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Abstract. Clinical Practice Guidelines (CPGs) play an important role
in improving the quality of care and patient outcomes. Although sev-
eral machine-readable representations of practice guidelines implemented
with semantic web technologies have been presented, there is no imple-
mentation to represent uncertainty with respect to activity graphs in
clinical practice guidelines. In this paper, we are exploring a Bayesian
Network(BN) approach for representing the uncertainty in CPGs based
on ontologies. Based on the representation of uncertainty in CPGs, when
an activity occurs, we can evaluate its effect on the whole clinical pro-
cess, which, in turn, can help doctors judge the risk of uncertainty for
other activities, and make a decision. A variable elimination algorithm
is applied to implement the BN inference and a validation of an aspirin
therapy scenario for diabetic patients is proposed.

1 Introduction

Clinical Practice Guidelines (CPGs) play an important role in improving the
quality of care and patient outcomes; therefore, the task of clinical guideline-
sharing across different medical institutions is a prerequisite to many EMR (Elec-
tronic Medical Record) applications including medical data retrieval [18], med-
ical knowledge management [7], and clinical decision support systems (CDSSs)
[13]. To facilitate clinical guideline-sharing, GLIF (GuideLine Interchange For-
mat) and SAGE (Standards-based Sharable Active Guideline Environment) have
been the focus of extensive research [12]. GLIF is a semantic web based standard
for representing clinical guidelines [15] and SAGE is an interoperable guideline
execution engine, which encodes the content of the clinical guideline to an on-
tology representation, and executes the ontology through the functions of a CIS
(clinical information system) [17].

Most previous approaches using GLIF and SAGE are designed to proceed
from one step to the next only if there is no uncertain data in the former step
[13]. However, this expectation is unrealistic in practice. For example, a guide-
line, which requires risk factors for heart disease to be assessed, needs to proceed
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even when the information about this item is uncertain. In the clinical process,
uncertain data can be (1) data stemming from unreliable sources (e.g., a pa-
tient can not remember the results of his/her last glucose test); (2) data not
obtainable (e.g., no historical data on familial diabetes); and (3) data not yet
collected (e.g., levels of serum glucose today) [14]. If data represented in CPGs
is uncertain, the activities that handle these uncertain data become uncertain as
well. For instance, in CDSS systems, when using the diabetes clinical guideline,
it is necessary to get the family history for evaluating the risk of insulin therapy.
However, in the real hospital environment, clinicians cannot easily obtain all the
needed data for his/her health care activity. Based on these issues, the goal of
this paper is to construct an approach to represent the uncertainty in CPGs and
help doctors judge the risk of these uncertainties in the clinical process. Uncer-
tainty in CPGs means that activity graphs that CPGs are composed of contain
uncertain activities.

As a model for uncertainty, Bayesian Networks (BNs) occupy a prominent
position in many medical decision making processes and statistical inference [11,
3, 2]. However, there have been few reports on applying BNs to the representation
of uncertainty in CPGs. Therefore, to address this issue, we propose an ontology-
based representation of uncertainty in CPGs by using BNs.

In this paper, we first introduce BNs, then we describe the use of BNs for the
medical domain, and review previous work on applying semantic web technology
to model CPGs in section 2; Section 3 elaborates the mechanism of encoding
uncertainty into a CPG ontology; Section 4 describes a scenario validation based
on BN inference; Section 5 discusses the conclusions and future work.

2 Background and Related Work

2.1 Bayesian Network

There are several models that are used to represent uncertainty, such as fuzzy-
logic, BNs, etc. Generally, a BN of n variables consists of a DAG (Direct Acyclic
Graph) of n nodes and a number of arcs. Nodes Xi in a DAG correspond to ran-
dom variables, and directed arcs between two nodes represent direct causal or
influential relations from one variable to the other. The uncertainty of the causal
relationship is represented locally by the CPT (Conditional Probability Table).
P (Xi|pa(Xi)) associated with each node Xi, where pa(Xi) is the parent set of
Xi. Under the conditional independence assumption, the joint probability distri-
bution of X = (X1, X2, ..., Xn) can be factored out as a product of the CPTs in
the network, namely, the chain rule of BN: P (X) =

∏
i P (Xi|pa(Xi)). With the

joint probability distribution, BNs support, at least in theory, any probabilistic
inference in the joint space. Besides the power of probabilistic reasoning provided
by BNs themselves, we are attracted to BNs in this work for the structural sim-
ilarity between the DAG of a BN and activity graphs of CPGs: both of them
are directed graphs, and direct correspondence exists between many nodes and
arcs in the two graphs. Moreover, BNs can be utilized to represent the uncer-
tainty visually, provide inference effectively and facilitate human understanding
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of CPGs. Considering the advantages of BNs, we apply BNs to represent the
uncertainty in CPGs.

