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Abstract. The JUMP project aims at bringing together the knowledge
stored in different information systems in order to satisfy information
and training needs in knowledge-intensive organisations. Electronic Per-
formance Support Systems provide help, advices, demonstrations, or
any other informative support that a user needs to the accomplish-
ment of job tasks in her day-to-day working environment. The paper
describes the JUMP framework, which is designed to offer multiple ways
for the user to query the knowledge base resulting from integration of
autonomous legacy systems. Semantic Web languages and technologies
are used throughout the framework to represent, exchange and query
the knowledge, while Natural Language Processing Techniques are im-
plemented to understand natural language queries formulated by the user
and provide consistent and satisfying results.
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1 Introduction

The JUMP project 1 aims at developing an EPSS (Electronic Performance Sup-
port System) capable of intelligent delivery of contextualized and personalized
information to knowledge workers acting in their day-to-day working environ-
ment on non-routinary tasks. While generic queries can be easily fulfilled by
means of standard information retrieval tools, such as general purpose search
engines, the scenario is more difficult if the search goal concerns grey informa-
tion stored in various forms and spread in different company knowledge bases,
managed by different applications, all running within the company intranet. It
is the case of users knowledgeable w.r.t. the IT infrastructure and that already
have the background knowledge necessary to achieve most of the task they are
involved in, but not being expert of all the domains in which the task to be
achieved spans. Tasks of this kind are neither generally codified in corporate

1 JUst-in-tiMe Performance support system for dynamic organizations, co-funded by
POR Puglia 2000-2006 - Mis. 3.13, Sostegno agli Investimenti in Ricerca Industriale,
Sviluppo Precompetitivo e Trasferimento Tecnologico



procedures nor completely new to the worker. Above all, those tasks are by no
means solvable, in terms of information retrieval, by a standard Internet search.
Any brute-force approach like Google desktop search can solve the problem in
this case and, even if it could, the result would never take into account the
connections existing between the various sources. An EPSS aims at supporting
information needs spanning through multiple knowledge bases, namely all the
available information systems in the company, be them formalized or not, includ-
ing binary documents such as video or audio streams. It acts as an agent gluing
together the different sources by means of semantic connections, and provides
the user with contextualized and personalized information tied to both the task
being accomplished and to her characteristics. On the basis of an accurate and
formalized description of user’s features and of those of the software tool she is
using, as well as the textual information describing the task being accomplished
(for example, the text of an e-mail just received), the EPSS should select rele-
vant items from the KBs, ranking them according to the user profile, and provide
them in a list to the user who will eventually give a feedback about the relevance
of the provided information. The JUMP system has been designed to achieve this
goal by means of a centralized recommendation system that takes advantage of
a shared ontology describing the various knowledge bases and advanced Natural
Language Processing (NLP) techniques to handle natural language requests.

The paper is organized as follows: after giving a general description of JUMP
framework focusing on abstract layers of its architecture and the underlying
shared ontology, in section 3 we give a detailed description of the Content An-
alyzer Module encapsulated in the framework, which provides NLP tools. In
section 4 we argument the project prototype and conclusions to work, anticipat-
ing possible future work.

2 JUMP: Ontology-centric Architecture

The system general architecture is depicted in Figure 1, where the central com-
ponent (JUMP-EPSS) acts as a hub of many autonomous peripheral systems.
The involved systems in the current implementation are a Human Resources
Managements system (HRMS), an Enterprise Resource Planning (ERP), a Doc-
ument Management system (DMS) and a Learning Management system (LMS),
but the design of the platform is such that new systems can be added as they
become available.

