is the encoding of the model or program to be
restructured using a Relational Context Family (RCF), and the second task is the
decoding back of the obtained Concept Lattice Family (CLF) into the initial lan-
guage. For example, several existing methodologies, such as [2,3], propose tools
! France Télécom R&D has supported this work
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to encode a UML model into a RCF, then apply a RCA technique, and finally
decode back the CLF into a UML model. Note that the use of encoder/decoder
is a common problem to FCA and RCA: For each type of model or program one
may want to restructure with RCA, a new specific encoder/decoder is needed.
To cope with this problem, this paper presents a generic encoder/decoder, whose
configuration is based on the structure of the type of model or language to be
restructured. This means that, given the elements of the input model or lan-
guage and the elements that cause the abstractions’ building, the repetitive and
difficult work in creating RCF and then decoding CLF is fully automatic. For
example, in a UML model we will create abstractions for classes and associa-
tions, based on the name of the roles of the associations and the name of the
classes, whereas in Java we will create abstractions only for classes.

We achieve the design and configuration of the generic encoder/decoder
through the use of the Model-Driven Engineering (MDE) paradigm [4], in which
every used or produced artifact during the software development is a model.
The structure of the model is defined with a metamodel. We proceed in two
steps to solve the problem of the generic encoder/decoder. First, we have imple-
mented the RCA process in a MDE-oriented way [2], defining metamodels for
RCF and CLF. Second, we have defined a metamodel to define models of the en-
coding/decoding configuration corresponding to a given language to restructure.
To restructure a model, one just has to decide which elements of the model are
useful for the RCA-based restructuration, filling up a configuration model. In
this paper we focus on the configuration step, i.e. the way we provide a generic
encoder/decoder for a RCA-based restructuration.

The rest of the paper is organized as follows. Section 2 first briefly introduces
FCA and RCA, and analyses the existing FCA and RCA tools (in particular
w.r.t. their capacity to offer generic inputs and outputs). Then, Section 3 gives
an overview of Model-Driven Engineering and explains the reasons of the choice
of such a paradigm. Then, Section 4 details the mechanisms involved in the
generic encoder/decoder for RCA-based model restructuration and illustrates
them with UML and Java. Last, Section 5 concludes and gives feedback on the
use of MDE for RCA tools.

2 Formal and Relational Concept Analysis

2.1 Background and Definitions

Formal concept analysis (FCA) [5,6,7] is a branch of lattice theory that allows
us to identify meaningful groupings of objects that have common attributes.

Definition 1 (Formal Context). A formal context is a 3-tuple K = (O, A, I),
where O and A are finite sets of objects and attributes respectively, and I ⊆ O×A
an incidence relation where ∀(o, a) ∈ I, a is an attribute of the object o.

With a formal context, several concepts can be produced. A concept is a set
of objects that share several attributes. It can be considered as an abstraction
of these objects.
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Definition 2 (Concept). A concept is a pair (X, Y ) with X ⊆ O, Y ⊆ A and
X = {o ∈ O|∀y ∈ Y, (o, y) ∈ I} is the extent (covered objects),
Y = {a ∈ A|∀x ∈ X, (x, a) ∈ I} is the intent (shared attributes).

In other words, the sets of objects and attributes are maximal, i.e. there is
no other object that belongs to the concept extent and owns all the attributes
of the intent. Moreover, there is no other attribute that belongs to the concept
intent and that is owned by all the objects of the extent. These concepts can be
organized in a lattice: A concept c1 is lower than a concept c2 if the extent of c1

is included in the extent of c2 (and inversely, the intent of c2 is included in the
intent of c1).

FCA is efficient when considering objects described by binary attributes. In
order to deal with non binary attributes, FCA has to be extended. One inter-
esting possible extension is to classify several objects taking into account the
relations between them. Among the existing approaches, Relational Concept
Analysis [1] takes into account this possibility and considers the links between
the objects as relational attributes. At the beginning, these relational attributes
connect an object to several objects. Then, they connect an object to several con-
cepts that have emerged from the classification of the objects. Instead of having
just one formal context, RCA needs to define several formal contexts. Several
relational contexts, that represent relations between objects defined in the for-
mal contexts, can be added. Circularity between relations is admitted. Those
formal and relational contexts together are called a Relational Context Family
(RCF). Figure 1 shows a simple RCF, that deals with animals living in different
places. There is a formal context which describes the animals (Kanimals), an-
other one which describes the places (Kplaces), and finally a relational context
(Rlive) describing the living relation between the animals and the places.

Definition 3 (Relational Context Family). A Relational Concept Family R
is a pair (K, R). K is a set of formal contexts Ki = (Oi, Ai, Ii), R is a set of
relational contexts Rj = (Ok, Ol, Ij) (Ok and Ol are object sets of contexts Kk

and Kl).

Fig. 1. A relational context family

New abstractions emerge from a RCF by iterative building of concept lat-
tices, and enhancement of the RCF with the concepts discovered in the concept
lattices. The steps of this iterative construction are described below.
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Initialization step. The created lattices at this step are the same as the one
that would have been created using classical FCA: for each formal context Ki, a
lattice L0

i is created. Figure 3 (left) shows the initial lattices corresponding to
the contexts of the Figure 1.

Step n+1. For each relational context Rj = (Ok, Ol, Ij), a context Rs
j = (Ok, A, I)

is created. A contains the extents of the concepts of the lattice Ln
l , and the inci-

dence function I contains the element (o, a) if S(R(o), a) is true. The function S
is called a scaling operator. The most common scaling operators are S∃(R(o), a),
that is true iff ∃x ∈ R(o), x ∈ a, and S∀(R(o), a), that is true iff ∀x ∈ R(o), x ∈ a.
Figure 2 shows such an updated relational context (we used the S∃ scaling oper-
ator). It connects animals with concepts of the lattice (shown in Figure 3 (left))
corresponding to Kplaces. In this lattice, the concept 7 is an abstraction of the
places on earth. The application of FCA on Kk ∪ {Rs

j = (Ok, A, I)} creates
new concepts that are added to Ln

k to obtain Ln+1
k . Figure 3 (right) shows such

an updated lattice family. Lanimals has been calculated using Kanimals ∪ Rs
live.

The concept 10 of Lanimals has been created using relational descriptions. It
represents the animals that live on earth.

Fig. 2. RCF of Fig. 1 after the first step

This process stops when all the lattices of a step n are isomorphic to those
of the step n − 1. After this step, the relational contexts will not be modified
and no more concepts will emerge.

2.2 Encoding and decoding input data in FCA/RCA-based tools

In order to understand the existing limitations of FCA/RCA-based tools, an
overview of the existing ones is needed taking into account their encoding/decoding
operation. This operation, named FCA mapping, consists in converting input
data into FCA contexts and then converting the built lattices back to the initial
format. Most of the existing FCA-based tools [8,9] do not consider the FCA
mapping as a crucial task. However, if a tool builder wants to integrate any
FCA-based tool, he has to build himself a mapping tool to convert the input
data to be analyzed into the input format of the FCA-based tool. Such an ap-
proach is expensive, moreover the knowledge of the configuration is included in
the mapping tool, and the code of this tool has to be modified if the configuration
changes.
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Fig. 3. The lattice families corresponding to the RCF of Fig. 1 and Fig. 2

Some FCA-based tools like ConAn [10](a FCA-based reengineering tool) have
identified the importance of defining FCA mappings, and the advantages and
drawbacks respectively. ConAn uses a software model expressed in a language
independent way (called a FAMIX model), and FCA mappings to build a for-
mal context. After building the corresponding lattices, ConAn builds a new
model, called a high-level view (to help in the software analysis) in a format
understandable by a regular developer with no lattice theory knowledge. Un-
fortunately, ConAn is focused on software reengineering and does not provide
facilities to express neither FCA mappings nor high-level view formats. It is still
necessary to hand-code a translator between a base model (named as FAMIX)
and a formal context and then, between the concept lattices and the high-level
view.

From our viewpoint, the most advanced approaches are [3] and [11]. They aim
at discovering new abstractions in UML models using RCA. They use different
tools: (1) a CASE tool (Objecteering [12] for [3], Eclipse [13] for [11]) to generate
a context family, (2) Galicia [14] to build the corresponding lattice family, and
then, (3) the CASE tool again to build an improved UML model. The FCA
mapping between a UML model and a context family can be configured in both
tools. However, this configuration mechanism is specific to UML. Therefore these
tools cannot be used to analyze other input data, such as Java source code.

A FCA-based tool to easily define FCA mappings on a wide range of input
data formats (UML model, Java code, Smalltalk code, . . . ) is still missing. The
design of such a tool is the contribution of this paper. To realize it, we need to
introduce a high-level configuration mechanism which allows to express which
elements of the input data have to be transformed into FCA items. For that
purpose, it is necessary to use a high-level modeling language, which is able to
represent a UML model or a Java source code in a common way. Such support
is provided by the Model Driven Engineering paradigm, described in the next
section.
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3 Model Driven Engineering

Model Driven Engineering [4] is a recent software development paradigm. It
was introduced to deal more with abstractions rather than code. In a MDE-
based development, every produced or used artifact (including code) is a model,
whose structure is defined by a metamodel (a model is said to conform to a
metamodel). To pragmatically handle two models that conform to two different
metamodels (for example to transform a UML model into a Relational Database
model), a program has to be written, dealing with both metamodels. For that
purpose, MDE assumes the existence of a unique meta-metamodel. Such a meta-
metamodel allows to define how a metamodel is structured. Mainly, two meta-
metamodels are used: EMOF [15] (defined by the OMG) and Ecore [16], (defined
by Eclipse). Since we have built our tool with the Eclipse platform, we have cho-
sen the meta-metamodel Ecore. However, Ecore and EMOF have no significant
differences. In the following, we will use Ecore. The meta-metamodel is the last
level in the modeling hierarchy (shown in Figure 4), and is expressive enough to
describe itself. Therefore a meta-meta-metamodel is not necessary.

Fig. 4. The metamodeling hierarchy

A fundamental element of MDE is the notion of model transformation. A
model transformation is a program or a set of rules that takes one or several
models in input (conform to one or several metamodels) and produces as output
one or several models.

In Section 1, we explained that the goal of this paper is to provide a high-level
configuration mechanism allowing to define FCA mappings. Such a mechanism
must be able to define FCA mappings, for example, from a UML model as well
as from Java code, because Ecore can describe either a UML model or Java
code. Therefore, a FCA mapping can be considered as a model transformation
based on Ecore (and thus handling all kinds of models) from a model into a RCF
model, and reciprocally from a CLF model to an output model (we will introduce
what is a RCF and CLF model in the next section). Since all the information
from a UML model or Java code is not relevant for a RCA restructuration, the
tool builder still have to be able to select what kind of data he wants to place in
the FCA items, that will be produced by the transformation. The next section
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explains our approach in detail, based on MDE, that allows an easy definition
of FCA mappings.

4 FCA/RCA with a MDE approach

A global view of a FCA/RCA process using a MDE approach is shown in Fig-
ure 5. The purpose of using such a process on an input data (called model in
the MDE approach) is to lead to the creation of output data that contains rel-
evant abstractions. In this process, we consider that input and output models
conform to the same metamodel. This is the most common case when using a
RCA process for restructuration or abstraction discovery.

Fig. 5. Process overview

The encoding transformation of the process aims at producing FCA/RCA
items from an input model. Only some configuration data is required in order
to perform that transformation. The FCA/RCA transformation (described in
section 2) builds the lattices corresponding to the input contexts. The decoding
transformation consists in converting the produced lattices back to output data,
conforming to the same metamodel as that before the encoding transformation.
Since the input and output data metamodels are the same, the decoding trans-
formation uses the same configuration as the encoding one to produce the output
model.

To illustrate how the decoding and the encoding steps work, we use two
sample input models: a UML model and a Java source code. Figure 6 shows
these models in a MDE fashion, detailing models, metamodels and the meta-
metamodel. The conforms to arrows show the connections between the elements
of the models and the elements of the metamodel; and between the metamodels
and the meta-metamodel. For the sake of clarity, the Java, UML and Ecore
metamodels have been presented in a reduced form. Next we describe how these
models are transformed through the encoding and decoding operations.
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Fig. 6. The sample models

To remain in a MDE approach, a RCF metamodel was created, which is is
able to define data structures similar to the one described in Section 2. Figure 7
shows this metamodel: An RCF is composed of several formal contexts (called
EntityAttributeContext in the metamodel) and several relational contexts (called
InterEntityContext). These contexts contain an incidence relation (represented
as a set of Pair in the metamodel).

We use an UML and a Java model. In this restricted example, we are inter-
ested in using RCA on the UML model to create new superclasses by factorizing
the properties of the existing classes, based on their names. For Java, we want
to use RCA in order to create new superclasses that factorize methods from
the existing classes, based on their names. To achieve these goals, the encoding
operation has to generate formal and relational contexts describing the previ-
ously quoted elements. We introduce a configuration metamodel to give this
information to the transformation.

Figure 8 shows this metamodel. Models conform to this configuration meta-
model are used in the encoding transformation to dynamically choose the ele-
ments to consider and how to encode them. Figure 9 shows configuration models

CLA 2007 232 Montpellier, France



Fig. 7. The Relational Context Family metamodel

Fig. 8. The encoding/decoding configuration metamodel

for UML and Java that lead to the creation of contexts describing the elements
we want to analyze.

The encoding transformation works as follows. First, several sets of elements
lead to the creation of several formal contexts, one for each kind of element. The
InspectedElement elements coming from the configuration model parameterize
this stage of the transformation. For each InspectedElement, a set of elements
is dynamically selected via the metaClass information. The binary attributes
that describe this set of elements are selected via the attributes information. A
formal context is finally created using these elements as objects and the binary
attributes. Given the configurations plotted by Figure 9, two formal contexts
are created for the UML model: one describing the classes and the other one,
the properties (using the name as attribute). For the Java code, two formal
contexts are created: one for the classes, the other one for the methods (using
name as attribute). Figure 10 and 11 show the formal contexts generated from
the examples.

Secondly, several relations between the elements of the input model are trans-
formed into several relational contexts. The InspectedRelation elements coming
from the configuration model parameterize this stage of the transformation.
For each InspectedRelation, a relation is selected in the input model via the
metaProperty information. The source and target are used to select the elements
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Config. for UML Class Model restructuring:

Inspected Elements:
Class: attributes = [],
specializationLink = "generalization.general"

Property: attributes = ["name"],
specializationLink = "redefinedProperty"

Inspected Relations:
ownedAttribute: source = Class,
target = Property

type: source = Property,
target = Class

Config. for Java source code restructuration:

Inspected Elements:
Class: attributes = [],
specializationLink = "generalization.general"

Method: attribute = ["name"]

Inspected Relations:
methods: source = Class, target = Method

Fig. 9. Two configuration models

Fig. 10. The generated Java contexts

(described in the previously built formal contexts) involved in this relational con-
text. With the configuration in Figure 9, two relational contexts are created for
the UML model: one for the ownedAttribute relation between the classes and
the properties, and the other for the type relation between the properties and
the classes. For the Java code, one relational context is created to describe the
methods relation between the classes and the methods. Figures 10 and 11 show
relational contexts generated from the examples.

Fig. 11. The generated UML contexts

The decoding transformation aims at producing a model using the concept
lattices produced with the RCA. Figure 12 shows the metamodel of a concept
lattice family. This transformation uses the same configuration model as the de-
coding transformation. The input is a family of concept lattices, one for each
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context of the input RCF. These contexts are used to represent a kind of objects
present in the source model. For the UML model, there is one lattice for the
classes and one for the properties. For the Java code, there is one lattice for the
classes and one for the methods. Therefore, the elements built from a lattice have
the same metaclass as the elements that lead to the creation of this lattice. For
instance with UML, the class lattice coming from the class formal context pro-
duces classes in the ouput UML model. The partial order between the concepts
of a lattice is used to create relations between the elements generated from the
concepts of this lattice. The name of the relation to create is in the specializa-
tionLink information from the InspectedElement coming from the configuration
model associated with the lattice. With UML, the partial order between the
concepts of the class lattice is interpreted as a generalization.general between
the classes. Binary attributes and relational attributes from a concept of a lat-
tice need to be placed in the corresponding elements. The binary attributes lead
to the creation of attributes in the corresponding element. Relational attributes
generate relations in the output model between the element corresponding to the
concept and the element corresponding to the target concept of the relational
attribute.