2.2 Bayesian Networks for the Medical Domain

Because BNs occupy a prominent position as a model for uncertainty in decision
making and statistical inference, it has been applied to many medical decision
support systems [11, 3, 2]. Atoui [3] adopted a decision making solution based
on a BN that he trained to predict the risk of a cardiovascular event (infarc-
tion, stroke, or cardiovascular death) based on a set of demographic and clinical
data. Aronsky [2] presented the development and the evaluation of a BN for
the diagnosis of community-acquired pneumonia and he showed that BNs are
an appropriate method to detect pneumonia patients with high accuracy. With
respect to clinical guidelines, Mani [11] proposed BNs for the induction of de-
cision tables and generated the guideline by these tables. However, although
these method focus on predicting some feature or risk of disease by using BN
inference, there has been no implementation to represent the uncertainty with
respect to activity graphs in CPGs and to reason on the uncertainty to provide
the probabilities of target activities, which is the focus of our approach.

2.3 Semantic Web for Clinical Practice Guideline

A representational form of clinical guideline knowledge, which promotes com-
pleteness and minimizes inconsistency and redundancy, is essential if we want
to implement and share guidelines for computer-based applications. Semantic
Web technology offers such sharable and manageable methodology for model-
ing CPGs. GLIF [15] and SAGE [17] are two good examples. For creation and
maintenance of implementable clinical guideline specifications, an architecture
is presented in [8]. This architecture includes components such as a rules en-
gine, an OWL-based classification engine and a data repository storing patient
data. Moreover, approaches for modeling clinical guidelines are discussed and
they show that guideline maintenance is tractable when a CPG is represented in
an ontology. Here, we apply an ontology to represent the uncertainty in CPGs
because it is more extensible and maintainable than other methods such as re-
lational databases.

3 Encoding Uncertainty into a CPG Ontology

Figure 1 depicts the overall procedure of the proposed method. Firstly, the orig-
inal CPG is encoded into an ontology model that contains uncertainty features
using BNs. For this, we propose a formal model of CPG Ontology to represent
uncertainty and an algorithm to construct the CPTs (Conditional Probability
Tables) of the BN. The CPG ontology can be shared and utilized in different
clinical information systems. Then, when a user provides his/her observed evi-
dence in the clinical process, the BN inference engine will load the CPG ontology
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Fig. 1. The framework

as a BN and mark the nodes that are observed by the user in the BN. Based on
the observed evidence, the BN inference engine can reason out the probabilities
of target activities asked by the user. Given the reasoning results, the user can
judge the risk of unobserved activities and make a further decision.

Fig. 2. Clinical practice guideline of aspirin therapy for diabetic patients(ASA means
aspirin therapy)

3.1 Clinical Practice Guideline Ontology

CPGs typically include multiple recommendation sets represented as an activity
graph that show the recommended activities during a clinical process and [4].
An activity graph describes the relationship between activities in the recommen-
dation set as a process model. In this article, we use a single recommendation
set in the SAGE diabetes CPG [1], which is an activity graph of aspirin therapy
for diabetic patients, to illustrate how we represent the uncertainty in CPGs
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based on ontology (Fig. 2). Typically, an activity graph contains three kinds of
activities, i.e., context activity, decision activity, action activity. Each activity
graph segment within a guideline begins with a context activity node that serves
as a control point in guideline execution by specifying the clinical context for
that segment. A decision activity node in the SAGE guideline model represents
clinical decision logic by listing alternatives (typically subsequent action activity
nodes), and specifying the criteria that need to be met to reach those nodes. An
action activity node encapsulates a set of work items that must be performed
by either a computer system or persons.

Fig. 3. Classes representation for clinical practice guideline

To represent activities in CPGs, we create the activity class that represents
all the nodes in activity graph as shown in Figure 3. Because there are three kinds
of activities, we construct an action class, a context class, and a decision class
as sub classes of the activity class in the ontology respectively. In CPGs, activ-
ities may include internal conditions that restrict their execution. For example,
for the decision activity “Yes;check for ASA(aspirin therapy) contraindications”
(Fig. 2), there are many internal conditions, such as checking presence of family
history, checking presence of hypertensive disorder etc., to make sure the ASA
contraindications will be checked correctly. We encode these internal conditions
of activity as an activity condition class in the ontology (Fig. 3).

