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Abstract. The use of hierarchical taxonomies to organise information (or sets 
of objects) is a common approach for the semantic web and elsewhere, and is 
based on progressively finer granulations of objects. In many cases, seemingly 
crisp granulation disguises the fact that categories are based on loosely defined 
concepts which are better modelled by allowing graded membership. A related 
problem arises when different taxonomies are used, with different structures, as 
the integration process may also lead to fuzzy categories. Care is needed when 
information systems use fuzzy sets to model graded membership in categories - 
the fuzzy sets are not disjunctive possibility distributions, but must be 
interpreted conjunctively. We clarify this distinction and show how an extended 
mass assignment framework can be used to extract relations between fuzzy 
categories. These relations are association rules and are useful when integrating 
multiple information sources categorised according to different hierarchies. Our 
association rules do not suffer from problems associated with use of fuzzy 
cardinalities. An example of discovering associated film genres is given.  
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1 1   Introduction 

The use of taxonomic hierarchies to organise information and sets of objects into 
manageable chunks (granules) is widespread. Granules were informally defined by 
Zadeh [1] as a way of decomposing a whole into parts, generally in a hierarchical 
way. We can regard a hierarchical categorisation as a series of progressively finer 
granulations, allowing us to represent problems at the appropriate level of granularity.  

The idea of a taxonomy serves as an organisational principle for libraries, for 
document repositories, for corporate structure, for the grouping of species and very 
many other applications. It is therefore no surprise to note that the semantic web 
adopts hierarchical taxonomies as a fundamental structure, using the subClassOf 
construct. Although in principle the idea of a taxonomic hierarchy is crisply defined, 
in practice there is often a degree of arbitrariness in its definition. For example, we 
might divide the countries of the world by continent at the top level of a taxonomic 
hierarchy. However, continents do not have crisp definitions - Europe contains some 



definite members (e.g. France, Germany) but at the Eastern and South-Eastern border, 
the question of which countries belong / do not belong is less clear. Iceland is 
generally included in Europe despite being physically closer to Greenland (part of 
North America). Thus although the word “Europe” denotes a set of countries (i.e. it is 
a granule) and can be used as the basis for communication between humans, it does 
not have an unambiguous definition in terms of the elements that belong to the set. 
Different “authorities” adopt different definitions -  the set of countries eligible to 
enter European football competitions differs from the set of countries eligible to enter 
the Eurovision song contest, for example.   

Of course, mathematical and some legal taxonomic structures are generally very 
precisely defined - the class of polyhedra further subdivides into triangles, 
quadrilaterals, etc and triangles may be subdivided into equilateral, isosceles etc. Such 
definitions admit no uncertainty. Most information systems model the world in some 
way, and need to represent categories which correspond to the loosely defined classes 
used by humans in natural language. For example, a company may wish to divide 
adults into customers and non-customers, and then sub-divide these into high-value 
customers, dissatisfied customers, potential customers, etc. Such categories are not 
necessarily distinct (i.e. they may be a covering rather than a partition) but more 
importantly, membership in these categories  is graded - customer X may be highly 
dissatisfied and about to find a new supplier whilst customer Y is only mildly 
dissatisfied. We argue that most hierarchical taxonomies involve graded or loosely 
defined categories, but the nature of computerised information systems means that a 
more-or-less arbitrary decision has to be made on borderline cases, giving the 
taxonomy the appearance of a crisp, well-defined hierarchy. This may not be a 
problem as long as a rigorous and consistent criterion for membership is used (e.g. a 
dissatisfied customer is defined as one who has made at least two calls complaining 
about service), but the lack of subjectivity in a definition is rare. The use of graded 
membership (fuzziness) in categories enhances their expressive power and usefulness. 

A related problem arises when trying to combine multiple sources of information 
that have been categorised in some way (often hierarchically). For example, the 
category of “vintage wine” has a different (but objective) definition, depending on the 
country of origin. To a purist, vintage wines are made from grapes harvested in a 
single year – however, the European Union allows up to 5% of the grapes to be 
harvested in a different year, the USA allows 15% in some cases and 5% in others, 
while other countries such as Chile and South Africa may allow up to 25%. Thus even 
taking a simple (crisp) granulation of wines into vintage and non-vintage categories 
can lead to problems if we try to integrate different sources. 

