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Abstract. This paper presents a method for encoding OWL-S atomic processes
by means of SWRL rules and composing them using a backward search planning
algorithm. A description of the preliminary prototype implementation is also pre-
sented.

1 Introduction

Semantic Web (SW) aims at proposing standards, tools and languages for knowledge
representation on the Web. Amongst the other issues, it deals with the provision of se-
mantics to Web Services in order to achieve a more abstract and flexible automation.
The result of this effort is the notion of Semantic Web Services (SWS) [1]. This term
refers to traditional Web services that have been annotated by means of SW languages
and techniques so as to make possible their automatic discovery, composition and in-
vocation. In order to achieve that, in literature there are different approaches which
produced different frameworks, among which the most widespread are OWL-S [2],
WSMO [3] and WSDL-S [4].

In this paper we will focus on OWL-S as underlying language for annotating Web
Services. OWL-S provides an ontological framework based on which an abstract de-
scription of a service can be created. It is an upper ontology whose root class is the
Service class that directly corresponds to the actual service that is described semanti-
cally (every service that is described maps onto an instance of this concept). The upper
level Service class is associated with three other classes: ServiceProfile (specifies the
functionality of a service), ServiceModel (specifies how to ask for the service and what
happens when the service is carried out) and ServiceGrounding (specifies how the ser-
vice has to be invoked). In particular, the service model tells a client how to use the
service, by detailing the semantic content of requests, the conditions under which par-
ticular outcomes will occur, and, where necessary, the step by step processes leading
to those outcomes. For nontrivial services (those composed of several steps over time),
this description may be used by a service-seeking agent in different ways.



The ServiceModel defines the concept Process that describes the composition of
one or more services in terms of their constituent processes. A Process can be atomic (a
non-decomposable service), composite (a set of processes within some control structure
that defines a workflow) or simple (a service abstraction).

In this paper our aim is the composition of OWL-S atomic processes adopting
SWRL [5] as language for the representation of their IOPR (Inputs, Outputs, Precon-
ditions and Results) models. Such SWRL descriptions are used as input to generate
candidate service compositions in order to achieve a given goal.

The rest of the paper is organized as follows: in section 2 we report the basic notions
of the OWL-S process model with some considerations on the guidelines that should be
followed in order to have useful metadata for the Web services to be described. Section 3
identifies some requirements needed for encoding an OWL-S atomic process by means
of SWRL rules. An algorithm for SWRL rules composition is described in section 4. In
section 5 an application example that shows the applicability of our method is presented,
while sections 6 and 7 are devoted to related work and conclusions, respectively.

2 Preliminary Considerations

In this section we report the basic notions about the OWL-S process model with some
considerations on the guidelines that should be followed in order to have useful meta-
data for the Web services to be described.

Each OWL-S process [2] is based on an IOPR model. The Inputs represent the in-
formation that is required for the execution of the process. The Outputs represent the
information that the process returns to the requester. Preconditions are conditions that
are imposed over the Inputs of the process and that must hold for the process to be
successfully invoked. Since an OWL-S process may have several results with corre-
sponding outputs, the Result entity of the IOPR model provides a means to specify this
situation. Each result can be associated to a result condition, called inCondition, that
specifies when that particular result can occur. Therefore, an inCondition binds inputs
to the corresponding outputs. It is assumed that such conditions are mutually exclusive,
so that only one result can be obtained for each possible situation. When an inCondition
is satisfied, there are properties associated to this event that specify the corresponding
output (withOutput property) and, possibly, the Effects (hasEffect properties) produced
by the execution of the process. Effects are changes in the state of the world.

The OWL-S conditions (Preconditions, inConditions and Effects) are represented
as logical formulas. If needed, OWL-S provides some extra variables, called ResultVars
and Existentials4, that can be used in these formulas.