Fig. 12. The Concept Lattice Family metamodel

5 Conclusions and Future Work

We have proposed a generic way to encode models and programs so that they
can easily benefit from a restructuration based on FCA or RCA, as well as the
reciprocal generic way to decode the obtained lattices. The genericity of the
approach has been designed using the Model-Driven Engineering paradigm, and
is based on the knowledge of the metamodels of the artifacts to restructure and
the underlying common meta-metamodel. To restructure a model, one has just
to give (in addition to the model itself): the metamodel of the model, and a
configuration model making precise which kinds of elements of the input model
are to be taken into account. This approach is implemented in a tool written in
Java EMF that has been experimented with UML models (from France Télécom
projects [17]), Java programs, OWL, and Ecore models.

MDE gave us further significant benefits. The parameters of the RCA process
have been identified and properly modeled, consequently the RCA restructura-
tion can be easily fine-tuned. We plan to go a step further in the parameterization
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of the RCA process, allowing the user to choose the algorithm to build lattices
and the scaling operator, or to define the number of steps he wants the algorithm
to perform.

Further work will consist in adapting our approach so that the input meta-
model used for the encoding can be different from the output metamodel used for
the decoding. This is useful when the discovered abstractions cannot be expressed
with the input metamodel (but could be expressed with a similar metamodel).
For example, restructuring Java programs may create multiple class inheritance,
that cannot be represented with a Java program, but that can be represented
with a UML class model.
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Abstract. In component-based software engineering, software systems
are built by assembling prefabricated reusable components. The compat-
ibility between the assembled components is crucial. It is determined by
the comparison of their exposed interfaces: required interfaces (describ-
ing the services the component needs) and provided interfaces (describing
the services the other component offers) must match. Given a compo-
nent, finding a compatible component in a component repository is not
trivial. The idea of this paper is that organizing component directories
with a yellow-page-like structure makes the search for suitable compo-
nents more efficient. We propose a solution based on Formal Concept
Analysis to precalculate a concept lattice to organize our components. It
proves to be an efficient solution to both represent the component com-
patibility information and provide a browsable component organization
to support the component search mechanism.

1 Introduction

The component-based approach is a recent and successful paradigm for software
engineering, inspired by electronic engineering. In this approach, software sys-
tems are built by assembling prefabricated reusable components. The main ob-
jective is development cost reduction while maintaining high quality. Software
components are externally described, as their electronic counterpart, by func-
tionalities they support, and plugs which specify possible connections. In terms
of the component-based software engineering (CBSE) domain, a component has
required interfaces (needed services) and provided interfaces (offered services).
Building a component assembly consists in connecting components in order to
achieve a high-level functionality. Computation is then dispatched over the as-
sembled components. Nevertheless, given a component repository, finding and
connecting suitable components is not trivial because there is basically a need to
determine service compatibility. Component repositories generally rely on com-
ponent directories organized as white pages, that support component search by
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name. Such an organization is not optimal because it leaves the burden of finding
suitable components to the assembly phase.

Previous work on component assemblies [1, 2] made us realize how critical
the component-search mechanism was for such software engineering processes as
component assembly building or evolution. The idea of this paper is that orga-
nizing component directories with a yellow-page-like structure makes the search
for suitable components more efficient. Our approach is based on Formal Con-
cept Analysis (FCA), where precalculating a lattice of service compatibilities is
a means to organize the component directory so as to both explicitly represent
relationships among components and efficiently search for suitable components
when needed. Having a user-readable component structure that shows compo-
nent compatibility is a plus and separating the concerns of compatibility calculus
and assembly is more rational. Such an organized component directory can then
be used to find a component that can assemble to (search for a compatible com-
ponent) or replace (search for a substitutable component) a selected one. It also
enables the discovery of new abstract components having a higher degree of
reusability which enriches the component directory.

The remainder of this paper is organized as follows. Using a small sale sys-
tem example, Section 2 shows how reasoning about component compatibility
is mainly based on functionality signatures. Section 3 describes an extension of
object-oriented type theory for functionality signature comparison. Then, after
recalling chosen basics of FCA, Section 4 shows the building of a lattice of func-
tionality signatures using the point of view of replacing a required functionality
by another. Section 5 presents several uses of the proposed lattice, Section 6
compares our approach to related work and Section 7 mentions future work.

2 Component Compatibility: a Sale System Example

Service and functionality compatibility, as an a priori requirement for compo-
nent compatibility, is discussed based on elements of a sale management ap-
plication. Figure 1 shows several connection situations. When a component
(e.g., ChildOrder) is introduced in an assembly to satisfy a service (e.g., en-
abling children to order products), the required interfaces involved in the same
collaboration (here, CustomerCreation) have to be connected in the assembly.
This may demand finding a compatible component either among those of the
assembly, or in a component repository.

Component compatibility is generally defined as the syntactic comparison
between the components’ interfaces, which more precisely consists in comparing
pairs of functionality signatures from these interfaces. To easily understand the
discussion, the reader can draw a parallel with the ordinary function-call mech-
anism: required functionalities can be seen as function calls while provided func-
tionalities are function definitions. Functionalities are described by their signa-
tures, i.e., their name, parameter type list and return type. To be run, a function
needs its call to contain the expected information, as declared in its signature.
The position, where the call appears in the code, expects in return a resulting
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Fig. 1. Type ordering information and three possible assembly situations

data corresponding to the declared return type of the function. Figure 1(b) illus-
trates the simplest assembly case: the SilverCustomerDB component provides
an interface which describes a create functionality that has exactly the same
signature as the create functionality of the required CustomerCreation inter-
face of the ChildOrder component – that is the same parameter type list and
the same return type. However, exact signature match is not always possible:
the component repository may only contain components with close capacities.
In Figure 1(c), the GoldCustomerDB component offers a close provided creation
functionality which turns out to be compatible with the one required by the
ChildOrder component. There are three differences between the two signatures:

– The provided create functionality needs information about a person. As
shown on Figure 1(a), ChildInformation is a subtype of PersonnalIn-
formation. This means that a child is described by more information than
a person. As a consequence, the required functionality is able to call the
provided functionality as the call contains more information than needed by
the provided functionality to run.

– The provided create functionality only needs information about a person:
it has no other parameter. The fact that the required create gives extra
information (an extra bankIdentity parameter is passed to the functionality
call) does not hamper the assembly.

– The provided create functionality returns a parameter of type GoldCustomer.
As shown in Figure 1(a), GoldCustomer is a subtype of SilverCustomer.
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As in the other cases, the required create can still call the provided func-
tionality as it will receive in return more information than needed.

In these three cases, the extra information provided during the call or the return
phases can be ignored: the components can be assembled. Figure 1(d) presents
a case of functionality incompatibility. The CustomerDB component provides
a create functionality that is not compatible with the create functionality
of the ChildOrder component. Two signature differences make the assembly
impossible:

– The provided create needs information about the country of the customer:
the required create is unable to provide such information.

– The provided create returns a parameter of type Customer. As shown in
Figure 1(a), Customer is a supertype of SilverCustomer. The required
create therefore receives in return an object which is too general and con-
tains less information than expected.

This small example illustrates the need for signature comparison based on
a model of component compatibility, where parameter and return types have
a great place. In realistic examples, an interface generally contains more than
one functionality signature. This is why reasoning on component compatibility
requires to have a theory of functionality signature compatibility, which can be
extended to nesting (interface, component) levels. As shown in the example,
signature compatibility is the result of the combination of subtyping orders on
parameter and return types as well as presence / absence of parameters. In the
case where the component assembler is human, mentally calculating this com-
bination is rather difficult, increasing the errors when choosing a component
among the available ones. Besides, a mental image, by the means of a classifi-
cation of signatures, could be quite useful. At the same time, this could give us
keys for helper tools that guide the human designer in its component choice, or
even, in simple cases, that solve the choice problem automatically.

Thanks to its qualities for building classifications of entities, FCA is very
useful to cope with this problem. The produced signature classifications can be
used either to check compatibility if a component is available, to find a com-
ponent (using the classification as an index for component access) or to build
contingent interface or component classifications by propagating specialization
information. Thanks to FCA, signature classification is not reduced to the orga-
nization of existing signatures: new signatures emerge that are generalizations
(abstractions) of the existing ones, giving the opportunity to the component
developer to imagine new components that would be more reusable than the
existing ones.

3 Basics of Static Types: Ordering Required and
Provided Functionalities

This section focuses on presenting the domain knowledge about signatures that
will be encoded into concept lattices in order to capture functionality substi-
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tutability information. Part of assembly soundness is based on static types, in-
spired by statically typed object-oriented languages [3]. In this context, static
types are used to guide an efficient analysis that considerably limits dynamic
type errors potentially provoked by the intensive usage of polymorphism. In
object-oriented languages, polymorphic expressions can be bound to values of
several types (classes in this context). The correctness of this binding relies on
the possibility for an expression of a type to be seamlessly replaced (substituted)
by any value of another type. This substitutability is possible under some suf-
ficient conditions on types relative to their operations: the run-time type error
that static analysis wants to avoid is the reception by an object of an operation
request that it cannot deal with. In the object paradigm, when an operation is
redefined in a subclass (subtype), type-safe definitions of operations respect two
constraints:

– Parameter type contravariance. A parameter type has to vary in the opposite
direction as subclassing: in the subclass, the parameter has a more general
type (super-type) than in the superclass.

– Return type covariance. The return type has to vary in the same direction
as subclassing: in the subclass, the return type has a more specialized type
(subtype) than in the superclass.

Let us study how this theory extends to the component domain. In order
to define component substitutability, we only consider the smallest abstractions
(functionalities) because the whole problem reduces to determining if a com-
ponent that provides (resp. requires) a functionality can replace a connected
component that provides (resp. requires) another functionality. Functionalities
are described by their name (replacement is admitted only between same name
functionalities), parameter type list (IN parameter types), and return types (OUT
parameter types). Rules for substitutability are as follows for required function-
alities (rules for provided functionalities are obtained by a symmetric reasoning):

– IN parameter type specialization. If a required functionality is able to send
a parameter of some type, it can replace a required functionality which
sends a parameter of a more general type (because the called functionality
can ignore the information specific to the specialized type). In the example
of Figure 2(a), required functionality create(PersonalInformation) can
replace required functionality create(Information) because in the con-
text where required create(Information) can be connected (namely, to
provided create(Information)), required create(PersonalInformation)
can also be connected as it can connect to provided create(Information)
and to provided create(PersonalInformation) which is a superset.
This is an application of the substitutability rule in object-oriented languages
and obeys the contravariance principle (because in the provided point of
view, IN parameter types need generalization).

– IN parameter addition. If a required functionality is able to send a parameter
of a particular type, it can replace a required functionality which does not
send this kind of parameter (because the called functionality can ignore this
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Fig. 2. Interface compatibility rules when parameter types and number vary

parameter). For example (Figure 2(c)), required create(Information,bank-
Identity) can replace required create(Information) because in the con-
text where required create(Information) can be connected, required cre-
ate(Information,bankIdentity) can be connected too.

– OUT parameter type specialization. If a required functionality needs to re-
ceive some return type, it can replace a required functionality which needs to
receive a more specialized type (as the extra information in the specific type
can always be ignored). For example (Figure 2(b)), required create():Cus-
tomer can replace required create():SilverCustomer because in the con-
text where required create():SilverCustomer can be connected, required
create():Customer can be connected too. This is another application of the
substitutability rule in object-oriented languages and obeys the covariance
principle (also considering the provided point of view).

4 Lattice of Functionality Compatibilities

This section firstly recalls the basics of FCA and then presents the building
principles of the functionality signature lattice.

4.1 A Survival Kit for Formal Concept Analysis

The classification we build is based on the partially ordered structure known as
Galois lattice [4] or concept lattice [5] which is induced by a context K, composed
of a binary relation R over a pair of sets O (objects) and A (attributes) (Figure 3).

A concept C is a pair of corresponding sets X and Y such that:

X = { x ∈ O| ∀ y ∈ Y, (x, y) ∈ R} is called extent (covered objects)
Y = { y ∈ A| ∀ x ∈ X, (x, y) ∈ R} is called intent (shared features)
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For example, (12, bc)4 is a formal concept, but (2, bc) is not. Establishing
that (12, bc) is a concept highlights the fact that objects 1 and 2 exactly share
attributes b and c (and vice-versa). Furthermore, the set of all concepts C con-
stitutes a lattice L when provided with the following specialization order based
on intent / extent inclusion: (X1, Y1) ≤L (X2, Y2) ⇔ X1 ⊆ X2 (or equivalently
Y2 ⊆ Y1). Figure 4 shows the Hasse diagram of ≤L.

a b c d e f g h
1 × × × ×
2 × × × × ×
3 × × × × ×
4 × ×
5 × ×
6 × ×

Fig. 3. Binary relation of K = (O, A, R)
where O={1, 2, 3, 4, 5, 6} and A=

{a, b, c, d, e, f, g, h}.
Fig. 4. Concept lattice L.

4.2 Building the Lattice

We explain here the construction of the required functionality signature lattice.
As provided functionality signatures are reversely ordered, the lattice we obtain
can also be used to deal with them, when considered upside down.

We illustrate our explanation considering the required functionality create
(PersonalInformation,bankIdentity):SilverCustomer and comparing it to
create (Information):GoldCustomer. At first, for each functionality, attri-
butes are deduced from IN and OUT parameter types that explicitly appear
in the signature. These attributes are marked using × in Figure 5. Then, we
infer attributes (marked with ⊗ in Figure 5) when their types are compatible,
regarding specialization of signatures. Here are our inference rules:

– IN parameters. As explained previously, if a required functionality sends a
parameter of some type, it also implicitly sends a parameter of any more
general type (because the called provided functionality can ignore the part
of the information that is specific to the specialized type).

– OUT parameters. If a required functionality expects to receive a return value
of a type, any return value of a more specific type is also suitable (the received
extra information can be ignored).

In component-based systems, all the information about the functionalities
described in (provided or required) component interfaces is available at runtime.
4 (12, bc) is the compact notation for concept {1, 2}× {b, c}.
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Indeed, thanks to reflexivity (based on either metadata or introspection), a com-
ponent can be asked each detail of one of its functionality signature (name of the
functionality, types of IN and OUT parameters, etc.) at runtime. This capability
could be used as the basis of an automatic process that would build the binary
context and identify the inferred attributes.

Figure 6 depicts the lattice corresponding to the binary relation shown in
Figure 5, built with the Galicia tool [6]. Concepts are presented using reduced
intents and extents for readability sake: an object (signature) which belongs to
the reduced extent of a concept is inherited by all concepts that are above (down-
to-up); a property (IN or OUT parameter type) which belongs to the reduced
intent of a concept is inherited by all concepts that are below (up-to-down).

The following section gives insights of the different operations this kind of
lattice can support for the management of component directories.

IN parameters OUT param.
I PI CI BI CCN ID Co A C SC GC FC

create(I):GC × ×
create(PI,BI):SC ⊗ × × × ⊗

create(CI,BI,CCN):C ⊗ ⊗ × × × × ⊗ ⊗ ⊗
create(I,A,ID):C × × × × ⊗ ⊗ ⊗

create(I,BI,CCN,Co):FC × × × × ×

Fig. 5. Encoding of a set of required functionality signatures

I Information
PI PersonalInfo.
CI ChildInfo.
BI BankIdentity.

CCN CreditCardNb
Co Country
ID InitialDeposit
A Address
C Customer
SC SilverCustomer
GC GoldCustomer
FC ForeignCustomer

Fig. 6. Lattice Ls of service signatures
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5 Using the Lattice of Functionality Compatibility

The lattice of signatures supports three main usages. Firstly, it determines which
functionality can replace which other, in both cases of required or provided
functionalities (Section 5.1). Secondly, the validity of the connection of a required
functionality to a provided functionality can be stated (Section 5.2). Finally, in
a prospective section, it is used as the starting point of a construction chain that
goes from functionality signature to component type classification (Section 5.3).

5.1 Required/Provided Functionality Substitution

Consider the lattice of Figure 6 with the viewpoint of required functionalities. In
this lattice create(I):GC is represented by Concept 2 while create(PI,BI):SC
is represented by Concept 7. Concept 2 is more general than Concept 7 which can
be interpreted as Concept 7 can replace Concept 2. In a component architecture,
a connection to a required functionality corresponding to Concept 2 can be
replaced by a connection to a required functionality corresponding to Concept
7. In the general case, when there is a path between two concepts, the more
specific one (which has more properties) can replace the more general one (which
has a subset of properties) when the more general concept is connected (see
Figure 7(a)).

The same lattice can also be used for provided functionality substitution if
read in the reverse order (see Figure 7(b)). In the previous example, symmetric
assertion can be made: in situations where provided functionality corresponding
to Concept 7 are connected, provided functionality corresponding to Concept 2
can also be connected. Next rule formalizes how functionality substitution can
generally be deduced from the lattice.