In this paper we describe a new method for calculating association rules to find 
correspondences between fuzzy granules in different hierarchies (with the same 
underlying universe). We discuss the semantics of fuzzy sets when used to describe 
granules, and introduce a mass assignment-based method to rank association rules and 
show that the new method gives more satisfactory results than approaches based on 
fuzzy cardinalities. Ongoing work is focused on comparison of this approach to others 
(e.g. on ontology merging benchmarks), and with application to merging classified 
directory content. 



2 Background 

This work take place in the context of the iPHI system (intelligent Personal 
Hierarchies for Information) [2] which aims to combine and integrate multiple 
sources of information and to configure access to the information based on an 
individual’s personal categories. We assume here that the underlying entities 
(instances) that are being categorised are known unambiguously - when integrating 
multiple sources, this is often not the case. We have outlined SOFT (the Structured 
Object Fusion Toolkit) elsewhere [3] as one solution to this problem. 

2.1 Fuzzy Sets in Information Systems 

Many authors (e.g. [4]) have proposed the use of fuzzy sets to model uncertain values 
in databases and other knowledge based applications . The standard interpretation of a 
fuzzy set in this context is as a possibility distribution - that is to say it represents a 
single valued attribute which is not known exactly. For example we might use the 
fuzzy set tall to represent the height of a specific person or low to represent the value 
shown on a dice. The fuzzy sets tall and low admit a range of values, to a greater or 
lesser degree; the actual value is taken from the range. Knowing that a dice value val 
is even restricts the possible values to val=2 XOR val=4 XOR val=6 (where XOR is 
an exclusive or). If a fuzzy set on the same universe is defined as low = {1/1, 2/1, 
3/0.4} then knowing the value val is low restricts the possible values to val=1 XOR 
val=2 XOR val=3 with corresponding memberships. 

The conjunctive interpretation of a fuzzy set occurs when the attribute can have 
multiple values. For example, a person may be able to speak several languages; we 
could model this as a fuzzy set of languages, where membership would depend on the 
degree of fluency. This is formally a relation rather than a function on the underlying 
sets. Our position is to make a distinction between the  conjunctive interpretation - 
modelled by a fuzzy relation – and the disjunctive interpretation – modelled by a 
possibility distribution. To emphasise the distinction, we use the notation 

 F(a) = {x/µ(x) | x ∈ U}  
to denote a single valued attribute F of some object a (i.e. a possibility distribution 
over a universe U) and 

 R(a) = [x/χ(x) | x ∈ U] 
to denote a multi-valued attribute (relation). Granules represent the latter case, since 
we have multiple values that satisfy the predicate to a greater or lesser degree. 

2.2 Association Rules 

In creating association rules within transaction databases (e.g. [5], see also [7] for a 
clear overview), the standard approach is to consider a table in which columns 
correspond to items and each row is a transaction. A column contains 1 if the item 
was bought, and 0 otherwise. The aim of association rule mining is to determine 
whether or not there are links between two disjoint subsets of items – for example, do 
customers generally buy biscuits and cheese when beer, lager and wine are bought? 



Let X denote the set of items, so that any transaction can be represented as tr ⊆ X 
and we have a multiset Tr of transactions. We must also specify two non-overlapping 
subsets of X,  s and t. An association rule is of the form S => T where S (resp T) is the 
set of transactions containing the items s (resp t). The rule is interpreted as stating that 
when the items in s appear in a transaction, it is likely that the items in t will also 
appear i.e. it is not an implication in the formal logical sense. 

Most authors use two measures to assess the significance of association rules, 
although these measures can be misleading in some circumstances. The support of a 
rule is the fraction of transactions in which both S and T appear, and the confidence of 
a rule is an estimate (based on the samples) of the conditional probability of T given S 

 

! 

Support S,T( ) = S"T  
and 
 

! 

Conf S,T( ) =
S"T

S
 

where we operate on multisets rather than sets. Typically a threshold is chosen for 
the support, so that only frequently occurring sets of items s and t are considered; a 
second threshold filters out rules of low confidence. 

