
Seventh Workshop on Automated Reasoning

Bridging the Gap between Theory and Practice

London, 20-21 July 2000

Hosted by the

Group of Logic and Computation

Department of Computer Science

King's College London

The ARW 2000 web site is http://www.dcs.kcl.ac.uk/events/ARW/ and the web site for
the workshop series is http://www-users.cs.york.ac.uk/�frisch/AutoReason/.

Foreword

Automated Reasoning got its initial boost after Alan Robinson invented the resolution prin-

ciple in 1963. For many years after this historical event \automated reasoning" was therefore

a synonym for \resolution based reasoning for predicate logic". But this has been almost

40 years ago. \Automated reasoning" in the early 21st century comprises a still growing

number of research areas. Some of them are: theorem proving in classical and non-classical

logics, equational reasoning, uni�cation, induction, logic programming, functional program-

ming, constraint solving, formal methods for specifying, transforming and verifying systems,

in particular safety-critical systems, non-monotonic reasoning, abduction, logic-based knowl-

edge representation, in particular description logics.

The United Kingdom has an established research tradition in many of these areas and
there are strong and internationally recognized research groups working on these problems.

These groups meet once a year at the \Workshop on Automated Reasoning" to exchange

results and ideas. The workshop is a rather informal event with short presentations and

poster sessions. It provides the opportunity to keep the community informed about research

activities and to present and discuss brand new ideas.

This year the workshop took place at King's College in London. There were 24 contribu-

tions, not only from the UK, but from countries as far away as Brazil and Lithuania. The

2-page abstracts of the contributions, together with the abstracts of the invited speakers are

contained in these workshop notes.

I would like to thank very much everybody who contributed to the workshop. It has been

sponsored by the Max-Planck Institute for Computer Science in Saarbr�ucken. We are grateful
for their support.

Hans J�urgen Ohlbach

Organisers

Organising Committee

Robin D. Arthan (Lemma 1)

rda@lemma-one.com

Alan Bundy (University of Edinburgh)

a.bundy@edinburgh.ac.uk

Tony Cohn (University of Leeds)

agc@scs.leeds.ac.uk

Michael Fisher (Manchester Metropolitan University)

m.fisher@doc.mmu.ac.uk

Alan M. Frisch (University of York)

Chair of the Organising Committe

frisch@cs.york.ac.uk

Ian P. Gent (University of St. Andrews)
ipg@dcs.st-and.ac.uk

Andrew Ireland (Heriot-Watt University)

air@cee.hw.ac.uk

Manfred Kerber (University of Birmingham)

m.kerber@cs.bham.ac.uk

Hans J�urgen Ohlbach (LMU Munich)

ARW 2000 Programme Chair

ohlbach@pms.informatik.uni-muenchen.de

Andrei Voronkov (University of Manchester)

voronkov@cs.man.ac.uk

Toby Walsh (University of York)

tw@cs.york.ac.uk

Local Arrangements

Ulrich Endriss (King's College London)

endriss@dcs.kcl.ac.uk

Odinaldo Rodrigues (King's College London)

odinaldo@dcs.kcl.ac.uk

Stefan Schlobach (King's College London)

schlobac@dcs.kcl.ac.uk

Table of Contents

Invited talks

Rolf Backofen

Exclusion of Symmetries in Search { A Spin-o� from Bioinformatics Research

Maarten de Rijke

Modal Experiments

Dov Gabbay

Goal Directed Mechanisms: Proofs, Interpolation and Abduction Procedures

Michael Kohlhase
Using Deduction Techniques for Natural Language Understanding

Contributed abstracts

Andrew A. Adams

Computer Algebra and Automated Reasoning

Christoph Benzm�uller, Mateja Jamnik, Manfred Kerber, and Volker Sorge

Resource Guided Concurrent Deduction

Fran�cois de Bertrand de Beuvron, Martina Kullmann, David Rudlo�, Michael Schlick, and

Fran�cois Rousselot

The Description Logic Reasoner CICLOP (Version 2.0)

Alexander Bolotov

Automata on In�nite Words and Temporal Logic Normal Forms

Richard J. Boulton

Towards Automating Inductive Proofs for State Monads

Anatoli Degtiarev and Michael Fisher

Propositional Temporal Resolution Revised

Ulrich Endriss

Reasoning in Description Logics with Wellington 1.0 { System Description

M. Carmen Fern�andez-Gago

E�cient Control of Temporal Reasoning

Alan M. Frisch and Toby Walsh

Automatic Generation of Implied Constraints: Project Description

Lilia Georgieva, Ullrich Hustadt, and Renate A. Schmidt
Hyperresolution for Guarded Formulae

James Harland, David Pym, and Michael Winiko�

Forward and Backward Chaining in Linear Logic

Joe Hurd
Congruence Classes with Logic Variables

Ullrich Hustadt

Practical Proof Methods for Combined Modal and Temporal Logics

Konstantin Korovin and Andrei Voronkov

The Existential Theories of Term Algebras with the Knuth-Bendix Orderings are Decidable

Raul H. C. Lopes

Automatic Generation of Concurrent Provers

Markus Moschner

Finite Model Building for Propositional G�odel-Logics as an Example for Projective Logics

Cl�audia Nalon

Theorem Proving for Temporal Logics of Knowledge or Belief

Mauricio Osorio, Juan Carlos Nieves, and Gabriel Cervantes

Application of Simpli�cation Theories

Regimantas Pliu�skevi�cius

A Deductive Decision Procedure for a Restricted FTL

Allan Ramsay

Run-time Optimisations for Reasoning with Intensional Logics

Alexandre Riazanov and Andrei Voronkov

System Description: Vampire 1.0

Tatiana Rybina and Andrei Voronkov

A Decision Procedure for Term Algebras with Queues

Stefan Schlobach

Description Logics and Knowledge Discovery of Data

Renate A. Schmidt

Deciding Fluted Logic with Resolution

Invited Talks

Exclusion of Symmetries in Search { A Spin-o�

from Bioinformatics Research

Rolf Backofen

Ludwig-Maximilians-Universit�at M�unchen, Institut f�ur Informatik,
Oettingenstr. 67, D-80538 M�unchen (Germany),
Email: backofen@informatik.uni-muenchen.de

Exclusion of symmetry is a long-standing problem in automated deduction

as well as in constraint-based search. Several approaches have been pro-

posed, which usually try to restrict the problem in a way that only one

solution of the equivalence class (with respect to the symmetries) is found.

To our knowledge, in all previously proposed approaches, this element is

�xed in advance and does not depend on the search strategy. This has
the drawback that the search strategy might interfere with the symmetry

exclusion.

We considered the problem of lattice protein folding (a mathematical

simpli�cation of the real protein folding problem, albeit still NP-hard),

where we were faced with a di�erent situation. Here, the symmetries are

well-known (geometric symmetries: translations, rotations and reections),

but it was not known how to exclude these symmetries e�ciently. The

standard approaches could not be applied since they restricted the search

strategy.

Therefore, we introduced a new method for dynamically excluding sym-

metries in during search. The method is not restricted to a speci�c problem
but can be applied to arbitrary symmetries (where our emphasis is not to

detect automatically symmetries but to excluded known symmetries). Our

method is based on the notion of symmetric constraints, which are used

in our modi�cation of a general constraint based search algorithm. The

method does not inuence the search strategy. Furthermore, it can be used

with either the full set of symmetries, or with an subset of all symmetries.

We will show how to apply the method in the special case of geometric

symmetries (rotations and reections) and permutation symmetries. Fur-

thermore, we give results from practical applications, and compare our sys-

tem with systems proposed in the literature.

Modal Experiments

Maarten de Rijke

University of Amsterdam, Department of Mathematics, Computer
Science, Physics and Astronomy, Plantage Muidergracht 24,

1018 TV Amsterdam (The Netherlands),
Email: mdr@wins.uva.nl

Recent years have witnessed the development of sophisticated automated

reasoning methods for modal logic, both direct ones (usually based on

tableau calculi) and indirect ones (based on translations into �rst-order logic

or monadic second-order logic).

In this talk I will discuss a number of questions to which the development

of these tools have given rise (such as heuristics, re�nements, and evaluation

techniques), as well as some recent answers.

Goal Directed Mechanisms: Proofs, Interpolation

and Abduction Procedures

Dov Gabbay

King's College London, Department of Computer Science, Strand,
London WC2R 2LS (UK), Email: dg@dcs.kcl.ac.uk

A goal directed proof mechanism will be presented for some substructural

logics. It will be used to show how to get theorems, interpolants and abduced

hypotheses.

Using Deduction Techniques for Natural Language

Understanding

Michael Kohlhase

Universit�at des Saarlandes, Fachbereich Informatik,
Im Stadtwald, D-66041 Saarbr�ucken (Germany),

Email: kohlhase@cs.uni-sb.de

The talk emphasises the opportunity of using deduction methods in natural

language understanding.

We start out by explaining some some of the usages of reasoning, such

as common ground maintenance, discourse structure and coherence and se-

mantic disambiguation using world knowledge.

The technical part of the talk takes a closer look at the application of

�rst-order automated theorem proving- and model-generation techniques in

all of these processes and investigates the necessary integration and commu-

nication between deduction systems and the linguistic modules.

In particular, I will show how the model-generation paradigm can be

extended with mechanisms for anaphora, salience, resources to arrive at

a better, cognitively and computationally more adequate account of the

natural-language understanding process.

Contributed Abstracts

Computer Algebra and Automated Reasoning

A. A. Adams

1 Computer Algebra and De�nite Integration

My current work is in the area of using Automated Theorem Proving (ATP) to support
Computer Algebra Systems (CAS). CAS, as the name suggests, are systems designed orig-
inally for performing algebraic calculations on computer. They generally began life as a
collection of speci�c algorithms for algebra, with a common speci�cation language. Grad-
ually their domain of application was expanded and eventually they were packaged and
marketed as general purpose mathematical environments. They retain two major legacies
of computer algebra: �rstly they are very good at calculation but poor at dealing with
logical side conditions. Secondly they include many transformation routines which, while
algebraically completely valid, are only analytically valid for a small subset of the real line.

As a pilot study in using ATP technology to support better CAS calculation (there are
a number of di�erent ways to approaching hytbrid CAS/ATP systems) we have focussed on
the problem of de�nite integration. This is a speci�c problem area that highlights both of
the problems mentioned above.

While inde�nite integration is \simply" (it's not always so simple) a matter of solving
the di�erential algebra question:

Given a function f �nd a function F such that:
F 0 = f;

de�nite integration involves calculating the area under the curve of f and as such requires
much more attention to the domain of de�nition of f (the location and nature of disconti-
nuities).

CAS systems deal badly with the analytical side conditions of continuity that are inlcuded
in the fundamental theorem of calculus:

Given a function f and a function F such that:
F 0 = f;

and given two limits a; b such that
[a; b] � Dom(f) and f is continuous on [a; b] then

bR

a

f(x)dx = F (b)� F (a)

While there are tricks to avoid problems with discontinuities computer algebra systems
in general ignore many discontinuities and deal poorly with most others. It is usually left
to the user (sometimes without informing them of this fact) that they must manually check
the side conditions on using the fundamental theorem of calculus.

In particular, computer algebra systems deal very poorly with calcuations involving
parameters. In cases where they will correctly identify (and sometimes correctly work
around) problem points in completely concrete cases, they will often fail when presented
with identical problems involving even one parameter.

As part of a larger scheme considering strong de�nite integration algorithms we have
produced a prototype De�nite Integral Table Look Up (DITLU) system.

Details of the system may be found in [AGLM99a, AGLM99b].

2 Real Number Theorem Proving

Harrison developed a theory of real numbers and a medium sized analysis library as part
of his PhD [Har98]. Unfortunately, this development was performed within HOL-Light,
an unreleased and unsupported version of HOL. Since then much of his library has been
ported to HOL 98. In parallel with this, Gottliebsen has developed an analogue of much
of Harrison's work within PVS [Got00]. Our ongoing work includes developments of this
library to solve two major problems: automatic solution of sets of inequations involving real
parameters and transcendetal functions; automatic checking of continuity of elementary
functions.

The development of libraries and tactics for real number theorem proving is now an
acheivable goal, and the possible bene�ts in software veri�cation and automated support
of other systems are huge. Until recently this realm seemed beyond the capabilities of
theorem proving software, but we have reached a stage where that is no longer true, and
the development of continuous mathematics within theorem proving is becoming more and
more important.

References

[AGLM99a] A. A. Adams, H. Gottliebsen, S. A. Linton, and U. Martin. Automated theorem
proving in support of computer algebra: symbolic de�nite integration as a case
study. In [Doo99], 253{260.

[AGLM99b] A. A. Adams, H. Gottliebsen, S. A. Linton, and U. Martin. VSDITLU: a
veri�able symbolic de�nite integral table look-up. In [Gan99], 112{126.

[Doo99] S. Dooley, editor. Proceedings of the 1999 International Symposium on Symbolic

and Algebraic Computation. ACM Press, 1999.

[Gan99] H. Ganzinger, editor. Automated Deduction | CADE-16. Springer-Verlag
LNAI 1632, 1999.

[Got00] H. Gottliebsen. Transcendental Functions and Continuity Checking in PVS.
In TPHOLS00 [TPH00]. To appear.

[Har98] J. Harrison. Theorem Proving with the Real Numbers. Springer-Verlag, 1998.

[TPH00] Theorem Proving in Higher Order Logics, 2000.

Resource Guided Concurrent Deduction

Christoph Benzm̈uller?; Mateja Jamnik?; Manfred Kerber?; Volker Sorgey
?School of Computer Science, The University of Birmingham

Edgbaston, Birmingham B15 2TT, England, UK
yFachbereich Informatik (FB 14), Universit¨at des Saarlandes

D-66041 Saarbr¨ucken, Germany
C.E.BenzmullerjM.JamnikjM.Kerber@cs.bham.ac.uk; sorge@ags.uni-sb.de

1 Motivation

Our poster proposes an architecture for resource guided
concurrent mechanised deduction which is motivated by
some findings in cognitive science. Our architecture par-
ticularly reflects Hadamard’s “Psychology of Invention”
[Hadamard44]. In his study Hadamard describes the pre-
dominant rôle of the unconsciousness when humans try
to solve hard mathematical problems. He explains this
phenomenon by its most important feature, namely that it
can make (and indeed makes) use of concurrent search
(whereas conscious thought cannot be concurrent), see
p. 22 Hadamard (1944):“Therefore, we see that the uncon-
scious has the important property of being manifold; several
and probably many things can and do occur in it simultaneously.
This contrasts with the conscious ego which is unique. We also
see that this multiplicity of the unconscious enables it to carry
out a work of synthesis.”That is, in Hadamard’s view, it is
important to follow different lines of reasoning simulta-
neously in order to come to a successful synthesis.

Human reasoning has been described in traditional AI
(e.g., expert systems) as a process of applying rules to
a working memory of facts in a recognise-act cycle. In
each cycle one applicable rule is selected and applied.
While this is a successful and appropriate approximation
for many tasks (in particular for well understood domains),
it seems to have some limitations, which can be better
captured by an approach that is not only cooperative but
also concurrent. And Minsky (1985) gives convincing ar-
guments that the mind of a single person can and should
be considered as a society of agents. Put in the context of
mathematical reasoning this indicates that it is necessary
to go beyond the traditional picture of a single reasoner
acting on a working memory – even for adequately de-
scribing the reasoning process of a single human mathe-
matician.

There are two major approaches to automated theo-
rem proving, machine-oriented methods like the resolu-
tion method (with all its ramifications) and human-ori-
ented methods. Most prominent amongst the human-ori-
ented methods is the proof planning approach first intro-
duced by Bundy (1988). In our poster we argue that an
integration of the two approaches and the simultaneous

pursuit of different lines in a proof can be very beneficial.
One way of integrating the approaches is to consider a
reasoner as a collection of specialised problem solvers, in
which machine-oriented methods and planning play dif-
ferent rôles.

2 System Architecture

The architecture (for further details see Benzm¨uller et al.
(1999)) that we describe here allows a number of proof
search attempts to be executed in parallel. Each specialised
subsystem may try a different proof strategy to find the
proof of a conjecture. Hence, a number of different proof
strategies are used at the same time in the proof search.
However, following all the available strategies simulta-
neously would quickly consume the available system re-
sources consisting of computation time and memory space.
In order to prevent this, and furthermore, to guide the
proof search we developed and employ a resource man-
agement concept in proof search. Resource management
is a technique which distributes the available resources
amongst the available subsystems (cf. Zilberstein (1995)).
Periodically, it assesses the state of the proof search pro-
cess, evaluates the progress, chooses a promising direc-
tion for further search and redistributes the available re-
sources accordingly. If the current search direction be-
comes increasingly less promising then backtracking to
the previous points in the search space is possible. Hence,
only successful or promising proof attempts are allowed
to continue searching for a proof. This process is repeated
until a proof is found, or some other terminating condi-
tion is reached. An important aspect of our architecture
is that in each evaluation phase the global proof state is
updated, that is, promising partial proofs and especially
solved subproblems are reported to a special plan server
that maintains the progress of the overall proof search at-
tempt. Furthermore, interesting results may be communi-
cated between the subsystems (for instance, an open sub-
problem may be passed to a theorem prover that seems to
be more appropriate). This communication is supported
by the shells implemented around the specialised problem
solvers. The resource management mechanism analyses

the theorem and decides which subsystems, i.e., which
provers, should be launched and what proportion of the
resources needs to be assigned to a particular prover.