2.1 Modularized Design

The basic design idea of the JUMP project is to encourage the loosely coupling
among framework components according to a Service Oriented Architecture per-
spective so that the framework has the ability to seamlessly add information
sources or peripheral systems, each one based on different technologies, pro-
gramming languages and knowledge representation metaphors. This has lead to
adopting standard languages and protocols when designing the interfaces that



each of the systems participating in JUMP has to implement in order to expose
search services. The communication level between JUMP and the ancillary sys-

Fig. 1. Sketch of the JUMP system architecture

tems is designed to exchange both metadata about relevant items stored in the
subsystems and the items themselves. While the items considered here (which
are the results JUMP can present to the user) are generic binary objects ranging
from email addresses to audio/video streams, the metadata about them are ex-
pressed through Semantic Web technologies; to make this possible, some OWL 2

ontologies about the items have been created, in order to structure specific do-
main knowledge and instantiate resources to describe the stored items.

2.2 Ontologies in the JUMP project

An ontology, following Grubers widely accepted definition [6], is a shared formal-
ization of a conceptualization. That is, an ontology is a description (like a formal
specification of a program) of the concepts and relationships that can exist for an
agent or a community of agents. In order to define an ontology it is necessary to
choose a formalism, to use this formalism to encode the conceptualization that
the applications are going to use, and to make this conceptualization shared,
i.e. ensure that the ontology is used consistently by all the systems involved.
To define the JUMP ontology we adopted OWL as representation language and
Description Logics [1] was consequently adopted as the underlying formalism.
Separate ontology fragments have been handcrafted using the Protege editor 3

2 http://www.w3.org/2004/OWL/
3 http://protege.stanford.edu



in order to represent the most important concepts inside each of the involved
systems. Ontologies have been then designed bottom-up in order to reflect the
semantics of the underlying databases and coded functional processes as much as
possible, but not aiming at a total ontological replication of the knowledge bases.
After developing the single Ontology Fragments (OF), they have been divided
into system specific ontologies and upper ontologies; these upper ontologies are
the part of the OFs that the JUMP system should use when formulating queries
for the subsystems. The Shared Ontology (SO) is therefore the union of all the
upper OFs plus all the relations and concepts that are specific to the JUMP
system; since some concepts are repeated across systems, the creation of the SO
is the point in which alignment techniques have to be used in order to simplify
and generalize the query writing phase of the search. The concept in SO are
annoted using lexical concept that are exploited by Word Sense Disambiguaiton
algorithm described in Section 3.1. The Ontology Fragments are aligned manu-
ally using the concepts in the Shared Ontology. The single Ontology Fragments
are populated automatically creating a mapping between each legacy system’s
DBMS and each fragment.

2.3 JUMP EPSS Core: External and Internal Interactions

JUMP architecture has two abstract layers, as showed in figure 2, logically or-
ganized as a stack:

– User Interface Layer
– Application Domain Layer

Fig. 2. JUMP Engine and Framework Layers

The User Interface Layer has been designed to support both online and of-
fline client. It supports several devices: we handle both untrusted devices, such



as web browser or Office tools (Word/Excel), for which we predisposed a lo-
gin procedure and trusted devices, such as mobile devices (e.g. smart phone) or
email client for which the system is able to identify the user without any login
procedure. The application domain layer has a software layer, namely exter-
nal gateway, that communicates with all user devices through their specialized
provider. The JUMP Engine elaborates all requests making use of specialized
modules to resolve specific requests (e.g. plain text is sent to Content Analyzer
Module, described in Section 3, in order to capture its semantics). Communi-
cation between the JUMP Engine and all specialized modules is implemented
through a software layer, namely internal gateway.

3 NLP Processes in the Content Analyzer Module

Since user’s requests are formulated by using natural language, Natural Lan-
guage Processing (NLP) techniques are adopted in order to covert the original
requests into an internal representation processable by the JUMP system. The
Content Analyzer Module is devoted to this task: it extracts relevant concepts
from the text describing the request and build an internal data structure called
Bag-Of-Concepts (BOC). The goal is to include semantics in the process and to
overcome well-known problems in text processing, such as polysemy, due to the
use of keywords. The BOC structure contains two type of concepts:

1. relevant linguistic concepts recognized in the text by a Word Sense Disam-
biguation process [8] exploiting external linguistic knowledge-bases such as
the WordNet lexical database [9];

2. relevant domain concepts extracted by a Named Entity Recognition (NER)
process. The NER process is guided by JUMP ontology.