Various approaches to fuzzifying association rules have been proposed e.g. [6-8]. 
The standard extension to the fuzzy case is to treat the (multi-) sets S, T as fuzzy and 
find the intersection and cardinality using a t-norm and sigma-count respectively.  

 

! 

Conf S,T( ) =

µS"T x( )
x#X

$

µS x( )
x#X

$

 

Note that many authors just refer to fuzzy sets, rather than multisets. 
As pointed out by [7], using min and the sigma count for cardinality can be 

unsatisfactory because it does not distinguish between several tuples with low 
memberships and few tuples with high memberships - for example, 
 

! 

S = x1 1, x2 0.01, x3 0.01,… , x1000 0.01[ ]
T = x1 0.01, x2 1, x3 0.01,… , x1000 0.01[ ]

 

leads to  
 

! 

Conf S,T( ) =
1000 " 0.01

1+ 999 " 0.01
# 0.91 

which is extremely high for two almost disjoint sets (this example originally 
appeared in [9]). Using a fuzzy cardinality (i.e. a fuzzy set over the possible 
cardinality values) is also potentially problematic. 

For these reasons, we propose the use of mass assignment theory in calculating the 
support and confidence of association rules between fuzzy categories.  

The fuzziness in our approach arises because we allow partial membership in 
categories – for example, instead of looking for an association between biscuits and 
beer, we might look for an association between alcoholic drinks and snack foods. It is 
important to note that we are dealing with conjunctive fuzzy sets (monadic fuzzy 
relations) here. Mass assignment theory is normally applied to fuzzy sets representing 
possibility distributions and the operation of finding the conditional probability of one 
fuzzy sets given another is known as semantic unification [10]. This rests on the 
underlying assumption of a single valued attribute – a different approach is required 
to find the conditional probability when we are dealing with set-valued attributes. 



2.3 Mass Assignments 

A mass assignment [11] (see also [12]) is a distribution over a power set, 
representing disjunctive uncertainty about a value. For a universe U 

 

! 

m :P U( )" 0,1[ ]

m X( )
X #U

$ =1

 ( 1 ) 
 

The mass assignment is related to a fuzzy set (possibility distribution) A as follows: 
Let µA be the membership function of A with range 

! 

R µ
A( ) = µ

A

1
,µ

A

2
,… ,µ

A

m{ }
such that µ

A

1 > µ
A

2 >… > µ
A

m

 

and Ai be the alpha-cuts at these values i.e. 

! 

A
i
= xµ

A
x( ) " µ

A

i{ }  

(also known as the focal elements) 
Then 

! 

m
A
A
i( ) = µ

A

i
"µ

A

i+1  ( 2) 
 
Given a fuzzy set A, the corresponding mass assignment can be written as 

! 

M A( ) = A
i
:m

A
A
i( ) A

i
" A{ }  

where conventionally only the focal elements (non-zero masses) are listed in the mass 
assignment. The mass assignment represents a family of probability distributions on 
U, with the restrictions 

 

! 

p :U" 0,1[ ]

p x( )
x#U

$ =1

m x{ }( ) % p x( ) % m X( )
x#X

$

 ( 3 ) 

For example, if X = {a, b, c, d} and A is the fuzzy set  
{a/1, b/0.8, c/0.3, d/0.2} 

then 

! 

M A( ) = a{ } : 0.2, a, b{ } : 0.5, a, b, c{ } : 0.1, a, b, c, d{ } : 0.2{ } 
In the example above, p(a) = 0.4, p(b) = 0.3, p(c) =0.1, p(d) = 0.2 is a possible 
distribution, obtained by allocating the mass of 0.5 on the set {a, b} to a (0.2) and b 
(0.3), and so on. We can also give a mass assignment definition of the cardinality of a 
fuzzy set as a distribution over integers 

! 

p A = n( ) = mA Ai( )
Ai"A

Ai =n

#
 

for 0≤n≤|U| 



In the example above, p(|A| = 1) = 0.2,  p(|A| = 2) = 0.5, etc. Clearly in this 
framework, the cardinality of a fuzzy set can be left as a distribution over integer 
values, or an expected value can be produced from this distribution in the usual way. 
A similar definition of fuzzy cardinality was proposed by [13], also motivated by the 
problem of fuzzy association rules. 