A CPG Ontology with uncertainty features is defined as follows:

Definition 1. (CPG Ontology) CPG Ontology O := {C, I, Ps, cinst}, with an
activity class set C, an activity instance set I, a property set Ps, and an activity
class instantiation function cinst : C → 2I .

In CPG ontology, the activity instance set I represents the set of real activi-
ties that belong to activity classes accordingly. The property set Ps is proposed
to represent the different attributes of activities in order to encode the features
of the BN into ontology. The property set Ps is defined as follows:

Definition 2. (Properties for uncertainty representation) Property Set Ps :=
{cause, hasCondition, hasState, isObserved, hasPriorProValue, hasCondiProValue},
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has a property function cause : I → I, a property function hasCondition : I →
I, a property function hasState : I → Boolean, a property function isObserved:
I → Boolean, a property function hasPriorProV alue: I → Float, and a prop-
erty function hasCondiProV alue: I → Float.

In CPGs, if the criteria associated with an activity node are satisfied, it will
be successfully executed, which will cause the execution of subsequent nodes
in the activity graph. Therefore, the relationship between activities is called
the cause relationship. For example, in Figure 2, the context activity “Patient
21 years or older” causes the decision activity “Check for Aspirin therapy”.
To represent this relationship in the ontology, we construct the object property
cause whose domain and range are activity class and activity condition class. The
hasCondition property is proposed as inverse properties of the cause property,
which describes the “parent” activities of an activity that cause its execution.
For instance, the decision activity “Check for aspirin therapy” has the property
hasCondition with value “Patient 21 years or older” activity that causes its
execution. With the hasCondition property, users can easily figure out all the
conditions that cause the execution of any activity. The cause property plays the
role of “directed arc” and all the activity instances play the role of “node” in the
DAG of BN. Another property, the hasState property, which has a boolean value
range, is denoted as the state of the activity instance; the isObserved property
shows if the activity instances have been observed or not.

Prior probability and conditional probability are two features that represent
the uncertainty level of nodes in BNs. To encode prior probability and condi-
tional probability of activity instances into the ontology respectively, hasPrior-
ProValue property and hasCondiProValue property are employed. Let A, B be
the instances of the activity class representing two concrete activities. We inter-
pret P (A = a) as the prior probability that a value a is a state of instance A
and P (B = b|A = a) as the conditional probability that when A has state a, B
has state b. For example, when A is activity “Patient 21 years or older”, B is
activity “Check for Aspirin therapy”, P (A = true) = 0.5 can be expressed as
follows:

<Context rdf:ID="Patient_21_yo_or_older">

<hasPriorProValue

rdf:datatype="http://www.w3.org/2001/XMLSchema#float"

>0.5</hasPriorProValue>

<hasState

rdf:datatype="http://www.w3.org/2001/XMLSchema#boolean"

>true</hasState>

<cause rdf:resource="#Check_for_Aspirin_therapy"/>

</Context>

The conditional probability P (B = true|A = true) = 1.0 can be expressed
as follows:
<Decision rdf:ID="Check_for_Aspirin_therapy">

<hasCondition>

<Context rdf:ID="Patient_21_yo_or_older">

<hasState rdf:datatype="http://www.w3.org/2001/XMLSchema#boolean"
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>true</hasState>

</Context>

</hasCondition>

<hasState rdf:datatype="http://www.w3.org/2001/XMLSchema#boolean"

>true</hasState>

<hasCondiProValue rdf:datatype="http://www.w3.org/2001/XMLSchema#float"

>1.0</hasCondiProValue>

<cause rdf:resource="#Check_fo_age_older_than_40"/>

</Decision>

3.2 Construction of Conditional Probability Tables

Fig. 4. Algorithm for constructing the conditional probability tables

In this section, we introduce an algorithm utilized to construct the CPTs
of activity instances. After creating the properties to represent the uncertainty
in the ontology, another important work is the construction of the CPTs for
the BN because BN inference is based on the CPTs of each node in BN. For
building the CPTs of activity instance in CPGs, we propose the encoding al-
gorithm according to the features of CPGs. Each activity Xi in a CPG η has
a corresponding activity instance Xoi in CPG Ontology O, i.e., we mark the
corresponding activity instance by adding the letter “o” to the activity variable.