Substitution rule. Let Cfather, Cson be two concepts of the functionality sig-
nature lattice such that Cson ≤Ls Cfather. Functionalities of Cson can replace
functionalities of Cfather when the functionalities are required. Opposite replace-
ment applies when the functionalities are provided.

5.2 Inferring Valid Connections

Both points of view (provided and required) can be combined to address the issue
of component connection. Consider the signature create(PI,BI):SC. Required
create(PI,BI):SC evidently can connect to provided create(PI,BI):SC. Given
the substitution rule, provided functionalities which are upper in the lattice, for
example provided create(I):GC, can be connected to required create(PI,BI):
SC (see Figure 7(c)). Using the same rule in the symmetric case, required func-
tionalities which are below in the lattice, for example required create(CI,BI,
CCN):C, can be connected to provided create(PI,BI):SC. By transitivity, re-
quired create(CI,BI,CCN):C can be connected to provided create(I):GC. This
is expressed in the following connection rule that formalizes how valid function-
ality connection can be deduced from the lattice.

CLA 2007 245 Montpellier, France



Fig. 7. Interpretation of the lattice of service signatures

Connection rule. Let C, Cfather, Cson be three concepts of the functionality
signature lattice such that Cson ≤Ls C ≤Ls Cfather, required functionalities of
Cson can be connected to provided functionalities of Cfather.

5.3 Towards Component Classification

Although several component models exist for CBSE, most of them include the
notions of interface and functionality. Components are reusable pieces of soft-
ware that can be chosen off-the-shelf and have a high-level objective (database
component, counter component, scheduler component, etc.). Interfaces group
functionalities that form meaningful collaborations together and have a direc-
tion (provided or required).

Functionality classification is the starting point of a classification chain that
ends in component classification, using a non-iterative version of Relational Con-
cept Analysis [7]. We detail only the level of interfaces to give an idea of the
process. An interface is described by a set of functionalities. Therefore, a formal
context for interfaces naturally associates functionalities with interfaces. How-
ever, to benefit from knowledge acquired in the lattice of service signatures,
a richer description of interfaces is obtained using the concepts of this lattice
as formal attributes. For example, let us consider two (required) hypothetic
interfaces: SilverCustomerDBcreation which includes create(PI,BI):SC and
ChildDBcreation which includes create(I,A,ID):C. As create(PI,BI):SC is
in Concepts 7, 5, 2 and 1, these concepts are used as formal attributes for in-
terface SilverCustomerDBcreation. Similarly, create(I,A,ID):C appears in
Concepts 10, 9, 5, 2, 4 and 1, giving part of the formal attributes of interface
ChildDBcreation. This kind of encoding corresponds to existential scaling op-
erator of the RCA approach [8]. Based on a discovered functionality of the first
lattice (create(I):SC in Concept 5), the technique can infer a new interface,
including at least this shared functionality. Here is a fundamental advantage
of FCA/RCA techniques compared to the simple computing of signature com-
parison: new signatures emerge that provoke emergence of new interfaces which
abstract the existing ones, etc. The process has to further be tuned by the direc-
tion of interfaces (provided versus required) which was not included in the above
discussion for simplicity sake and reverses the specialization order on signatures.

The next generalization level concerns components. Discovering new compo-
nent external specifications, in the final step of the process is of great interest for
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component designers because they discover abstract, more reusable components
that can guide them in their development work.

6 Related Work

A service trader (yellow page mechanism) is a kind of directory that allows to in-
dex and locate components through the definition of the services they provide [9].
Existing proposals, such as CORBA Trading Object Service [10], mostly follow
the ODP standard principles [11]. A component exports to the directory a service
advertisement to be registered as a provider of a service. The service advertise-
ment conforms to a service type that specifies the properties and the syntactic
interfaces that a component must feature to provide this service. Service types
are organized as a specialization hierarchy. Requests are sent to the directory to
look for providers of some service, as defined by its type. Corresponding service
advertisements can be filtered by conditions defined on property values.

Previous works do not use FCA as a base methodology. In this kind of ap-
proaches, a semi-automatic indexing methodology is proposed in [12] to help the
developer identify suitable components in an existing repository. The retrieval
is based on grouping names and keywords, and incremental queries that help to
refine the search of a component. Within the context of identifying web services,
the approaches are based on machine learning techniques, to support service
classification and annotation [13, 14]. Starting from free text service documen-
tation, services are automatically classified in classes/domains using Support
Vector Machines or Ontologies. Successively, FCA is used to group text-based
information related to the components to be identified. Contrary to our pro-
posal, these approaches (some of which use FCA and some not) use an explicitly
and statically constructed service type hierarchy [15]. Service type hierarchy and
syntactic type hierarchy are only informally related. Moreover, only information
about provided services and interfaces are considered. This content definition
and organization limits the usages of this kind of component directories in dy-
namic, evolving and open environments.

7 Conclusions and Future Work

Applications of FCA, besides their contribution to a specific domain, partici-
pate in constructing a shared expertise about FCA-based methodologies. The
contribution of this paper mainly focuses on technical aspects of encoding into
formal contexts and on the definition of relevant usages of the built lattice in
identifying compatible components. The main difficulty we encountered when
encoding was to capture type specialization in opposite ways depending on pa-
rameter (IN /OUT) and functionality (provided / required) directions. The gain
of FCA for functionality signature classification consists in proposing a clas-
sification where not only substitution and connection can be read, but also in
which new, more abstract, signatures appear. These new functionality signatures
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enable the construction of component directories via interface and component
classifications.

Perspectives include integrating complementary features of components as
proposed in some component models [16, 17, 2]. Further research will also con-
sider fully integrating such a pre-calculation in a yellow page components mech-
anism. Incrementally building the lattice will then be an extra advantage to
manage incoming and outgoing components in a very dynamic environment.
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http://www.iro.umontreal.ca/∼galicia.
7. Dao, M., Huchard, M., Hacene, M.R., Roume, C., Valtchev, P.: Improving gener-

alization level in UML models iterative cross generalization in practice. In Wolff,
K.E., et al., eds.: ICCS. Vol. 3127 of LNCS, USA, Springer (2004) 346–360

8. Huchard, M., Rouane Hacene, M., Roume, C., Valtchev, P.: Relational concept
discovery in structured datasets. Annals of Mathematics and Artificial Intelligence
49(1-4) (2007) 39–76

9. Iribarne, L., Troya, J.M., Vallecillo, A.: A trading service for COTS components.
The Computer Journal 47(3) (2004) 342–357

10. OMG: Trading Object Service Specification v1.0. (2000)
11. International Organization for Standardization and International Telecommunica-

tion Union: ISO/IEC 13235, ITU-T X.9tr, Information Technology Open Dis-
tributed Processing ODP Trading Function. (1996)

12. Lindig, C.: Concept-based component retrieval. In Köhler, J., et al., eds.: Working
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Abstract. This paper presents SearchSleuth, a program developed
to experiment with a form of automatic local analysis that extends the
standard Web search interface to include a conceptual neighbourhood
focused on a formal concept derived from the query. The conceptual
neighbourhood is displayed with upper neighbours representative of a
generalisation operation, and lower neighbours representative of a spe-
cialisation operation. SearchSleuth also introduces a notion of a cat-
egorisation operation, where the conceptual focus can shift to a sibling
concept of the search concept.

1 Introduction and Background

Existing FCA-based Web search applications focus on providing automatic local
analysis of search results for query refinement and labeled object (document or
document fragmets) clustering. This is usually done via the creation of a con-
ceptual space as a concept lattice from the search results which is then displayed
in various ways. Such methods fail to create a concept representing the query
itself within the space – meaning the information space is representative of the
results returned by the query rather than of the query itself.

SearchSleuth differs in that it creates a conceptual space as a neighbour-
hood of the search concept. This neighbourhood is comprised of generalisations
(upper neighbours), specialisations (lower neighbours) and categorisation (sib-
lings). The design therefore relies on the idea of centering the conceptual space
(concept lattice) around the focal search concept. The resulting query refinement
operations are more closely coupled to the search terms used in the creation of
the conceptual space.

Carpineto and Romano’s application, CREDO [1], uses an iceberg lattice
to generate clusters for given search terms. Searched terms are submitted to
an search engine and results returned are organized into a formal context. The
context is built with the search engine results as objects and the terms found
in the result summaries as attributes. The most general concepts of the concept
lattice are computed and displayed as a tree. The user can then interact with
the tree to view named clusters of the results. CREDO provides a front-end that
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Fig. 1. Carpineto and Romano’s CREDO Web Search Application [1]: An exam-
ple of search. CREDO displays the uppermost concepts derived from keywords
featured in search results.

extends the collected result set, and provides a landscape over the information
space which can be used to aid in search retrieval. A screenshot of CREDO is
shown in Fig. 1.

Another FCA Web search application is Koester’s FooCA [2, 3]. FooCA pro-
vides one of the richest interfaces for the construction of a formal context based
on Web search results. By taking results as formal objects and terms found within
the results as formal attributes, a formal context is created and presented to the
user. A screenshot of FooCA is shown in Fig. 2.

2 Navigation and Conceptual Neighborhoods

Kim and Compton [4, 5], and their prototype KANavigator, presented a docu-
ment navigation paradigm using FCA and a neighborhood display. KANavigator
uses annotated documents that can be browsed by keyword and displayed the
direct neighborhood (in particular the lower neighbours) to the user. This system
emphasized the use of textual labels as opposed to visualised structure.

ImageSleuth [6] used a similar interaction approach to allow exploration of
image collections. By showing upper and lower neighbors of the current formal
concept and allowing the inclusion/exclusion of these formal concepts, users can
refine or generalize their position in the information space by navigating the
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Fig. 2. Koester’s FooCA Web Search Application [2, 3]: An example of improve-
ment . By allowing users see and access the quality of the various terms in the
current search results, successive search results increase in quality.

concept lattice. ImageSleuth was additionally aided by the use of perspectives
– another name for conceptual scales – that could be combined to define the
attribute set of the lattice which formed the information space.

ImageSleuth uses most of its interface to show thumbnails of images in the
extent of the chosen concept. As a result the user never sees the line diagram
of a concept lattice. Instead, the lattice structure around the current concept is
represented through the list of upper and lower neighbors that allow the user to
move to super- or subconcepts. For every upper neighbour (C,D) of the current
concept (A,B) the user is presented with an interface that allows them to remove
the set B \ D of attributes from the current intent. Dually, for every lower
neighbour (E,F ) the user may include the set F \ B of attributes which takes
her to this lower neighbour. By offering the sets B \ D and F \ B dependencies
between these attributes are shown. Moving to the next concept not having a
chosen attribute in its intent, may imply the removal of a whole set of attributes.
ImageSleuth was usability tested and results indicated that the approach used
aided in navigation of image collections and it therefore gives rise to the re-use
of this interaction paradigm in SearchSleuth.

A formal concept A is said to be the upper neighbour (or cover) of a formal
concept B iff we have A > B, and there is no intermediate formal concept C
with A > C > B. A formal concept A is said to be the lower neighbour of
(or covered by) a formal concept B iff we have A < B, and there is no formal
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concept C with A < C < B. Upper and lower neighbour of a formal concept C
are written as UN(C) and LN(C) respectively in this paper.

3 The Domain of SearchSleuth

Web search is a difficult problem given the Internet is immeasurably large and
constantly being changed and altered, both in content and structure. Tradition-
ally, search is done by entering one or more keywords into a search engine, then
reviewing the results the appropriate Web site is found. This process requires a
good understanding of the link between the search terms and their results.

Most search engines return a ranked list of results and these usually take the
form of a document fragment or snippet that includes the URL of the result,
its title, a short summary of the document and various details such as date last
accessed. In CREDO and FooCA, it is these text-based snippets of the search
results that provide the material to create a concept lattice that forms the basis
for a conceptual information space to navigate the search results. One problem
with the transition from Web search results to FCA is that the search result
ranking information is lost. All results are treated equally, this issue is usually
addressed by reproducing the rank ordering on any result set that is realized but
this can be costly to performance.

Another problem, particularly with Web search, is that page ranking methods
use techniques such as link structure analysis, page popularity and referring
pages to condition page proximity to a search query. As such, that it cannot be
assumed that all results of a multiple term query will contain all search terms
from the original query. Even a single search term may yield search results that
do not contain the search term. This may seem counter intuitive, but if there
are enough Web pages linked to the result page that does contain that search
term, that page’s rank may be inflated high enough to feature in the result set.

Like CREDO [1] and FooCA [2, 3], SearchSleuth uses the ‘result has term’
representation for building a formal context. This means each result from the
search is considered an object, and all terms contained in the results title and
summary are considered attributes. In the case of SearchSleuth (and optionally
in FooCA) all words in the result are stop-word filtered and stemmed to their
lexical root. This reduces the size and complexity of the formal content by the
reduction of terms with common lexical roots; displaying ‘car’ and ‘cars’ as a
single term. By extension this reduces the size of the concept lattice formed from
the formal context.

CREDO does not include the original query terms when creating the context.
This omission is made because in most cases it would be expected that all results
contain the original query terms. As Web search does not behave exclusively as a
boolean search for keywords in pages, this assumption does not always hold and
the original query terms may be absent from the context as previously discussed.
CREDO, unlike SearchSleuth, displays two levels of the lattice as a tree with
users initially placed at the top-most concept. The display is initially restricted
to a single level, by with user interaction a single concept can be expanded at a
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time. This reduces clutter and also user confusion; users are not displayed with
multiple tree branches at the same level with the same label.

The FooCA application builds and displays the entire formal context derived
from the query terms returned from the search engine. The formal context is
built without the originating query terms and the interface provides numerous
controls over the information space created by the concept lattice. The user is
shown the entire formal content in one cross-table. Cross-tables are less than
perfect for human interpretation but the display does permit great detail. By
viewing the entire formal content, the user is never positioned within the induced
information space, and thus is without a perspective that is defined by the query.

SearchSleuth attempts to immerse the user in the information landscape,
with a perspective centered on the query used to create it. The design logic is
that this should give more insight into the meaning of the query with respect to
other terms that appear in the result set.

Also, SearchSleuth is the only FCA-based Web search that uses multiple
searches per query. This is done to expand the information space. The ancillary
searches each yield half the results of the main query search. This expands the
bounds of the information space with more general queries and provides for
better clustering of facts as is explained in the next section.

4 Design Approach of SearchSleuth

SearchSleuth follows from the usability testing of ImageSleuth and employs
the same conceptual neighbourhood paradigm for display purposes. Unlike Im-
ageSleuth, SearchSleuth’s context is not static, so the space is rebuilt with
each navigation step. This is because computing the entire domain, the Web, as
a conceptual neighborhood would be computationally prohibitive.

The formal context for SearchSleuth is created on demand for each query;
this suits the dynamic nature of the Web. The formal objects are induced from
the top X results from the query, and the formal attributes are the terms con-
tained in the title and summary of each result (like CREDO and Fooca). Terms
are extracted from the title and summary after stemming and stop-word filtering
has been performed. As mentioned, stemming reduces words to their lexical root
(e.g. jump, jumping and jumps are all reduced to jump). Stop-word filtering re-
moves words without individual semantic value, for example a, the and another.
Removing these words reduces the complexity of the context without any no-
ticeable reduction in semantic quality. For presentation purposes the stemming
is reversed, this way terms rendered unintelligible by stemming are reformed in
a meaningful manner.

The formal context is then reduced by removing attributes with low support.
Every attribute that has less than 5% of the objects in the incidence relation
is removed. This greatly decreases the computational overhead involved in most
FCA algorithms. The reduction rarely effects the computed conceptual neigh-
borhood as the terms removed are scarce within the information space.
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Once the formal context is constructed, the search concept is created. This
is done by taking the original query terms as attributes and deriving the formal
concept. The upper neighbours of this formal concept are then derived and used
to expand the formal context. This is done by querying the search engine with
the attributes of each upper neighbor and inserting the results into the context.
Results for these ancillary searches are limited to fewer search results.

This process of building the formal context increases the number of terms
in the formal context based on a single level of generalisation. This makes the
induced information space larger and richer.

Once the formal context is expanded, the search concept is recomputed as it
may have been invalidated by this process. The upper and lower neighbours are
computed next, then the sibling concepts. The explanation of neighbor is found
in Section 2. Sibling concept are then calculated by finding all of the lower
neighbours of upper neighbors which are upper neighbours of lower neighbors.
Put another way, siblings are the removal of an attribute (or attributes) that
defines an upper neighbor, and the inclusion of an attribute (or attributes) that
defines a lower neighbor.