Baldwin introduced the least prejudiced distribution (lpd) which is a specific 
distribution satisfying (3) above but also obeying 

! 

lpdA x( ) =
m Ai( )
Aix"Ai

#  ( 4) 

where |A| indicates the cardinality of the set A and the summation is over all focal 
elements containing x. 

Informally, wherever mass is associated with a non-singleton focal element, it is 
shared equally between the members of the set. Clearly a least prejudiced distribution 
is a restriction of the original assignment. 

The steps from lpd to mass assignment and then to fuzzy set can be reversed, so 
that we can derive a unique fuzzy set for any frequency distribution on a finite 
universe, by assuming the relative frequencies are the least prejudiced distribution 
(proof in [14]). 

If the relative frequencies are written 

! 

L
A

= L
A
x
1( ), LA x

2( ),…, L
A
x
n( ){ }  

such that 

! 

L
A
x
1( ) > L

A
x
2( ) >… > L

A
x
n( ) 

then we can define 

! 

A
i
= x x "U # L

A
x( ) $ LA x

i( ){ } 

and the fuzzy set memberships are given by 

! 

µA xi( ) = Ai " LA xi( ) + Aj # Aj#1( ) " LA x j( )
j=i+1

n

$  

2.4 Fuzzy relations and mass assignments 

A relation is a conjunctive set of ordered n-tuples i.e. it represents a conjunction of n 
ground clauses. For example, if U is the set of dice scores then we could define a 
predicate differBy4or5 on U × U as the set of pairs 

[(1, 6), (1, 5), (2, 6), (5, 1), (6, 1), (6, 2)] 

This is a conjunctive set in that each pair satisfies the predicate. In a similar way, a 
fuzzy relation represents a set of n-tuples that satisfy a predicate to a specified degree. 
Thus differByLargeAmount could be represented by  

[(1, 6)/1, (1, 5)/0.6, (2, 6)/0.6, (5, 1)/0.6, (6, 1)/1, (6, 2)/0.6] 



2.5 Mass-based association rules 

We consider two granules, represented as monadic fuzzy relations S and T on the 
same domain, and wish to calculate the degree of association between them. For 
example, consider a database of sales employees, salaries and sales figures. We can 
categorise employees according to whether their salaries are high, medium or low and 
also according to whether their sales figures are good, moderate or poor.  A mining 
task might be to find out whether the good sales figures are achieved by the highly 
paid employees. For example, given the table 

 
name sales salary 
a 100 1000 
b 80 400 
c 50 800 
d 20 700 
 
we might define the monadic fuzzy relations 
 S = goodSales = [a/1, b/0.8, c/0.5, d/0.2] 
and 
 T = highSalary =  [a/1, b/0.4, c/0.8, d/0.7] 
These represent sets of values (1-tuples) that all satisfy the related predicate to a 

degree. The confidence in an association rule can be calculated as follows: 
 
For a source granule  
 

! 

S = x
1
"
S
x
1( ), x2 "

S
x
2( ),…, x

S
"
S
x
S( )[ ]  

and a target granule  
 

! 

T = x
1
"
T
x
1( ), x2 "

T
x
2( ),…, x

T
"
T
x
T( )[ ]  

we can define the corresponding mass assignments as follows. Let the set of 
distinct memberships in S be 
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"
S

(1)
, "

S

(2)
,…, "

S

(n
S
){ } 

where 
 

! 

"
S

(1)
> "

S

(2)
>… > "

S

(n
S
) 

and nS ≤ |S| 
Let  

 

! 

S
1

= x "
S
x( ) = "

S

(1)[ ]{ }
S
i
= x "

S
x( ) # "S

(i)[ ]{ }$ S
i%1 1< i & n

S

 

Then the mass assignment corresponding to S is 

! 

S
i
:m

S
S
i( ){ }, 1" i " nS  

where  

! 

m
S
S
k( ) = "

S

k( ) # "
S

k+1( )  
and we define  
 

! 