Exchange of Results)
(Communication/

Assesment / Evaluation

Exchange of Results)
(Communication/

Assesment / Evaluation
(Communication/

Assesment / Evaluation
(Communication/

Assesment / Evaluation

Exchange of Results)

Exchange of Results)

Completed Proof

Theorem

Partial Proof

Partial Proof

Partial Proof

Partial Proof

PA1 PA2 PA3

PA1 PA4 PA2 PA5

PAk PAm

PAn

The mechanism is also
responsible for restrict-
ing the amount of
information exchange
between subsystems,
so that not all of
the resources are allo-
cated to the commu-
nication. The Figure
to the right demon-
strates this concur-
rent resource man-
agement based proof
planning architecture.
The involved plan-
ning agents are rep-
resented by PAn and
the ovals indicate the
amount of resources
assigned to them in
each reasoning phase.

We argue that the
effect of resource man-
agement leads to a
less brittle search tech-
nique which we call
focused search.

Breadth-first search
is robust in the sense
that it is impossible to
miss a solution. However, it is normally prohibitively ex-
pensive. Heuristic search may be considered as the other
extreme case, it is possible to go with modest resources
very deep in a search tree. However, the search is brit-
tle in that a single wrong decision may make it go astray
and miss a solution, independently of how big the allo-
cated resources are. Focused search can be considered as
a compromise — it requires more resources than heuris-
tic search, but not as much as breadth-first search. As a
result, a solution can still be found even if the focus of the
search is misplaced. Clearly, more resources are neces-
sary in the case of a bad than of a good focus.

We currently realise the so-called focused proof search
as an adaptation of the multi-agent planning architecture,
MPA Wilkins and Myers (1998), in the proof planning
domain. Important infrastructure for this enterprise is pro-
vided by the
MEGAproof development environment. The
main component of MPA is a multi-agent proof planning
cell, which consists of 1) several planning agents, 2) a
plan server, 3) a domain server, and finally 4) a planning
cell manager.

1. The quite heterogeneous reasoning systems (FO-
Reasoners, HO-Reasoners, CAS, etc.) already inte-
grated to
MEGA are available as planning agents.

And an interactive user may become a concurrent
planning agent as well.

2. The plan server stores promising partial proof plans
returned by the planning agents in their previous
runs within a unified data format. This enables back-
tracking on two distinct levels: we can backtrack
within the actual proof plan by taking back sin-
gle proof steps or subproofs contributed by some of
the planning agents and we can completely shift to
some alternative proof attempt that has been aban-
doned previously.

3. A domain server provides the necessary knowledge
for the planning cell manager as well as for the
single planning agents. In our context it consists
of a structured database of mathematical theories.
Moreover, it should contain domain specific knowl-
edge relevant to certain planning agents.

4. The planning cell manager re-organises and con-
trols the reasoning process in each iteration phase
based on its (and/or the users’) crucial evaluation
and assessment considerations. Its prototype is ba-
sed on the agent-architecture described in Benz-
müller and Sorge (1999) allowing for a close and
flexible integration of an interactive user into auto-
mated reasoning processes.

References
C. Benzmüller and V. Sorge. Critical Agents Supporting Inter-

active Theorem Proving.Proceedings of EPIA-99, Volume
1695 ofLNAI, 1999. Springer.

C. Benzmüller, M. Jamnik, M. Kerber, and V. Sorge. Towards
concurrent resource managed deduction. Tech-Report CSRP-
99-17, The University of Birmingham, School of Computer
Science, 1999.

A. Bundy. The Use of Explicit Plans to Guide Inductive Proofs.
Proceedings of the CADE-9, volume 310 ofLNCS, 1988.
Springer Verlag, Berlin, Germany.

J. Hadamard.The Psychology of Invention in the Mathematical
Field. Dover Publications, New York, USA; edition 1949,
1944.

M. Minsky. The Society of Mind. Simon & Schuster, New York,
USA, 1985.

OMEGA Homepage. (http://www.ags.uni-
sb.de/˜omega/)

D. E. Wilkins and K. L. Myers. A Multiagent Planning Archi-
tecture.Proceedings of AIPS’98, 1998. AAAI Press, Menlo
Park, CA, USA.

S. Zilberstein. Models of Bounded Rationality. InAAAI Fall
Symposium on Rational Agency, Cambridge, Massachusetts,
November 1995.

The Description Logic Reasoner Ciclop (Version 2.0)

Fran�cois de Bertrand de Beuvron, Martina Kullmann,

David Rudlo�, Michael Schlick, Fran�cois Rousselot

LIIA, ENSAIS, 24, bd de la Victoire, F-67084 Strasbourg Cedex

beuvron@liia.u-strasbg.fr
http://www-ensais.u-strasbg.fr/liia/ciclop/ciclop.htm

1 Introduction

Description logic knowledge representation
languages provide means for expressing ab-
stract knowledge about concepts composing
a terminology (TBox), as well as knowledge
about concrete facts, i.e. objects instantiat-
ing the concepts, which form a world descrip-
tion (ABox). Since description logics are pro-
vided with a formal syntax and formal model-
theoretic semantics, sound and complete rea-
soning algorithms can be formulated.

The description logic system Ciclop (Cus-
tomizable Inference and Concept Language for
Object Processing) [2] has been developed as
a system for practical use. Thus, its facilities
have been motivated by its applications. For
Version 2 of Ciclop, the former system (Ver-
sion 1.3) has been completely re-implemented
and some extensions have been made.

2 System Description

The applications which have motivated the de-
velopment of Ciclop are from the areas of con-
�guration [7], semantic indexing of corpora [8],
natural language querying of databases [3], and
decision support for disaster response [4]. They
have shown a need for facilities to manage the
knowledge base, as well as for highly expressive
knowledge representation languages.

To structure big knowledge bases, Ciclop
allows for the de�nition of multiple disjoint
TBoxes and corresponding ABoxes. Thus, con-
cepts can be grouped together according to

their context. Each TBox can be associated
with an appropriate expressiveness. Even if
the domains associated with di�erent TBoxes
are disjoint, individuals from di�erent domains
can be related by so-called connector roles.

The basic expressiveness supported by Ci-

clop is ALC. Besides, it is possible to de-
�ne features, primitive role hierarchies, inverse
and transitive roles, as well as general concept
inclusion axioms, i.e. Ciclop can deal with
cyclic axioms. These language features can be
combined as required by the application, as far
as the resulting logic is still decidable.

Reasoning with respect to a knowledge base
composed of several TBoxes and ABoxes with
di�erent expressivenesses is based on tableau
algorithms which are sound and complete. In-
ferences are provided for the standard TBox
and ABox reasoning tasks. The implementa-
tion uses optimization techniques such as lex-
ical normalization and encoding, dependency
directed backtracking, and model caching [5].
Furthermore, Ciclop uses blocking to deal
with terminologies containing cycles, transitive
and inverse roles. A description of the under-
lying algorithms can be found in [7].

Besides, Ciclop provides means for termi-
nology closure. A closed TBox does not al-
low for the introduction of new concepts. Also,
concepts have to be de�ned to be concrete or
abstract, and individuals are forced to belong
to concrete concepts only ([9], [7]). Dividing
the knowledge base into multiple TBoxes and
ABoxes allows for closing only parts of it.

Furthermore, Ciclop allows for the de�ni-

tion of TBoxes which represent concrete do-
mains [1]. A numeric TBox allows for repre-
senting constraints in form of linear equations
and inequalities, whereas in string TBoxes con-
cepts can be de�ned by means of a set of pos-
sible and impossible strings. The implemen-
tation of a concrete domain interface for Ci-
clop is a joint work with the Department of
Computer Science of King's College, London,
whose description logic system Wellington

is also implemented in Java. The interface al-
lows for associating concrete domains without
important changes in the main system.

Since Ciclop has been implemented in Java
(JDK 1.2), it runs on any operating system
providing a Java Virtual Machine. Also, it
can be executed as an applet within any web
browser supporting Java 2. This makes the
system easily usable. Besides, Ciclop is pro-
vided with a graphical user interface and a
text interface based on the syntax speci�ed in
[6]. Furthermore, the Java API can be used to
build other applications on top of the system.

3 Future Work

The user interface is planned to be extended
to visualize the satis�ability checking process,
i.e. to display internal events like constraint ex-
pansion, individual creation, and clash detec-
tion together with the expansion graph. Be-
sides, the expressiveness of the system will be
extended to feature chains with correspond-
ing agreement and disagreement. Preliminary
tests show that Ciclop performs well com-
pared to other description logic systems, but
standard benchmark tests have still to be done.

References

[1] F. Baader and P. Hanschke. A scheme for
integrating concrete domains into concept
languages. In Proc. of the 12th Interna-

tional Joint Conference on Arti�cial Intel-

ligence, pages 452{457, Sidney, Australia,
1991.

[2] F. de Bertrand de Beuvron, F. Rousselot,
M. Grathwohl, D. Rudlo�, and M. Schlick.
Ciclop. In Proc. of the International Work-

shop on Description Logics '99, System

Comparison, Link�oping, Sweden, 1999.

[3] F. de Bertrand de Beuvron, F. Rousselot,
and D. Rudlo�. Interpretation of descrip-
tion logics for natural language and for
databases. In Proc. of the International

Workshop on Description Logics '97, Paris,
France, 1997.

[4] M. Grathwohl, F. de Bertrand de Beuvron,
and F. Rousselot. A new application for
description logics: Disaster management.
In Proc. of the International Workshop on

Description Logics '99, Link�oping, Sweden,
1999.

[5] I. Horrocks. Optimizing Tableaux Decision

Procedures for Description Logics. PhD
thesis, University of Manchester, Manch-
ester, England, 1997.

[6] P. F. Patel-Schneider and B. Swartout.
Description-logic knowledge representation
system speci�cation. Technical report, AI
Principles Research Department, AT&T
Bell Laboratories, 1993.

[7] M. Schlick. CICLOP: Les logiques de de-

scription appliques la con�guration. PhD
thesis, Universit�e de Haute Alsace de Mul-
house, France, 1999.

[8] A. Todirascu, F. de Bertrand de Beuvron,
and F. Rousselot. Using description log-
ics for indexing documents. In Proc. of

the IAR Annual Meeting '99, Strasbourg,
France, 1999.

[9] R. Weida. Closed Terminologies and Tem-

poral Reasoning in Descriptions for Plan

Recognition. PhD thesis, Columbia Univer-
sity, New York, NY, 1998.

Automata on in�nite words and Temporal Logic

Normal Forms.

Alexander Bolotov

Department of Computing and Mathematics

Manchester Metropolitan University, Manchester M1 5GD, UK.
A.Bolotov@doc.mmu.ac.uk, www.doc.mmu.ac.uk/STAFF/A.Bolotov

We consider the relationship between non-deterministic automata on in�nite
words [1, 12] and alternating automata [10, 1, 12] and a speci�c logical formulation
based on a normal form for temporal logic formulae, called SNFPLTL [6]. While this
normal form was developed for use with clausal resolution in temporal logics [5, 8],
we here show how it can represent, syntactically, these types of automata in a
high-level way [2].

The general problem structure that we are trying to solve is the analisys of a
system speci�cation followed by some (formal) veri�cation of its properties.

Verification

Specification

Automaton Normal Form
(A)

(S)

(V)

(N)

Figure 1: Speci�cation-Veri�cation Problem

If the speci�cation (S) (see Fgure 1) is given in a high-level language, for example
a logic, then the translation from (S) to an automaton (A) is exponential [12] in
case of non-deterministic automata, for example, B�uchi automaton. In contrast, the
step from (A) to its veri�cation (V) here is usually polynomial [4, 12], comprising
an automaton emptiness check. Thus, if a model is given, we can see here the
attraction of a model-checking approach. The situation is di�erent when we carry
out translation into alternating automata [1, 12], where, translation (S)!(A) is
polynomial while checking non-emptiness is hard. No direct methods of checking
non-emptiness of alternating automata is known. The usual way is to simulate an
alternating automaton by a standard non-deterministic automaton and then apply
the emptiness check to the former [1, 12, 11].

If a speci�cation (S) is given in a high-level language, for example in some
logical language, then, aiming to apply as a veri�cation (V) some form of eÆcient
deduction, for example resolution, we carry out the translation from (S) to the
Normal Form (N). Here the complexity is polynomial or often linear. In contrast,
veri�cation of formulae in the Normal Form is usually exponential since it involves

some form of proof (in our case, clausal resolution). However, we are often able to
use either improved proof strategies [7] or restricted forms of the normal form [3]
in order to improve the practical eÆciency of such proof.

One particular concern is the relationship between the Normal Form (N) given
as normal form for PLTL (SNFPLTL) and the Automaton (A) in the diagram above.
We �rst show [2] that SNFPLTL can represent a speci�c type of non-deterministic
automata, B�uchi automata. In translating a problem speci�cation into our normal
form, we actually derive clauses within a fragment of quanti�ed propositional linear
temporal logic (QPLTL) [9, 13] such that formulae within SNFPLTL are existential-
ly quanti�ed and then e�ectively skolemize the normal form producing temporal
formulae without any quanti�cation.

Having established this relationship between SNFPLTL and B�uchi automata,
we will be able to represent problem speci�cation directly as a set of formulae in
Normal Form and apply resolution based veri�cation technique to the latter. Also,
we believe that varying the formulation of acceptance conditions in our syntactic
representation of B�uchi automata, our approach allows us to specify other types
of !-automata such as Rabin or Street automata. Finally, note that structurally
SNFPLTL is similar to alternating automata. Thus, if we can show that SNFPLTL
can represent alternating automata, then clausal resolution method applicable to a
set of SNFPLTL clauses can be considered as another non-direct method of checking
emptiness for alternating automata. This the subject of the ongoing work.

References

[1] O. Bernholtz, M. Y. Vardi, and P. Wolper. An automata-theoretic approach to
branching-time model checking. In Computer Aided Veri�cation, Proc. 6th Int. Work-
shop, volume 818 of Lecture Notes in Computer Science, pages 142{155, Stanford,
California, June 1994. Springer-Verlag.

[2] A. Bolotov, M. Fisher, and C. Dixon. On the relationship between w-automata
and temporal logic normal forms. In To be published in Proc. of Advances in Modal
Logic/International Conference on Temporal Logic 2000, 2000.

[3] C. Dixon, M. Fisher, and M. Reynolds. Execution and Proof in Horn-Clause Temporal
Logic. In Proceedings the Second International Conference on Temporal Logic (ICTL),
Manchester, July 1997. Kluwer.

[4] E. A. Emerson. Automated reasoning about reactive systems. In Logics for Concur-
rency: Structures Versus Automata, Proc. of International Workshop, volume 1043
of Lecture Notes in Computer Science. Springer-Verlag, 1996.

[5] M. Fisher. A Resolution Method for Temporal Logic. In Proc. of the XII International
Joint Conference on Arti�cial Intelligence (IJCAI), 1991.

[6] M. Fisher. A normal form for temporal logic and its application in theorem-proving
and execution. Journal of Logic and Computation, 7(4), 1997.

[7] M. Fisher and C.Dixon. Guiding Clausal Temporal Resolution. In Proceedings the
Second International Conference on Temporal Logic (ICTL), Manchester, July 1997.
Kluwer.

[8] M. Fisher, C. Dixon, and M. Peim. Clausal Temporal Resolution. To appear in ACM
Transactions on Computational Logic (TOCL), 2000.

[9] Y. Kesten and A.Pnueli. A complete deductive system for QPTL. In Proceedings of
the 10th Annual IEEE Symposium of Logic in Computer Science, 1995.

[10] D. E. Muller, A. Saoudi, and P. Schupp. Alternating automata, the weak monadic
theory of the tree and its complexity.

[11] D. E. Muller and P. Schupp. Simulating alternating tree automata by nondetermin-
istic automata: New results and new proofs of theorems of Rabin and McNaughton.

[12] M. Vardi. An automata-theoretic approach to linear temporal logic. In Logics for
Concurrency: Structures Versus Automata, Proc. of International Workshop, volume
1043 of Lecture Notes in Computer Science. Springer-Verlag, 1996.

[13] P. Wolper. Temporal logic can be more expressive. Information and Control, 56(1{
2):72{99, 1983.

Towards Automating Inductive Proofs

for State Monads

Richard J. Boulton

Department of Computing Science, University of Glasgow

17 Lilybank Gardens, Glasgow G12 8QQ, Scotland

E-mail: boulton@dcs.gla.ac.uk

July 2000

1 Introduction

A monad is an algebraic structure that distinguishes between values and com-
putations [Mog91]. Monads are used extensively in functional programming to
produce programs that are easily modi�ed and also to capture non-functional
features such as input/output [Wad92]. They are also used in programming lan-
guage semantics. Thus, reasoning about functional programs and certain styles
of semantics may require proofs involving monads. Typically, the proofs will
also involve recursive functions, so mathematical induction is usually required.

One successful approach to automating inductive proofs is proof planning,
which uses arti�cial intelligence planning techniques where the objects consid-
ered are proof methods. I have been investigating how proof planning might
be used to automate proofs involving monads and state monads in particu-
lar. I have identi�ed two features of these proofs that challenge current proof
planning technology: higher-order terms and nested recursion. Each of these is
discussed briey below but �rst I give an introduction to monads.

2 Monads and State Monads

There is more than one (equivalent) formulation of a monad. Here, the for-
mulation using the functions unit and bind is used. In this formulation a
monad is a triple consisting of a polymorphic type constructor monad and the
two functions just mentioned. In their most general form the functions have
the following types:

unit : �! (�)monad

bind : (�)monad! (�! (�)monad)! (�)monad

and satisfy the following three equations:

bind (unit a) k = k a

bind m unit = m

bind m (�a: bind (k a) h) = bind (bind m (�a: k a)) h

In a state monad the type (�)monad is specialised to state ! � � state and
unit and bind can be de�ned (and renamed) as follows:

unitS x = �s0: (x; s0)

bindS m f = �s0: (�(x; s1): f x s1) (m s0)

The function bindS is higher-order and expressions containing it typically in-
volve explicit �-abstractions.

3 Proof Planning for Higher-Order Logic

Until recently proof planning research had focused on �rst-order formulae but
the �Clam system developed at Edinburgh [RSG98] has provided a way to plan
proofs about higher-order formulae. As indicated above, this will be a necessary
feature for reasoning about state monads, but as yet I have not implemented
such reasoning in �Clam or any other system.