Consider the set of concepts X, UN(X) is defined as the union of all upper
neighbours of the concepts in X.

UN(X) :=
⋃

{UN(C) | C ∈ X}

Dually, consider the set of concepts X, LN(X) is defined as the union of all
lower neighbours of the concepts in X.

LN(X) :=
⋃

{LN(C) | C ∈ X}

For a lattice with concept, C, the set of concepts, S is the siblings of C,
defined:

S := [LN(UN(C)) ∩ UN(LN(C))]\{C}

An example is shown in Fig. 3; concepts with a grey backing are siblings of
the concept marked with a C.

Using the same labeling scheme as ImageSleuth for upper and lower neigh-
bors and using the full intent as labels of sibling concepts, a display is rendered
for the user. The primary feature of the display is the text entry box in which the
query is entered. It is considered representative of the derived search concept,
and thus is centered in the display. This is shown is Fig. 4.

Upper neighbors are shown above this text entry box, displayed as text la-
bels. The labels are the attributes which would be removed to navigate to that
upper neighbor. These labels are preceded by a minus symbol (-) – the standard
exclusion operator in most search engine interfaces – to reinforce the notion of
removal : shown in Fig. 4.

Lower neighbors are similarly displayed, but placed below the text entry box.
These labels are the attributes which would be added to navigate to that lower
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Fig. 3. Diagram demonstrating the sibling concepts of the concept labelled with
a C.

neighbour. Like upper neighbor labels, these labels are preceded by a symbol
to reinforce the labels meaning, namely the plus symbol (+) and the notion of
include: shown in Fig. 4.

The display order of the upper and lower neighbors is determined by ex-
tent size, the concepts with larger extents displayed first (left-most). Extent is
representative of the importance or prominence of a term within the current
information space. This means the inclusion of the first upper or lower neighbor
shown will have the least effect on the extent size current concept, if the tran-
sition were to be made on a static formal context. Extent is also used to aid in
the coloring of the labels background. The larger the extent on a lower neighbor,
the deeper the blue behind that concepts label. Upper neighbors are displayed
with the same principle but with red.

One method for dealing with the return of empty-extents from term-based
searching is to provide users with a list of the terms entered so that they can
incrementally remove terms to unconstrain the search. Another method is to
apply a vector space model of MPEG-7 images [8] and then apply similarity
measures for multi-dimensional feature spaces. ImageSleuth explores a different
approach by using variations on defined distance [9] and similarity [10] metrics
in the FCA literature in order to find relevant concepts.

Siblings are shown to the right of the text entry box, see shown in Fig.
4. The complete intent of these concepts is displayed within square brackets
preceded by a tilde symbol (~[...]). This helps groups the concept intents and
aid distinguishing between the concepts. Unlike upper and lower neighbours,
which are sorted by extent size, siblings are ordered by similarity to the search
concept. The similarity metric is based on work by Lengnink[9] and adapted for
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practical application to information retrieval and browsing in ImageSleuth.
Similarity so defined uses the size of the common objects and attributes of the
concepts. For two concepts (A,B) and (C,D):

similarity((A,B), (C,D)) :=
1
2

(
|A ∩ C|
|A ∪ C| +

|B ∩D|
|B ∪D|

)
.

The similarity metric is used to order the sibling concepts, while highlighting
remains based on the extent size for each concept. Coloring on sibling labels is
based on grey shades, the darker the larger the concept’s extent.

The conceptual neighborhood representation is followed by the results of the
search shown in the lower half of the screen shown in Fig. 4.

By clicking any of the possible concept labels, the query is set to the intent
of the selected concept and the query process is restarted. This is an important
restructuring step as a change in the query in this way changes the result set,
and in order for the information to be valid it needs to be recomputed.

An example of the interface is show in Fig. 4. The search concept is based
on the three query terms formal concept analysis. It shows a single upper
neighbor labeled with -analysis (which represented the concept with the intent
(formal, concept)) which interestingly shows an implication that formal and
concept are implied by analysis. The first of the lower neighbors is the acronym
fca. This is followed by terms such as lattice, mathematics and theory. These
terms are good examples of specialisation from the concept of Formal Concept
Analysis and provide some intuitive validation of the approach.

This neighborhood is based on 115 formal objects. The initial number of
formal attributes for this example was 623, after reducing the formal context this
was decreased to 40. Thus, stemming and stop-word removal offer a tremendous
reduction in context complexity, and therefore computation time.

Performance of the prototype shows that the vast majority of the time taken
to display the results of a query is spent transferring search results from the
search server. For the page shown in Fig. 4, computation of formal concepts took
a total of 422ms, while transfer between Yahoo servers and the SearchSleuth
host, comprising of two search requests, took 4062ms.

A more detailed example is shown in the next section.

4.1 An Example Interaction for SearchSleuth

The following exemplifies a possible navigation of a dynamic information space
centered with SearchSleuth1, initially, on the search term ‘tiger’2.

In Fig. 5, it can be seen that the space has no generalisations or categorisa-
tions. This is because the search concept is the top-most concept of the lattice,
and therefore all objects have the attribute tiger. Examples of what may be
expected as specialisations of this search concept are:
1 the reader is encouraged to follow the example by testing SearchSleuth which can

be accessed from http://www.kvocentral.org/software/searchsleuth.html
2 Searching for big cat codenames for Mac OS X versions is an unofficial, but well

established, standard for FCA Web-search examples.
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Fig. 4. SearchSleuth display, including top results, after a search for ‘formal
concept analysis’.

Big Cat Adding +cat would probably focus on the Tiger species.
Mac OS Adding +os would probably focus on the operating sys-

tem (OS) used by Mac computers.
Result Facets +information, feature, +photo and +facts are types

of results, and can guide the user.

Fig. 5. SearchSleuth display after a search for ‘tiger’.

Fig. 6 shows the addition of information via specialisation. It can be seen
that this has changed the information space surrounding the query with more
generic terms, such as +pictures and site. Also information about the animal
tiger is made available, such as endangered, conserving and white. Cateogisa-
tions in this space focus on combining tiger with elements found by combining
tiger with information, such as tiger species and tiger wild.

Fig. 7 shows the addition of os via specialisation from Fig. 5. This special-
isation has created an information space focusing on the Apple Mac operating
system, in particular version 10.4 which is also known as ‘tiger’. The first two
specialisations are representative of the company which makes the OS. The next
two are in reference to the version of the OS. Categorizations in this space tend
toward the removal of the term tiger in place of the focus on os.

CLA 2007 257 Montpellier, France



Fig. 6. SearchSleuth display after clicking the ‘+information’ link in Fig. 5.

Fig. 7. SearchSleuth display after clicking the ‘+os’ link in Fig. 5.

Specialising on cat from Fig. 5 gives the conceptual neighborhood shown in
Fig. 8.

Fig. 8. SearchSleuth display after clicking the ‘+cat’ link in Fig. 5.

Specialising on feature from Fig. 5 reveals an interesting categorisation
shown in Fig. 9. Namely a categorization concept with the label ~[tiger woods]
which most likely refers to the golfer. This reveals another possible meaning for
the term tiger.

Fig. 9. SearchSleuth display after clicking the ‘+feature’ link in Fig. 5.

The tiger woods search has a definite golf focus thus confirming the navi-
gation intuitions.

5 Conclusion

SearchSleuth, extends current FCA Web search engines by positioning the user
within the information space induced by the search formal contest, rather than
placing the user arbitrarily within the space or presenting the entire space. This
allows generalization and categorization operations to be performed against the
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Fig. 10. SearchSleuth display after clicking the ‘∼[tiger woods]’ link in Fig.
9.

Fig. 11. SearchSleuth display after a search for ‘formal concept analysis’.

current query concept induced by the search terms. SearchSleuth overcomes
a number of practical difficulties in the use of FCA for Web Search, namely a
practical approach to the construction of a sparse formal context and the cate-
gorization operation, where the conceptual focus can shift to a sibling concept
of the induced search concept.
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Abstract. Formal Concept Analysis is based on the occurrence of symbolic attributes in
individual objects, or observations. But, when the attribute is numeric, treatment has been
awkward. In this paper, we show how one can derive logical implications in which the atoms
can be not only boolean symbolic attributes, but also ordinal inequalities, such as x ≤ 9. This
extension to ordinal values is new. It employs the fact that orderings are antimatroid closure
spaces.

1 Extending Formal Concept Analysis

Formal Concept Analysis (FCA), which was initially developed by Rudolf Wille and Bernhard Gan-
ter [3], provides a superb way of describing “concepts”, that is closed sets of attributes, or properties,
within a context of occurrences, or objects. One can regard the concept as a closed set of objects
with common attributes. Frequently clusters of these concepts, together with their structure, stand
out with vivid clarity. However, two unresolved problems are often encountered. First, when con-
cept lattices become large, it is hard to discern or describe significant clusters of related concepts.
Gregor Snelting used formal concept analysis to analyze legacy code [6, 14].1 Snelting’s goal was
to reconstruct the overall system structure by determining which variables (attributes or columns)
were accessed by which modules (objects or rows). It was hoped that the concept structure would
become visually apparent. Unfortunately, the resulting concept lattice shown on page 356 of [6] is
little more than a black blob. Visual interpretation of closure concepts does not seem to scale well.

Second, when the attribute values are numeric, as is often the case with technical data, formal
concept analysis becomes difficult. It is easy to comprehend the set of all objects whose color is
“red”; But what precisely constitutes the set of objects whose weight is “9.5”, or “near 9.5”, or “less
than 9.5” or otherwise similar to “9.5”. Fuzzy set theory [5, 18] might be appropriate here, but we
prefer a deterministic approach.

To cope with the first issue, our approach has been to work with the logical implications that
can be deduced from adjacent closed concepts in the lattice, rather than to seek clusters of such
concepts. So long as all the attributes are boolean this seems to work rather well. We have applied
formal concept analysis to relations (contexts) of sizes 8, 124 × 85 and 1, 272 × 144. The resulting
closed set lattices were large, 104,104 and 1,804 nodes respectively, but nevertheless we were able to
extract useful logical implications. In Section 3 we briefly review some of this older work.

In Section 4 we will develop our new approach to representing numeric predicates. Very briefly,
it will consist of viewing a concept, not as being a closed set of attributes associated with a set of
objects, but rather regarding it as a closed set of “closed sets” associated with the objects.

1 Siff and Reps [13] published shortly after.
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A crucial contribution of FCA has been to establish the role and importance of closure operators
and closed sets in mathematical thinking. In Section 2 we review those closure concepts that we will
need later.

2 Closure Operators and Closure Spaces

The notion of “closure” plays a major role in our representation of the real world. In particular we
will be concerned with closed sets of objects, closed sets of predicates and closed sets of numbers.

2.1 Closure Concepts

By a “closure system” over a “universe” U, we mean a collection C of sets X, Y, . . . Z ⊆ U, including
U, satisfying the property that if X, Y ∈ C then X ∩ Y ∈ C. The sets of C are said to be the closed
sets of U. As an alternative to this “intersection” characterization, one can define a closure operator

ϕ : 2U → 2U satisfying the following 3 axioms for all X, Y, Z:
X ⊆ X.ϕ,
X ⊆ Y implies X.ϕ ⊆ Y.ϕ
X.ϕ.ϕ = X.ϕ.

(For technical reasons we prefer to use suffix operator notation, so read X.ϕ as “X closure”.) Readily,
a set X is closed in C, if X.ϕ = X . The equivalence of these two alternative definitions is well known
[8], and we will use both in the following sections.

Closure systems can satisfy many other axioms, and those that do give rise to different varieties
of mathematical systems. If (X ∪ Y ).ϕ = X.ϕ ∪ Y.ϕ we say ϕ is a topological closure. If the system
satisfies the “exchange axiom”, that is if p, q &∈ X.ϕ but q ∈ (X ∪ {p}).ϕ then necessarily p ∈
(X ∪ {q}).ϕ, the system can be viewed as a kind of linear algebra, or more generally a “matroid”.
The Galois closure we will be using in this section satisfies neither of these additional axioms. But
later in Section 4, we will be using “antimatroid” closure operators, that is those which satisfy the
“anti-exchange axiom” if p, q &∈ X.ϕ and q ∈ (X ∪ {p}).ϕ then p &∈ (X ∪ {q}).ϕ .

2.2 Galois Closure and Concept Lattices

The approach we will follow is similar to that was first developed by Rudolf Wille and is best
presented in [3]. Formal concept analysis begins with a relation R between two sets, say a set O of
objects and a set P of object predicates, or attributes. Using standard relational terminology, each
object oj ∈ O can be regarded as a row in R and each predicate pk ∈ P is a column. Each attribute
pk is a binary, logical property, i.e. pk(o) is either true or false, because the object exhibits property
pk or it doesn’t. A concept Cn is a pair of closed subsets Cn = (On, Pn) where On ⊆ O, Pn ⊆ P
with the property T that for every oi ∈ On, every pk ∈ Pn, pk(oi) is true. Each concept is assumed
to be maximal, that is for the set On there is no larger subset P ′

n ⊃ Pn satisfying property T , and
for Pn there is no larger subset O′

n ⊃ On satisfying T .
The collection C of all concepts Cn, so defined, forms a closure system; that is, the intersection of

any two concepts in C is a concept. Consequently, the collection C of concepts forms a lattice when
partially ordered by containment with respect to the predicate sets Pn. 2 If we start with the relation

2 Ganter and Wille prefer to order with respect to object set containment yielding the dual lattice, c.f.

page 20 [3].
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R of Figure 1(a) we obtain the concept lattice L shown as Figure 1(b).3 Each node is labeled with a

1

2

3

4

5

6

7

8

a b c d e f g h i

P

O

abdf
56

adf
568

ad
5678

abcdf
6

acdf
68

acd
678

abcdefghi

acde

7

abc

36

ab

12356

a

12345678

ac

34678

abg
123

ag

1234

23
abgh

acgh
34

agh

234

4

abcgh
3

acghi

(a)

(b)

Fig. 1. A relation R and its corresponding concept lattice L

closed set of predicates and a closed set of objects satisfying those predicates, or properties. These
two closed sets constitute the concept pair. For example, the combination of properties adf is found
in rows, or objects, 5, 6 and 8.

In the case of FCA, the closure operator is a Galois closure between O and P , and has been well
studied [1, 2, 7] In this paper we will emphasize the closure aspect as denoted by ϕ, rather than the
concept aspect developed in [3].

2.3 Closed Sets, Generators and Logical Implication

Let C denote a closed set. Then there is some set A ⊆ C such that A.ϕ = C. If A is a minimal
such set, w.r.t. set inclusion, we call it a generator of C denoted by C.γ, or by A → C [8]. The
latter symbolism is not accidental. If ϕ is a Galois closure, then closed set generation and logical
implication are identical [9].

Whenever the closure operator is antimatroid, there is a unique generating set for any closed set
[8]. This is the property we will need in Section 4. This need not be true in the case of a Galois
closure. For example, the generating sets of abcgh in Figure 1(b) are bcg and bch, which can be
expressed logically as

bcg ∨ bch → abcgh.
We use concatenation as a short hand to express set enumeration, and when the elements are logical
predicates to express conjunction. Similarly, we often suppress the dependent variable. One could
expand the expression above to

(∀o ∈ O)[(b(o) ∧ c(o) ∧ g(o)) ∨ (b(o) ∧ c(o) ∧ h(o)) → a(o) ∧ b(o) ∧ c(o) ∧ h(o)]
which seems to be unnecessarily unwieldy. Note, that the universal quantification is restricted to O,
the set of observed objects.

3 This figure is taken directly from [3].
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The issue now becomes: “given a lattice of closed concepts, such as Figure 1(b), how does one
derive the generating sets?” For example, what is the generator of the closed set acde in Figure 1(b)?
In [4] it is shown that

Theorem 1. Let C be a closed set with respect to ϕ. Let F denote the family of difference sets
Dk = C−Ck where Ck are the closed sets covered 4 by C in Lϕ. A set C.γ ⊆ C is a generator of C
if and only if C.γ ∩ Dk &= Ø for all Dk ∈ F .

With this theorem, we can construct the generator of any closed set C as a combination of elements
ei ∈ Di = C−Ci where C covers Ci in L. The node acde covers only one node acd in the lattice
L, so C−C1 = {e}. Thus, using the result above we can show that the generator acde.γ = {e}, or
e → acde. That this is true is evident from Figure 1(a). Property e is only found in observation 7,
where a, c, and d are also seen. So the property e, in this case, trivially implies properties a, c and d.
In the case of abcgh, D1 = {gh}, D2 = {c} and D3 = {b}, so bcg and bch must both be generating
sets.