The implemented NLP process also includes operations preliminary to the BOC
extraction step, such as:

– Text normalization: the original text is modified to prepare it for the follow-
ing steps (for example, all formatting characters are removed);

– Tokenization: it is the process of split up input a string into tokens;
– Stop words elimination: all commonly used words are deleted;
– Stemming: it is the process of reducing inflected (or sometimes derived)

words to their stem. In our project we adopt the Snowball stemmer 4;
– POS-tagging: it is the process of assign a part-of-speech to each token. We

develop a JAVA version of ACOPOST tagger 5 using Trigram Tagger T3
algorithm. It is based on Hidden Markov Models, in which the states are tag
pairs that emit words;

– Lemmatization: it is the process of determining the lemma for a given word.
We use WordNet Default Morphological Processor (included in the WordNet

4 http://snowball.tartarus.org/
5 http://acopost.sourceforge.net/



distribution) for English. For the Italian language, we have built a different
lemmatizer that exploits the Morph-it! morphological resource 6.

As final output each word in the original document is enriched with syntactic
and semantic information collected during all the steps. In the two following
subsections (3.1 and 3.2) we provide more details about the process of BOC
extraction process.

3.1 JIGSAW: Word Sense Disambiguation

The goal of a WSD algorithm consists in assigning a word wi occurring in a doc-
ument d with its appropriate meaning or sense s, by exploiting the context C in
where wi is found. The context C for wi is defined as a set of words that pre-
cede and follow wi. The sense s is selected from a predefined set of possibilities,
usually known as sense inventory. In the proposed algorithm, the sense inven-
tory is obtained from WordNet. JIGSAW is a WSD algorithm based on the idea
of combining three different strategies to disambiguate nouns, verbs, adjectives
and adverbs. The main motivation behind our approach is that the effective-
ness of a WSD algorithm is strongly influenced by the POS tag of the target
word. An adaptation of Lesk dictionary-based WSD algorithm has been used to
disambiguate adjectives and adverbs [2], an adaptation of the Resnik algorithm
has been used to disambiguate nouns [10], while the algorithm we developed for
disambiguating verbs exploits the nouns in the context of the verb as well as the
nouns both in the glosses and in the sentence examples that WordNet utilizes to
describe the usage of a verb. JIGSAW takes as input a document d = (w1, w2,
. . . , wh) and returns a list of WordNet synsets X = (s1, s2, . . . , sk) in which each
element si is obtained by disambiguating the target word wi based on the in-
formation obtained from WordNet about a few immediately surrounding words.
We define the context C of the target word to be a window of n words to the
left and another n words to the right, for a total of 2n surrounding words. The
algorithm is based on three different procedures for nouns, verbs, adverbs and
adjectives, called JIGSAWnouns, JIGSAWverbs, JIGSAWothers, respectively.
A short description of procedures JIGSAWnouns and JIGSAWverbs follows,
more details about all the procedures and experiments are reported in [3].

JIGSAWnouns The procedure is obtained by making some variations to the
algorithm designed by Resnik for disambiguating noun groups. Given a set of
nouns W = {w1, w2, . . . , wn}, obtained from document d, with each wi having
an associated sense inventory Si = {si1, si2, . . . , sik} of possible senses, the goal
is assigning each wi with the most appropriate sense sih ∈ Si, according to the
similarity of wi with the other words in W (the context for wi). The idea is to
define a function ϕ(wi, sij), wi ∈ W , sij ∈ Si, that computes a value in [0, 1]
representing the confidence with which word wi can be assigned with sense sij .
JIGSAWnouns differs from the original algorithm by Resnik in several ways.
6 http://sslmitdev-online.sslmit.unibo.it/linguistics/morph-it.php