4 Nested Recursion

A nested recursive function is one who's de�nition involves a recursive call
nested within an argument position of another recursive call, e.g.:

f(c(x)) = : : : f(: : : f(: : :) : : :) : : :

Recursive functions de�ned in terms of nested applications of bindS often have
an implicit nested recursion due to the way bindS is de�ned.

It turns out that nested recursive functions can be split into two categories
according to whether or not a nested recursive call occurs in a recursive argu-
ment position of the outer call. If the nested call is in a non-recursive position,
less needs to be done to extend the existing proof planning methods, and for-
tunately monads are in this category. Nevertheless, extensions to �Clam for
the more benign form of nested recursion will be required if it is to be used for
planning proofs about monads.

References

[Mog91] E. Moggi. Notions of computation and monads. Information and

Computation, 93(1):55{92, July 1991.

[RSG98] J. Richardson, A. Smaill, and I. Green. System description: Proof
planning in higher-order logic with �Clam. In Proceedings of the

15th International Conference on Automated Deduction (CADE-15),
volume 1421 of Lecture Notes in Arti�cial Intelligence, pages 129{133,
Springer, July 1998.

[Wad92] P. Wadler. The essence of functional programming. In Conference

Record of the Nineteenth Annual ACM SIGPLAN-SIGACT Sympo-
sium on Principles of Programming Languages, pages 1{14, Albu-
querque, New Mexico, USA, January 1992.

Propositional Temporal Resolution Revised

Anatoli Degtiarev and Michael Fisher

Department of Computing and Mathematics, Manchester Metropolitan University

Manchester M1 5GD, U.K.

(e-mails: fA.Degtiarev,M.Fisherg@doc.mmu.ac.uk)

We propose a re�nement of clausal proposional temporal resolution introduced in [Fis91] and considered
thoroughly in [FDP00]. Knowledge of all basic notions related to this version of propositional temporal
resolution is assumed.

Recall that the general form of the temporal resolution rule from [Fis91] is the following

A) g :l C) �l

C) (:A)W l
(gtr)

Now, in some cases instead of involving the connective W (\unless"), we can manage with an \ordinary"
version of resolution1, which will be referred to as (general) weak temporal resolution:

A) g :l C) �l

A ^ C) l
(gwtr)

This rule gives a weaker conclusion, however, it is more convenient. The convenience and relative suÆ-
ciency of this rule can be justi�ed in particular by checking all examples in [FDP00], where only this rule is
required. Moreover, in some cases, we retain completeness replacing temporal resolution by weak temporal
resolution .

To give a standard form of weak temporal resolution for PLTL-clauses we follow [Fis91, FDP00] and join
the derivation of A) g :l and temporal resolution in a single combined rule:

A1) gB1 : : : An) gBn C) �l

(
nW

i=1

Ai) ^ C) l

(wtr)

where the loop side conditions

` Bi � :l and ` Bi �
nW

j=1

Aj for all i 2 f1; : : : ; ng:

have to be satis�ed2.

Proposition 1 A propositional temporal resolution system consisting of initial resolution, step resolution

and weak temporal resolution rules is complete with respect to sets of PLTL-clauses containing at most one
eventuality literal3.

Unfortunately if an initial set of PLTL clauses contains more than one eventuality literal weak resolution is
not suÆcient. It is demonstrated by the following example.

1taking into account that the clause C) �l is equivalent to C) l _ e�l.

2Let I =
nW

j=1

Aj : Under the side conditions given above I can be considered as an invariant formula that gives derivability

of e:l. Indeed, I =
W
Aj)

W eBj = eWBj)
e:l and I =

W
Aj)

W eBj = eWBj)
eWAj = eI:

3A formula �l (a literal l) from the right-hand side of a sometime PLTL-clause is called eventuality (eventuality literal).

Example Consider the following set of (merged) PLTL-clauses containing two eventuality literals:

1: start) a ^ :l1 ^ :l2; 3: (:a ^ l1 ^ :l2)) g(:a ^ l1 ^ :l2); 5: a) �l1;
2: a) g(:a ^ (l1 _ l2) ^ (:l1 _ :l2)); 4: (:a ^ :l1 ^ l2)) g(:a ^ :l1 ^ l2); 6: a) �l2:

This set is unsatis�able, however we cannot derive a contradiction by weak temporal resolution (wtr).

To get completeness in general we use the augmentation approach of [FDP00] in a slightly di�erent way. For
each eventuality literal l occurring in an initial set S we introduce a new proposition wl as a name of the
formula g�l. After that we apply, to every sometime clause C) �l containing this eventuality literal, a
�x point de�nition of the connective � renaming the subformulas g�l by wl. Namely,

C) �l is replaced by
fC) l _ wl; wl) g�lg is replaced by
fC ^ :l) wl; wl) g�l; wl) g(l _ g�l)g is replaced by
fC ^ :l) wl; wl) g�l; wl) g(l _ wl)g is replaced by
fstart) :C _ l _ wl; true) :C _ l _ wl; wl) g�l; wl) g(l _ wl)g:

It results in the same augmented set of clauses as in [FDP00]. Let us denote it by Saug . This set is satis�able
if, and only if, the initial set S is satis�able because renaming does not a�ect satis�ability.

Now, we de�ne an analogue of the weak temporal resolution rule for Saug as follows:

A1) gB1 : : : An) gBn wl) g�l

(
nW

i=1

Ai)) :wl

(atr)

with the same loop side conditions for the step clauses as above.
Let us refer to this rule as augmented temporal resolution (atr) . It is not diÆcult to see that augmented

resolution is sound. Indeed, the loop side conditions imply (
nW

i=1

Ai) � g :l, and in addition the last

premise of the rule is equivalent to g :l � :wl. Completeness of augmented resolution is obtained by
simple adaptation of the completeness proof given in [FDP00].

Proposition 2 A propositional temporal resolution system consisting of initial resolution, step resolution

and augmented temporal resolution rules is complete with respect to augmented sets of PLTL-clauses.

Example (continuation) We can obtain a contradiction from 1-4 as follows.
At �rst let us produce augmentation clauses corresponding to eventuality literals l1 and l2.

7: w1) g�l1; 9: w1) g(l1 _ w1); 11: start) (:a _ l1 _ w1); 13: true) g(:a _ l1 _ w1);
8: w2) g�l2; 10: w2) g(l2 _ w2); 12: start) (:a _ l2 _ w2); 14: true) g(:a _ l2 _ w2):

Now, we can apply augmented temporal resolution (atr) to pairs 7; 4 and 8; 3 obtaining clauses 15 and 16:

15: true) g(a _ l1 _ :l2 _ :w1); 16: true) g(a _ :l1 _ l2 _ :w2):

Further we can derive by step resolution from 2 and 9; 10; 15; 16

17: a ^ w1 ^ w2) gfalse:

At last we can get a contradiction just by initial resolution from 17; 1; 11; 12.

The re�nements of clausal propositional temporal resolution described in this abstract have appeared
in the process of our work on developing resolution decision procedures for restricted fragments of the the
�rst-order temporal logic. This work is in progress now.

References

[FDP00] M. Fisher, C. Dixon, and M. Peim. Clausal temporal resolution. ACM Transactions on Computation Logic,
2000. To appear.

[Fis91] M. Fisher. A resolution method for temporal logic. In Proceedings of the Twelfth International Joint
Conference on Arti�cial Intelligence (IJCAI). Morgan Kaufman, 1991.

Reasoning in Description Logics with Wellington 1.0

System Description�

Ulrich Endriss

Department of Computer Science, King's College London, Strand,

London WC2R 2LS, UK, Email: endriss@dcs.kcl.ac.uk

http://www.dcs.kcl.ac.uk/research/groups/logic/wellington/

1 Introduction

Description logics are formal knowledge rep-
resentation languages with a relatively simple
syntax and well-de�ned semantics. According
to the description logic paradigm, knowledge
is divided into a terminological part (TBox),
where concepts like beverages that are carbon-
ated and have some ingredient that is alcoholic

are de�ned, and an assertional part (ABox),
where individuals are related to each other
and asserted as being instances of certain con-
cepts. For an introduction to the �eld and
an overview of main directions of current re-
search we refer to [1].

In this paper we introduce a new descrip-
tion logics based knowledge representation
and reasoning tool, theWellington system,
which is currently being developed by the
Group of Logic and Computation at King's
College London.

2 System Description

Unlike a number of other description logic sys-
tems, that have been written in functional
languages, Wellington is being developed
in Java. By choosing a mainstream object-
oriented language rather than a functional one

�This work is part of the Data Driven Logic Algo-

rithms project, which is funded by the EPSRC under
grant reference number GR/L91818.

we hope to make the system more accessible
to users outside the description logics commu-
nity. Java in particular allows for the develop-
ment of (almost) platform-independent soft-
ware. For most system con�gurations applets
can be launched from a web browser without
the need to install any additional software.
Wellington 1.0 is available as both a Java
application and an applet and may be run on-
line over the Internet or can be downloaded
for local use from our project web site (see
top of page).

Currently, the system supports ABox rea-
soning in the standard description logic ALC
(without global axioms). Using the ABox
consistency checking algorithm it is also pos-
sible to check the consistency of a given con-
cept formula and to check the subsumption
relation between two given concept formulas.

Wellington 1.0 implements a multi-
modal tableaux-like calculus with a num-
ber of optimisations, including lexical nor-
malisation, semantic branching with heuris-
tic guided search, beta simpli�cation (dis-
junctions entailed by one of their subformulas
on the same branch are not expanded), non-
branching beta rules (also called boolean con-
straint propagation), and backjumping. Fur-
thermore, in order to minimise the time re-
quired for comparing formulas the implemen-
tation assures that for each (syntactically)
distinct formula not more than one object is

created. An overview of optimisation tech-
niques for description logic tableaux may be
found in [5]. Wellington seems to perform
well, but to date no detailed evaluation has
been carried out.

On the calculus level, one aspect where our
system apparently di�ers from many others
is, that one proof gives rise to exactly one
tableau, on which each branch may hold for-
mulas labelled by di�erent ABox individuals.
The standard algorithmic presentation [4], on
the other hand, assumes a number of so-called
nodes, each of which contains the formulas
associated with one of the ABox individuals.
These formulas again are (at least implicitly)
structured as a tableau. Besides being seman-
tically clearer and closer to the presentation
of tableaux calculi for e.g. modal logics, we
believe that our approach will simplify the in-
tegration of mechanisms for reasoning about
concrete domains [2].

3 Future Developments

Wellington 1.0 is only the beginning. In
the long run we intend to develop a system
for ABox and TBox reasoning in the descrip-
tion logic proposed in [6], which extends ALC
by a number of features, notably arithmeti-
cal constraints over numerical aspects of sets
of role-�llers, complex role terms and hierar-
chies, as well as various generalised quanti-
�ers. The current prototype can already be
used to manage knowledge bases encoded in
that language, but the reasoning services are
yet to be implemented.

The �rst obvious extension of the current
version will be to allow for unfolding of acyclic
concept de�nitions. Then it will be possible to
check ABox consistency, concept consistency,
and concept subsumption with respect to a
TBox. This in turn will provide the basis for
a concept classi�cation algorithm.

Furthermore, we plan to augment
Wellington with the ability to reason
about concrete domains [2]. In cooperation

with the LIIA Strasbourg we are currently
de�ning a general Java interface for concrete
domain reasoning that will be integrated into
both Ciclop [3], the description logic system
developed in Strasbourg, and Wellington.
This will allow us to exchange implementa-
tions of particular domains without the need
to alter any code in the main systems.
In the context of concrete domains we are

particularly interested in domains that can be
used to combine description logics with tem-
poral reasoning mechanisms.

References

[1] F. Baader. Logic-based knowledge rep-
resentation. In M. J. Wooldridge and
M. Veloso, editors, Arti�cial Intelligence
Today, Recent Trends and Developments.
Springer-Verlag, 1999.

[2] F. Baader and P. Hanschke. A scheme for
integrating concrete domains into concept
languages. In Proceedings of the 12th In-

ternational Joint Conference on Arti�cial

Intelligence, IJCAI'91, Sydney, 1991.

[3] F. Beuvron, F. Rousselot, M. Grathwohl,
D. Rudlo�, and M. Schlick. CICLOP (sys-
tem description). In Proceedings of the In-

ternational Workshop on Description Log-

ics, DL'99, Link�oping, 1999.

[4] I. Horrocks. Optimising Tableaux Decision

Procedures for Description Logics. PhD
thesis, University of Manchester, 1997.

[5] I. Horrocks and P. F. Patel-Schneider.
Optimising description logic subsump-
tion. Journal of Logic and Computation,
9(3):267{293, 1999.

[6] H. J. Ohlbach. A theory resolution style
ABox calculus. Extended abstract. In
M4M, Methods for Modalities 1, Work-

shop Proceedings. ILLC, University of Am-
sterdam, 1999.

EÆcient Control of Temporal Reasoning

M.Carmen Fern�andez-Gago,

Centre for Agent Research and Development

Department of Computing and Mathematics,

Manchester Metropolitan University

Email: C.Gago@doc.mmu.ac.uk

1 Introduction

An important part of all logics is proof theory which is concerned with how statements in the logical
language can be combined. A proof transforms statements in the language using only the inference
rules and the axioms. Employing inference rules such as binary resolution and factoring, the resolution
method is complete although it is not very eÆcient. For applications in Computer Science, we require
that such methods become more e�ective. In particular, we require strategies. A strategy is a rule or
set of rules that governs the use of inference rules. In resolution-based theorem-provers developed for
classical logics, a particulary successful strategy for avoiding the generation of redundant information
during proof has been the set of support strategy [8].

Temporal Logic is a variety of non-classical logic used in a wide variety of areas within Computer
Science and Ari�cial Intelligence, for example, Robotics [1], Databases [2], Program Speci�cation [3],
Hardware veri�cation [4], and Agent-Based Systems [5]. Proof in temporal logic is inherently complex
and its implementation can be achieved by di�erent appoaches. Within the Centre for Agent Research
and Development a proof method for temporal logics has been developed. This method is based upon
the use of clausal resolution [6, 7] and it has been de�ned, proved correct, implemented and extended
in a number of ways. However, in a number of cases, the basic method leads to the generation of an
unnecessarily large set of formulas during the proof. As some of these formulas are irrelevant, i.e., are
not needed in the proof, it is clear that re�nements are needed. In order to make the temporal reasoning
more eÆcient, high-level strategies will be needed. Following its success within classical logics, it is our
intention to develop a set of support strategy for temporal resolution.

2 Some Strategies for Temporal Resolution

The resolution method developed for linear temporal logics [6], besides the translation to a normal form,
involves classical resolution between formulae that occur at the same moment in time, and temporal
resolution over states.
In the �rst case, i.e, where the clauses contain no eventualities (}l, i.e, l holds now or at sometime in

the future), we have found a method to apply the set of support strategy. Further we have proved that
by choosing the set of support in a speci�c way, the resolution method is complete. That is, we choose
the set of support as all the rules with positive right hand sides (analogously negative right hand sides).
With this strategy the amount of irrelevant information during the proof is reduced.
In the second case, the resolution method is more complex and involves the detection of a set of rules
known as a loop, that is, rules that together imply l (l holds now and at all moments in the future)
for resolution with }:l. The resolution rule is as follows:

�1) g 1
...

...
...

�n) g n
�) }:l

�)(:

n_
i=1

�i)W:l

where

n̂

i=1

(�i) g(l ^

n_
i=1

�j)) (gmeans in the next moment in time). This condition ensures that the

set of �i) g i rules together imply
n_

i=1

�i) g l.

But the process of detecting the rules that characterise a loop is not easy or obvious, although it is crucial
for the resolution method. Because of that, a new resolution rule is introduced [9] and it is proved sound
and complete. The idea behind this new temporal resolution rule is that, rather than insisting that we
have a loop, we derive a more complex resolvent, that allows for the possibility that such a loop does
not exist. This new temporal resolution is:

�1) g 1
...

...
...

�n) g n
�) }:l

�)

"�
}:looping

�
_(:

n_
i=1

�i)W:l

#

This new resolvent includes the side condition (looping), needed for applying the traditional temporal
resolution , in the resolvent. If such a loop is not obvious the resolvents produced will guide the detection
of the right loop, after to apply step resolution. If such a loop exists, the new resolvent turns out to be
equivalent form.
In our current work we are considering how to make the initial `guess' of a loop and how to use output
from the proof to improve our guess.
We hope to apply these results to the development of strategies for temporal resolution that allows us
to reduce the search space. In particular, we are interested to incorporate the set of support strategy,
hoping it will be so successfully like in the classical case.

References

[1] M. Shanahan, Solving the Frame Problem. MIT Press, 1997.

[2] J. Chomicki and G. Saake, eds, Logics for Databases and Information Systems. Kluwer, 1998

[3] Z. Manna and A. Pnueli, The Temporal Logic of Reactive and Concurrent Systems: Speci�cation.

Springer-Verlag, 1992.

[4] G. Holzmann.The Model-Checker SPIN. IEEE Trans. on Software Engineering 23(5), 1997.

[5] A. Rao and M. George�. Modeling Rational Agents within a BDI-Architecture. In Proc. Int. Conf.

on Principles of Knowledge Representation and Reasoning. Morgan Kaufmann Publishers, 1991.

[6] M. Fisher. A Resolution Method for Temporal Logic. In Proc. Int. Joint Conf. on Arti�cial Intelli-

gence. Morgan Kau�mann Publishers, 1991.

[7] C. Dixon. Temporal Resolution using a Breadth-First Search Algorithm. Annals of Mathematics

and Arti�cial Intelligence, 22. Baltzer Science Publishers, 1998.