The intuitive understanding of Theorem 1 is simple. Let C be a closed set covering Ck. Readily
we cannot have C.γ ⊆ Ck else C.γ.ϕ = Ck. So C.γ must have at least one element ek that is “not in”
Ck to insure Ck ⊂ C. The union of these ek is sufficient to generate a closed set strictly larger than
all the Ck. And, since C covers all of the Ck, this closed set must be C. The negative motifs “not
in” and “not contained” will be repeated in Section 4. With this “covering” result, the derivation of
generating sets is an inexpensive, local construction whose details can be found in [11].

2.4 Path Closures in Partially Ordered Sets

Recall that a set S is partially ordered by the relation ≤ if it is reflexive, weakly anti-symmetric and
transitive.5 Partially ordered sets (posets) are often represented as acyclic directed graphs, such as
Figure 2, which we illustrate left to right like a number line rather than up and down in a Hasse
diagram.6

a

b

c

d

e

Fig. 2. A poset on 5 points.

Given any poset there are three naturally associated path closures defined
Y.ϕL = {x|x ≤ y, y ∈ Y }
Y.ϕR = {z|y ≤ z, y ∈ Y }
Y.ϕC = {y|y1 ≤ y ≤ y2, y1, y2 ∈ Y }.

These path closures have been variously called “downset” or ↓, “upset” or ↑, or “convex” closures
respectively. In the case of Figure 2, these three path closures respectively yield the closed sets

4 C covers Ck if we do not have a closed C′ such that Ck ⊂ C′ ⊂ C.
5 It is customary to denote partial order relations with ≤ rather than R.
6 Since x ≤ x,∀x, one could add loops at all vertices (points), but these are customarily omitted.
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CL = C↓ = {Ø, a, b, ab, bd, abc, abcd, abcde}

CR = C↑ = {e, ce, de, cde, ace, acde, bcde, abcde}

CC = 2{abcde}−{ae, be, abe, ade, bce, bde, abce, abde}
In the case of convex closure it is easier to enumerate the eight subsets that are not closed, e.g. not
convex.

It is shown in [8] that these path closures on posets are antimatroid. Consequently all closed sets
have unique generators. For example, consider downset closure ↓ on Figure 2. The closed sets have
the indicated generating sets.

C Ø a b ab bd abc abcd abcde
C.γ Ø a b ab d c cd e

3 Logical Implication in Large Concept Lattices

In Section 1 we said that by interpreting a concept lattice, L, as a set of logical implications rather
than trying to analyze it visually, we could begin to cope with large lattices. We briefly review here
the logical analysis of two such lattices, of 104,104 and 1,804 nodes each. Details can be found in [11,
12] and [10]. Our purpose is to reinforce the practicality of extracting generating sets (the premise(s)
of the implications) using a local covering algorithm based on Theorem 1 of Section 2.3.

According to the “Audubon Society Field Guide of North American Mushrooms” mushrooms
can be characterized with respect to 22 physical attributes, including “cap shape” and “cap surface”.
Cap shape can take the form of “bell”, “conical”, “flat”, “knobbed”, “sunken” or “convex” for 6
distinct logical attributes which we encode as b1, c1, f1, k1, s1 and x1. Similarly a cap surface can be
“fibrous”, “grooved”, “smooth” or “scaley”, which were encoded as f2, g2, s2, y2. By encoding the
possible logical predicates for each of the 22 physical attributes, we get 85 distinct logical predicates
characterizing the 8,125 different species of North American mushrooms.

The complete lattice of mushroom data has 104,104 nodes, or closed concepts. And, since each
closed concept has at least one, but often many, generators we have many more logical implications
— almost all of which are totally useless. But, it is not too hard to extract “useful” implications
from this mass. For example, a simple AWK script that searches for the predicate p0 (poisonous) in
the closed set (consequent) and a singleton predicate for the generator (premise) yields implications
such as:

g2 → p0, w3, t4, n5, f6, w7, n8
or, “don’t eat mushrooms with grooved cap surfaces”. Expanding the AWK script to retrieve similar
implications, but with exactly two predicate generators yields, for example:

c1, y2 → p0, n5, f6, w7, n8
or, “avoid those with conical, scaley caps”.

An important concept in science is that of deterministic causality in which the occurrence of
some event, or conjunction of events, must necessarily “cause” a consequent event. Indeed, this was
the holy grail of Newtonian physics and much of 19th century science. “Causality” implies necessity,
or logical implication. But, it also involves a temporal aspect. The consequent event must temporally
follow all assumed antecedent events. One arena where we expect deterministic causality is software
execution.

For this application we secured trace data detailing all method invocations in the transaction
management module of the open source Jboss 1.4.2 statistical package. My colleagues, JinLin Yang
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and David Evans [17] had instrumented this module and generated 1,227 trace sequences consisting
of 498,489 module invocations, of which 144 were distinct. Many invocations are repeatedly executed
in a single trace. These yielded a 1, 227 × 144 relation, or context, with a resultant lattice of 1,804
nodes and again many more logical implications.

These were run agains a rather simple temporal filter which ensured that all invocations in the
premise (generator) preceded every invocation in the consequent (closed set) in every trace. This
process yielded 43 likely causal dependencies of which

17 ⇒ 22, 23
46 ⇒ 47, 48, 49, 60, 62 7

are two representative examples. All appear to be true dependencies.
Our goal in recounting these two examples of past results is simply to establish (1) that software

exists to process rather large binary relations, (2) that using Theorem 1 is a practical way of deter-
mining generator sets and (3) that considering the lattice to be a source of logical implications can
have practical value. The software, which employs an incremental approach to creating the lattice,
that we believe was first proposed by [15, 16], is available from the author.

4 Numeric Values

Formal Concept Analysis, as well as our own development to date, has been focused on binary
predicates. Either a predicate p is true for a given object/observation, or it is not. This made it easy
to reason about sets of true predicates. However, much of our understanding of the natural world is
numeric. We count and we measure.

Every boolean algebra, or lattice L, is a closure system because x, y ∈ L implies x ∧ y ∈ L. In
particular, any predicate p = 0 or 1 is a trivial boolean algebra, or closure system Cp. Each element,
0 or 1, is its own generator. We achieve far greater expressive power if we let each predicate pk of
an observational tuple (p1, . . . , pn) be the generator of a closed set in a closure system Ck, where
Ck can be more complex than just {0, 1}. If each closure system Ck is antimatroid, as defined in
Section 2.1, then every closed set has a unique generator [8]. Consequently, if the tuple of predicates
(p1 . . . , pn) is a tuple of generators, then (p1 . . . , pn) denotes a unique closed set in the n-fold direct
product C1 . . . , Cn.

It will be easier to understand the theory we are about to develop if we first consider a concrete
example. Figure 3(a) has been shamelessly copied from ([3], p.44). It summarizes the ratings of 14
monuments on the Forum Romanum by different travel guides. Here, B = Baedecker, G = Les
Guides Bleus, M = Michelin and P = Polyglott.

The 14 numeric 4-tuples can be partially ordered in the usual way, that is (x1, x2, x3, x4) ≤
(y1, y2, y3, y4) if and only if xk ≤ yk, k = 1, . . . 4. Figure 3(b), in which individual tuples have been
prefixed with a letter denoting the monument giving rise to that tuple, illustrates this ordering.
In order to make it a closure lattice, whenever two tuples are covered by a common tuple, their
“intersection tuple” has been entered into the order, as required in any well-formed closure system.
These intersection tuples have been underlined for emphasis.

Consider the tuple n : (0, 2, 2, 1) which covers the tuples (0, 1, 2, 1) and (0, 2, 2, 0) in L. Recall
from Section 2.3 that the generators of a set are determined by the sets it covers. We claim that the
generators of n : (0, 2, 2, 1) are (G > 1)∧(P > 0). Moreover, we claim that the implication embodied

7 In a preprocessing step, each method invocation was uniquely identified by an integer, 1 through 144
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m:

f:

l: h:

c,g: k: d:

e:

n: a:

i:

j:

b:

(a)

(b)

Fig. 3. (a) Ratings of Roman monuments by 4 guide books, (b) Lattice of closed sets implicit in (a).

by this closed set is [(G > 1)∧ (P > 0)] → [(M ≥ 2)∧ (B ≥ 0)]. First, verify that in Figure 3(a) this
implication is in fact true, with j and n being confirming instances.

The principle behind this derivation, which was sketched in Section 2.3 and rigorously proven
for sets in [4], is to show “what constitutes the difference between this closed set and the closed
sets it covers”. In our case, the only difference between (0, 2, 2, 1) and (0, 1, 2, 1) is that “G is not
≤ 1”, or equivalently “G is > 1”. Similarly, since P cannot be ≤ 0, we must have P > 0. The
conclusion, i.e. those predicates with no differences, could be B = 0 and M = 2. But, what we
really know is that ¬(B < 0) and ¬(M < 2); so B ≥ 0 and M ≥ 2 represent the best inferences.
The adjacent tuple in Figure 3(b) is a : (1, 1, 2, 1) which covers the tuples (0, 1, 2, 1) and (1, 1, 2, 0).
Thus the same reasoning yields [¬(B ≤ 0) ∧ ¬(P ≤ 0)] → [¬(G < 1) ∧ ¬(M < 2)] or equivalently
[(B > 1) ∧ (P > 1)] → [(G ≥ 1) ∧ (M ≥ 2)] which is verified by observations a, i and j.

Figure 4 provides a rather typical relationship between numeric data that is a bit more complex

42 6 8 14 16 18 201210
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Fig. 4. A semi-random distribution of points

than Figure 3(a). We will again use downset closure, ≤, to order both the x and y values.
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The resultant closure lattice is shown in Figure 5(b). Using the same logic that we have described

(19, 12)

(18, 8)

(19, 9)

(16, 9)

(15, 9)

(15, 8)

(10, 8) (13, 7)

(10, 5)

j:h:

k:

m:l:

n:

o:

(10, 7) i: (12, 5)

(9, 6)f:

(9, 5) g: (10, 3)

(6, 2)(5, 3)

(5, 2)

(4, 1)b:

(3, 1)

(9, 3)

(6, 3)d:

(5, 5)c:
(8, 2)e:

(3, 3)a:

(3, 2)

(16, 8)

Fig. 5. The closure lattice corresponding to the points of Figure 4.

above, we can assert that y > 3 → x ≥ 5, based on node c; that x > 10 → y ≥ 5, based on node i
(12,5) covering (10,5), among many others. These can be verified in Figure 5(a). We have begun to
reason about the relationship between x and y.

In both the two preceding examples we used downset closure to define the numeric closure spaces.
We can be more creative. For our next example we consider the same semi-random distribution
of points of Figure 4, but consider 3 numeric closure spaces, specifically x with ϕ↓, y with ϕ↓
and y with ϕ↑. Thus the point i is encoded as (12, 5, 5). A node p = (xp, y1p, y2p) is less than

q = (xq, y1q, y2q) if xp ≤ xq, y1p ≤ y2q and y2p ≥ y2q. Thus i ∧ m is not i as before, but rather
i ∧ m = (12, 5, 5) ∧ (18, 8, 8) = (12, 5, 8).

Figure 6 illustrates the resultant closed set lattice. The original points from Figure 4 are embold-
ened. Many of the intersection nodes are labeled with respect to these original data points. The zero
element is (3, 1, 12) or (min, min, MAX), while the supremum, or one element, is (MAX, MAX, min).
We have indicated it in just this way because our software requires such a virtual supremum as its
initial condition.

We observe that this lattice has a very different shape than that of Figure 5. One can see various
substructures emerging within it; but nevertheless it is reaching the limit of visual comprehension.

However, we can still reason about these numeric values. For instance the node (12, 5, 8) = i∧m
covers nodes (10, 5, 8) and (12, 5, 9). Consequently ¬(x ≤ 10) and ¬(y ≥ 9) else (12, 5, 8) could not
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(9,6,7) f^j

h:(10,8,8)

m:(18,8,8)

(8,2,3) e^g

(5,3,6)

(5,3,7)

(5,3,8)

(5,3,9)

(5,2,7)

(4,1,7) b^j

(4,1,8) b^m

(3,1,8)

(3,1,7)
(5,2,8)

(6,3,8) d^h

(5,5,6)c^f

(3,1,6)

(4,1,6) b^f

(5,2,6)

(12,5,7) i^j

(10,3,7) g^j

Fig. 6. The lattice of closed sets in Figure 4.

cover both nodes. Thus we know that x > 10 and y < 9 constitute the generator of i ∧ m, which
together imply that y ≥ 5. Inspection of Figure 5(a) shows that this describes the elements i, j, and
m. The node (16, 8, 12) = l∧m∧o covers only the single node (15, 8, 12). If ¬(x ≤ 15), then because
(16, 8, 12) is closed we must have y ≥ 8 and y ≤ 12), or more compactly, (x > 15) → (8 ≤ y ≤ 12).
This encompasses the elements l, m, n and o.

5 Conclusions

The substitution of closed sets from an antimatroid closure space for some, or all, binary predicates
in FCA is very new. We are not confident that we fully understand this process. For example, we
have not yet written software that will automatically produce the lattice of closed concepts nor
their generators. Figures 5 and 6 were tediously produced by hand, and even now may still contain
errors. However, a method that allows us to treat numerical inequalities as boolean predicates offers
considerable promise. We can imagine uncovering from legacy code rules such as:

if not get lock and ntries > 10 then abort .
Undirected data mining that can yield assertions such as

if 5 < x < 13 then −4 ≤ y ≤ 0
from raw numeric input could bound the error of imprecise observation.

CLA 2007 268 Montpellier, France



We have applied the antimatroid path closures to totally ordered integer (or real) data sets, but
they are equally defined for all partial orders. This opens the potential of using this technique to
analyze the behavior of concurrent computer systems, or biological systems in which the expression
of phenomena can occur along possibly multiple paths. None of this is yet reality; but the potential
for greatly expanding the application of Formal Concept Analysis is here.
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Abstract. The paper presents a new method of decision tree induction
based on formal concept analysis (FCA). The decision tree is derived
using a concept lattice, i.e. a hierarchy of clusters provided by FCA. The
idea behind is to look at a concept lattice as a collection of overlapping
trees. The main purpose of the paper is to explore the possibility of
using FCA in the problem of decision tree induction. We present our
method and provide comparisons with selected methods of decision tree
induction on testing datasets.

1 Introduction

Decision trees and their induction is one of the most important and thoroughly
investigated methods of machine learning [4, 13, 15]. There are many existing
algorithms proposed for induction of a decision tree from a collection of records
described by attribute vectors. A decision tree forms a model which is then used
to classify new records. In general, a decision tree is constructed in a top-down
fashion, from the root node to leaves. In each node an attribute is chosen under
certain criteria and this attribute is used to split the collection of records covered
by the node. The nodes are split until the records have the same value of the
decision attribute. The critical point of this general approach is thus the selection
of the attribute upon which the records are split. The selection of the splitting
attribute is the major concern of the research in the area of decision trees.

The classical methods of attribute selection, implemented in well-known algo-
rithms ID3 and C4.5 [13, 14], are based on minimizing the entropy or information
gain, i.e. the amount of information represented by the clusters of records cov-
ered by nodes created upon the selection of the attribute. In addition to that,
instead of just minimizing the number of misclassified records one can minimize
! Supported by Kontakt 1–2006–33 (Bilateral Scientific Cooperation, project “Alge-

braic, logical and computational aspects of fuzzy relational modelling paradigms”),
by grant No. 1ET101370417 of GA AV ČR, by grant No. 201/05/0079 of the Czech
Science Foundation, and by institutional support, research plan MSM 6198959214.
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the misclassification and test costs [9]. Completely different solutions are based
on involving other methods of machine learning and data mining to the problem
of selection of “splitting” attribute. For instance, in [12] the authors use adaptive
techniques and computation models to aid a decision tree construction, namely
adaptive finite state automata constructing a so-called adaptive decision tree. In
our paper, we are going to propose an approach to decision tree induction based
on formal concept analysis (FCA), which has been recently utilized in various
data mining problems including machine learning via the so-called lattice-based
learning techniques. For instance, in [6] authors use FCA in their IGLUE method
to select only relevant symbolic (categorical) attributes and transform them to
continuous numerical attributes which are better for solving a decision problem
by clustering methods (k-nearest neighbor).