First, in order to measure the relatedness of two words we adopted a modified
version of the Leacock-Chodorow measure [7], which computes the length of
the path between two concepts in a hierarchy by passing through their Most
Specific Subsumer (MSS). In our version, we introduced a constant factor depth
which limits the search for the MSS to depth ancestors, in order to avoid “poorly
informative MSSs”. Moreover, in the similarity computation, we introduced both
a Gaussian factor G(pos(wi), pos(wj)), which takes into account the distance
between the position of the words in the text to be disambiguated, and a factor
R(k), which assigns sik with a numerical value, according to the frequency score
in WordNet (more importance is given to the synsets that are more common than
others). This algorithm considers the words in W pairwise. For each pair (wi,wj),
the most specific subsumer MSSij is identified, by reducing the search to depth
ancestors, at the most. Then, the similarity Sim(wi, wj , depth) between the two
words is computed. MSSij is considered as supporting evidence for those synsets
sik in Si and sjh in Sj that are descendants of MSSij . The amount of support
contributed by the pairwise comparison is the similarity value Sim(wi, wj , depth),
weighted by a gaussian factor that takes into account the position of wi and wj

in W (the shorter is the distance between the words, the higher is the weight).
The value ϕ(i, k) assigned to each candidate synset sik for the word wi depends
on both the amount of support it received and a factor that takes into account
rank of sik in WordNet, i. e. how common sense sik is for the word wi. The
synset assigned to each word in W is the one with the highest ϕ value. More
details about both the procedure and the computation of the similarity value
are reported in [3].

JIGSAWverbs We define the description of a synset as the string obtained
by concatenating the gloss and the sentences that WordNet uses to explain the
usage of a synset. First, JIGSAWverbs includes, in the context C for the target
verb wi, all the nouns in the window of 2n words surrounding wi. For each
candidate synset sik of wi, the algorithm computes nouns(i, k), that is the set
of nouns in the description for sik. Then, for each wj in C and each synset sik,
the following value is computed:

maxjk = maxwl∈nouns(i,k) {sim(wj,wl,depth)} (1)

where sim(wj,wl,depth) is the same similarity measure in JIGSAWnouns. In
other words, maxjk is the highest similarity value for wj wrt the nouns related
to the k-th sense for wi. Finally, an overall similarity score among sik and the
whole context C is computed:

ϕ(i, k) = R(k) ·
∑

wj∈CG(pos(wi), pos(wj)) · maxjk∑
hG(pos(wi), pos(wh))

(2)

where both R(k) and G(pos(wi), pos(wj)), that gives a higher weight to words
closer to the target word, are defined as in JIGSAWnouns. The synset assigned
to wi is the one with the highest ϕ value.



3.2 Named Entity Recognition Step

The Named Entity Recognition (NER) task has been defined in the context of
the Message Understanding Conference (MUC) as the capability of identifing
and categorizing entity names, defined as instances of the three types of ex-
pressions: entity names, temporal expressions, number expressions [5]. Further
specializations of these top level classes have been proposed [11] and general pur-
pose lists of Named Entities are publicly available and incorporated e.g. within
well-known Text Processing Software, as GATE (General Architecture for Text
Engineering) [4], to give a popular example. However, for the aim of JUMP
project we cannot rely on general purpose gazetteers to perform the step of
Named Entity Recognition, due to specificity of categories and their instances
for this particular project. For this reason we developed a simple algorithm to
recognize entities using as gazetteers a domain ontology: we tag each token in
the original document with the ontology class value if it represents an instance
of that class in the domain ontology. The idea of the algorithm follows. Given
C = {C1, C2, . . . , Cn} the set of classes in the domain ontology, for each class Ck

we consider the set P = {p1, p2, . . . , pm} of properties belonging to Ck. Given
T = {t1, t2, . . . , ts} the list of tokens obtained from document d, for each token
tj we consider a window of h following tokens. The algorithm checks for each
Ck if value of any combination of tj , . . . , tj+h matches with the value of any pm,
for all instances of Ck, and assigns to tj the correspondent label. The search
is done beginning from longer combinations of tokens and in the worst case it
ends without any class annotation for the single token tj . Taking advantage of
semantic information provided by ontology, we can simply obtain relations be-
tween all entities found in the text, exploiting the object properties defined by
the ontology, without added computational cost.