[8] L. Wos, R. Overbeek, E.Lusk and J. Boyle. Automated Reasoning: Introduction and Application,
Prentice-Hall International, 1984.

[9] M. Fisher and C. Dixon, Guiding Clausal Temporal Resolution. In Advances in Temporal

Logic,Kluwer Academic Publishers,1999.

[10] W. Mc.Cune, Solution of the Robbins Problem. Journal of Automated Reasoning 19(3), 1997.

[11] C. Dixon and M. Fisher, The Set of Support Strategy in Temporal Resolution. In Proc. Int. Work-

shop on Temporal Reasoning. IEEE Computer Society Press, 1998.

Automatic Generation of Implied Constraints:

Project Description

Alan M. Frisch� and Toby Walshy

Arti�cial Intelligence Group

Dept. of Computer Science, Univ. of York

York, YO10 5DD, United Kingdom

Constraint satisfaction is a highly successful technology for tackling a wide variety of
search problems including resource allocation, transportation and scheduling. Several recent
studies show that implied constraints added by hand to a problem representation can lead
to signi�cant reductions in search (e.g. [8]). The aim of this project is to develop, anal-
yse and evaluate methods for generating implied constraints automatically. One of the key
ideas will be to combine theorem proving techniques (like ordered resolution) with constraint
satisfaction algorithms.

As an example of the value of implied constraints, consider colouring the nodes in a graph
so that adjacent nodes have di�erent colours. This constraint satisfaction problem models
a variety of assignment problems like exam and classroom timetabling. If we have a near
k-clique in which all but one pair of k nodes are connected and k � 1 colours available,
then we can infer an additional constraint that the two unconnected nodes must take the
same colour. Adding this implied constraint explicitly to the problem representation could
prevent a backtracking algorithm like forward checking from exploring an exponential number
of partial colourings for the k nodes in the near k-clique.

Though those who formulate problems for constraint solvers appreciate the importance
of adding implied constraints, there has been little research on how to generate such implied
constraints automatically outside of highly focused domains like planning (see, for example,
[4]). One exception is [5], which generalises resolution to multi-valued clauses (in which
variables can take more than just the two values True and False), and proves that implied
constraints generated by the closure of this operation will eliminate search. In practice, we
cannot expect to eliminate search completely as the closure can be exponentially large to
compute. One of the objectives of this research is to identify how much of the closure to
generate to reduce the total time needed to solve a problem.

Many inference techniques can be viewed as methods for generating restricted classes
of implied constraints. For example, consistency techniques like arc-consistency generate
implied unary constraints. As a second example, nogood recording techniques [2] generate
implied constraints from dead-ends in search. In the area of operations research cutting planes
are highly e�ective at strengthening linear relaxations and at pruning search [7]. Cutting
planes are linear inequalities implied by the original set of inequalities. Hooker has shown
[7] that resolution (and its generalisation to multi-valued clauses) is a general method for
generating cutting planes analogous to more traditional techniques like Chv�atal's method.
As a �nal example, in propositional satis�ability inference techniques such as directional
resolution [3] can be highly competitive with more traditional branching techniques like the
Davis-Putnam procedure [1]. Such methods generate resolvents which can again be viewed
as implied constraints.

The aims of this project are to be achieved through four major objectives. Though each
primarily focuses on the use of implied constraints for systematic search, we will also consider
their use in local search.

The �rst objective is to develop theorem proving techniques for generating implied con-
straints automatically. We will encode the initial problem representation into a propositional

�Email: frisch@cs.york.ac.uk, tel: +44 1904 432745.
yEmail: tw@cs.york.ac.uk, tel: +44 1904 432793.

theory and attempt to determine the extent to which standard theorem proving technolo-
gies, such as resolution, can generate constraints that have previously proven useful when
generated by hand.

As theorem proving techniques are likely to generate both useful and unuseful constraints,
the second objective is to develop heuristics for identifying which of the generated constraints
to retain and which to discard. We will attempt to determine whether measures such as its
\constrainedness" [6], size or tightness can guide this decision. It is known that an ordered
form of resolution [5] can be used to generate constraints su�cient to give backtrack free
search for a �xed variable ordering. But which of these implied constraints is necessary? Can
we give similar results for dynamic variable orderings?

The �rst two objectives focus on the generation of constraints prior to the start of search.
The third objective considers algorithms that interleave the generation of implied constraints
with the search process itself. Consistency techniques, such as arc-consistency, can be viewed
as generating unary constraints during search. The great success of these techniques in
practice motivates us to consider whether other methods of deriving implied constraints during
search can also be e�ective. A critical question to be addressed is how to partition e�ort
between inference (generation of implied constraints) and search.

The fourth and �nal objective is to apply these results to a closely related domain, propo-
sitional satis�ability (SAT) and some extensions of SAT. In recent years, there has been
considerable interest in encoding constraint satisfaction and other problems like planning
into SAT, and then using either an e�cient complete procedure like Davis-Putnam or a fast
semi-decision procedures like GSAT or WalkSAT. The success of such an approach often de-
pends critically on the implied constraints included in the encoding [4]. Are the techniques
developed for generating implied constraints for constraint satisfaction problems useful for
generating implied constraints when encoding problems into SAT?

The research methodology followed in this project is that of theoretical analysis backed
up by large scale empirical tests. We will therefore prototype the various technologies being
explored, and test these implementations on the wide variety of problems found in CSPLib.

We expect automated methods for generating implied constraints to become a vital compo-
nent of the next generation of constraint satisfaction toolkits, and we hope to contribute to this
development. Our results will be available at http://www.cs.york.ac.uk/aig/projects/implied.

References

[1] M. Davis, G. Logemann, and D. Loveland. A machine program for theorem-proving. Communications of

the ACM, 5:394{397, 1962.

[2] R. Dechter. Enhancement schemes for constraint processing: Backjumping, learning and cutset decom-
position. Arti�cial Intelligence, 41(3):273{312, 1990.

[3] R. Dechter and I. Rish. Directional resolution: The Davis-Putnam procedure, revisited. In Proceedings

of KR-94, pages 134{145, 1994. A longer version is available from http://www.ics.uci.edu/~irinar.

[4] M. Ernst, T.D. Millstein and D.S. Weld. Automatic SAT-Compilation of Planning Problems. In Pro-

ceedings of the 14th IJCAI, pages 1169-1177. International Joint Conference on Arti�cial Intelligence,
1997.

[5] A.M. Frisch. Solving Constraint Satisfaction Problems with NB-Resolution. In S. Muggleton, D. Michie
and Luc De Raedt, editors, Machine Intelligence 16, 2000. Electronic Transactions in Arti�cial Intelli-
gence. Available from http://www.cs.york.ac.uk/�frisch/papers/mi16.ps.

[6] I.P. Gent, E. MacIntyre, P. Prosser, and T. Walsh. The constrainedness of search. In Proceedings of the

13th National Conference on AI, pages 246{252. American Association for Arti�cial Intelligence, 1996.

[7] J.N. Hooker. Constraint satisfaction methods for generating valid cuts. In D. L. Woodruf, editor, Advances
in Computational and Stochastic Optimization, Logic Programming, and Heuristic Search, pages 1{30.
Kluwer, 1997.

[8] B.M. Smith, K. Stergiou, and T. Walsh. Modelling the Golomb ruler problem. In Proceedings of the

IJCAI-99 Workshop on Non-Binary Constraints. International Joint Conference on Arti�cial Intelligence,
1999. Also available as APES report, APES-11-1999 from http://apes.cs.strath.ac.uk/reports/apes-11-
1999.ps.gz.

Hyperresolution for Guarded Formulae

Lilia Georgieva1, Ullrich Hustadt2 and Renate A. Schmidt1

1 Department of Computer Science, University of Manchester
Manchester M13 9PL, United Kingdom, fgeorgiel,schmidtg@cs.man.ac.uk

2 Centre for Agent Research and Development, Manchester Metropolitan University
Manchester M1 5GD, United Kingdom, U.Hustadt@doc.mmu.ac.uk

Abstract. Recently we have been investigating the use of hyperresolution as a decision
procedure and model builder for guarded formulae. In general hyperresolution is not
a decision procedure for the entire guarded fragment. However we show that there
are natural fragments which can be decided by hyperresolution [9]. As hyperresolution
is closely related to various tableaux methods the work is also relevant for tableaux
methods. We compare our approach to hypertableaux, and mention the relationship to
other clause classes solvable by hyperresolution.

The guarded fragment of �rst-order logic was introduced in Andr�eka, van Benthem
and Nem�eti [1, 2]. It extends the modal fragment which corresponds to basic modal
logic (via the relational translation) and is an important decidable class which con-
tains many extended modal logics and description logics. Among the most notable
properties of the guarded fragment in addition to decidability are Craig interpolation,
bisimulation invariance, Beth de�nability, �nite model property, and preservation un-
der submodels.

Several extensions of the guarded fragment, like the loosely guarded fragment [7,
12], guarded �xpoint logic [11], or monadic GF2 with transitive guards [8] have been
shown decidable. The various decision procedures exploit the �nite model property,
use ordered resolution, alternating automata, or embeddings into monadic second-
order logic. This is an interesting contrast to the literature on decidable modal logics
and description logics, where tableaux-based decision procedures are predominant for
testing satis�ability (see for example [5, 10]).

In [17] Lutz, Sattler and Tobies investigate whether tableaux-based decision pro-
cedures exist for subclasses of the guarded fragment. They introduce the fragment
GF1� which is obtained from the �rst guarded fragment GF1 [2] by restricting the
way the variables may occur in guards, and show that the fragment is decidable by
semantic tableaux [17].

In [9] we continue their line of investigation. However, we make use of the close
correspondence between tableaux-based decision procedure for modal logics and hy-
perresolution combined with eager splitting on an encoding of modal formulae in
clausal logic, as described in [4, 15], and in [13, 14] for description logics. By using
a structure preserving transformation of guarded formulae into clausal form we are
able to recast the method in a �rst-order setting using hyperresolution, combined
with positive factoring and eager splitting.

The method of proving termination of hyperresolution combined with positive
factoring and eager splitting for the relational translation of extended multi-modal
logics used in [4, 15] does not generalise to GF1�. We investigate a di�erent argument
which takes into consideration the form of the derived clauses. The obtained decision
procedure is practical. Standard resolution provers can be used without adaptation.

Furthermore, following the approach we show decidability of a larger class of
formulae. We describe such generalisations of GF1�in [9].

We also investigate how our method relates to other inference methods such as
hypertableaux [3], and how the work �ts into the bigger picture of hyperresolution as
a decision procedure [6, 16].

Currently we are looking into de�ning an abstract atom complexity measure � in
analogy to Leitsch [16] which would generalise the speci�c complexity measures and
orderings used in the termination proofs presented in this paper and in [4, 13{15]. We
are also attempting to de�ne a larger solvable class which would accommodate more
formulae outside the guarded fragment. Further it would be of interest to extend the
approach to the entire guarded fragment, by using proper blocking conditions in the
context of resolution.

References

1. H. Andr�eka, I. N�emeti, and J. van Benthem. Modal languages and bounded fragments of predicate
logic. J. Philos. Logic, 27(3):217{274, 1998.

2. H. Andr�eka, J. van Benthem, and I. N�emeti. Back and forth between modal logic and classical
logic. Bull. IGPL, 3(5):685{720, 1995.

3. P. Baumgartner, U. Furbach, and I. Niemel�a. Hyper tableaux. In European Workshop on Logic
in AI (JELIA'96), volume 1126 of LNAI, pages 1{17. Springer, 1996.

4. H. de Nivelle, R. A. Schmidt, and U. Hustadt. Resolution-based methods for modal logics. Logic
J. IGPL, 8(3):265{292, 2000.

5. F. M. Donini, M. Lenzerini, D. Nardi, and A. Schaerf. Reasoning in description logics. In
G. Brewka, editor, Principles in Knowledge Representation, Studies in Logic, Language and
Information, pages 191{236. CSLI Publications, Stanford, 1996.

6. C. G. Ferm�uller, A. Leitsch, U. Hustadt, and T. Tammet. Resolution decision procedures. In
Handbook of Automated Reasoning. Elsevier, 2000. To appear.

7. H. Ganzinger and H. de Nivelle. A superposition decision procedure for the guarded fragment
with equality. In Proc. LICS'99, pages 295{303. IEEE Computer Society Press, 1999.

8. H. Ganzinger, C. Meyer, and M. Veanes. The two-variable guarded fragment with transitive
relations. In Proc. LICS'99, pages 24{34. IEEE Computer Society, 1999.

9. Lilia Georgieva, Ullrich Hustadt, and Renate A. Schmidt. Hyperresolution for guarded formulae.
In Peter Baumgartner and Hantao Zhang, editors, Proceedings of the Third International Work-
shop on First-Order Theorem Proving (FTP 2000), volume 5/2000 of Fachberichte Informatik,
pages 101{112. Institut f�ur Informatik, Universit�at Koblenz-Landau.

10. R. Gor�e. Tableau methods for modal and temporal logics. In M. D'Agostino, D. Gabbay,
R. H�ahnle, and J. Posegga, editors, Handbook of Tableau Methods. Kluwer, 1999.

11. E. Gr�adel. Decision procedures for guarded logics. In Automated Deduction|CADE-16, volume
1632 of LNAI, pages 31{51. Springer, 1999.

12. E. Gr�adel. On the restraining power of guards. Manuscript. Submitted to the J. Symbolic Logic,
1999.

13. U. Hustadt and R. A. Schmidt. On the relation of resolution and tableaux proof systems for
description logics. In Proc. IJCAI'99, pages 110{115. Morgan Kaufmann, 1999.

14. U. Hustadt and R. A. Schmidt. Issues of decidability for description logics in the framework of
resolution. In Automated Deduction in Classical and Non-Classical Logics, volume 1761 of LNAI,
pages 191{205. Springer, 2000.

15. U. Hustadt and R. A. Schmidt. Using resolution for testing modal satis�ability and building
models. To appear in the SAT 2000 Special Issue of J. Automated Reasoning, 2000.

16. A. Leitsch. Deciding clause classes by semantic clash resolution. Fundamenta Informatica,
18:163{182, 1993.

17. C. Lutz, U. Sattler, and S. Tobies. A suggestion of an n-ary description logic. In Proc. DL'99,
pages 81{85. Link�oping University, 1999.

Forward and Backward Chaining in Linear Logic

James Harland1 David Pym2 Michael Winikoff1

jah@cs.rmit.edu.au, pym@dcs.qmw.ac.uk, winikoff@cs.rmit.edu.au

1 Department of Computer Science, Royal Melbourne Institute of Technology, GPO Box 2476V, Melbourne, 3001, Australia
2 Department of Computer Science, Queen Mary and Westfield College, University of London, Mile End Road, London, E1 4NS

UK

Backward chaining is a standard technique in automated deduction, particularly inlogic programmingsystems,
often taking the form of a version of Robinson’sresolution rule[10]. The fundamental question is to determine
whether or not a given formula follows from a given set of formulæ, and there are various techniques which can be
used to guide the search for a proof.

An instance of this approach is the analysis of logic programming in intuitionisitic logic [8]. The standard such
analysis is that of Miller et al. [8], based around the notion ofuniform proofs. These are defined in terms of the sequent
calculus, which is well-known to be suited for analyses of backward-chaining.

With more recent interest in logic programming languages based onlinear logic [5], the natural extension of these
backward chaining techniques to linear logic has been much studied [1, 2, 4, 6, 9]; generally, it follows a similar pattern
to intuitionistic logic. The details of the analysis are more intricate than in intuitionistic logic, and there are a number
of points of diversion amongst the various approaches, but the same general procedure is followed.

Whilst the sequent calculus is a good basis for backward chaining, other systems for inference in intuitionistic logic
provide forward chaining capabilities. Hilbert-type systems are the oldest and perhaps best-known of such systems [7].
Such systems allow different logics to be specified by different sets of axioms whilst maintaining modus ponens as the
sole means of inference.

Another technical expression of forward chaining in intuitionistic logic may be found in theTP operator used in
the semantics of logic programs. Here, a mapping is made from interpretations to interpretations, in which the image
is the result of applying the rules of the program to the initial interpretation via a combination of modus ponens and
unification. The semantics of the program is then given by the least fixed point of this operator. It is interesting to
note that this forward chaining system is traditionally used to provide a fixpoint semantics for SLD-resolution [3], a
backward-chaining system.

It should be noted that a key property of the modus ponens rule in intuitionistic logic is that it preserves equivalence:
� ^ (� �) � � ^ . This strong property greatly simplifies the analysis of this rule of inference.

A combination of both backward and forward chaining may be found in deductive database systems such as Aditi
[11]. In such systems, which are based on variants of Prolog, forward chaining is generally used in order to compute
all answers to a query using efficient join algorithms and other techniques from relational databases, whilst backward
chaining is used for less data-intensive computational tasks (such as format conversions).

The properties of forward and backward chaining systems for intuitionistic logic are generally well-understood.
However, the question of how to best integrate the two models still remains. Give that Hilbert-type systems generally
do not make any provision for backward chaining techniques, it seems reasonable to address the question of integration
by investigating the incorporation of forward chaining features into the sequent calculus.

This is achieved by insertingdirected cutsinto an otherwise cut-free sequent calculus proof. Cut-free proofs are
generally used in proof search to avoid a significant amount of non-determinism (i.e., having to choose a cut formula
arbitrarily); in the case of a directed cut, the cut formula will be calculated from the antecedent, and hence will not
have the same problem.

The presence of both backward and forward chaining mechanisms in deductive databases suggests that a similar
integration for linear logic will prove fruitful, especially as linear logic has been used to model database updates, state
and action problems and concurrency.

However, the use of modus ponens in linear logic is not as simple as in intuitionistic logic since modus ponens does
not preserve linear equivalence. For example, in linear logicp
 (p(q) ` q but in provingq we have to “consume”
p.