FCA produces two kinds of outputs from object-attribute data tables. The
first one is called a concept lattice and can be seen as a hierarchically ordered
collection of clusters called formal concepts. The second one consists of a non-
redundant basis of particular attribute dependencies called attribute implica-
tions. A formal concept is a pair of two collections—a collection of objects, called
an extent, and a collection of attributes, called an intent. This corresponds to
the traditional approach to concepts provided by Port-Royal logic approach.

Formal concepts are denoted by nodes in line diagrams of concept lattices.
These nodes represent objects which have common attributes. Nodes in decision
trees, too, represent objects which have common attributes. However, one cannot
use directly a concept lattice (without the least element) as a decision tree, just
because the concept lattice is not a tree in general. See [2] and [1] for results
on containment of trees in concept lattices. Moreover, FCA does not distinguish
between input and decision attributes. Nevertheless, a concept lattice (without
the least element) can be seen as a collection of overlapping trees. Then, a
construction of a decision tree can be viewed as a selection of one of these trees.
This is the approach we will be interested in in the present paper.

The reminder of the paper is organized as follows. The next section contains
preliminaries from decision trees and formal concept analysis. In Section 3 we
present our approach of decision tree induction based on FCA. The description
of the algorithm is accompanied with an illustrative example. The results of some
basic comparative experiments are summarized in Section 4. Finally, Section 5
concludes and outlines several topics of future research.

2 Preliminaries

2.1 Decision trees

A decision tree can be seen as a tree representation of a finitely-valued function
over finitely-valued attributes. The function is partially described by assignment
of class labels to input vectors of values of input attributes. Such an assignment
is usually represented by a table with rows (records) containing values of input
attributes and the corresponding class labels. The main goal is to construct a
decision tree which represents a function described partially by such a table and,
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at the same time, provides the best classification for unseen data (i.e. generalises
sufficiently).

Each inner node of a corresponding decision tree is labeled by an attribute,
called a decision attribute for this node, and represents a test regarding the
values of the attribute. According to the result of the test, records are split into
n classes which correspond to n possible outcomes of the test. In the basic setting,
the outcomes are represented by the values of the splitting attribute. Leaves of
the tree cover the collection of records which all have the same function value
(class label). For example, the decision trees in Fig. 1 (right) both represent the
function f : A× B × C → D depicted in Fig. 1 (left). This way, a decision tree
serves as a model approximating the function partially described by the input
data.

A B C f(A, B, C)
good yes false yes
good no false no
bad no false no
good no true yes
bad yes true yes

B

C Y

N Y

N Y

F T

A

B C

N Y B Y

N Y

B G

N Y F T

N Y

Fig. 1. Two decision trees representing example function f

A decision tree induction problem is the problem of devising a decision tree
which approximates well an unknown function described partially by a relatively
few records in the table. These records are usually split to two subsets called a
training and testing dataset. The training dataset serves as a basis of data from
which the decision tree is being induced. The testing dataset is used to evaluate
the performance of the decision tree induced by the training dataset.

A vast majority of decision tree induction algorithms uses a strategy of re-
cursive splitting of the collection of records based on selection of decision at-
tributes. This means that the algorithms build the tree from the root to leaves,
i.e. in top-down manner. The problem of local optimization is solved in every
inner node. Particular algorithms differ by the method solving the optimization
problem, i.e. the method of selection of the best attribute to split the records.
Traditional criteria of selection of decision attributes are based on entropy, in-
formation gain [13] or statistical methods such as χ-square test [10]. The aim
is to induce the smallest possible tree (in the number of nodes) which correctly
decides training records. The preference of smaller trees follows directly from
the Occam’s Razor principle according to which the best solution from equally
satisfactory ones is the simplest one.

The second problem, which is common to all machine learning methods with
a teacher (methods of supervised learning), is the overfitting problem. Overfitting
occurs when a model induced from training data behaves well on training data
but does not behave well on testing data. A common solution to the overfitting
problem used in decision trees is pruning. With pruning, some parts of the
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decision tree are omitted. This can either be done during the tree induction
process and stop or prevent splitting nodes in some branches before reaching
leaves, or after the induction of the complete tree by “post-pruning” some leaves
or whole branches. The first way is accomplished by some online heuristics of
classification “sufficiency” of the node. For the second way, evaluation of the
ability of the tree to classify testing data is used. The simplest criterion for
pruning is based on the majority of presence of one function value of records
covered by the node.

2.2 Formal concept analysis

In what follows, we summarize basic notions of FCA. An object-attribute data ta-
ble describing which objects have which attributes can be identified with a triplet
〈X, Y, I〉 where X is a non-empty set (of objects), Y is a non-empty set (of at-
tributes), and I ⊆ X×Y is an (object-attribute) relation. Objects and attributes
correspond to table rows and columns, respectively, and 〈x, y〉 ∈ I indicates that
object x has attribute y (table entry corresponding to row x and column y con-
tains ×; if 〈x, y〉 '∈ I the table entry contains blank symbol). In the terminology
of FCA, a triplet 〈X, Y, I〉 is called a formal context. For each A ⊆ X and B ⊆ Y
denote by A↑ a subset of Y and by B↓ a subset of X defined by

A↑ = {y ∈ Y | for each x ∈ A : 〈x, y〉 ∈ I},
B↓ = {x ∈ X | for each y ∈ B : 〈x, y〉 ∈ I}.

That is, A↑ is the set of all attributes from Y shared by all objects from A (and
similarly for B↓). A formal concept in 〈X, Y, I〉 is a pair 〈A,B〉 of A ⊆ X and
B ⊆ Y satisfying A↑ = B and B↓ = A. That is, a formal concept consists of a
set A (so-called extent) of objects which fall under the concept and a set B (so-
called intent) of attributes which fall under the concept such that A is the set of
all objects sharing all attributes from B and, conversely, B is the collection of all
attributes from Y shared by all objects from A. Alternatively, formal concepts
can be defined as maximal rectangles of 〈X, Y, I〉 which are full of ×’s: For A ⊆ X
and B ⊆ Y , 〈A,B〉 is a formal concept in 〈X, Y, I〉 iff A×B ⊆ I and there is no
A′ ⊃ A or B′ ⊃ B such that A′ ×B ⊆ I or A×B′ ⊆ I.

A set B(X, Y, I) = {〈A,B〉 |A↑ = B,B↓ = A} of all formal concepts in data
〈X, Y, I〉 can be equipped with a partial order ≤ (modeling the subconcept-
superconcept hierarchy, e.g. dog ≤ mammal) defined by

〈A1, B1〉 ≤ 〈A2, B2〉 iff A1 ⊆ A2 (iff B2 ⊆ B1). (1)

Note that ↑ and ↓ form a so-called Galois connection [5] and that B(X, Y, I) is
in fact a set of all fixed points of ↑ and ↓. Under ≤, B(X, Y, I) happens to be
a complete lattice, called a concept lattice of 〈X, Y, I〉, the basic structure of
which is described by the so-called main theorem of concept lattices [5].

For a detailed information on formal concept analysis we refer to [3, 5] where
a reader can find theoretical foundations, methods and algorithms, and applica-
tions in various areas.
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3 Decision tree induction based on FCA

As mentioned above, a concept lattice without the least element can be seen as
a collection of overlapping trees. The induction of a decision tree can be viewed
as a selection of one of the overlapping trees. The question is: which tree do we
select?

Transformation of input data Before coming to this question in detail, we need
to address a particular problem concerning input data. Input data to deci-
sion tree induction contains various type of attributes, including yes/no (log-
ical) attributes, categorical (nominal) attributes, ordinal attributes, numerical
attributes, etc. On the other hand, Input data to FCA consists of yes/no at-
tributes. Transformation of general attributes to logical attributes is known as
conceptual scaling, see [5]. For the sake of simplicity, we consider input data
with categorical attributes in our paper and their transformation (scaling) to
logical attributes. Decision attributes (class labels) are usually categorical. Note
that we need not transform the decision attributes since we do not use them for
the concept lattice building step.

Name body temp. gives birth fourlegged hibernates mammal
cat warm yes yes no yes
bat warm yes no yes yes

salamander cold no yes yes no
eagle warm no no no no
guppy cold yes no no no

Name bt cold bt warm gb no gb yes fl no fl yes hb no hb yes mammal
cat 0 1 0 1 0 1 1 0 yes
bat 0 1 0 1 1 0 0 1 yes

salamander 1 0 1 0 0 1 0 1 no
eagle 0 1 1 0 1 0 1 0 no
guppy 1 0 0 1 1 0 1 0 no

Fig. 2. Input data table (top) and corresponding data table for FCA (bottom)

Let us present an example used throughout the presentation of our method.
Consider the data table with categorical attributes depicted in Fig. 2 (top). The
data table contains sample animals described by attributes body temperature,
gives birth, fourlegged, hibernates and mammal, with the last attribute being
the decision attribute (class label). The corresponding data table for FCA with
logical attributes obtained from the original ones in an obvious way is depicted
in Fig. 2 (bottom).

Step 1 We can now approach the first step of our method of decision tree
induction—building the concept lattice. In fact, we do not build the whole lat-
tice. Recall that smaller (lower) concepts result by adding attributes to greater
(higher) concepts and, dually, greater concepts result by adding objects to lower
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concepts. We can thus imagine the lower neighbor concepts as refining their par-
ent concept. In a decision tree the nodes cover some collection of records and
are split until the covered records have the same value of class label. The same
applies to concepts in our approach: we need not split concepts which cover ob-
jects having the same value of class label. Thus, we need an algorithm which
generates a concept lattice from the greatest concept (which covers all objects)
and iteratively generates lower neighbor concepts.

For this purpose, we can conveniently use the essential ideas of Lindig’s
NextNeighbor algorithm [8]. NextNeighbor efficiently generates formal concepts
together with their subconcept-superconcept hierarchy. Our method, which is
a modification of NextNeighbor, differs from the ordinary NextNeighbor in two
aspects. First, as mentioned above, we do not compute lower neighbor concepts
of a concept which covers objects with the same class label. Second, unlike
NextNeighbor, we do not build the ordinary concept hierarchy by means of a
covering relation. Instead, we are skipping some concepts in the hierarchy. That
is, a lower neighbor concept c of a given concept d generated by our method, can
in fact be a concept for which there exists an intermediate concept between c and
d. This is accomplished by a simple modification of NextNeighbor algorithm.

NextNeighbor The NextNeighbor algorithm builds the concept lattice by
iteratively generating the neighbor concepts of a concept 〈A,B〉, either top-down
the lattice by adding new attributes to concept intents or bottom-up by adding
new objects to concept extents. We follow the top-down approach. The algorithm
is based on the fact that a concept 〈C,D〉 is a neighbor of a given concept 〈A,B〉
if D is generated by B∪{y}, i.e. D = (B∪{y})↓↑, where y ∈ Y −B is an attribute
such that for all attributes z ∈ D −B it holds that B ∪ {z} generates the same
concept 〈C,D〉 [8], i.e.

(Next)Neighbors of 〈A,B〉 =
{〈C,D〉 | D = (B ∪ {y})↓↑, y ∈ Y −B such that

(B ∪ {z})↓↑ = D for all z ∈ D −B}.

Our modification From the monotony of the (closure) operator forming a
formal concept it follows that a concept 〈C,D〉 is not a neighbor of the concept
〈A,B〉 if there exists an attribute z ∈ D − B such that B ∪ {z} generates a
concept between 〈A,B〉 and 〈C,D〉. This is what our modification consists in.
Namely, we mark as (different) neighbors all concepts generated by B ∪ {y} for
y ∈ Y −B, even those for which there exists a concept in between, i.e.

(Our)Neighbors of 〈A,B〉 =
{〈C,D〉 | D = (B ∪ {y})↓↑, y ∈ Y −B}.

It is easy to see that our modification does not alter the concept lattice and the
overall hierarchy of concepts, cf. NextNeighbor [8].

The reason for this modification is that we have to record as neighbors of a
concept 〈A,B〉 all the concepts which are generated by the collection of attributes
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B with one additional attribute. In the resulting decision tree the addition of a
(logical) attribute to a concept means making a decision on the corresponding
categorical attribute in the tree node corresponding to the concept. Due to lack
of space we postpone a pseudocode of the algorithm of Step 1 to the full version
of the paper. Part of the concept lattice built from data table in Fig. 2 (bottom),
with our new neighbor relationships drawn by dashed lines, is depicted in Fig. 3.

1 52

2 03 10 4 0 5 106 10 7 2 8 109 2

10 011 0 12 0

13 2

14 2

15 0

16 0

17 2

18 2

19 0

20 0

gb yes

bt warm

bt cold

gb no

Fig. 3. Part of the concept lattice and tree of concepts (solid) of data table in Fig. 2

Step 2 The second step of our method is the selection of a tree of concepts
from the part of the concept lattice built in the first step. First, we calculate for
each concept c = 〈A,B〉 the number Lc of all of its lower concepts. Note that
each lower concept is counted for each different attribute added to the concept
c, cf. our modification of concept neighbor relation. For instance, if a concept
d = 〈C,D〉 is generated from concept c by adding either attribute x or attribute
y (i.e. D = (B ∪ {x})↓↑ or D = (B ∪ {y})↓↑, respectively), the concept d is
counted twice and Lc is increased by two.

Next, we select a tree of concepts from the part of the concept lattice by it-
eratively going from the greatest concept (generated by no attributes or, equiva-
lently, by all objects) to minimal concepts. The selection is based on the number
Lc of lower concepts of the currently considered concept c (recall that Lc is not
the number of lower concepts of c in common sense, cf. the computation of Lc

above which is due to our modification of concept neighbor relation).
The root node of the tree is always the greatest concept. Then, for each tree

node/concept c we define collections N a
c of concepts, which will be candidate

collections of children nodes/concepts of c in the resulting selected tree. N a
c

is a collection of lower neighbor concepts of c such that (a) each concept d
in N a

c is generated from concept c by adding a (logical) attribute transformed
from the categorical attribute a (recall that logical attributes stand for values
of categorical attributes) and (b) N a

c contains the concept d for every logical
attribute transformed from categorical attribute a. There (1) may exist, and
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usually exists, more than one such collection N a
c of neighbor concepts of concept

c, for more that one categorical attribute a, but, on the other side (2) there may
exist no such collection.

(1) In this case we choose from the several collections N a
c of neighbor concepts

of concept c the collection containing a concept d with the minimal number Ld

of its lower concepts. Furthermore, if there is more than one such neighbor
concept, in different collections, we choose the collection containing the concept
which covers the maximal number of objects/records. It is important to note
that this point is the only non-deterministic point in our method since there still
can be more than one neighbor concepts having equal minimal number of lower
concepts and covering equal maximal number of objects. In that case we choose
one of the collections N a

c of neighbor concepts arbitrarily.
(2) This case means that in every potential collection N a

c there is missing at
least one neighbor concept generated by some added (logical) attribute trans-
formed from categorical attribute a, i.e. N a

c does not satisfy the condition (b).
We solve this situation by substituting the missing concepts by (a copy of) the
least concept 〈Y ↓, Y 〉 generated by all attributes (or, equivalently, no objects).
The least concept is a common and always existing subconcept of all concepts
in a concept lattice and usually covers no objects/records (but need not!).

Finally, an edge between concept c and each neighbor concept from the chosen
collection N a

c is created in the resulting selected tree. The edge is labeled by the
added logical attribute. Again, we postpone a pseudocode of the algorithm of
Step 2 to the full version of the paper.

To illustrate the previuos description, let us consider the example of a part of
the concept lattice in Fig. 3. The concepts are denoted by a circled number and
the number of lower concepts is written to the right of every concept. We select
the tree of concepts as follows. The root node of the tree is the greatest concept
1. As children nodes of the root node are selected concepts 2 and 3 since they
form a collection N body temp.

1 of all lower neighbor concepts generated by both
added (logical) attributes bt cold and bt warm, respectively, transformed from
the categorical attribute body temp.. Note that we could have chosen the collec-
tion N gives birth

1 instead of collection N body temp.
1 , but since both concepts 2 from

N body temp.
1 and 4 from N gives birth

1 have the equal minimal number L2 and L4

of lower concepts and both cover the equal maximal number of objects/records,
we have chosen the collection N body temp.

1 arbitrarily, according to case (1) from
the description. The edges of the selected tree are labeled by the corresponding
logical attributes. Similarly, the children nodes of concept 3 will be concepts 11
and 19, and this is the end of the tree selection step since concepts 4, 11 and
19 have no lower neighbors. The resulting tree of concepts is depicted in Fig. 3
with solid lines.