"S

i( ) = 0 if i > nS  
For example, the fuzzy relation  



 S = [a/1, b/0.8, c/0.5, d/0.2] 
has the corresponding mass assignment 
 

! 

M
S

= a[ ]{ } : 0.2, a[ ], a,b[ ]{ } : 0.3, a[ ], a,b[ ], a,b,c[ ]{ } : 0.3, a[ ], a,b[ ], a,b,c[ ], a,b,c,d[ ]{ } : 0.2{ }
 

The mass assignment corresponds to a distribution on the power set of relations, 
and we can define the least prejudiced distribution in the same way as for the standard 
mass assignment. In the example above 

 

! 

L
S

= a[ ] : 0.5, a,b[ ] : 0.3, a,b,c[ ] : 0.15, a,b,c,d[ ] : 0.05{ } 
 
We can now calculate the confidence in the association between the granules S and 

T using mass assignment theory. In general, this will be an interval as we are free to 
move mass (consistently) between elements of each Si  .and T j 

For two mass assignments  

! 

MS = Spi{ } :mS Si( ){ }, 1" pi " i " nS
MT = Tq j

{ } :mT S j( ){ }, 1" q j " j " nT

 

the composite mass assignment is  

! 

M
C

= M
S
" M

T

= X :m
C
X( ){ }

 

where mC is specified by the composite mass allocation function 

! 

C i, j, Spi ,Tq j
( )  subject to 

! 

C i, j, Spi ,Tq j
( )

1"q j " j
1" pi " i

#
j=1

nT

# = mS Si( )

C i, j, Spi ,Tq j
( )

1" pi " i
1"q j " j

#
i=1

nS

# = mT Tj( )

 

This can be visualised using a mass tableau (see [11]) Each row (column) 
represents a focal element of the mass assignment, and is split into sub-rows (sub-
columns). The mass associated with a row (column) is shown at the far left (top) and 
can be distributed amongst the sub-rows (sub-columns). For example consider the 
granules 

S = [a/1, b/0.8, c/0.5, d/0.2]  and    
T = [a/1, b/0.4, c/0.8, d/0.7] 

 The rule confidence is given by equation (5)  

 

! 

Conf S" T( ) =

C i, j, Spi ,Tq j
( ) # Spi $Tq j

1%q j % j
1% pi % i

&
j=1

nT

&
i=1

nS

&

C i, j, Spi ,Tq j
( )

1%q j % j
1% pi % i

&
j=1

nT

& # Spi
i=1

nS

&

' 

( 

) 
) 
) 
) 
) 
) 

* 

+ 

, 
, 
, 
, 
, 
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   ( 5)  



 
Clearly the mass can be allocated in many ways, subject to the column constraints 

and it is not always straightforward to find the minimum and maximum confidences 
arising from different composite mass allocations. Two extreme examples are shown 
in Fig 1, so that the confidence in the association rule between the two granules lies in 
the interval [0.4, 1]. In general there can be considerable computation involved in 
finding the maximum and minimum confidences for a rule. When ranking association 
rules it is preferable to have a single figure for confidence, rather than an interval 
which can lead to ambiguity in the ordering. 

 
  0.2 0.1 0.3 0.4 
  a a ac a ac acd a ac acd abcd 

0.2 a 0.2          
a  0.1         0.3 
ab          0.2 
a    0.3       
ab           0.3 
abc           
a       0.2    
ab           
abc           

0.2 

abcd           

(a) 

! 

Conf (S" T) =
0.2 #1+ 0.1#1+ 0.2 # 2 + 0.3#1+ 0.2 #1

0.2 #1+ 0.1#1+ 0.2 # 2 + 0.3#1+ 0.2 #1

=1

 

 
  0.2 0.1 0.3 0.4 
  a a ac a ac acd a ac acd abcd 

0.2 a 0.2          
a           0.3 
ab  0.1     0.2    
a           
ab           0.3 
abc    0.3       
a           
ab           
abc           

0.2 

abcd       0.2    

(b) 

! 