This algorithm provides principles to initialize the CPTs of BNs. The in-
stances in the definition mean the activity instances in the CPGs. Firstly, we
assign prior probabilities to activity instances, i.e, only when the activity in-
stances have no “parents” in BN, they have prior probabilities. When an activ-
ity A causes the set of activities {B1, B2, ..., Bn} simultaneously, the conditional
probability P (Bi|A) = 1.0, (i = 1, ..., n) (Fig. 4(a)); when an activity A causes
one of the activities {B1, B2, ..., Bn}, the conditional probability P (Bi|A) =
1.0/n, (i = 1, ..., n) (Fig. 4(b)); when a set of activities {A1, A2, ..., An} cause
activity B together, then P (B|A1, A2, ..., An) = 1.0 (Fig. 4(c)); when one of the
activities {A1, A2, ..., An} can cause activity B, then P (B|A1, A2, ..., An) = 0.0
(Fig. 4(d)).

With the initialization of CPTs, we have finished constructing the BN from
an ontology that represents the uncertainty in CPGs, namely, the activity graphs
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containing uncertain activities are represented using a BN. When a BN infer-
ence engine loads this ontology, the ontology will be converted to a BN for BN
inference. All the instances of the activity class and the activity condition class
are translated into the node of the BN whose properties are also converted from
properties of these instances in ontology accordingly. In the BN, an arc is drawn
between nodes if the corresponding two activity instances are related by a cause
property, with the direction from the activity instance that has cause property
to the value of this property. CPTs in the BN are also easily obtained from
property hasCondiProValue and property hasPriorProValue of corresponding
activity instances.

Algorithm 1 Construct CPTs( CPG η, CPG Ontology O )
for each activity Xi in η do

if Xi can be successfully executed then
Set property hasState of activity instance Xoi in O with value true

end if
if there is no activity that causes the execution of Xi then

Set property hasCondition of activity instance Xoi in O with value null
Set property hasPriorProV alue of Xoi with value 0.5

end if
end for
if activity A in η cause the execution of activities

⋂n
i=1 Bi then

Set property hasCondiProV alue of activity instance Boi in O with value 1.0
Set activity instance Ao as the value of property hasCondition of activity instance
Boi in O
Set property hasState of activity instance Ao and Boi in O with value true

end if
if activity A in η cause the execution of activities

⋃n
i=1 Bi then

Set property hasCondiProV alue of activity instance Boi in O with value 1.0/n
Set activity instance Ao as the value of property hasCondition of activity instance
Boi in O
Set property hasState of activity instance Ao and Boi in O with value true

end if
if activities

⋂n
i=1 Ai in η cause the execution of activities B then

Set property hasCondiProV alue of activity instance Bo in O with value 1.0
Set activity instances Ao1, ..., Aon as the value of property hasCondition of ac-
tivity instance Bo in O
Set property hasState of activity instance Aoi and Bo in O with value true

end if
if activities

⋃n
i=1 Ai in η cause the execution of activities B then

Set property hasCondiProV alue of activity instance Bo in O with value 0.0
Set activity instances Ao1, ..., Aon as the value of property hasCondition of ac-
tivity instance Bo in O
Set property hasState of activity instance Aoi with value false
Set property hasState of activity instance Bo with value true

end if



9

4 A Scenario Validation Based on Bayesian Network
Inference

We apply the variable elimination algorithm [9, 5] to perform BN inference. To
verify the feasibility of our approach, a scenario of aspirin therapy for a diabetic
patient is proposed. Based on this scenario, we apply our ontology-based BN
approach to represent the uncertainty in CPGs and carried out the BN inference
based on this BN.

4.1 Bayesian Network Inference

There are a lot of algorithms that manipulate BNs to produce posterior values
[16, 10]. The variable elimination algorithm [9, 5] and the bucket elimination
algorithm [6] are focused on algebraic operations. Since algebraic schemes like
variable and bucket elimination compute marginal probability values for a given
set of variables that is suitable for inference on observed evidence, we apply the
variable elimination algorithm to implement the BN inference on the uncertainty
of CPGs.

We assume all random variables have a finite number of possible values.
Set of variables are denoted in bold; for instance, X. The set of all variables
that belong to X but do not belong to Y is indicated by X\Y. The expression∑

X f(X,Y) indicates that all variables in X are summed out from the function
f(X,Y). Denoted by P (X) is the probability density of X: P (x) is the probability
measure of the event {X = x}. Denoted by P (X|Y ) is the probability density
of X conditional on values of Y .