3.3 Concept-based Text Representation

Both the WSD procedure and the NER process are fundamental to obtain a
concept-based text representation that we called Bag-Of-Concepts (boc). In this
model, a vector of concepts (WordNet synsets or named entities) corresponds
to a document, instead of a vector of keywords. Therefore, each document (for
example, an email text) representing the user request is converted in a BOC
structure in order to be processed by the JUMP Engine. A more formal descrip-
tion of the BOC text representation follows. Assume that we have a document dn

(corresponding to a user’s request n)processed by the Content Analyzer Module.
The document is converted into the following BOC structure:

dn = 〈(tn1, wn1), (tn2, wn2), . . . , (tn|V |, wn|V |)〉

where:

– tnk is the k-th token (synset or named entity) recognized in document dn by
NLP procedures;

– V is the set of distinct tokens recognized in dn;



– wnk is the weight representing the informative power of token tnk in docu-
ment dn.

In other words, a text is represented by a vector of pairs (token, weight),
where tokens are recognized from keywords in the text by NLP procedures which
assign each token with a numerical score representing the discriminatory power
of that token in the text. Weights can be computed in different ways for synsets
and named entities. For example, we consider a user who is going to prepare a
technical report for a project. She has technical skills but no idea about how
to compile such kind of document. She queries the Jump System, using the fol-
lowing expression q : “I have to prepare a technical report for the Jump project”.
The Jump Engine passes the user’s request q to the Content Analyzer module
that processes the document in order to both disambiguate the task to be ac-
complished, by using the WSD procedure, and to recognize entities potentially
useful for the task. The final output of this stage is q represented according to
the BOC model:

q = 〈(01704982, 0.75), (06775158, 0.85), (Jump, 0.99), (00746508, 0.80)〉

where both synset identifiers of the concepts recognized in the text and named
entities are used in the BOC structure. For example, the verb “prepare” has
been disambiguated as the synset reported below:

01704982 (verb.creation) prepare -- (to prepare verbally, either
for written or spoken delivery; ‘‘prepare a report’’

which identifies the task to be accomplished. This structure is used to query
the Shared Ontology. As a result, the Jump Engine provides all istances of the
concepts technical report and project and relations intercourring among these
istances and istances of different classes of the ontology. In the example, the
system returns the list of partners and documents related to the Jump project,
and the list of technical reports already written for other projects.

4 Conclusions and Future Work

In this paper we presented the design and initial implementation of a framework
for knowledge sharing within knowledge-intensive organizations by personalized
information retrieval. The user current task and background knowledge are used
to fulfill informative request. NLP and shared domain ontology are exploited to
semantic interpretation of user request in order to query legacy knowledge bases.
The JUMP project is an ongoing project; so far, a prototype implementing what
presented in this paper has been developed as an internal proof of concept to ver-
ify that interfacing systems through the JUMP framework is feasible and useful
even outside the project scope itself.Other features currently under development
in the prototype are related to the different possible interfaces that the user can
exploit in order to query the system. In particular, the possible interactions that
have been depicted so far include support to Microsoft IBF (Information Bridge
Framework) smart tags (in PUSH mode, i.e. without the user explicitly request-
ing services), and SMS and email support (in PULL mode, i.e. as answer to a



user explicit request). Since the user is likely to be a fairly experienced computer
user and not a computer programmer, the query is expected to be a simple text
query, not different from a normal query that could be issued against a standard
query engine such as Google or Yahoo. As future work, we intend to improve the
WSD algorithm and the NER process by including the shared ontology, enriched
with external links to WordNet, into these processes.
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