We have recently developed a method for integrating forward chaining into the sequent calculi for intuitionistic
and linear logics. One particular result of interest is that we can show that these inference rules respect an encoding of
intuitionistic logic programs into linear ones.

AcknowledgementsHarland is grateful for the hospitality of the Department of Computer Science of Queen
Mary and Westfield College, University of London during a period of sabbatical leave. Pym is partially supported by
a Fellowship from the EPSRC.

References

1. J.-M. Andreoli. Logic Programming with Focusing Proofs in Linear Logic.J. Logic Computat.2(3), 1992.
2. J.-M. Andreoli and R. Pareschi. Linear Objects: Logical Processes with Built-in Inheritance. Proceedings of the International

Conference on Logic Programming, 496-510, Jerusalem, June, 1990.
3. M.H. van Emden and R.A. Kowalski, The Semantics of Predicate Logic as a Programming Language,Journal of the Association

for Computing Machinery23:4:733-742, October, 1976.
4. D. Galmiche and G. Perrier. On proof normalization in Linear Logic. Theoretical Computer Science 135:76-100, 1994.
5. J.-Y. Girard. Linear Logic.Theoretical Computer Science50, 1-102, 1987.
6. J. Hodas, D. Miller. Logic Programming in a Fragment of Intuitionistic Linear Logic: Extended Abstract. Proceedings of the

Symposium on Logic in Computer Science, 32-42, Amsterdam, July, 1991.
7. S.C. Kleene.Introduction to Metamathematics. North Holland, 1952.
8. D. Miller, G. Nadathur, F. Pfenning and A.Ščedrov. Uniform Proofs as a Foundation for Logic Programming.Annals of Pure

and Applied Logic:51:125-157, 1991.
9. D.J. Pym, J.A. Harland. A Uniform Proof-theoretic Investigation of Linear Logic Programming. Journal of Logic and Compu-

tation 4:2:175-207, April, 1994.
10. J.A. Robinson. A Machine-Oriented Logic Based on the Resolution Principle.Journal of the Association for Computing

Machinery12:1:23-41, 1965.
11. J. Vaghani, K. Ramamohanarao, D. Kemp, Z. Somogyi, P. Stuckey, T. Leask and J. Harland. The Aditi Deductive Database

System.VLDB Journal3:2:245-288, April, 1994.

Congruence Classes with Logic Variables

Joe Hurd�

Computer Laboratory

University of Cambridge

joe.hurd@cl.cam.ac.uk

12 July 2000

Abstract

We are improving equality reasoning in automatic theorem-provers,
and congruence classes provide an eÆcient storage mechanism for terms,
as well as the congruence closure decision procedure. We describe the tech-
nical steps involved in integrating logic variables with congruence classes,
and present an algorithm that can be proved to �nd all matches between
classes (modulo certain equalities). An application of this algorithmmakes
possible a percolation algorithm for undirected rewriting in minimal space;
this is described and an implementation in hol98 is examined in some de-
tail.

1 Summary

Blending together equality steps (Leibniz' rule of substituting equals for equals)
and deduction steps (e.g., Modus Ponens or specialization) in a proof search is
problematic. Equality tends to dramatically blow up the search space, because
of the vast number of ways of expressing a given term.

In this work we take congruence classes|a way of storing terms that maximizes
sharing and performs congruence closure|and show how they can be used when
the terms contain logic variables. This makes them appropriate for storing terms
in a deductive prover.

�Supported by an EPSRC studentship

Terms equal
to term A

Space of all terms

C

A

E
Match:

F

B

term then merge classes

If terms B and D are
equal to a common

set var X to term D
set var Y to term C

D

Our results so far are:

� a matching algorithm between classes, guaranteed to �nd all matches
(modulo certain equalities) between classes;

� a percolation algorithm that performs undirected rewriting on the classes
(using the equalities represented by the classes);

� an implementation of the above as a derived rule in hol98, with results on
some test cases.

The full paper is available at the following URL:

http://www.cl.cam.ac.uk/users/jeh1004/research/papers/congruence1.html

Practical Proof Methods for

Combined Modal and Temporal Logics

Ullrich Hustadt

Centre for Agent Research and Development, Manchester Metropolitan University,
Chester Street, Manchester M1 5GD, United Kingdom

U.Hustadt@doc.mmu.ac.uk

For a number of years, temporal and modal logics have been applied outside
pure logic in areas such as formal methods, theoretical computer science and
arti�cial intelligence. In our research we are particularly interested in the use
of modal logics in the characterisation of complex components within software
systems as intelligent or rational agents. This approach allows the system de-
signer to analyse applications at a much higher level of abstraction. In order to
reason about such agents, a number of theories of rational agency have been de-
veloped, for example the BDI (Rao and George� 1991) and KARO (van Linder,
van der Hoek, and Meyer 1996) frameworks. The leading agent theories and for-
mal methods in this area all share similar logical properties, more precisely, they
all exhibit (i) an informational component, being able to represent an agent's
beliefs (by the modal logic KD45) or knowledge (by the modal logic S5), (ii) a
dynamic component, allowing the representation of dynamic activity (by tem-
poral or dynamic logic), and, (iii) a motivational component, often representing
the agents desires, intentions or goals (by the modal logic KD).

While many of the basic properties of such combinations of modal and tem-
poral or dynamic logics are well understood (Baader and Ohlbach 1995; Fagin
et al. 1996; Gabbay 1996; Wolter 1998), very little work has been carried out on
practical proof methods for such logics.

Our aim in recent work has been to develop proof methods that are general
enough to capture a wide range of combinations of temporal and modal logics,
but still provide viable means for e�ective theorem proving. Currently, we are
investigating an approach with the following properties:

{ The approach covers the combination of discrete, linear, temporal logic with
extensions of multi-modal Km by any combination of the axiom schemata
4, 5, B, D, and T. This extends the results presented in (Dixon, Fisher and
Wooldridge 1998; Wooldridge, Dixon, and Fisher 1998).

{ Instead of combining two calculi operating according to the same underlying
principles, like for example two tableaux-based calculi, we combine two dif-
ferent approaches to theorem-proving in modal and temporal logics, namely
the translation approach for modal logics (using �rst-order resolution) and
the SNF approach for temporal logics (using modal resolution).

{ The particular translation we use has only recently been proposed by de Niv-
elle (1999) and can be seen as a special case of the T-encoding introduced
by Ohlbach (1998). It allows for conceptually simple decision procedures for

extensions of K4 by ordered resolution without any reliance on loop checking
or similar techniques.

In more detail, this approach consists of (i) a normal form transformation of
formulae of the combined logics into sets of so-called SNFK clauses (similar to
those presented in Dixon et. al. 1998), (ii) a translation of modal subformula
in SNFK clauses into a �rst-order language, and (iii) a calculus CMTL for the
combined logic which can be divided into standard resolution inference rules for
�rst-order logic and a modi�ed version of the temporal resolution inference rules
of Fisher (1991).

The calculus CMTL provides a decision procedure for combinations of the
basic multi-modal logic Km and its extensions by arbitrary combinations of the
axiom schemata 4, 5, B, D, and T with linear, temporal logic.

For a more detailed description of our approach see Hustadt, Dixon, Schmidt,
and Fisher (2000). Related work on proof methods for the KARO framework of
agency can be found in Hustadt, Dixon, Schmidt, Fisher, Meyer, and van der
Hoek (2000).

References

Baader, F. and Ohlbach, H. J. (1995). A multi-dimensional terminological knowledge
representation language. Journal of Applied Non-Classical Logics, 2:153{197.

Blackburn, P. and de Rijke, M. (1997). Why combine logics? Studia Logica, 59(1):5{27.
de Nivelle, H. (1999). Translation of S4 into GF and 2VAR. Manuscript.
Dixon, C., Fisher, M., and Wooldridge, M. (1998). Resolution for temporal logics of

knowledge. Journal of Logic and Computaton, 8(3):345{372.
Fagin, R., Halpern, J. Y., Moses, Y., and Vardi, M. Y. (1996). Reasoning About Knowl-

edge. MIT Press.
Fisher, M. (1991). A Resolution Method for Temporal Logic. In Proc. IJCAI'91, pages

99{104. Morgan Kaufmann.
Gabbay, D. M. (1996). Fibred semantics and the weaving of logics. Part 1. Modal and

intuitionistic logics. Journal of Symbolic Logic, 61(4):1057{1120.
Hustadt, U., Dixon, C., Schmidt, R. A., and Fisher, M. (2000). Normal Forms and

Proofs in Combined Modal and Temporal Logics. In Proc. FroCoS'2000, LNAI
1794, pages 73{87. Springer.

Hustadt, U., Dixon, C., Schmidt, R. A., Fisher, M., Meyer, J-J., and van der Hoek,
W. (2000) Veri�cation within the KARO Agent Theory. In Proc. First Goddard
Workshop on Formal Approaches to Agent-Based Systems. Springer, to appear.

Ohlbach, H. J. (1998). Combining Hilbert style and semantic reasoning in a resolution
framework. In Proc. CADE-15, LNAI 1421, pages 205{219. Springer.

Rao, A. S. and George�, M. P. (1991). Modeling agents withing a BDI-architecture.
In Proc. KR-91, pages 473{484. Morgan Kaufmann.

van Linder, B., van der Hoek, W. and Ch. Meyer, J.-J. (1996). How to motivate your
agents. In Intelligent Agents II, pages 17{32, LNAI 1037. Springer.

Wolter, F. (1998). Fusions of Modal Logics revisited, Advances in Modal Logic, Volume
1, CSLI Lecture Notes 87, pages 361{379. CSLI Publications.

Wooldridge, M., Dixon, C., and Fisher, M. (1998). A tableau-based proof method for
temporal logics of knowledge and belief. Journal of Applied Non-Classical Logics,
8(3):225{258.

The existential theories of term algebras with the

Knuth-Bendix orderings are decidable

Konstantin Korovin Andrei Voronkov

Department of Computer Science

University of Manchester

fkorovinjvoronkovg@cs.man.ac.uk

We consider term algebras with simpli�cation orderings (which are mono-
tonic, and well-founded). Solving constraints (quanti�er-free formulas) in
term algebras with this kind of orderings has several important applica-
tions like pruning search space in automated deduction and proving termi-
nation and conuence of term rewriting systems. Two kinds of ordering are
normally used in automated deduction: Knuth-Bendix ordering and vari-
ous versions of recursive path orderings. There exists extensive literature
on solving recursive path ordering constraints [1, 4], but no algorithms for
solving Knuth-Bendix ordering constraints are known. We proved that the
problem of solving Knuth-Bendix ordering constraints is decidable and NP{
hard.

Let us briey describe the proof, for the full version we refer to [3]. We
consider term algebras in a �nite signature � with at least one constant,
denoted TA(�). Let us now de�ne Knuth-Bendix orderings on TA(�) [2].
The de�nition of Knuth-Bendix ordering is parametrized by a weight func-

tion on �, i.e., a function w : � ! N, and a linear ordering � on �. We
require from the weight function the following: if w(f) = 0 and f is unary,
then f must be the greatest w.r.t. � in �, and weights of constants are
positive. We de�ne the weight of a ground term as a sum of weights of func-
tors occurring in the term. Given a weight function w and a linear ordering
� on �, the Knuth-Bendix ordering on TA(�) is the binary relation >KB
de�ned as follows. For any ground terms g(t1; : : : ; tn) and h(s1; : : : ; sk) we
have g(t1; : : : ; tn) >KB h(s1; : : : ; sk) if

1. jg(t1; : : : ; tn)j > jh(s1; : : : ; sk)j

or

2. jg(t1; : : : ; tn)j = jh(s1; : : : ; sk)j and one of the following holds:

(a) g � h or

(b) g = h and for some 1 � i � n we have t1 = s1; : : : ; ti�1 = si�1
and ti >KB si.

To prove the theorem we �rst extend our term algebra with the natural
numbers with addition and the weight function on terms. We show how
to transform arbitrary quanti�er-free formula into an equivalent disjunction
of conjunctions such that all occurring terms in the formula are variables.
Then we introduce formulas which express that there exists at least n terms
of the weight x, where n is a �xed parameter and show how to write them as
linear Diophantine equations on weights of terms. Using obtained formulas
we transform initial formula into an equivalent constraint which consists
of linear Diophantine equations on weights of terms. Then we show that
satis�ability of that constraint is equivalent to satis�ability of the systems
of linear Diophantine equations over the natural numbers.

References

[1] H. Comon. Solving symbolic ordering constraints. International Journal
of Foundations of Computer Science, 1(4):387{411, 1990.

[2] D. Knuth and P. Bendix. Simple word problems in universal algebras.
In J. Leech, editor, Computational Problems in Abstract Algebra, pages
263{297. Pergamon Press, Oxford, 1970.

[3] K. Korovin and A. Voronkov. A decision procedure for the existentional
theory of term algebras with the Knuth-Bendix orderings. Technical
Report UMCS-2000-6-3, Department of Computer Science, University
of Manchester, January 2000.

[4] R. Nieuwenhuis. Simple LPO constraint solving methods. Information

Processing Letters, 47:65{69, 1993.

Automatic Generation of Concurrent Provers

Raul H. C. Lopes

Departamento de Inform�atica { UFES, Caixa Postal 01-9011/290670 { Brazil
raulh@inf.ufes.br

1. Introduction
A framework is outlined that combines automatic generation of proof search

strategies for theorem provers with concurrent proof search. The framework con-
sists of two programs: P2, that implements an algorithm that generates priori-
tized logic programs, representing proof search strategies; and P2-frame, a proof
search engine that can use strategies generated by P2 to drive concurrent provers.

P2 has been applied to generate provers for Intuitionistic Propositional Cal-
culus(IPC), modal logics T, S4, and S5, and for classical second-order logic (see,
for example, [4].) Figure 1 shows a few diÆcult theorems proved by a concurrent
prover, using a proof search strategy generated by P2. Particularly interesting
are the automatic proofs obtained for the problems 1 to 4 (taken from [1]) and
for Cantor's theorem that the power set of a set S is larger than S (problem 15.)

1. ` 8U8V ((U < 0) � :(U = abs(V))) �
9A(8Y (:A(abs(Y))) ^A(�(2)))

2. ` 8X(9U(X = (2 � U))$:9V ((X + 1) = (2 � V))) �
9A8X(A(X)$:A(X + 1))

3. ` 8P8Y ((8A((A(0) ^ 8X(A(X) � A(X + 1))) � A(Y))^
(P (0) ^ 8X(P (X) � P (X + 1)))) � P (Y))

4. 8X8Y 8Z((F2(X;Y) = F2(Z;Z)) � (X = Y)) `
8P8U8V ((8A((A(F2(0; 0))^
8X8Y (A(F2(X;Y)) � A(F2(F1(X); F1(Y))))) � A(F2(U; V)))^ P (U)) � P (V))

5. ` :9G8F9J(G(J) = F)

Fig. 1. A problem set for P2

2. Concurrent proof strategies
P2 can generate proof search strategies, that are composed of assertions

(called methods) about the uses of the inference rules of a given logic taken
from examples of proofs. It assumes that proofs can be performed in a goal-
oriented fashion, and that they can be decomposed in proof steps, containing a
goal and a designation of an inference rule applied to it. Its main components
are: a set of randomized algorithms for generatingmethods from proof steps, and
algorithms for ordering methods, for matching methods with proof goals, and for
establishing redundancy of methods.

A method is generated from a step by schematization of its goal into a meta-
goal (uniform replacement of variables by meta-variables), and from other meth-
ods by lifting (random replacement of one meta-variable by a new meta-variable),
and thinning (random dropping of a formula of the meta-goal.) A method is con-
�rmed by a step when its meta-goal uni�es with the step's goal and they both
designate the same inference rule. A method is contradicted by a step when
its meta-goal uni�es with the step's goal and they designate di�erent inferences
rule. Methods with negative conditions can be automatically generated and they
restrict the range of steps that one method can match (see [4]).

Methods are ordered with respect to the set of input steps. A method is given
highest priority if it has no contradiction in the given examples. There can be
several methods in that condition and they concurrently compete to be applied
in a proof. Immediately after them are assigned to highest priority methods
whose contradictions are all con�rmed by methods in the preceding level. This
idea is used by P2 to de�ne partial order on methods. A synchronous single

pool parallel branch-and-bound algorithm ([3]) is used to drive the proof search:
methods with the same priority are scheduled for concurrent matches with a
given goal. A successful match produces a new branch in the search tree.

3. Conclusion
The P2-frame has two strong points: it can generate proof search strategies

for arbitrary logics; and the proof search strategies it produces can drive proofs
either with traditional depth-�rst or breadth-�rst search procedure (as described
in [4]), or with parallel algorithms, based, for example, on branch-and-bound.
This last option is particularly attractive in higher-order proving, where the
the undecidability of uni�cation can lead provers into endless loops. Concurrent
matches were important in several steps of the proofs obtained for theorems 1; 2;
and 4 of �g. 1.

References

1. W.W. Bledsoe and Guohui Feng, SET-VAR, Journal of Automated Reasoning 11

(1993), 293{314.
2. Harald Ganzinger (ed.), Proceedings of the 16th International Conference on Auto-

mated Deduction, Springer-Verlag, 1999, LNAI, 1632.
3. Bernard Gendron and Teodor Gabriel Crainic, Parallel branch-and-bound algo-

rithms: survey and synthesis, Operations Research 42 (1994), no. 6, 1042{1066.
4. Raul H.C. Lopes, Automatic generation of proof search strategies for second-order

logic, In Ganzinger [2], LNAI, 1632, pp. 414{428.