Step 3 The last step (third one) of our method is the transformation of the tree
of concepts into a decision tree. A decision tree has in its every node the chosen
categorical attribute on which the decision is made and the edges from the node
are labeled by the possible values of the attribute. The leaves are labeled by
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class label(s) of covered records. In the tree of concepts the logical attributes
transformed from (and standing for the values of) the categorical attribute are
in the labels of edges connecting concepts. Hence the transformation of the tree
of concepts into a decision tree is simple: edges are relabeled to the values of the
categorical attribute, inner concepts are labeled by the corresponding categorical
attributes, and leaves are labelled by class label(s) of covered objects/records.

The last problem to solve is multiple different class label(s) of covered records
in tree leaves. This can happen for several reasons, for example the presence of
conflicting records in input data differing in class label(s) only (which can result
for instance from class labelling mistakes or from selecting a subcollection of
attributes from original larger data) or pruning the complete decision tree as a
strategy to the overfitting problem. Common practice for dealing with multiple
different target class label(s) is as simple as picking the major class label value(s)
as the target classification of records covered by leave node and we adopt this
solution. A special case are leave nodes represented by (a copy of) the least
concept (which comes from the possibility (2) in Step 2), since the least concept
usually covers no objects/records. These nodes are labelled by the class label(s)
of their parent nodes.

body temp.

gives birth no

no yes

warm cold

no yes

Fig. 4. The decision tree of input data in Fig. 2

The resulting decision tree of input data in Fig. 2 (top) transformed from
the tree of concepts in Fig. 3 is depicted in Fig. 4.

Let us now briefly discuss the problem of overfitting. A traditional solution
to overfitting problem, i.e. pruning, suggests not to include all nodes down to
leaves as a part of the decision tree. One of the simplest criteria for this is picking
a threshold percentage ratio of major class label value(s) in records covered by
a node. Alternatively, one can use the entropy measure to decide whether the
node is sufficient and need not be split. Note that several other possibilities exist.
In all cases, the constraint can be applied as early as selecting the concepts to
the tree, i.e. pruning can be done during decision tree induction process in our
method. No pruning method is considered in this paper.
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4 Comparison with other algorithms

The asymptotic time complexity of the presented algorithm is given by the (part
of the) concept lattice building step since this step is the most time demanding.
The concepts are computed by a modified Lindig’s NextNeighbor algorithm.
Since the modification does not alter the asymptotic time complexity, the overall
asymptotic complexity of our method is equal to that of Lindig’s NextNeighbor
algorithm, namely O(|X||Y |2|L|). Here, |X| is the number of input records, |Y |
is the number of (logical) attributes and |L| is the size of the concept lattice, i.e.
the number of all formal concepts.

However, for the decision tree induction problem, accuracy, i.e. the percent-
age of correctly and incorrectly decided records from both training and testing
dataset, is more important than time complexity. We performed preliminary ex-
periments and compared our method to reference algorithms ID3 and C4.5. We
implemented our method in C language. ID3 and C4.5 were borrowed and run
from the Weka4 (Waikato Environment for Knowledge Analysis [16]), a soft-
ware package which aids the development of and contains implementations of
several machine learning and data mining algorithms in Java. Default Weka’s
parameters were used for the two algorithms and pruning was turned off where
available.

Table 1. Characteristics of datasets used in experiments

Dataset No. of attributes No. of records Class distribution
breast-cancer 6 138 100/38
kr-vs-kp 14 319 168/151
mushroom 10 282 187/95
vote 8 116 54/62
zoo 9 101 41/20/5/13/4/8/10

The experiments were done on selected public real-world datasets from UCI
machine learning repository [7]. The selected datasets are from different areas
(medicine, biology, zoology, politics and games) and all contain only categorical
attributes with one class label. The datasets were cleared of records containing
missing values and actually, we selected subcollections of less-valued attributes of
each dataset and subcollections of records of some datasets, due to computational
time of repeated executions on the same dataset. The basic characteristics of
the datasets are depicted in Tab. 1. The results of averaging 10 executions of
the 10-Fold Stratified Cross-validation test (which gives total of 100 executions
for each algorithm over each dataset) are depicted in Tab. 2. The table shows
average percentage rates of correct decisions for both training (upper item in the
table cell) and testing (lower item) dataset part, for each compared algorithm
and dataset. We can see that our FCA based decision tree induction method
outperforms C4.5 on all datasets, with the exception of mushroom, by 2 – 4 %,

4 Weka is a free software available at http://www.cs.waikato.ac.nz/ml/weka/
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on both training and testing data, and gains almost identical results as ID3, again
on all datasets except mushroom, on training data, but slightly outperforming
ID3 on testing data by about 1 %. On mushroom dataset, which is quite sparse
comparing to the other datasets, our method is little behind ID3 and C4.5 on
training data, but, however, almost equal on testing data. The datasets vote
and zoo are more dense than the other datasets and also contain almost no
conflicting records, so it seems that the FCA based method could give better
results that traditional, entropy based, methods on clear dense data. However,
more experiments on additional datasets are needed to approve this conclusion.

Table 2. Percentage correct rates for datasets in Tab. 1

training %
testing % breast-cancer kr-vs-kp mushroom vote zoo

FCA based
88.631
79.560

84.395
74.656

96.268
96.284

97.528
90.507

98.019
96.036

ID3
88.630
75.945

84.674
74.503

97.517
96.602

97.528
89.280

98.019
95.036

C4.5
86.328
79.181

82.124
72.780

97.163
96.671

94.883
86.500

96.039
92.690

Due to lack of space only the basic experiments are presented. More com-
parative tests on additional datasets with additional various machine learning
algorithms like Naive Bayes classification or Artificial Neural Networks trained
by back propagation [11], including training and testing time measuring, are
postponed to the full version of the paper. However, the first preliminary exper-
iments show that our simple FCA based method is promising in using FCA in
the decision tree induction problem.

The bottleneck of the method could be performance, the total time of tree
induction, but once one already has the (whole) concept lattice of input data,
then the tree selection is very fast. This draws a possible usage and perspective
of the method: decision making from already available concept lattices. The ad-
vantage of our method over other methods is the conceptual information hidden
in tree nodes (note that they are in fact formal concepts). The attributes in
concept intents are the attributes common to all objects/records covered by the
concept/tree node, which might be usefull information for furher exploration,
application and interpretation of the decision tree. This type of information is
not (directly) available by other methods, for instance classical entropy based.

5 Conclusion and topics of future research

We have presented a simple novel method of decision tree induction by selection
of the tree of concepts from a concept lattice. The criterion of choosing an
attribute based on which the node of the tree is split is determined by the number
of all lower concepts of the concept corresponding to the node. The approach
interconnects areas of decision trees and formal concept analysis. We have also
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presented some comparison to classical decision tree algorithms, namely ID3 and
C4.5, and have seen that our method compares quite well and surely deserves
more attention. Topics for future research include:

– Explore the possibility to compute a smaller number of formal concepts
from which the nodes of a decision tree is constructed. Or, the possibility to
compute right the selected concepts only.

– The problems of overfitting in data and uncomplete data, i.e. data having
missing values for some attributes in some records.

– Incremental updating of induced decision trees via incremental methods of
building concept lattices.
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Abstract. The generalization of policies in reinforcement learning is a
main issue, both from the theoretical model point of view and for their
applicability. However, generalizing from a set of examples or searching
for regularities is a problem which has already been intensively studied
in machine learning. Our work uses techniques in which generalizations
are constrained by a language bias, in order to regroup similar states.
Such generalizations are principally based on the properties of concept
lattices. To guide the possible groupings of similar environment’s states,
we propose a general algebraic framework, considering the generalization
of policies through a set partition of the states and using a language bias
as an a priori knowledge. We give an application as an example of our
approach by proposing and experimenting a bottom-up algorithm.

1 Introduction

The reinforcement learning domain gives the promising theoretical framework
of an agent learning a behavior by interactions with an environment with the
following properties: (1) The agent doesn’t have any a priori knowledge, on the
environment. (2) There is no separation between a learning phase and a phase of
use of the learning. (3) The agent has to manage the temporal difference learning
problem, that is to say considering that the effect of an action can be delayed or
that an effect can be the consequence of several successive actions.
With the formalism used to realize and demonstrate the properties of most of
the algorithms as well as in practice, the approach is severely more restrictive:
environments are designed with a Markovian Decision Process (MDP), the suc-
cession of interactions and perceptions are discretized and the agent is supposed
to perceive its environment completely.
The constant progress of reinforcement learning since the emergence of its most
famous algorithm, Q-Learning [1], aims at adapting the algorithms to a wider
class of problems than those that can be formalized with a MDP: extension of
the formalism [2] or more recently [3], environment’s states or continuous actions
[4], non markovian environments, partially observable environments [5].
Presently, the question of generalization of policies for reinforcement learning
and their corollaries: the use of a priori knowledge and the search for important
description features to learn the task, has become an important research fields.
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Several ways are intensively studied in this frame: generalization by function
approximation, algebraical model generalization [6], [7], temporal abstraction
generalization [8], link with planning and ILP methods [9] or search for relevant
descriptions of the environment [3].
In our work, we consider the generalization of policies and task description prob-
lem from a double point of view: the learning of a behavior by reinforcement and
the problem of grouping elements which are considered similar agreeing with a
description language. We propose to apply to reinforcement learning, learning
methods, based on the Galois lattice algebraical structure, used in classification
and more recently in data mining.
In [10], methods in the same framework have been presented but in a different
way. Notably, we present here an original search space: the descriptions parti-
tions Galois lattice instead of the classical powerset Galois lattices. Moreover, we
characterize algebraically the space search, instead of building the whole lattices
structures in our algorithms.
Section 2 recapitulates briefly the basis of reinforcement learning, essentially to
present formalisms used in this paper. In particular, we remind the reader how
to formalize the generalization of policies as a partitioning of the environment’s
states. Then, section 3 shows how to use Galois lattices as a generalization space
for a set constrained with a description language (possibly structural). More-
over, we present the descriptions partitions Galois lattice, which is an extension
of this method to partitioning a set of objects. In section 4, we see how to use
this algebraical structure for policies generalization in reinforcement learning.
We study the existence of solutions for the learning problem as a function of
the description language. Then, in section 5, we present an algorithm based on
these methods and we apply it to an academic problem. We show notably the
possibility to extract relevant description elements for the task to be learned by
the agent.

2 Basis of Reinforcement Learning, policies generalization

2.1 Reinforcement Learning Problem

We only give here the basis and main formalisms of reinforcement learning. A
complete introduction can be found in [11]. The reinforcement learning pro-
poses a framework where an agent learns a task in a given environment, only
by receiving rewards when the task is accomplished. A reinforcement learning is
classically formalized as a succession of interactions. The agent receives at the
step t a state st from the environment and a numerical value of reinforcement
rt ∈ R, called reward, indicating the quality of the state in which the agent is.
Then, the agent acts on its environment, selecting one of the eligible actions
at for the state st, which modifies the environment’s state st+1. This process
continues indefinitely or until a terminal state is reached.
The goal of the agent is to learn to select the actions which maximize the flow of
the rewards ri, i ≥ t to come and not only the following reward rt+1. However,
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the closest rewards (in term of number of interactions) are considered as more im-
portant then the far ones. Thus, the goal of the agent is to maximize the following
value called cumulated delayed reward: Rt =

∑∞
k=0 γkrt+k, 0 < γ ≤ 1.

The environment is formalized with a MDP. That is to say that the state
st+1 depends only on the state st, on the selected action at and on a probability
transition P (st, at, st+1). In particular, the probability doesn’t depend on the
previous states-actions sequence s0, a0, . . . , st−1, at−1.
Formally, an environment is defined with a tuple 〈S, A, ψ, P, R〉; S = {s1, s2,
. . . , sn} is a set of states; A = {a1, a2, . . . , an} is a set of actions; ψ ⊆ S×A is a
set of eligible couples (state, action). We note A(s) the set of eligible actions for
the state s ((s, ai) ∈ ψ); P : ψ × S → [0, 1] is the set of transition probabilities
from the state s to the state s′ selecting the action a; R : ψ → R is the reward
function giving a numerical value for each eligible couple (s, a).
The function π : ψ → [0, 1] gives the probability for the agent to select the action
a being in the state s. The function π is called the policy of the agent.
The function Qπ : ψ → R, called quality function, defines the expected cu-
mulated delayed reward (expected because the process is stochastic and not
deterministic) the agent would obtain following the policy π from the state s
and taking the action a.
The set of all policies can have a partial order relation, based the cumulated
delayed reward. A policy π1 is greater than a π2 if ∀(s, a) ∈ ψ, Qπ1(s, a) ≥
Qπ2(s, a). The policies allowing the agent to collect the maximum possible re-
wards (Rt) are called optimal policies. All the optimal policies share the same
values for the function Q(s, a) which is noted Q∗(s, a). Thus, we note π∗ to refer
to an optimal policy.
The knowledge of Q∗(s, a) allows to find greedily an optimal policy π∗ by se-
lecting in each state s, one of the actions a with a maximal expected cumulated
delayed reward. We note A∗(s) the set of the optimal actions for the state s.
The reinforcement learning algorithms are based on the approximation of the
Q∗(s, a) function, during the interactions of the agent with the environment. The
hypothesis on the Q(s, a) function is modified with an update rule. For example,
this is the update rule for the Q-learning algorithm [1]:

Q(s, a) ← (1−α)Q(s, a)+α
(
rt +γ Max

a∈A(st+1)
Q(st+1, a)

)
, 0 < α ≤, 0 ≤ γ ≤ 1 (1)

Some main issues characterize the reinforcement learning. Firstly, the tempo-
ral difference learning problem, that is to say the repartition of an acquired expe-
rience (a value rt) over the previously selected actions. Secondly, the exploration-
exploitation problem, that is to say the balance between using the actual knowl-
edge of Q(s, a) function to maximize the flow of rewards (exploitation) and
increasing its precision by selecting assumed non-optimal actions (exploration).
One of the corollaries is the balance between keeping the actual theory and in-
corporating the newly acquired knowledge (managed with the γ parameter).
Finally, the question we propose to give elements on: the question of the general-
izing of policies. It can be viewed as: “How a behavior learned in an environment

CLA 2007 284 Montpellier, France



can be used in a similar environment”, or “How a learned knowledge on a set of
states can be generalized on a greater set of states”. This problem is related to
a main question of machine learning: “How to find a relevant description for a
given task ?”

2.2 Generalization by partitioning the environment’s states

In [7], [6], the generalization for MDPs and consequently for reinforcement learn-
ing is presented as the search for an equivalence relation between the environ-
ment’s states. Two similar states can be merged if they are equivalent, i.e. if
the merging doesn’t change the dynamic of the environment. It’s actually a gen-
eralization, because a learning on a state s is applied to the set of the states
equivalent with s. However, in these articles, the equivalence relation between
the states is computed directly from the MDP, that is to say from the model of
the environment. In our work, we want to apply generalization methods without
this information, preserving the agent point of view.
The equivalence relation on S, the set of the environment’s states, we propose
is not based on the compliance with the environment’s dynamic, but on the
equivalence of their optimal actions.

Definition 1. Let s1, s2 ∈ S, be two environment’s states. s1 and s2 are equiv-
alent, which is noted s1 ≡∗ s2 if and only if A∗(s1) = A∗(s2). The equivalence
relation ≡∗ implies a partitioning of the set S, noted P∗.

This means that all the optimal actions of s1 are the sames (considering their
label) as the optimal actions of s2. It’s important to note that we have introduced
a first a priori knowledge since this definition implies that two actions can be
equivalent according to their description.
The partition P∗ allows to express rules such as “in the set of states S1, we
must select an action among A∗(S1) in order to act optimally”. The knowledge
of this set of rules, gives the optimal policies and enables us to present them in a
more intelligible and general way than an classical probabilities function. Thus,
the search for P∗ becomes in our framework, the goal of the learning. The space
search becomes the set partitions of S.
However, grouping the states according to their optimal actions doesn’t give a
direct generalization method. To do it, we need to be able to compare the states.
In the next section, we show how the Galois Lattice algebraical structure can be
used to generalize a set of objects with a generalization language.