Given a BN, the event E denotes the observed evidence in the network. De-
noted by XE is the set of observed variables. Inferences with BNs usually involve
the calculation of the posterior marginal for a set of query variables Xq. The
posterior of Xq given E is:

P (Xq|E) =
P (Xq, E)

P (E)
=

∑
X\{Xq,XE} P (X)
∑

X\XE
P (X)

(1)

The detail of variable elimination algorithm can be found in [9, 5].

4.2 A Validation of an Aspirin Therapy Scenario for Diabetic
Patients

We demonstrate the validity of our approach by applying an experiment to the
CPG of aspirin therapy for diabetic patients (Fig. 2). Let us consider a scenario:

Scenario 1 A user(medical student, nurse or physician etc. ) is trying to apply
aspirin therapy for a diabetic patient using the diabetes CPG. When he/she tries
to check the aspirin risk factors, he/she can get a few observed evidence, such as
observations of hypertensive disorder, tobacco user finding, hyperlipidemia, and
myocardial infarction. In this case, the user wants to evaluate target activities
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that he is concerned about in this CPG. In this way, he hopes the results can
help him understand the effect of the observed evidence on the target activities
during the whole clinical process.

Fig. 5. An ontology based Bayesian network of aspirin therapy for diabetic patients
derived from figure 2 (blue nodes are the observed ones)

In the scenario, the CPG of aspirin therapy for diabetic patients is used.
Since there are some uncertain activities with respect to the activity graph in
this CPG, we can apply our ontology-based BN approach to represent this uncer-
tainty. Details are described in Section 3. Figure 5 shows the ontology-based BN
representing the uncertainty in the CPG of aspirin therapy for diabetic patients.

After loading the ontology-based BN, the BN inference engine can process BN
inference when the user provides his/her observed evidence, such as observations
of hypertensive disorder, tobacco user finding, hyperlipidemia, and myocardial
infarction in this scenario (Fig. 5). If the user selects the target activities, the
BN inference engine can calculate the probability of them by using the variable
elimination.

For example, after the user got the observed evidence of some aspirin risk
factors, he wants to know the probability of activity “No ASA (aspirin therapy)
contraindications; recommend ASA” to help him to judge whether or not his ob-
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servations of aspirin risk factors are adequate. In the BN inference engine, since
the activity instance “presence of problem hypertensive disorder” is observed, its
property isObserved is set true and the property hasState is set false. Similarly,
the activities instances “presence of problem myocardial infarction”, “presence
of tobacco user finding”, and “presence of problem hyperlipidemia” are also set
in the same manner. With CPTs in this BN, equation 1 (Section 4.1) is applied
to calculate the probability of activity instance “No ASA contraindications; rec-
ommend ASA” :

P (Xq|E) =
P (Xq, E)

P (E)
=

∑
X\{Xq,XE} P (X)
∑

X\XE
P (X)

= 0.775

where Xq ={“No ASA contraindications; recommend ASA”}, and E={“presence
of problem hypertensive disorder” = false,“presence of problem myocardial in-
farction” = false, “presence of tobacco user finding” = false, “presence of
problem hyperlipidemia”= false }.

In another case, when the user wants to get the uncertain degree of activity
instance “presence of problem coagulation factor deficiency syndrome”, he can
choose this target activity instance based on the observed evidence E. Through
BN inference, we can obtain:

P (Xq|E) =
P (Xq, E)

P (E)
= 0.6425

where Xq={“presence of problem coagulation factor deficiency syndrome”} and
E is the same as the above case.

The results in the two cases show high probabilities for the target activ-
ities, which suggest the user can make a decision to go ahead based on the
observed evidence. When we consult several medical experts with this scenario,
their opinions are coincident with these results, which shows the feasibility of
our approach.

5 Conclusion and future work

In this paper, we contribute an ontology-based BN approach to represent the
uncertainty in CPGs. With this uncertain representation in ontology, comput-
ers can: (1) calculate the uncertainty of target activities in CPGs; (2) remind
users of the missing important data or event items, which should be observed in
the clinical process; (3) simulate the clinical process under uncertain situations,
which can be applied to e-learning systems in medical schools.

In the future, we are planning to combine our approach with a real CIS
environment and apply uncertain clinical data to our application. A more com-
prehensive evaluation based on real clinical data should also be carried out.
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