Finite Model Building for Propositional
G�odel{Logics as an Example for Projective Logics

Markus Moschner
1

TU Vienna

The aim of model building consists in delivering a model together with a decision
result. For classical logics there are substantial achievements on automated model
building [3, 4]. Although a remarkable amount of work exists for nonclassical logics
(particularly for model building and automated theorem proving), the work of Negri
and Plato [6] on propositional intuitionistic logic is one of the few on the problem
of automatization.
My proposal refers to G�odel logics which are projective logics in the sense of [2]
with respect to automated building of truth{valued models.
Prominent nonclassical logics (G�odel, intuitionistic, Lukasiewicz or lattice{valued

logics) come with ordered{structures for truth{values or semantic structures (for
G�odel and Lukasiewicz logics only linear truth{value structures are suÆcient) Since
the construction of a (counter) model is a task of semantics the usage of such orders
seems suggestive. Transitivity of partial orders obviously plays a crucial role. The
interpretation of the connectives refers usually to a partial ordering of its arguments
and the corresponding mapping:

� conjunction | In�mum

� disjunction | Supremum

� implication | order{relation of arguments (case distinction)

Strictly speaking implication in projective logics may be de�ned through pure
case distinction (in the �nite many{valued case), thus argumentation via partial{
ordering can get inelegant. G�odel logic simpli�es matters through the linear order
of the truth values (ensuring trichotomy between the bounds of the truth{value set)
and the projector{like behavior of negation and implication([5]). Negation evalu-
ates only to the bound values, whereas implication projects either onto the second
argument or to the designated value 1. This accounts also for in�nite{valued G�odel
logics, since this work aims mainly at counter models the analogy to projection
logics does not get senseless (on the propositional level at least).
Processing a formula from top down to its propositional variables (or constants)

gives order conditions for its propositional variables:
a) for con{ and disjunction there are order relations between the formula and its
subformulas,
b) for implication there are order relations between its subformulas (but the value
of one subformula { its succedent { may determine the value of the whole formula).
Intuitively this process is similar to a tableaux method, but \constraints" for the
range of valuations are given at the nodes. These \constraints" may be order
relations between di�erent formulas | not only direct given values.
The appearance of a contradiction within these conditions means that there is no
model (for the refutation | so it must be a tautology); such a contradiction has to be
within every case distinction. Otherwise the conditions need not give single values
for a variable, but (as a side{e�ect) there is information about the minimal numbers
of truth{values for a nontrivial counter{model (respectively: if the conditions give
2 distinct variables which may not be interpreted to 0 or 1, a 4{valued truth{set
is necessary). In general there is no restriction to �nite{valued logics because only
information about the structure of the (interpretations of) subformulas from �nite

1Technische Universit�at Wien, Wiedner Hauptstr. 8{10, A{1040 Vienna, Austria; e{mail:

moschm@logic.at

formulas is constructed.
My aim is an implementation that yields an automated generation of a model (if
existing) for a refuted formula of propositional G�odel logics; since G�odel logics are
a special case of projective logics I am interested in extending the method to classes
of projective logics.
There is an elucidation of the proposed method via an extension of in�nite{valued

G�odel logics with 0{1{projections from [1].
The �{operator, representing such a 0{1{projection, gets the designated value 1
if the evaluation of the formula gets 1, otherwise 0, Such projections can express
a certain order between the subformulas of an implication. Take the implicational
hull with 0{1{projections of a formula (the �{operator gets the designated value 1
if the evaluation of the formula gets 1, otherwise 0):
HF = f�(F1 ! F2) jF1; F2 2 Subform(F) g;
a disjunction of all conjunctions

V
f 2HF

(:if) for i 2 f 0; 1 g (in each conjunction
every formula occurrence is either negated or unnegated) expresses all the possible
schemas of valuations for a formula. The result of the proposed method (resp. one
result of some case distinctions) represents a part of one of these conjunctions (there
is an empty disjunction for no refutation); by laws of classical logics a completion
to some of the conjunctions can be done. At the beginning of the procedure the
hypothesis :� (1 ! A) is added; for a tautology always at least one conjunction
admits � (1 ! A) for a valuation. Thus refutations of tautologies give only
contradictions.
It has to be clari�ed if this method can be done eÆciently. Further investigations

have to clarify the adaptability of this method to a broader class of projective logics.
But �nite{valued logics can be seen as a special case of projective logics. A Within
this context such a conception seems worthy of further investigations.

References

[1] M. Baaz. In�nite{valued G�odel logics: 0{1{projections and relativizations. In
P. H�ajek, editor, Proc. G�odel'96, Logic Foundations of Mathematics, Computer

Science and Physics | Kurt G�odel's Legacy, Lecture Notes in Logic 6, pages
23{33. Springer{Verlag, 1999.

[2] Matthias Baaz and Christian G. Ferm�uller. Analytic Calculi for Projective
Logics. In Neil V. Murray, editor, Automated Reasoning with Analytic Tableaux

and Related Methods, LNAI 1617, pages 36{50. Springer{Verlag, 1999.

[3] Ricardo Caferra and Nicolas Peltier. Decision Procedures Using Model Building

Techniques, pages 131{144. Number 1092 in LNCS. Springer Verlag, 1996.

[4] C.G. Ferm�uller and A. Leitsch. Hyperresolution and automated model building.
Journal of Logic and Computation, 6(2):173{230, 1996.

[5] Siegfried Gottwald. Mehrwertige Logik. Eine Einf�uhrung in Theorie und An-

wendungen. Akademie{Verlag Berlin, Berlin, GDR, 1989.

[6] Sara Negri and Jan von Plato. From Kripke Models to Algebraic Counter{

valuations, pages 246{261. 1998.

Theorem Proving for Temporal Logics of Knowledge or Belief

Cl�audia Nalon

Centre for Agent Research and Development

Department of Computing and Mathematics

Manchester Metropolitan University

Manchester M1 5GD, UK

Email: C.Nalon@doc.mmu.ac.uk

June, 2000

Temporal logics have been investigated in computer science for over twenty years. They
were introduced in [12] as a tool for the speci�cation of reactive systems and, since then,
they have been shown to be useful in a variety of applications (e.g. temporal databases,
model checking). Nevertheless, for some applications, a temporal component is not enough
to describe the properties of the system. To deal with properties of distributed and multi-
agent systems, temporal logic is often augmented with modal operators of either knowledge
or belief. For description of particular systems, it is also necessary to restrict attention
to a class of models. For instance, by adding the axiom K g�) gK�, synchronous
systems with perfect recall can be described. Axioms involving operators from both logics
are known as interaction axioms.

Within the CARD, a proof method, based on the principle of resolution [11], for tempo-
ral logics of knowledge and belief has been proposed [3, 6] and a prototype implementation
has been developed. Interactions between knowledge and time, their properties, and issues
of complexity have been discussed in [10, 4, 7]. A resolution-based method for a temporal
logic of knowledge for synchronous systems with perfect recall has been described in [1]. It
has been shown that by adding new clauses to the normal form, no new resolution rules are
required and the theorem prover for temporal logics of knowledge (without interactions)
can be used with a small number of changes. Current work involves the investigation of
other useful interactions, such as perfect recall (alone) [10] and no learning with synchrony
(gK�) K g�) [7]. Interactions between belief and time, as those described in [5] and
[9], will also be investigated.

Adding interaction axioms increases (sometimes dramatically) the complexity of the
logic. For instance, the complexity of validity for the single agent case for temporal logic
of knowledge (without interactions) is PSPACE. If the synchrony and perfect recall axiom
is added, complexity is double-exponential time [8]. So, the development of strategies to
guide the search for a proof is essential. Successful strategies, such as set of support, which
is applied in both classical [13] and temporal [2] logics, will be considered when developing
strategies for interacting logics of time and knowledge or belief.

References

[1] C.Dixon and M.Fisher. Clausal Resolution for Logics of Time and Knowledge with

Synchrony and Perfect Recall. Submitted, 2000.

[2] C.Dixon and M.Fisher. The Set of Support Strategy in Temporal Resolution. In Pro-
ceedings of TIME-98 the Fifth International Workshop on Temporal Representation
and Reasoning, Sanibel Island, Florida, IEEE Computer Society Press, May, 1998.

[3] C.Dixon, M.Fisher, and M. Wooldridge. Resolution for Temporal Logics of Knowl-

edge. Journal of Logic and Computation, volume 8, number 3, 1998.

[4] R.Fagin, J.Y.Halpern, Y.Moses, and M.Y.Vardi. Reasoning About Knowledge. MIT
Press, 1995.

[5] M. Fisher and M. Wooldridge. On the Formal Speci�cations and Veri�cation of

Multi-Agent Systems. International Journal of Cooperative Information Systems,
6(1), January, 1997.

[6] M. Fisher, M. Wooldridge and C. Dixon. A Resolution-Based Proof Method for Tem-

poral Logics of Knowledge and Belief. In Proceedings of the International Conference
on Formal and Applied Practical Reasoning (FAPR-96), Bonn, Germany, June, 1996.

[7] J.Y.Halpern, R. van der Meyden, and M.Y. Vardi. Complete Axiomatizations for

Reasoning About Knowledge and Time Submitted for publication, 1997.

[8] J.Y.Halpern and M.Y. Vardi. The Complexity of Reasoning about Knowledge and

Time. I Lower Bounds. Journal of Computer and Systems Sciences, 38:195-237,
1989.

[9] J.J.C.Meyer and W. van der Hoek. Epistemic Logic for Computer Science and Arti-

�cial Intelligence, vol. 41 Cambridge Tracts in Theoretical Computer Science. Cam-
bridge University Press, 1995.

[10] R. van der Meyden. Axioms for Knowledge and Time in Distributed Systems with

Perfect Recall. In Proceedings of the Ninth IEEE Symposium on Logic in Computer
Science, pages 448-457, 1994.

[11] J.A.Robinson. A Machine-Oriented Logic Bases on The Resolution Principle. ACM
Journal, 12(1):23-41, January, 1965.

[12] A. Pnueli The Temporal Logic of Programs. In Proceedings of the 18th Symposium

on the Foundations of Computer Science, Providence, November, 1977.

[13] L.Wos, D.Carson, and G. Robinson. EÆciency and Completeness of the Set of Sup-

port Strategy in Theorem Proving. ACM Journal, 12:536-541, October, 1965.

Application of simpli�cation theories

Mauricio Osorio1, Juan Carlos Nieves1, Gabriel Cervantes2

1 Universidad de las Americas
CENTIA

Sta. Catarina Martir,
Cholula, Puebla
72820 Mexico

josorio@mail.udlap.mx
2 Benemerita Universidad Autonoma de Puebla

Escuela de Ciencias de la Electronica
75579 Puebla, Mexico

gcervantes@kim.ece.buap.mx

1 Abstract

In this abstract we present di�erent applications of \simpli�cation of theories".
By simpli�cation of theories we understand a set of relations de�ned over a
class of theories with a �xed language. The only two general properties that this
relations respect are: First, that they are polynomial time computable. Second,
if a theory P1 is related to P under a transformation (that is P1 is obtained
from P using a transformation) and m is a model of P1, then m is also a model
for P:

We discuss applications in three di�erent �elds in applied logic: First order
theory proving, Well behaved semantics and Answer set programming.

In �rst order theory proving, given a consistent �rst order theory T and an
atom a, we may be interested in the derivability of a by T , that is, T j= a?
Using OTTER the problem is traduced as showing that T [f:ag is inconsis-
tent. Unfortunately, this may cause a loop in the process (using OTTER, a well
known theorem proving system) when T [f:ag is consistent. In general terms we
propose the use of\simpli�cation of theories" that help us to construct a model
for Cl f(T [f:agg, where Cl denotes the clausal form of the given theory. If
we succeed in �nding such a model, then T [f:ag has a model and therefore
T 6j= a: We however need some (strong) conditions on T to be able to apply this
method.

We turn now to discuss our applications over well behaved semantics. Of the
major semantics proposed for logic programs with negation as failure, the well
founded semantics has proved to have appealing and enduring features. It has
its advantages and drawbacks. WFS is de�ned for a larger class of programs
and admits an e�cient computation, but it has been argued that WFS is by
design overly careful in deciding about the falsity of some atoms, leaving them
unde�ned. Extensions of WFS has then been proposed. Simpli�cation of theo-
ries (program transformation in this case) has been used to characterize several

semantics as well as to de�ne new semantics that extend WFS. This line of
research was started by Dix. [1] Given a logic program P and a certain set of
transformations T we apply these transformations to the program P and �nd a
reduced program P1, that we call the normalform of program P . Then the set of
derivables literals is more simple. Of course this set of transformations must be
conuent and terminating in order to guarantee a unique �nal program. We al-
ready have proposed some transformations rules that respect this last condition
and thus we combine methods from rewriting with logic programming technol-
ogy and we get a powerful framework for investigating the semantics of logic
programs. Most of the well-known semantics are induced by conuent systems.

In a recent book [2] the authors (Brewka, Dix and Konolige) introduced the
notion of well-behaved semantics, and aim at a classi�cation of well-behaved
semantics according to other, clearly formulated declarative properties. In par-
ticular the mentioned book presents three conjectures (conjectures 7.20, 7.21 and
7.22) stating that there are not well-behaved semantics satisfying certain prop-
erties other than the currently known semantics. Recently Osorio and Dix show
that the �rst conjecture is false. Also Nieves and Cervantes show that the sec-
ond conjecture is also false. In both cases the proofs were based on our discussed
approach. We have supported reasons for expecting that the third conjecture is
also false, and our current research is in this direction.

Our �nal application is in answer set programming. Under the stable-model
semantics, a program P speci�es a family of subsets of the Herbrand universe,
determined by the collection of its stable models. Each of these subsets represents
a possible answer to the problem encoded by P .

Dloop is a program transformation rule (for disjunctive programs) intro-
duced recently. We have proved that the stable semantics is invariant under
Dloop. Francois Fages has shown that for tight normal programs, the supported
models semantics is equivalent to stable models semantics. We have generalized
the result by Fages from normal programs to disjunctive programs. We de�ne a
reduction system, sys that includes Dloop and some other well known transfor-
mation rules that are correct with respect to the stable semantics. It tuns out
that sometimes sys can transform a non tight program into a tight program. We
illustrate how can we apply our results to compute stable models e�cently. We
have several open lines of research about this last issue.

References

1. Stefan Brass and J�urgen Dix. Characterizations of the Disjunctive Well-founded
Semantics: Conuent Calculi and Iterated GCWA. Journal of Automated Reason-

ing, 20(1):143{165, 1998. (Extended abstract appeared in: Characterizing D-WFS:
Conuence and Iterated GCWA. Logics in Arti�cial Intelligence, JELIA '96 , pages
268{283, 1996. Springer, LNCS 1126.).

2. Gerd Brewka, J�urgen Dix, and Kurt Konolige. Nonmonotonic Reasoning: An

Overview. CSLI Lecture Notes 73. CSLI Publications, Stanford, CA, 1997.

A deductive decision procedure for a restricted FTL
Regimantas Pliuškevičius

Institute of Mathematics and Informatics Manchester Metropolitan University
Akademijos 4, Vilnius 2600, LITHUANIA, Manchester M1 5GD, UK
e-mail: regis@ktl.mii.lt R.Pliuskevicius@doc.mmu.ac.uk

The aim of this report is to present a new kind deductive procedure Sat for a restricted first-order linear temporal logic
(FTL, in short). The proposed procedure Sat is a degenerate case of an ω-decidable-like procedure Satω (see [2]) for restricted
FTL. Different from ω-decidable procedure Satω, the procedure Sat is decidable.

For simplicity, we assume that all the predicate symbols are flexible (i.e., change their value in time), but all the variables
are rigid (i.e., with time-independent meanings). Besides, all predicate symbols have the same arity (for example all predicate
symbols are 2-place only). We consider only skolemized formulas. We can consider occurrences of the "next" operator ©
only occuring in the formula ©kE (where E is an elementary formula i.e., an expression of the shape P(t1, . . . , tn), where
P is a predicate symbol, ti is a variable or a constant). For the sake of simplicity, we "eliminate" the "next" operator and the
formula ©kE is abbreviated as Ek (i.e., as an elementary formula with the index k, which is called an atomic formula). Let
us define the objects of consideration for Sat .

Definition 1 (kernel formulas, TD-sequents, induction-free TD-sequents). The formulas of the form �∀x̄(E(x̄) ⊃
R(x̄) ∧ P l(b̄)) is a kernel formula, if l > 0, E(x̄) is an elementary formula (called the premise of the kernel formula)
R(x̄) is an elementary formula (called isolated conclusion); P l(b̄) is an atomic formula (called constant conclusion,
C-conclusion, in short); x̄ = x1, . . . , xn; b̄ = b1, . . . , bn; bi is a free variable or a constant, 1 6 i 6 n, n > 1.

A sequent S is TD-sequent, if S = 6,51,��→ �0A, where 6 = 0 or consists of elementary formulas; 51 = ∅
or consists of atomic formulas of the shape El (l > 0); 6,51 is called parametrical formulas; �� consists of kernel

formulas; �0 ∈ {∅,�}; A = ∃ȳ m∨
i=1
Ei(ȳ), Ei is an atomic formula. If �0 = ∅ then S is induction-free TD-sequent.

Each TD-sequent must satisfy the following conditions:
(1) Non-repeating condition :
if �∀x̄(Ei(x̄) ⊃ Ri(x̄) ∧ P li (b̄)) ∈ �� and �∀ȳ(Ej (ȳ) ⊃ Rj(ȳ) ∧ P kj (c̄)) ∈ �� then ∀i, j Ei 6= Ej and Pi 6= Pj , if

i 6= j.
(2) Saturation condition:
(a) for each elementary formula Q(b) from 6 there must be the unique kernel formula �∀x(Q(x̄) ⊃ R(x̄)∧P l(b̄))

from ��; (b) for each atomic formula P k(b̄) from 6,51 there must be unique kernel formula �∀x̄(M(x̄) ⊃ R1(x̄) ∧
P l(b̄)) from �� and k < l; (c) if P k(b̄), P l(c̄) ∈ 6,51, then k 6= l and if P k(b̄) ∈ 6,51, then P k(c̄) /∈ 6,51; (d) if
6,51 = P(b̄), then �� = �∀x̄(P (x̄) ⊃ R(x̄) ∧ P l(b̄)), l ≥ 1; (e) let 0(1) be the set of all predicate symbols from
6,5,� (from A, correspondingly), then 1 ⊆ 0.