Formally, Input and Output are subclasses of the more general class Parameter de-
clared in its turn as a subclass of Variable in SWRL ontology. Every parameter has a
type, specified using a URI. Such type is needed to refer it to an entity within the domain
knowledge of the service. The type can be either a Class or a Datatype (i.e.: a concrete
domain object such as a string, a number, a date and so on) in the domain knowledge.
Nevertheless, we argue that providing descriptions of Web services parameters using

4 These entities appeared in OWL-S 1.2 Pre-Release, available at:
http://www.ai.sri.com/daml/services/owl-s/1.2/



concrete datatypes gives very little in terms of added semantics. For example, consider
the following declaration of the input in a process that retrieves books:

<process:Input rdf:ID="BookName">

<process:parameterType

rdf:resource="http://www.w3.org/2001/XMLSchema#string"/>

</process:Input>

The fact that process:parameterType is declared as datatype means that the refer-
ence knowledge model of this input parameter is a concrete XML Schema datatype
(string) instead of being an entity within a domain ontology. This mismatch becomes
critical in automatic composition of services. Indeed, suppose that, during an hypo-
thetical composition process, we need to find another service whose output will be fed
into the service described above. Our composer, then, must necessarily consider those
services that have as output a resource of the same type of our input parameter. In
the example above, this type is string, hence every service that returns a string as an
output can be composed with our service. Therefore, this would result in meaningless
compositions of totally unrelated services due to the fact that parameters have been se-
mantically poorly described. In the rest of this paper we consider only those services
that have parameters (i.e. Inputs and Outputs) declared as entities in a domain ontology
(i.e. not as datatype).

3 Encoding OWL-S atomic processes with SWRL rules

The aim of this section is to illustrate our approach for transforming process descrip-
tions into sets of rules expressed in an ontology-aware rule language, namely Semantic
Web Rule Language (SWRL). The motivation for doing this lies in the fact that, starting
from this rule-based representation, an algorithm for detecting possible sequential com-
position of services (described in section 4) can be applied. SWRL [5] extends the set of
OWL [6] axioms to include Horn-like rules [7]. The proposed rules are in the form of an
implication between an antecedent (body) and consequent (head); both consist of zero
or more conjunctive atoms. The intended meaning can be read as: whenever the condi-
tions specified in the antecedent hold, then the conditions specified in the consequent
must also hold. An important characteristic of the rules is safety, i.e. only variables that
occur in the antecedent of a rule may occur in the consequent. Furthermore, a rule with
conjunctive consequent can be transformed into multiple rules each with an atomic con-
sequent (Lloyd-Topor transformations [7]). A SWRL weakness is the non decidability
of the whole language. A solution to this problem has been proposed in [8] where de-
cidability is achieved by restricting application of SWRL rules to individuals explicitly
introduced in the ABox. This kind of SWRL rules are called DL-safe.

In order to perform the transformation we impose some requirements on OWL-S
process descriptions. It is necessary that all the entities within the process model are
described in terms of a domain ontology. This means, basically, that Inputs and Outputs
types, in order to satisfy this requirement, cannot be datatypes.

Within OWL-S, conditions (logical formulas) are either string literals or XML lit-
erals. The latter case is used for languages whose standard encoding is in XML, such



as SWRL. Body and head are logical formulas, whereby the OWL-S conditions can
be identified with the body or with the head of a SWRL rule. Such conditions are ex-
pressed over Input and Output. Therefore, if the above requirement is met, conditions
will be also expressed in terms of a domain ontology and will hence have the right level
of abstraction.

After these considerations, we can describe the guidelines we follow for encoding
an OWL-S process into SWRL.

– For every result of the process there exists an inCondition that expresses the binding
between inputs variables and the particular result (output or effect) variables.

– Every inCondition related to a particular result will appear in the antecedent of each
resulting rule, whilst the Result will appear in the consequent. An inCondition is
valid if it contains all the variables appearing in the Result.

– If the Result contains an Effect composed of more atoms, the rule will be split into
as many rules as the atoms are. Each resulting rule will have the same inCondition
as antecedent and a single atom as consequent.

– The preconditions are conditions that must be true in order to execute the service.
Since these conditions involve only the process Inputs, the corresponding SWRL
rules should have the condition as antecedent and a boolean predicate that indicates
whether the condition is true or not. In this work we consider always true all the
Preconditions.

The first guideline is needed because there may be processes in which such binding is
implicit in their OWL-S descriptions. Let us consider, for example, an atomic process
having a single output. In this case there might be no inCondition binding inputs and
output variables since, being the output the unique outcome, such binding is obvious.
In this case, though, our encoding with SWRL rules would not be possible because the
second guideline is not applicable. However, we can add a new inCondition that makes
explicit such implicit binding.