3 Galois lattice as generalization space

The definitions and theorems used here about Galois lattices can be found in
[12]. First, we show how this structure is used in machine learning to allow a
generalization over a set of elements biased with a language. Secondly, we give
an extend of Galois lattice by presenting the partitions Galois lattice.
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3.1 Galois lattice and generalization languages

The Galois lattice, or more generally the lattice structure is commonly used in
machine learning, directly or in an underlying way. The first well known use of
such mathematical objects is certainly the Version Space [13]. More recently,
the formal concept analysis theory [12] uses directly Galois lattices as structure
used for generalization over a set of objects. We give here a general algebraical
approach that can be found in [14].
A Galois lattice can be classically summed up as a structure defined by a double
closure relation between two join semi-lattices. We note it GL(A,≤A,⊗A, B,≤B

,⊗B , f, g), (A,≤A,⊗A) and (B,≤B ,⊗B) being the two join semi-lattices defined
respectively by a set, a partial order relation and a product operator producing
the supremum of two elements and f and g being the two closure operators. In
the frame of machine learning, the Galois Lattice produced from the powerset of
objects and a generalization langage (L,≤L,⊗L) defines the set of all the subsets
authorized by a given description language and their associated description.
More formally, to use a Galois lattice as a generalization space for a set of objects
E constrained with a generalization language L, we need to identify the elements
of the Galois lattice definition: (1) The set A with P(E), the powerset of the
elements to classify. (2) The partial order relation ≤A with the set inclusion ⊆.
(3) The product operator ⊗A with the set intersection ∩. (4) The set B, ≤B

and ⊗B can be identified with any description language L with a partial order
relation ≤L and a product operator ⊗L such that exists a description function
d and an instantiation function i described below and agreeing with the Galois
connection conditions. Such languages are called generalization languages.
The relation ≤L defines the relation more general than or more specific than
and ⊗L is called generalization operator. (5) The function f with the following
description function d : P(E) → L, d(P ) =

⊗
L{d(e), e ∈ E}. The description

d(P ) of a subset P ⊆ E is the least general generalization of the descriptions of
the elements e ∈ P . Note that only the description d(e), e ∈ E must be known in
order to compute the description of all subset P ⊆ E. (6) The function g with the
following instantiation function i : L → P(E): ∀l ∈ L, i(l) = {e ∈ E | d(e) ≤L l}.
The instantiation of an element of the language l ∈ L is the set of all the elements
e ∈ E which description is more specific than l.
Finally, the set C of the couples (ca, cb) ∈ Ci◦d(P(E)) × Cd◦i(L) is called the
set of concepts of GL(P,⊆,∩, L,≤L,⊗L, d, i). Let a concept c = (P, l), P ∈
Ci◦d(P(E)), l ∈ Cd◦i(L), P is the extension of c and l the intention of c.
We have three main properties about this structure. First, the set Ci◦d(P(E)) is
the powerset of E that can be expressed with the language L. Thus, L implies a
selection between all the possible generalizations of the elements of E. Roughly
speaking, we can also say that the language L implies rules like ”if we decide
to put together the elements e1 and e2, then we must also regroup them with
e3”. Secondly, the set Cd◦i(L) is the set of the descriptions of the elements of
Ci◦d(P(E)). If a new, unknown element en occurs, we can use its description
d(en) to compare and eventually classify it in a previously found group. Finally,
the set C of concepts has a lattice structure, which can be used to compare and
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merge generalizations of elements of E.
This framework is very large, every generalization language L provided with
≤L and ⊗L is usable. For example, the formal concept analysis theory studies
particularly the attributes-values description case with: L is the powerset P(A)
of a set of attributes A, ≤L is the set inclusion ⊆, ⊗L is the set intersection ∩.
Notably, we can also use structural languages (see [14] for examples). Thus, the
descriptions of the generalizations keep their structural properties.

3.2 Descriptions Partitions Galois lattice

We present a special case of Galois lattice: the descriptions partitions Galois
lattice as generalization space for the set partitions. It is built in a similar way
than the powerset Galois lattice. It will be used to constrain the possible set
partitions with a generalization language describing the elements of E, with the
same properties. Figure 1 presents the general scheme.

Fig. 1. Scheme of partitions Galois lattice constrained with a generalization language

The main principle of the Galois lattices for partitions is to use the partitions
lattice of E instead of powerset lattice and to use the powerset lattice of the
generalization language L instead of L. We also have to redefine the description
and instantiation functions to fit the definition. Finally, we show that the extents
of the generated concepts are the partitions of E for which each element is a
concept of the classical Galois lattice.
Let’s define the partial order relation ⊆P for partitions, the product ⊗P and the
sum ⊕P of two partitions.
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Definition 2 (⊆P,⊗P,⊕P). Let E be a set and P(E) be set partitions of E.
Let P1, P2 ∈ P(E) be two partitions of E. P1 ⊆P P2 ⇔ ∀P1 ∈ P1,∃P2 ∈
P2 such that P1 ⊆ P2.
Let R⊗ and R⊕ be two binary relations such that ∀ei, ej ∈ E, eiR⊗ej ⇔ ei and
ej are in the same part in P1 or in P2; eiR⊕ej ⇔ ei and ej are in the same
part in P1 and in P2. The transitive closure of R⊗ defines a partition which is
P1 ⊗P P2 and R⊕ defines a partition which is P1 ⊕P P2.

For example, E = {a, b, c, d, e, f, g}, P1 = {a, b}, {c}, {d, e}, {f, g} and P2 =
{a}, {b}, {c}, {d, }{e, f}, {g}. P1 ⊗P P2 = {a, b}, {c}, {d, e, f, g}.
Remind that a partition defines an equivalence relation. Thus ⊗P can be viewed
as the merging of the equivalence classes defined by P1 and P2.
Let’s identify the generalization language (L,≤L,⊗L) to describe the partitions
of E, which is based on the generalization language (L,≤L,⊗L) for E.
A partition of E is composed of subsets of E. Each of these subsets can be
described with an element l ∈ L with the description function d. Consequently,
the description of a partition of E is described with a set L of elements of
L. Thus, the description language for the partitions set is the powerset of L.
Nevertheless, we only consider a subset of P(L). Indeed, we only need the set,
noted P(L)P(E) of the subsets of L such that their instantiations are partitions
of E. In the general case, the instantiation is only a coverset of E.

Definition 3 (≤L,⊗L). Let (L,≤L,⊗L) be a generalization language. Let L1,
L2 ∈ P(L)P(E). L1 ≤L L2 ⇔ ∀l1 ∈ L1, ∃l2 ∈ L2 such that l1 ≤ l2.
L1 ⊗L L2 is the set L⊗ such that: L⊗ =

{
l ∈ L |l = d(P1), P1 ∈ merge({i(l1) ∪

i(l2), l1 ∈ L1, l2 ∈ L2})
}

The definitions of ≤L and ⊗L are presented to keep mathematical formalism
and are not used in practice. The description function dP and the instantiation
function iP illustrate the method in a better way.

Definition 4 (description of a partition dP). We define description function
dP : P(E) → P(L) with: ∀P ∈ P(E), dP(P) =

{
l ∈ L | l = d(P1), P1 ∈ merge({i◦

d(P ), P ∈ P})
}

To find the description of a partition P ∈ P(E), we first close the subsets
P of E composing the partition with the closure i ◦ d. This gives a coverset of
E. Then, we merge transitively the subsets of this coverset which have at least
one element e in common with the operator ⊗P. This gives a partition of E for
which all subsets are closed elements of i ◦ d, i.e. extents of the classical Galois
lattice. Finally, we redescribe those elements with d.

Definition 5 (instantiation of a subset of L iP). We define the instantiation
function iP(E)L → P(E) with:∀PL ∈ P(L)P(E), iP(PL) =

{
i(l), l ∈ PL

}
.

The instantiation of a subset PL ∈ P(L)P(E), is simply the set composed with
the instantiations of each element l ∈ PL. We can finally produce the partitions
Galois lattice.
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Theorem 1 (descriptions partitions Galois lattice).
GLP(P(E),⊆P,⊗P,P(E)L, ⊆P,⊗L,dP,iP) is a lattice called descriptions parti-
tions Galois lattice. Let C be the set of concepts of GLP. Let C = (ext, int) ∈
C. The extension ext is a partition of E and the intention int is its description.

With all the elements described above, the proof constits in showing that
(dP ◦ iP, iP ◦ dP) defines a Galois connexion. Note that the same elements are
needed to define the partitions Galois lattice compared to the classical Galois
lattice: a set E and a generalization language (L,≤L,⊗L). The classical proper-
ties of classical Galois lattices as a generalization space constrained with a lan-
guage can be applied to the partitions Galois lattice: rules concerning regrouping
objects, the possibility to deal with unknown objects, and a comparison between
generalizations. The difference is that instead of considering the set of the re-
groupings of elements of E which can be expressed with the language L, we
consider the set partitions of E which can be expressed with L.

Proposition 1 (partition agreeing with a language).
Let E be a set and (L,≤L,⊗L) be a generalization language for E. A partition
P(E) of E agreeing with the language L is a partition whose all the subsets can
be expressed with an element l ∈ L. That is to say whose all the subsets are
closed elements of P(E) with the closure i ◦ d. The set of the extensions of the
concepts of the description partitions Galois Lattice GLP is the set partitions of
E agreeing with the language L.

Size of GLP The size of the GLP is equal to the number of partitions agreeing
with L. Consequently, the size of the GLP is lower than the |E|th Bell number.
The exact number of partitions agreeing with L is an open question. However, we
can say that it’s a function of the size of the classical GL size. In the worst case,
the size of the GL is 2|E|. Then, the size of GLP is the |E|th Bell number, but
in this case, L doesn’t give any bias concerning the possible ways of regrouping
the elements of E. This case is useless in our context. We can note that for each
subset of E which can’t be described with an element of L, the size of GLP is
falling as a function of the number of elements of this subset.

4 Using the partitions Galois lattice for reinforcement
learning

The set partition P∗ of the environment’s states induced by the quality function
of optimal policies Q∗(s, a) can be considered as observed section 2.2, as the
goal of a reinforcement learning. We have just defined the descriptions partitions
Galois lattice as space search for partitioning a set of objects, here S, the set of
the environment’s states. The space search being constrained with a language
LS , we have first to study the relationship between P∗ and the possibility to
express it with LS . Then, we propose an algorithm to build P∗.
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4.1 Relationship between P∗ and a generalization language LS

Let an agent evolving in an environment formalized with a MDPM 〈S,A,ψ,P ,R〉.
The set S is described with the generalization language (LS ,≤LS ,⊗LS ).
Let’s consider three different cases concerning the agreement of P∗ with LS . (1)
The partition P∗ agrees with LS . In this case, each of the sets regrouping the
states according to their optimal actions can be expressed with an element of
the language l ∈ LS . (2) It exists at least one partition P agreeing with LS such
that P ⊆ P∗. In this case, if we add the condition which is that each state s ∈ S
has a different description (the agent has a complete vision of its environment),
it always occurs. Indeed, in the worst case, it’s the partition of size |S|. More-
over, if the description language doesn’t have any generalization properties that
is to say the product of l1, l2 ∈ LS always gives the same element l), then we
have the classical case of reinforcement learning. Note that there can be more
than one such partitions. (3) There is no partition P agreeing with LS such that
P ⊆ P∗. The agent is unable to distinguish states which should be considered
different from the task point of view. We are in the case of Partially Observable
MDP. We need for example, to use a memory based system [5] to separate the
states.

4.2 A bottom-up Algorithm

The general framework we proposed: search for the partition P∗, using the set
partitions of S, can be implemented in several ways, depending on the chosen
space exploration (bottom-up, top-down, breadth-first,...) and on the heuristics
managing the imprecision of the current Q(s, a) function.
We propose the bottom-up algorithm 1 which partitions the set of the states at
a given step of the learning. The built partition is the most general, agreeing
with LS . The equivalence relation ≡∗ doesn’t always give a unique partition.
Thus, the algorithm regroups in priority the states with the same value for their
optimal actions.

Proof elements for the algorithm All the states are considered successively using
a FIFO structure (variable States line 1). In the worst case, each state is added
as a singleton to the resulting partition (line 7). This ensures that the final result
is a cover of S. The lines 2 and 5 ensure that the elements are added to only one
subset, ensuring that the result is a partition of S.
Line 3, the algorithm constructs a subset of S from a state and according to
the equivalence relation ≡∗, using te closure operator i ◦ d. This ensures that
the produced subset agrees with the language L. Then, we verify line 4 that the
closure has only added equivalent elements, ensuring that the resulting partition
is lower (using ⊆P) than P∗.

5 Experiment

We present an experiment of our algorithm on an academic problem to illustrate
our method and to validate our theoretical approach with an implementation.
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Data
• A generalization language (LS ,≤LS ,⊗LS ) for the states S the current
estimation of Q(s, a)
Result
• A partition P, based on ≡∗, agreeing with the language LS , such that P is
the most general possible, with grouping uppermost the states of S with the
same optimal actions values.

Partition ← ∅;
1 States ← Sort S according to the decreasing values of Q(s, a∗);

while States &= ∅ do
s ← remove(States);
Equivalents ← s1 ∈ States | s1 ≡∗ s; NewSubset ← {s};
while Equivalents &= ∅ do

2 s2 ← remove(Equivalents);
3 add ← i ◦ d(NewSubset ∪ {s2})− (NewSubset ∪ {s2});
4 if ∀s3 ∈ add, s3 ≡∗ s then

NewSubset ← NewSubset ∪ {s2} ∪ add;
5 remove from Equivalents(add ∪ {s2}); remove from States(add ∪ {s2});
7 Partition ← Partition ∪ {NewSubset};

return Partition;

Algorithme 1 : Partitioning the set S according to ≡∗ and agreeing with
a generalization language (LS ,≤LS ,⊗LS )

The example consists in a grid-world of size (3×3) containing an agent, a reward
and a wall. All the other tiles are empty. The walls can be moved, if there is no
other behind, with the action push.
The task to be learned is to move as fast as possible to the reward tile. Each
episode lasts until the agent reaches the reward tile or until it destroys it with
a wall. The agent receives an reward of +1.0 if it reaches the reward tile. All
other actions receive -0.1. There are 504 different states with 4 actions in each.
push and move are different actions, |ψ| = 2016. The consequences of actions
are deterministic and the environment is stationary.
The actions are described with: {move west, move east, move north, move south,
push west, push east, push north, push south}. The language (LS ,≤LS ,⊗LS ) used
to describe the states is an attribute-values language. The description of a state
is composed with one attribute for each tile that the agent can see (see Figure 2).
The partial order relation ≤LS is defined by: d(s1) ≤LS d(s2) ⇔ all the attributes
of d(s1) are less than or equal to the corresponding one in d(s2) according to
the join semi-lattice given Figure 2. The product ⊗LS of two descriptions is the
generalization of each attribute. The selection of actions and learning has been
made with a classical Q-Learning algorithm.

Our algorithm allows the extraction of relevant description elements accord-
ing to the task. Figure 3, shows an extract of the partition obtained after the
convergence of the learning. Quantitatively, we need only 92 description elements
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Fig. 2. A graphical example of two states, their descriptions and their product

Fig. 3. Descriptions and optimal actions of 4 subsets among the 92 produced by parti-
tionning the 504 environnement’s states after convergence of the reinforcement learning

to describe the task instead of 504 initially. There are expected elements such
as being at one tile at the south of the reward implies move north (example 1),
the other tiles don’t matter. We also find non intuitive rules (example 4).
Note that there are descriptions with the same optimal actions which are not
grouped (example 1 and 2). This is because there are no language elements allow-
ing the grouping of these descriptions without regrouping others, with different
optimal actions. We could add, for example, the notion of relative position with
the reward, either directly or using a knowledge data base.

6 Conclusion

First, we reminded the reader of the general principles in the use of a Galois lat-
tice as a generalization space for a set of objects described with a generalization
language. Then, we extended these results to define an original generalization
space for the partitions instead of powerset, in particular by introducing the
notion of partition agreeing with a language. We showed that, considering gen-
eralization as a partitioning, this structure can be used to generalize learning
in reinforcement learning. Finally, we proposed a bottom-up algorithm which
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through a reinforcement learning and a generalization language made it possible
to produce general rules linking description elements of the environment and
optimal actions.
This work considered principally the algebraical aspects. Consequently, we didn’t
treat two remaining important issues: “How to use the rules on unknown exam-
ples” and “How to deal with knowledge uncertainty”.
Our future work will focus on three directions. First, a more formal link between
our work and the relational reinforcement learning [9]. Secondly, an algorith-
mic improvement, studying the different ways of exploring the space search and
the classical balancing between spatial and temporal complexity. Thirdly, we
will consider the exploration-exploitation problem, i.e. using previously acquired
knowledge or acquiring new knowledge and as a corollary, managing knowledge
uncertainty. It remains a difficult problem in machine learning and in reinforce-
ment learning in particular. In our case, it’s transposed in a particular way as
the concept reliability, already presented in [10]. We think that a relevant ap-
proach can consists in the explicit management of second order elements (states
distribution, maximal reward,. . . ) directly through the algorithms.
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