(3) Periodic condition:
�� = �∀x̄1(E(x̄1) ⊃ R1(x̄1)∧El11 (b̄1)), �∀x̄2(E1(x̄2) ⊃ R2(x̄1)∧El22 (b̄2)), . . ., �∀x̄n(En−1(x̄n) ⊃ Rn(x̄n)∧En(b̄n))

and En = E.
So, TD-sequents do not satisfy, in general, the monodic condition from [1].
To define the separation rules (ISIF) and (GIS) (see below) let us define the following operation (+).
Definition 2 (operation +). Let S = 6,51,�� → �0A be a TD-sequent, and E(b̄) be any elementary formula

from 6. Then (E(b̄))+ := Pn−1(b̄i), where Pn(b̄i) is a C-conclusion of a kernel formula �∀x̄(E(x̄) ⊃ R(x̄)∧ Pn(b̄i))
from ��.

Let us define the infinitary calculus GLω with the help of which the proposed decision procedure is founded. Derivations
in the calculus G∗Lω are constructed in the bottom-up manner in the form of an infinite tree.

Definition 3 (calculi G∗Lω, G
∗). The calculus G∗Lω is defined by the following postulates.

The axiom (∃) : 0,Ei(b1, . . . , bm)→ ∃y1 . . . ym
n∨
j=1

Ej(y1, . . . , ym) (m 6 n, m > 0, 1 6 i 6 n).
The rules consist of the ω-type rule:

0→ A;0→ A1; . . . ;0→ Ak; . . .
0→ �A

(→ �ω)

and the following (loop-free) integrated separation induction-free rule:

(6)+,5,��→ Bk−1

6,51,��→ Bk
(ISIF), k > 0,

where 6 = ∅ or consists of elementary formulas; 51 = ∅ or consists of atomic formulas of the shape El (l > 0); ��

consists of kernel formulas; B = ∃y1, . . . , yn
m∨
i=1
Ei(ȳi) (m 6 n), where operation (+) is the same as in Definition 2.

The calculus G∗ is obtained from G∗Lω by dropping the ω-type rule (→ �ω).

Theorem 1. (a) The calculus GLω is sound and complete for TD-sequents. (b) The calculus G∗ is a decision
procedure.

Let us define the generalized integrated separation rule (GIS) which is the main tool of the proposed deductive procedure
Sat and which is applied to any non-induction-free TD-sequent.

Definition 4 (generalized integrated separation rule: (GIS), successful application of (GIS)). Let S = 6,51,��→ �B
be a TD-sequent. Let (6)+ mean the same as in definition of (ISIF), then the generalized integrated separation rule
(GIS) is as follows:

6,51,��→ B; (6)+,5,��→ �B

6,51,��→ �B
(GIS).

If the left premise of (GIS), i.e., the sequent S1 = 6,51,�� → B is such that G∗ ` S1 we say that bottom-up
application of (GIS) is successful.

Now we are going to define the basic part of Sat – the k-th resolvent (in symbols: Rek(S)).

Definition 5 (similarity index, k-th resolvent: Rek(S), parametrical part of Rek(S)). Let S = 6,51,��→ �B be a

TD-sequent and p1, . . . , pn indices of kernel C-conclusion formulas of S, then p(S) =
n∑
i=1
pi is similarity index of S.

Let S be a TD-sequent, then the k-th resolvent of a TD-sequent S (in symbols: Rek(S)) is defined in the following
way: Re0(S) = S. Let Rek(S) = Sk = 6,51,��→ �B then Rek+1(S) is defined in the following way.

1. Let us bottom-up apply the rule (GIS) to Sk and Sk1, Sk2 be the left and right premises of the application of
(GIS).

2. If G∗ 0 Sk1, then Rek+1(S) = ⊥ (false) and the calculation of Rek+1(S) is stopped.
3. Let G∗ ` Sk1 (i.e., the bottom-up application of (GIS) is successful), then Rek+1(S) = Sk2 = (6)+,5,��→

�B; (6)+,5 is parametrical part of Rek+1(S).
4. If Rek+1(S) = Sk2 and k + 1 = p(S), then the calculation of Rek+1(S) is finished.
Analogously as in [2] we get the following

Lemma 1. (a) Let S be a TD-sequent and all bottom-up applications of (GIS) in constructing Rek(S) are successful
and p = p(S) be similarity index of S. Then Rep(S) = S.

(b) The problem of calculation of Rep(S) is decidable.

Definition 6 (deductive procedure Sat , TD-sequent derivable by the help of Sat). The deductive procedure Sat consists
of decision procedure Rek(S). TD-sequent S is derivable by the help of Sat (in symbols: Sat ` S) if Rep(S) = S,
p = p(S), p(S) is the similarity index of S.

Now let us introduce the “invariant calculus” IN .

Definition 7 (invariant calculus IN). The calculus IN is obtained from the calculus G∗Lω in the following way: (1)
adding the logical rules (→ ∧), (∧ →), (∨ →), (→ ∨); (2) adding the axiom 0,�A→ �A1; (3) replacing the rule
(→ �ω) by the following rule

0→ R;R→ R1;R→ A

6,51,��→ �A
(→ �),

where 0 = 6,51,�� and invariant formula has the following shape R = n∨
i=1
0∧i ∧ ��, where �� is the kernel of the

given TD-sequent S = 6,51,�� → �A; 0k is the parametrical part of k-th Rek(S), n = p(S), i.e., the similarity
index of S; 0∧i is the conjunction formulas from 0i .

Theorem 2. Let S be TD-sequent then GLω ` S ⇐⇒ Sat ` S ⇐⇒ IN ` S.
From Theorems 1, 2 and Lemma 2(b) we get

Theorem 3. The calculi Sat and IN are sound and complete and decidable for TD-sequents.
Example 1. Let S = E(b2),�� → �∃y(E(y) ∨ P 1(y) ∨ P(y)), where �� = �∀x(E(x) ⊃ R1(x) ∧ P 2(b1)),

�∀y(P (y) ⊃ R2(y) ∧ E1(b2)). Then the similarity index p(S) = 2 + 1 = 3. It is easy to verify that each calculation of
Rek(S) is successful. Therefore the calculation Rek(S) stops when k = 3 and Re3(S) = S. Hence Sat ` S. It is easy
to verify that Re1(S) = P 1(b1),�� → �A; Re2(S) = P(b1),�� → �A; Re3(S) = E(b2), �� → �A. Therefore
R = (P 1(b1) ∨ P(b1) ∨E(b2))∧ ��. It is easy to verify that IN ` S.

References

1. Hodkinson I., Wolter F., Zakharyaschev M.: Decidable fragments of first-order temporal logics. (To appear in: Annals
of Pure and Applied Logic).

2. Pliuškevičius R.: On an ω-decidable deductive procedure for non-Horn sequents of a restricted FTL. (To appear in:
Proceedings of First International Conference on Computational Logic).

Run-time optimisations for reasoning with intensional

logics

Allan Ramsay
Dept of Language Engineering, UMIST, PO Box 88, Manchester M60 1QD, UK

Allan.Ramsay@umist.ac.uk

Abstract. Most optimisation techniques for theorem provers for �rst-order logic rely on
static analysis of the problem statement. For intensional logics, such as static analysis
cannot be relied on, since it is impossible to predict what literals may be introduced by
the intensional rules. The current paper shows how to use a dynamic (run-time) version of
one well-known static optimisation, and considers its relationship to the use of `relevance
checking' in Satchmo.

1 A constructive intensional logic

We have shown elsewhere [8, 3] how to extend [6]'s theorem prover Satchmo to cope with [9]'s
property theory. Property theory is a highly intensional logic which, roughly speaking, allows you
to perform unconstrained quanti�cation over propositions and properties, but places constraints
on the conditions under which the Tarski biconditional

(�xP):t $ Pt=x

holds. This language has numerous potential applications: I use it primarily for reasoning about
natural language semantics, because that's what I'm interested in, but [10] uses a closely related
language for reasoning about programs, and it can also be used as the basis of a theory of
knowledge and belief which does not fall foul of the problems associated with modal treatments
of these topics (logical omniscience, logical blindness).

Property theory is, clearly, highly intractable in theory { it is undecidable, rather than just
semi-decidable, and incomplete (in the same sense that recursive arithmetic is incomplete, and
for the same reasons). In the domain where I want to apply it, however, the problems that arise
tend not be all that hard: it may be true that natural language semantics can only be captured
properly if you use some language of this kind (as, for instance, situation semantics [2] uses
non-well-founded set theory [1]), but most of the time you do not have to solve pathological
problems in order to understand what some has said (unless, of course, they say `I am now

lying').
In ([8]), I showed that you could adapt Satchmo to work with property theory roughly as

follows:

(i) rules with unspeci�ed formulae in their antecedents are used only when those antecedents
are ground. This means that a rule like 8X8P ((believe(X;P)&P) ! know(X;P)1 is
turned into know(X, P) :- believe(X, P), nonvar(P), P.

(ii) rules with unspeci�ed formulae in their consequents are used in the forward-chaining
part of the algorithm, as though they were an extreme case of formulae with disjunc-
tive consequents. As an example, the rule 8X8P (know(X;P) ! P turns into know(X,

P), nonvar(P) ==> P, to be used by the Satchmo rule that asserts a component of the
consequent of any sequent where the antecedent is currently provable but the consequent
is not. The nonvar(P) test here is strictly redundant, since any sequent which failed to
ground the consequent would be necessarily inconsistent (since it would entail everything,
including ?).

1 I am not proposing this as a serious characterisation of the relation between knowledge and belief,
just using it to illustrate the approach.

2 Optimisations

The problem with this inference engine is that although it is obtained by extending a fairly
simple �rst-order theorem prover, it is not possible to use any optimisations which rely on a
static analysis of the problem. You cannot, for instance, use [4]'s `pure literal deletion' (where
you remove a clause if it contains a positive (negative) instance of a literal which has no neg-
ative(positive) occurrences), because you do not know that the literal you are considering will
remain pure. I propose a dynamic version of pure literal deletion, which makes sequents con-
taining pure literals temporarily unavailable. At the point in Satchmo where a split sequent has
led to the introduction of a new fact, clauses which might be impuri�ed by the new fact are
inspected, and reinstated if appropriate (this can lead to a cascade of reinstatements, in exact
contrast to the way that pure literal deletion itself can lead to gangrene).

There are two ways to implement dynamic pure literal deletion of this kind. The weak version
involves looking for antecedent literals that fail to appear in the consequent of any Horn sequent,
the strong one deals with antecedent literals that fail to appear in the consequent of any sequent
at all. It turns out that you cannot use the strong version with the relevance checking algorithms
described in ([7, 5]), but for for the problems we are concerned with the strong version turns out
to be more e�ective than the weak one + relevance checking in any case { Fig. 1 shows a typical
set of results for a reasonably complex example (times in seconds).

+groundedness -groundedness

Unoptimised 1.62 1.98
Strong puri�cation 0.38 0.42
Relevance checking 1.55 2.04
Weak puri�cation 0.54 0.59
Relevance + weak pur. 0.52 0.59

Fig. 1. Relative e�ects of optimisations

References

1. P Aczel and R Lunnon. Universes and parameters. In J Barwise, J M Gawron, G Plotkin, and
S Tutiya, editors, Situation Theory and its Applications II. CSLI Publications, 1991.

2. J Barwise and J Perry. Situations and Attitudes. Bradford Books, Cambridge, MA, 1983.
3. M Cryan and A M Ramsay. A normal form for Property Theory. In Fourteenth Conference on

Automated Deduction, Townsville, Australia, 1997.
4. R Kowalski. A proof procedure using connection graphs. JACM, 22(4):572{595, 1975.
5. D W Loveland. Near-horn Prolog and beyond. Journal of Automated Reasoning, 7:1{26, 1991.
6. R Manthey and F Bry. Satchmo: a theorem prover in Prolog. In Proc. 9th Inter. Conf. on Automated

Deduction (CADE-9), LNAI 310, pages 415{434, 1988.
7. A M Ramsay. Generating relevant models. Journal of Automated Reasoning, 7:359{368, 1991.
8. A M Ramsay. A theorem prover for an intensional logic. Journal of Automated Reasoning, 14:237{

255, 1995.
9. R Turner. A theory of properties. Journal of Symbolic Logic, 52(2):455{472, 1987.
10. R Turner. Constructive Foundations for Functional Languages. McGraw Hill, London, 1991.

System description: Vampire 1.0

Alexandre Riazanov and Andrei Voronkov

University of Manchester
friazanov,voronkovg@cs.man.ac.uk

1 General description

Vampire is an automatic theorem prover for �rst-order classical logic. It imple-
ments the calculi of ordered binary resolution, hyperresolution and superposition
for handling equality. The splitting rule is simulated by introducing new pred-
icate symbols. The search process is based on a saturation algorithm similar
to the one of Otter [4], enhanced with the Limited Resource Strategy briey
described in Section 3. For pruning the search space we exploit a number of
standard redundancy criteria and simpli�cation techniques: subsumption, tau-
tology deletion, subsumption resolution and rewriting by ordered unit equalities.
The only term ordering used in Vampire at the moment is a special version of
the Knuth-Bendix ordering which allows eÆcient approximation algorithms for
solving ordering constraints. One of the main goals of the project is creating an
experimental environment for developing and evaluating eÆcient implementa-
tion techniques for �rst-order theorem proving.

2 Term indexing in Vampire

Even in the presence of good redundancy criteria, the main operations in a
typical resolution-based theorem prover | uni�cation, matching, subsumption
| involve searching in huge sets of terms and clauses. The standard way of
solving this problem is to maintain special datastructures for term indexing

(see [2], [5]). In Vampire we use basically three kinds of indexes. A version of
discrimination trees [3] is used for the uni�cation indexes. Code trees [7] are
used for forward subsumption and matching. A novel indexing technique based
on path indexing [6] and database style joins is used for backward subsumption.
Our main approach to designing eÆcient indexing schemes is based on the notion
of compilation. To perform retrieval from an index eÆciently we specialize the
retrieval algorithm for every particular query clause or term in order to utilise
speci�c properties of the query. For example, compilation for indexed uni�cation
makes use of information on occurences of variables and ground subterms in the
query in order to identify redundant occurence checks. The specialized version is
represented as a code for an abstract machine and then interpreted. Moreover,
in our indexing for forward subsumption we also compile the indexed objects
and combine their codes into a structure called a code tree.

3 Other features

In order to solve complex real-life problems in limited time, the completeness of
search procedures used in provers is often compromised for the sake of eÆciency.

The limited resource strategy implemented in our system is intended to do this
in an intelligent way. Vampire tries to estimate what generated clauses can be
processed by the given time limit. This estimation makes use of statistics on
the speed of processing retained clauses of di�erent complexity and establishes a
limit on the complexity of retained clauses. Generated clauses whose complexity
exceeds this limit are discarded.

Another distinguishing feature of Vampire is an eÆcient and exible imple-
mentation of splitting (see for example [1]). When a clause can be split into
the components C1; : : : ; Cn with disjoint sets of variables, we introduce n new
propositional variables p1; : : : ; pn, that can be regarded as names for the com-
ponents, and replace the clause by n + 1 new clauses C1 _ p1 ; : : : ; Cn _ pn,
:p1 _ : : : _ :pn. The literals pi in the new clauses Ci; pi are made minimal in
order to ensure that they are not selected before all the other literals are cut
by resolution. A special index is maintained to avoid giving di�erent names to
components that are variants of each other.

4 Work in progress

At the moment we are interested in �nding optimisations for our term indexing
techniques which could allow us to treat eÆciently symbols with special proper-
ties such as commutativity of functions and symmetry of predicates. Also, some
attempts are being made to integrate checking of ordering constraints into the
indexing structures.

5 Implementation and availability

The system is implemented in C++ and can be compiled by 2.91 or newer
versions of gcc. Currently it runs on Solaris, Linux and Free BSD. It is available
from the authors free of charge, for details check
http://www.cs.man.ac.uk/~riazanov/Vampire/.

References

1. Weidenbach C. Spass: combining superposition, sorts and splitting. In A. Robinson
and A. Voronkov, editors, Handbook of Automated Reasoning. Elsevier Science and
MIT Press, 2000. To appear.

2. P. Graf. Term Indexing, volume 1053 of Lecture Notes in Computer Science.
Springer Verlag, 1996.

3. William W. McCune. Experiments with discrimination-tree indexing and path in-
dexing for term retrieval. Journal of Automated Reasoning, 9(2):147{167, 1992.

4. W.W. McCune. OTTER 3.0 reference manual and guide. Technical Report ANL-
94/6, Argonne National Laboratory, January 1994.

5. I.V. Ramakrishnan, R. Sekar, and A. Voronkov. Term indexing. In A. Robinson
and A. Voronkov, editors, Handbook of Automated Reasoning. Elsevier Science and
MIT Press, 2000. To appear.

6. M. Stickel. The path indexing method for indexing terms. Technical Report 473,
Arti�cial Intelligence Center, SRI International, Menlo Park, CA, October 1989.

7. A. Voronkov. The anatomy of Vampire: Implementing bottom-up procedures with
code trees. Journal of Automated Reasoning, 15(2):237{265, 1995.

A decision procedure for term algebras with queues

Tatiana Rybina� Andrei Voronkovyz

July 14, 2000

Abstract

In software veri�cation it is often required to prove statements about heterogeneous domains
containing elements of various sorts, such as counters, stacks, lists, trees and queues. Any domain
with counters, stacks, lists, and trees (but not queues) can be easily seen a special case of the
term algebra, and hence a decision procedure for term algebras can be applied to decide the
�rst-order theory of such a domain.