For example, suppose we have a process declared only with the following Parame-
ters, without inCondition:

<process:Input rdf:ID="BookName">

<process:parameterType rdf:datatype="&xsd;#anyURI"> &kb;#BookTitle

</process:parameterType>

</process:Input>

<process:Output rdf:ID="BookInfo">

<process:parameterType rdf:datatype="&xsd;#anyURI"> &bibtex;#Book

</process:parameterType>

</process:Output>

we should write the corresponding rule as follows:

kb:BookTitle(?process:BookName) → bibtex:Book(?process:BookInfo)

but the variable process:BookInfo does not appear in the antecedent of the rule (i.e.
in the inCondition), consequently this is not a valid SWRL rule. Since every service



produces the output manipulating the inputs, we can suppose that there exists a predicate
(hasTransf predicate) always true that binds every input to the output. In order to obtain
valid rules, we add this predicate at antecedent of the rule:

kb:BookTitle(?process:BookName) ∧
kb:hasTransf(?process:BookName,?process:BookInfo) →

bibtex:Book(?process:BookInfo)

including also the implicit inCondition.

4 A backward search algorithm for SWRL rules composition

In this section we present our SWRL composer prototype that implements a backward
search algorithm for the composition task. It works as follows: it takes as input a knowl-
edge base containing SWRL rules and a goal specified as a SWRL atom, and it returns
every possible path built combining the available SWRL rules in order to achieve such
goal. These rules comply with SWRL safety condition mentioned in the previous sec-
tion.

In details, the algorithm performs backward chaining starting from the goal in the
same fashion Prolog-like reasoners work for query answering. The difference is that this
algorithm does not rely just on Horn clause but on SWRL DL-safe rules. This means
that, besides the rule base, it takes into account also the Description Logic ontology to
which the rules refer.

The SWRL rule path found, and consequently the resulting OWL-S service compo-
sition, will be valid, in the sense that it will produce results for the selected goal, only if
the SWRL rules in the path are DL safe. In other words the DL-safety means that rules
are true for individuals that are known, i.e.: they appear in the knowledge base5. At
present, the prototype performs DL-safety check. This guarantees that the application
of rules is grounded in the ABox and consequently that the services that embody those
rules can be executed.

5 Example

In this section we present an example that shows the applicability of our method. The
dataset of OWL-S services can be found on Mindswap Web site 6. In such dataset, there
are some OWL-S atomic services and, based on these ones, some OWL-S composite
services. The latter set will be used to validate our method. We will evaluate how many
composite services in such set can be actually built automatically by our composer.

In table 1 we report the set of the atomic services with the information needed for
the scope of this section. Among them, only two services have not inputs and outputs
described as datatype in knowledge domain and only one service contains a Precondi-
tion. All services have no declared inConditions, hence we assume that for each of them
there is only one Result corresponding to the service output and there is no Effect.

5 It might not be the case in general, given the Open World Assumption holding in Description
Logics, see [8] and chapter 2 in [9]

6 http://www.mindswap.org/2004/owl-s/services.shtml



To obtain SWRL rules that satisfy the requirements described in the section 3, we
have modified the atomic services as follows:

a) b)

<!--namespace of this ontology is &kb;-->
..
<owl:Class rdf:ID="BookTitle">

<rdfs:subClassOf>
<owl:Class rdf:ID="BookEntity"/>

</rdfs:subClassOf>
</owl:Class>
<owl:DatatypeProperty rdf:about="hasBookName">

<rdfs:domain rdf:resource="#BookTitle"/>
<rdfs:range rdf:resource="&xsd;#string"/>

</owl:DatatypeProperty>
..

..
<process:Input rdf:ID="BookName">

<process:parameterType
rdf:datatype="&xsd;#anyURI">

&kb;#BookTitle
</process:parameterType>

</process:Input>
..

Fig. 1. The transformation of a datatype in a knowledge domain entity

– For every parameter having a datatype as type, we created a class in the domain
ontology having a datatype property with the corresponding datatype as range (fig.
1a). The OWL-S descriptions have been modified assigning the newly created class
to the corresponding parameterType (fig. 1b).