Conf (S" T) =
0.2 #1+ 0.1#1+ 0.2 #1+ 0.3#1+ 0.2 #1

0.2 #1+ 0.1# 2 + 0.2 # 2 + 0.3# 3+ 0.2 # 4

= 0.4

 

Fig 1 - Composite mass allocation (a) maximising and (b) minimising association rule confidence 



We can redistribute the mass according to the least prejudiced distribution i.e. split 
the mass in each row (column) equally between its sub-rows (sub-columns) and 
taking the product as the mass in each cell. In this case, the calculation is simplified 
by (a) combining rows (columns) with the same label and (b) re-ordering the 
summations. This enables us to calculate association confidences with roughly O(n) 
complexity, rather than O(n4) where n is the number of focal elements in the source 
granule S. The confidence is then given by 

! 

ConfLPD S,T( ) =

LPDS Si( ) " LPDT Tj( ) " Si #Tj
j=1

nT

$
i=1

nS

$

LPDS Si( ) " Si
i=1

nS

$

6( )
 

 
(due to the nested structure of the sets, the numerator does not require a double 
summation but can be calculated by stepping through the cells on the leading 
diagonal). If we choose the least prejudiced distribution and re-arrange sub-rows into 
single rows with the same label (also columns) we obtain the following intersections  

 
  0.45 0.25 0.2 0.1 
  a ac acd abcd 
0.5 a a a a a 
0.3 ab a a a ab 
0.15 abc a ac ac abc 
0.05 abcd a ac acd abcd 
 
and the numerator for the rule confidence is  
0.5 × (0.45+0.25+0.2+0.1) × 1  
+ 0.3 × (0.45+0.25+0.2) × 1 + 0.3 × 0.1 × 2 
+ 0.15 × 0.45 × 1 + 0.15 × (0.25+0.2) × 2+  0.15 × 0.1 × 3 
+ 0.05 × 0.45 × 1 + 0.05 × 0.25 × 2+  0.05 × 0.2 × 3 + 0.05 × 0.1 × 4 
 
giving a confidence of 0.67 - lying in the interval shown in Fig 1 (obviously). 

Using the LPD allows us to replace the calculation in eq 5 with straightforward 
calculations of the expected values of the cardinality of the source set and the 
intersection.  

The example above gives a similar result to the cardinality-based method, but this 
is not always the case. For example if 

 

! 

S = x1 1, x2 0.01, x3 0.01,… , x1000 0.01[ ]
T = x1 0.01, x2 1, x3 0.01,… , x1000 0.01[ ]

  

then a fuzzy cardinality based approach gives a confidence of 10/10.99 ≈ 0.91 
whereas our approach gives approximately 10-5. Clearly this is a far more reasonable 
answer, as there are no elements with strong membership in both granules. 



3 Experiment 

We have carried out preliminary tests on the approach by finding associations 
between movie genres from different online sources. Ongoing work is focusing on 
finding associations between music genres, categories in different classified business 
directories and also on comparative studies using the ontology matching benchmarks, 
where suitable instance data is available. 

The two online movie databases IMDB and Rotten Tomatoes have been used in 
previous work [15] to test instance matching methods. We have  used the SOFT 
method to establish correspondence between the (roughly) 95000 movies in the 
databases. Within these two sources, movies are assigned to one or more genres and 
our task is to find strong associations between genres. The genres form a fairly flat 
hierarchy, although in principle one would expect genres to form a deeper hierarchical 
structure (e.g. comedy could be sub-divided into slapstick, satire, situation comedy, 
etc).  At this stage, there is no benchmark for comparison but the results are 
intuitively reasonable as shown in Fig 2.  

 
Fig 2 - strong associations from source IMDB genres (left) to target Rotten Tomato genres 
(right). Edge labels denotes the association strength. 



4 Summary 

We have described a new method for generating association rules between 
granules in different information hierarchies. These rules enable us to find related 
categories without leading to spurious relations suggested by association rules based 
on fuzzy cardinalities. Results were presented for discovery of links between film 
genres in different classification hierarchies, giving intuitively reasonable 
associations. The new method is currently undergoing further tests, looking at 
benchmark instance-matching problems, finding associations between music genres 
and finding links between categories in different classified business directories.  
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