We prove that the �rst-order theory of term algebras extended with queues is decidable by
presenting a quanti�er-elimination procedure for this theory.

Term algebras with queues

Sorts. We assume a �nite set of basic sort. We de�ne sort as follows: (i) every basic sort is a
sort; (ii) if � is a sort, then queue(�) is a sort, called a queue sort.

We call a function type any expression of the form �1 � : : : � �n ! �, where �1; : : : ; �n; � are
sorts, n � 0. When n = 0, we will write � instead of ! �. A signature S is a pair consisting of
a �nite set of function symbols, and a function : mapping every function symbol f to a function
type �1 � : : : � �n ! �, called the type of f , where � is a basic sort. The number n is called the
arity of f . Function symbols of arity 0 are called constants.

Structure Q(S). Every signature S de�nes a unique structure Q(S), called a term algebra with

queues as follows.
The universe of Q(S) is de�ned inductively as follows.

1. For every constant a : �, a is an element of Q(S) of the sort �.

2. For every elements e1; : : : ; en of the same sort �, where n � 0, the sequence e1 : : : en is an
element of Q(S) of the sort queue(�). Elements of any sort queue(�) will be called queues.
The empty sequence is called the empty queue, and denoted "�.

3. If f : �1�: : :��n ! � and e1; : : : ; en are elements ofQ(S) of the sorts �1; : : : ; �n, respectively,
then f(e1; : : : ; en) is an element of Q(S) of the sort �.

We consider two elements equal only if they have the same sort and coincide as expressions. Us-
ing di�erent signatures we obtain di�erent domains, in which sorts can be �nite or in�nite. For
simplicity, we assume that each basic sort has a nonempty domain.

�Partially supported by a grant from EPSRC (Rainbow project).
yPartially supported by grants from EPSRC and the Faculty of Science and Engineering.
zThis abstract is based on [Rybina and Voronkov 2000].

The language of Q(S), denoted LQ(S), is a �rst-order language using, in addition to function
symbols in S, the equality relation symbol = and the following symbols: (i) for every sort �, the
constant "� : queue(�); (ii) for every sort �, the function symbols ladd� : ��queue(�)! queue(�)
and radd� : �� queue(�)! queue(�).

Semantics of Q(S). For every function symbol f : �1 � : : :� �n ! � of S, the interpretation f

of this symbol in Q(S) is de�ned as follows: for all elements e1; : : : ; en of the sorts �1; : : : ; �n we
have f(e1; : : : ; en) = f(e1; : : : ; en). Likewise, the interpretation "� of the constant "� is the empty
queue of the sort queue(�). The function symbols ladd� and radd� of the function symbols ladd�
and radd� are interpreted as the left- and right- addition of an element to a queue.

Quanti�er elimination

Similar to Kunen [1987] and Belegradek [1988], we extend the language LQ(S) to a new language,
denoted L0Q(S), by introducing the following collection of decomposition function symbols and
relation symbols.

1. A unary relation symbol Isf : � for each function symbol f : �1 � : : : � �n ! �, n � 1 of S.
This symbols is interpreted as follows: Isf (a) is true if and only if a has the form f(: : :).

2. A unary function symbol fi : � ! �i, for each function symbol f : �1 � : : : � �n ! �, n � 1
of S and each i = 1; : : : ; n. We have fi(f(t1; : : : ; tn)) = ti.

3. unary function symbols

lhead� : queue(�)! � rhead� : queue(�)! �

ltail� : queue(�)! queue(�) rtail� : queue(�)! queue(�)

for each sort �. For every queue q, lhead (q) gives the leftmost element of q, and ltail(q) is
the queue obtained by removing this element, and similar for rhead and rtail .

Theorem 1 (Quanti�er Elimination) The �rst-order theory of term algebras with queues in the

language L0Q(S) admits quanti�er elimination.

Corollary 2 (Decidability) The �rst-order theory of any term algebra with queues is decidable.

Corollary 3 (Words) The �rst-order theory of words with the operations of the left and right

multiplications by a letter is decidable.

The monadic second-order theory of this structure is known to be undecidable.

References

Belegradek O. [1988], Model theory of locally free algebras (in Russian), in `Model Theory and its
Applications', Vol. 8 of Trudy Instituta Matematiki, Nauka, Novosibirsk, pp. 3{24.

Kunen K. [1987], `Negation in logic programming', Journal of Logic Programming 4, 289{308.

Rybina T. and Voronkov A. [2000], A decision procedure for term algebras with queues, in `Proc. 15th
Annual IEEE Symp. on Logic in Computer Science', Santa Barbara, California, pp. 279{290.

Description Logics and Knowledge Discovery of Data

Stefan Schlobach�

Introduction. Description Logics (DL) are knowledge representation formalisms which have
been applied in a number of application areas over the last decade. Knowledge Discovery on the
other hand is becoming more and more popular given the enormous amount of available data and
has considerably increased the interest in machine learning techniques for data mining purposes.
We have tried to make this machinery available to DL reasoning systems, which enables easy
integration of prede�ned knowledge and data for the Knowledge Discovery process. The core of
this new approach, i.e. the formal de�nition of a learning paradigm in Description Logics and a
general framework to calculate learned concepts was presented in [Sch00].

Knowledge Discovery from Data. Fayyad et al. de�ne Knowledge Discovery in Databases
(KDD) as the nontrivial process of identifying valid, novel, potentially useful, and ultimately un-
derstandable patterns in data [FPSS96]. The KDD process consists of three steps. First, data is
preprocessed, i.e., interesting and typical (and hopefully crisp and un-noisy) data is chosen. The
second step is the data mining process. Data Mining means the application of data analysis and
learning algorithms to produce enumerations of patterns over the data. Finally the learned results
have to be evaluated and turned into a useful (e.g. human-readable) form.

Description Logics. Description Logics (DL) are set description languages that have been in
use for knowledge representation for more than a decade. The hybrid character of reasoning
about concepts and about individuals is nicely matched in the hybrid architecture of DL-systems
which usually incorporate separate mechanisms for reasoning with extensional and intensional
knowledge. The general ideas of A{Box mining are independent of a particular description logic.
For this reason we de�ne the set of languages DL to which our approach is applicable as the set
of description logics containing at least conjunction, atomic negation and universal quanti�cation
over roles where subsumption, consistency and instance checking is decidable.

Learning and Mining in Description Logics. The main objective of A{Box mining is to
generate concepts from a given A{Box A that can replace the decisions in the D{Box for classi-
�cation. We will introduce and de�ne two necessary criteria (called covering and exclusiveness)
which de�ne our notion of concepts learned from A and D (and possibly T). These concepts will
be called generalised decision concepts (GDCs).

The �rst condition states that all objects in the A{Box that are instances of a GDC learned from
a decision D must be instances of D, i.e., all A{Box instances a of a GDC ADi must be covered
by the corresponding decision Di: i.e. a 2A ADi) a 2A Di. This condition ensures correctness
of the classi�cation through the GDC with respect to the original decision. The second condition
denotes the fact that any A{Box object a, which is an instance of ADi, must by unambiguously
decidable with the corresponding original decision Di only: a 2A ADi) a 62A Dj . A generalised
decision concept (GDC) for a decision D is a concept, which is exclusively A-covered by D.

Simplicity and Optimality. The de�nition for GDCs gives necessary but not suÆcient criteria
to justify the quality of learned concepts. Depending on the chosen language, there might be
in�nitely many GDCs for a decision. There are two further criteria which we introduce informally,
namely that GDCs should be \as general as possible" (semantic optimality) and \as simple as
possible" (syntactic simplicity).

�Dept. of Computer Science, King's College London, Strand, London WC2R 2LS, UK, schlobac@dcs.kcl.ac.uk

Description Logic based KDD Systems. We present a framework for Knowledge Discovery
for Description Logics DL which was investigated in [Sch00] in more detail.

Input: An A{Box A, T{Box T and a set of decisions fD1; : : : ; Dng.
Output: The Set of all evaluated generalised decision concepts for each decision.

� Preprocessing: There are three preprocessing steps to be performed that are useful in-
dependent of a particular learning or mining method. A{Box classi�cation transforms the
assertional information about data into related logical concepts. By creating hierarchies for
the logical descriptions, T{Box classi�cation allows to deal with sparse A{Boxes and missing
data. Separation of concepts into approximations is a natural mechanism to deal with rough
and noisy information.

� Generalisation: There are di�erent ways to learn concepts from examples and counterex-
amples, but mostly a combination of concept expansion and inconsistency check is involved.
Expansion is the process of choosing superconcepts for relevant logical descriptions, which
are inconsistent with logical descriptions (or expansions) of the counterexamples. This part
of the framework is in general non constructive.

� Optimality: For each particular description logic optimality has to be de�ned separately.
For some languages (e.g. ALR;=) the notions of optimality and simplicity coincide, and sound
and complete mechanisms to calculate optimal GDCs can be de�ned. For other languages
and learning methods, the quality of notions for \general and simple" will be more diÆcult
to assess and heuristics have to be incorporated into the learning process.

� Evaluation of Results: The evaluation of the results is an integral parts of the KDD
process If generalised decision concepts are to become part of the intensional knowledge of
the knowledge representation system, they have to be assessed using quantitative accuracy
measures and by human experts. Classically, learning results are diÆcult to read and under-
stand, so that it must be one of the features of a knowledge discovery system to transform
the results into a human-readable form. One possible approach is described in [BKM] where
Baader et al. investigate algorithms for rewriting concepts using terminologies for several
logics in DL.

Implementation. The Group of Logic and Computation at King's College London is currently
implementing a family of hybrid systems1 which enables data driven logic reasoning. Implementa-
tions of specialised and eÆcient algorithms for ALR, ALC with concrete domains and DLarc8

[Ohl99], which allows for an expressive T{Box with a strong arithmetical component and a
database{like assertional component are currently under way. The integration of a knowledge
discovery facility will be an integral part of the system.

References

[BKM] F. Baader, R. K�uster, and R. Molitor. Rewriting concepts using terminologies. Technical Report
LTCS-Report 99-12, LuFG Theoretical Computer Science, RWTH Aachen, Germany.

[FPSS96] U. Fayyad, G. Piatetsky-Shapiro, and P. Smyth. Knowledge discovery and data mining toward
a unifying framework. In Proceeding of The Second Int. Conference on Knowledge Discovery

and Data Mining, pages 82{88, 1996.

[Ohl99] H.J. Ohlbach. A theory-resolution style A{Box calculus. In M4M Methods for Modalities,

Workshop Proceedings. University of Amsterdam, 1999.

[Sch00] S. Schlobach. Assertional mining in description logics. 2000 International Workshop on De-
scription Logics - DL2000, August 2000.

1More information about the Wellington knowledge representation and reasoning system and its implementation

is available from the author or on: http://www.dcs.kcl.ac.uk/research/groups/logic/wellington.

Deciding Fluted Logic with Resolution

Renate A. Schmidt

Department of Computer Science, University of Manchester
Manchester M13 9PL, United Kingdom, schmidt@cs.man.ac.uk

Fluted logic is a solvable fragment of �rst-order logic which arose as a by-product of
Quine's predicate functor logic [13, 14]. It is de�ned as follows. Let Xi = fx1; : : : ; xig
denote an ordered set of variables. By de�nition, an atomic uted formula over Xi is
an n-ary atom P (xl; : : : ; xi), with l = i�n+1 and n � i. Now, de�ne uted formulae

by: (i) any atomic uted formula over Xi is a uted formula over Xi, (ii) if ' is a
uted formula over Xi+1, then 9xi+1' and 8xi+1' are uted formulae over Xi, and
(iii) any Boolean combination of uted formulae over Xi is a uted formula over Xi.

The way decidability is obtained in uted logic is an interesting contrast to other
solvable �rst-order fragments which are more well-known. Fragments considered until
the sixties usually involve some form of restriction on quanti�cation. In pre�x classes
such as the Bernays-Sch�on�nkel class, and the initially extended Ackermann class, the
initially extended G�odel class the quanti�er pre�xes are restricted, to 9�8�, 9�89� and
9�889�. In Maslov's class K (more precisely, in the dual class K) there is a restriction
on universal quanti�cation. In the guarded and loosely guarded fragments, which
were introduced more recently, quanti�ers are restricted to conditional quanti�ers
of the form 9yG(x; y) ^ ' or 8yG(x; y) ! ', where G(x; y) is a guard formula
satisfying certain restrictions (G(x; y) is an atom in the case of the guarded fragment).
Other decidable classes such as the monadic class and FO2 are de�ned over predicate
symbols with bounded arity. By contrast, in the case of uted logic decidability is
obtained by imposing an ordering on variables and arguments. To our knowledge,
of the mentioned logics, uted logic has thus far not been studied in the context of
resolution. For all other logics mentioned above resolution-based decision procedures
have been proposed, in some cases even several di�erent re�nements exist [1, 2, 5, 9].

Fluted logic is also of interest for its relationship to non-classical logics. Fluted
logic may be viewed as a generalisation of propositional modal logic, just as the
guarded fragments can. The properties uted logic is known to share with modal logics
are decidability and the �nite model property [10{12]. From a modal perspective an
advantage of uted logic over the guarded fragment is that relational atoms may be
negated. This means that extended modal logics such as Boolean modal logic [3] and
other enriched modal logics, as well as expressive description logics like ALB (without
converse) [8], which cannot be embedded in the guarded fragment, can be embedded
in uted logic. Interestingly, translations of propositional modal formulae by both
the relational translation and a variation of the functional translation (described and
used in [4, 6]) are uted formulae.

In [15] we characterise uted logic by a new class of clauses, called the class of
uted clauses. We present a decision procedure for this class which is based on an
ordering re�nement of resolution and an additional separation rule. This is a new
inference rule which does dynamic renaming. It replaces a clause C _ D by two

clauses which involve a newly introduced literal. Formally:

N [fC _ Dg

N [f:q(x1; : : : ; xn) _ C; q(x1; : : : ; xn) _ Dg

provided (N denotes a set of clauses) (i) the clause C _ D is separable into clauses
C and D, that is, var(C) 6� var(D) and var(D) 6� var(C), (ii) var(C) \ var(D) =
fx1; : : : ; xng for n � 0, and (iii) q does not occur in N , C or D. The rule is sound,
in general, and resolution extended by this rule remains complete, if it is not applied
in�nitely often. Separation is essential for our decision procedure, since it allows us
to transform certain problematic uted clauses into so-called strongly uted clauses.
A strongly uted clause is a uted clause that contains a literals which includes all
the variables of the clause. When inference is restricted to such literals (i) the number
of variables in any derivable clause is �nitely bounded, in particular, the number of
variables does not exceed the number of variables in the original clause set. To show
termination, it is usually suÆcient [9] to show in addition that (ii) there is a bound on
the depth of terms occurring in derived clauses. Because separation introduces new
predicate names during the derivation, in our case we also need to show that (iii) there
is a bound on the number of applications of the separation rule. Exhibiting (ii) and
(iii), along with verifying the deductive closure of the class of (strongly) uted clauses
are the most diÆcult parts of the termination proof. The diÆculty can be attributed
to the fact that the depth of terms can grow during the derivation, as is the case for
some other solvable clausal classes, for example, those associated with Maslov's dual
class K [1, 7].

References

1. C. Ferm�uller, A. Leitsch, T. Tammet, and N. Zamov. Resolution Method for the Decision Problem,
vol. 679 of LNCS. Springer, 1993.

2. C. G. Ferm�uller, A. Leitsch, U. Hustadt, and T. Tammet. Resolution theorem proving. In
Handbook of Automated Reasoning. Elsevier, 2000. To appear.

3. G. Gargov and S. Passy. A note on Boolean modal logic. In P. P. Petkov, editor, Mathematical

Logic: Proceedings of the 1988 Heyting Summerschool, pp. 299{309. Plenum Press, 1990.
4. A. Herzig. A new decidable fragment of �rst order logic, 1990. In Abstracts of the Third Logical

Biennial, Summer School & Conference in Honour of S. C. Kleene, Varna, Bulgaria.
5. U. Hustadt. Resolution-Based Decision Procedures for Subclasses of First-Order Logic. PhD

thesis, Univ. d. Saarlandes, Saarbr�ucken, Germany, 1999.
6. U. Hustadt and R. A. Schmidt. An empirical analysis of modal theorem provers. J. Appl.

Non-Classical Logics, 9(4), 1999.
7. U. Hustadt and R. A. Schmidt. Maslov's class K revisited. In H. Ganzinger, editor, Automated

Deduction|CADE-16, vol. 1632 of LNAI, pp. 172{186. Springer, 1999.
8. U. Hustadt and R. A. Schmidt. Issues of decidability for description logics in the framework of

resolution. In Automated Deduction in Classical and Non-Classical Logics, vol. 1761 of LNAI,
pp. 192{206. Springer, 2000.

9. W. H. Joyner Jr. Resolution strategies as decision procedures. J. ACM, 23(3):398{417, 1976.
10. W. C. Purdy. Decidability of uted logic with identity. Notre Dame J. Formal Logic, 37(1):84{

104, 1996.
11. W. C. Purdy. Fluted formulas and the limits of decidability. J. Symbolic Logic, 61(2):608{620,

1996.
12. W. C. Purdy. Quine's `limits of decision'. J. Symbolic Logic, 64(4):1439{1466, 1999.
13. W. V. Quine. Variables explained away. In Proc. Amer. Philos. Soc., vol. 104, pp. 343{347, 1960.
14. W. V. Quine. Algebraic logic and predicate functors. In R. Rudner and I. Sche�er, editors, Logic

and Art: Esssays in Honor of Nelson Goodman. Bobbs-Merrill, Indianapolis, 1971.
15. R. A. Schmidt and U. Hustadt. A resolution decision procedure for uted logic. In Automated

Deduction|CADE-17, vol. 1831 of LNAI, pp. 433{448. Springer, 2000.