– For each service, we create two logical formulas. The first composed of unary atoms
having the parameterType URI as their predicate and the input as their variable, for
each input. The second composed of a unary atom having the parameterType URI
as its predicate and the output its variable. We set these two logical formulas as,
respectively, the antecedent and consequent of a new SWRL rule.

– Since every service produces the output manipulating the inputs, we can suppose
that there exists a predicate (hasTransf predicate) always true that binds every input
to the output. We did this in order to guarantee the SWRL safety condition, then we
added hasTransf predicates to the antecedent of the rule built in the previous step.
With this modification the antecedent can be identified with a new inCondition.

The obtained SWRL rule set is given as input to our composer and the resulting
composition can be compared with the processes proposed in the Mindswap composite
services examples. However, OWL-S composite processes can use control constructs
(such as iteration and selection) that are more complex than the simple sequence, hence
some considerations are needed w.r.t. composed services in 2:

– The French Dictionary service returns the meaning of a French word in French.
To do this, it uses the processes of two atomic services: BabelFishTranslator and
English Dictionary. It defines the sequences reported in the column 2 of the table 2
that are combined by means of other control constructs to return its result.

– Find Cheaper Book Price service returns the smallest price of a book along with
the name of the bookstore that sells it. To do this, it uses the processes of three



ATOMIC SERVICE DATATYPE
INPUTS

DATATYPE OUT-
PUTS

SWRL CONDITION

Book Finder:
Returns the information of a book whose title
best matches the given string.

“BookName” No No

Zip Code Finder:
Returns the zip code for the given city/state.

“City”, “State” No No

Latitude Longitude Finder:
Returns the latitude and longitude for a given zip
code.

No No No

Barnes & Nobles Price Finder (BNPrice):
Returns the price of a book as advertised in
Barnes and Nobles web site given the ISBN
Number.

No No No

Amazon Book Price Finder (AmazonPrice):
Returns the price of a book as advertised in
Amazon web site given the ISBN Number.

No No No

English Dictionary:
Returns the meaning of a word from the dictio-
nary.

“InputString” “OutputString” No

BabelFish Translator:
Convert text from one language to another lan-
guage using the online BabelFish translator ser-
vices.

“InputString” “OutputString” One Precondition:
“SupportedLanguagePair”

Currency Converter:
Converts the given price to another currency.

No No No

Table 1. Some characteristics of the OWL-S atomic services datataset

atomic services: BookFinder, BNPrice and AmazonPrice. It defines the sequences
reported in the column 2 of the table 2 that are combined by means of selection
control construct to return its results.

As mentioned above, our composer is not able to work with complex control sequences
and composite services as inputs. In both cases, we have to check if our composer was
able to retrieve the basic sequences reported above on the basis of which the composite
services have been built. In order to verify this, in Tab. 2 we put as input of our composer
the outputs of the sequences instead of the outputs of the services.

COMPOSITE SER-
VICE

SEQUENCES IN THE SERVICE RETRIEVED?
(Yes/No)

French
Dictionary

1) BabelFishTranslatorProcess⇒ EnglishDictionaryProcess
2) EnglishDictionaryProcess⇒BabelFishTranslatorProcess

1) Yes
2) Yes

Book Price 1) BookFinderProcess⇒ BNPriceProcess⇒
CurrencyConverterProcess

1) Yes

Find Cheaper
Book Price

1) BookFinderProcess⇒ BNPriceProcess
2) BookFinderProcess⇒ AmazonPriceProcess

1) Yes
2) Yes

Table 2. Some characteristics of the OWL-S composite services datataset

BookPrice service returns the price of a book in a desired currency. To do this, it uses
the processes of three atomic services: Book Finder, BNPrice and Currency Converter.
Since it uses only the sequence construct, the searched goal can be the output of the
service and our system retrieves the correct composition.



6 Related work

To the best of our knowledge no approach in literature makes use of SWRL for the com-
position of Semantic Web Services. Researchers focussed either on semi-automated or
fully automated methods for service composition, drawing inspiration especially from
AI planning [10] and state machines [11].

One approach aims at integrating Semantic Web formalisms into classical planner
methodologies. Berardi et al. [12] address the problem of automatic composition syn-
thesis of e-Service. They developed a framework in which the exported behavior of an
e-Service is described in terms of its possible executions (execution trees). Then they
specialize the framework to the case in which such exported behavior (i.e., the execu-
tion tree of the e-Service) is represented by a finite state machine. In [13], the semantics
underlying the DAML-S specification (the ancestor of OWL-S) has been translated into
FOL, obtaining a set of axioms for describing the features of each service. By combin-
ing these axioms within a Petri Net, the authors have obtained process-based service
models that enable reasoning about the interactions among the processes that form the
structure of a service. Traverso and Pistore [14] propose a planning technique for the
automated composition of Web services described in OWL-S process models, which
can deal with nondeterminism, partial observables, and complex goals. Such technique
facilitates the synthesis of plans that encode compositions of web services with the
usual programming constructs, like conditionals and iterations. In [15] an approach for
developing a Semantic Web service discovery and composition framework on top of
the CLIPS rule-based system is presented. More specifically, it describes a methodol-
ogy for using production rules over Web services semantic descriptions expressed in
the OWL-S ontology.

Other approaches, in which our methodology can be framed, apply methodologies
and tools developed in the field of AI planning directly on Semantic Web settings. Sirin
and Parsia [16] demonstrate how an OWL reasoner can be integrated within an AI plan-
ner, called SHOP2 [17], for the composition of Semantic Web Services. The reasoner
is used to store the world states, answer the planners queries regarding the evaluation of
preconditions, and update the state when the planner simulates the effects of services.
An approach for using SPARQL [18] as an expression language for OWL-S conditions
is presented in [19]. It describes how SPARQL can be used to give a compact represen-
tation of the preconditions of a service, and of its results. To our knowledge there hasn’t
been any attempt to use SPARQL query engines for achieving service composition.

The first type of approach foresees a translation from the Semantic Web formalisms
to a dedicated formalism so that tools developed in particular research areas can be ap-
plied maintaining the same performances. On the contrary, the second type of approach
foresees a porting of the algorithms and methodologies from other research fields using
the Semantic Web technologies. The advantage of this approach, in which we frame
our methodology, is the direct use of the Semantic Web formalisms. In this manner,
we are able to use methodologies coming from more consolidated research fields ex-
ploiting the advantages that Semantic Web guarantees, i.e. a distributed knowledge base
and the semantic interoperability. Furthermore, the use of SWRL, in particular, allowed
us to exploit its greater expressiveness with respect to OWL-DL itself. Indeed, OWL-
DL, being a Description Logic, does not allow to formulate constructs like property



compositions without becoming undecidable. SWRL partially reliefs these constraints,
especially in the fragment we adopted in our work (i.e.: DL-safe SWRL rules), provid-
ing a more powerful means that becomes very useful in most SWS description portions
such as inConditions and Effects.

7 Conclusions and future work

In this paper we have presented a new method that exploits SWRL for OWL-S atomic
services composition. We have proved that if the OWL-S services have a meaningful
semantics and valid SWRL conditions it is possible to build composer exploiting only
the Semantic Web technology to achieve the composition task. This work can be con-
sidered as a starting point for the solution of a broader issue like the orchestration of
SWS. Indeed rules for service coordination can be added to the rules for SWS encoding
completing the knowledge that is necessary for the orchestration.

Future work will mainly consist of augmenting the number of services that can be
encoded into SWRL rules. In other words the system should be able in the future to
handle composite services as input and to produce more complex control structures
(such as selection and iteration). The latter seems to be the most challenging task since
it will require more powerful algorithms for the composition task.

Furthermore, an interesting aspect to deal with is the management of knowledge
bases when there are changes produced by the effects of a service execution. Semantic
Web languages are based on Description Logics which implement monotonic reason-
ing. In other words, they do not provide any means for retracting or modifying the status
of the knowledge base that is not adding some new facts. This is somewhat a too restric-
tive requirement to represent, for instance, service execution in such formalisms. Think
for example of representing the status of an activity as a functional property 7. Now,
as soon as this activity changes its status (say, for instance, it passes from ’scheduled’
to ’in progress’), an equivalent change should be carried out on its description in the
knowledge base. At the moment there is no DL reasoner allowing for that, meaning that
performing such change in a traditional knowledge base would lead to an inconsistency
of the whole knowledge base.
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