
BPELDT - Data-Aware Extension of BPEL to
Support Data-Intensive Service Applications

Dirk Habich1, Sebastian Richly2, Mike Grasselt3, Steffen Preissler1, Wolfgang
Lehner1, and Albert Maier3

1 Dresden University of Technology
Database Technology Group

{dirk.habich,steffen.preissler, wolfgang.lehner}@inf.tu-dresden.de
2 Dresden University of Technology

Software Engineering Group
{sebastian.richly, ua1}@inf.tu-dresden.de

3 IBM Boeblingen Lab, Germany
Information Server SWG SOA Integration

{grassel,amaier}@de.ibm.com

Abstract. Aside from business processes, the service-oriented approach—
currently realized with Web services and BPEL—should be utilizable for
data-intensive applications as well. Fundamentally, data-intensive appli-
cations are characterized by (i) a sequence of functional operations pro-
cessing large amounts of data and (ii) the delivery and transformation
of huge data sets between those functional activities. However, for the
efficient handling of massive data sets, a significant amount of data infras-
tructure is required and the predefined ’by value’ data semantic within
the invocation of Web services and BPEL is not well suited for this con-
text. To tackle this problem on the BPEL level, we developed a seamless
extension to BPEL—the ’BPEL data transitions.’

1 Introduction

Web services and the Business Process Execution Language for Web Services
(BPEL4WS, BPEL for short) [20] are of interest to both software vendors and
researchers. In this paradigm, the functionality provided by business applications
is enclosed within Web service software components. Those Web services can be
invoked by application programs or by other Web services via internet without
explicity binding them. On top of that, BPEL has been established as the de-
facto standard for implementing business processes based on Web services.

Fundamentally, a process consists of a series of activities. Therefore, BPEL
offers a standardized way to describe the functional composition of services to
create comprehensive process definitions. A typical service-oriented process ex-
ample is the booking a trip application. Aside from such traditional business
processes, the service-oriented approach should also be utilizable in application
scenarios with special properties, since such applications can benefit from the
service-oriented idea as well.



Fig. 1. Two-Phase Clustering Approach for Gene Expression Data Sets

1.1 Data-Intensive Service Applications in SOA Environments

In the context of genome research, the method of gene expression has been used
for several years. Related microarray experiments are conducted all over the
world, and consequently, a vast amount of microarray data sets are produced,
e.g. in biological and medical research addressing a wide range of problems.

After the conduction of the pure experiments, a data analysis process fol-
lows to extract useful knowledge. To increase the statistical significance of the
extracted knowledge, researchers would like to incorporate various microarray
experiments in their analysis processes. In [9], we proposed a two-phase clus-
tering strategy for gene expression data sets considering this fact in a special
way. A simplified view of our developed concept is illustrated in Figure 1. This
analysis process offers some advantages concerning the result quality. A further
important aspect is that a lot of work can be done in parallel, thus allowing the
efficient process execution.

In general, the utilization of the service-oriented approach as execution en-
vironment for such processes provides some advantages with regard to process
orchestration and distributed computing. The realization of the presented anal-
ysis process would include Web services acting (i) as data providers for microar-
ray data sets and (ii) as functionality providers for normalization and clustering
strategies. The microarray data sets are usually n x m matrices, where n is the
number of genes and m is the number of samples. Typical values for n and m
are: n > 20, 000 and m > 100. A special property of this process is that such
large data sets have to be exchanged between participating Web services in the
process. A further property is that it cannot be taken for granted that a partic-



ipating Web service can manage the received data in the main memory during
the whole processing time. Therefore, database systems are used for the internal
processing of such large amounts of data.

1.2 Contribution

The current standards of Web services and BPEL are not efficiently applicable
in this special context because both expose some weaknesses concerning the
data aspects. One drawback is the predefined ’by value’ handling of data within
the service invocation of Web services. In service-oriented environments, the
Simple Object Access Protocol (SOAP) is commonly used for communication
with and between Web services. Embedding massive structured data sets in
SOAP is possible but not a suitable solution from the performance perspective, in
particular with regard to memory and scalability issues [6, 8, 18, 22]. To overcome
this problem in data-centric environments, we developed the concept of Data-
Grey-Box Web Services[8] which allow the transparent integration of specialized
data propagation tools in the service invocation procedure.

The second drawback evolves from the implicitly defined data flows in BPEL
and the ’by value’ handling. Through the variables concept within BPEL, the
concept of centralized data flows is pursued. That means the BPEL server is
directly involved as a broker in the exchange of massive data sets between two
participating Web services in a process. This may lead to some scalability prob-
lems on the BPEL server. To tackle this issue on the BPEL level, we propose a
seamless extension to BPEL—the ’BPEL data transitions (BPELDT )’—in this
paper. With the help of these data transitions, the data flows are explicitly speci-
fied within BPEL processes. More detailed, our proposed BPEL data transitions
represent an orthogonal data flow concept to the control flow. Furthermore, these
data transitions are optimally exploited during process execution, especially in
combination with our Data-Grey-Box Web services. Therefore, BPELDT and
Data-Grey-Box Web Services from a solid foundation to support data-intensive
service applications.

The remainder of the paper is structured as follows: In the next section, we
go through related work, including an introduction to our developed concept of
Data-Grey-Box Web Services. In Section 3, we describe our BPEL data tran-
sitions from a modeling and execution perspective. Implementation details and
an evaluation are provided in Section 4 and Section 5. The paper closes with a
summary.

2 Related Work

In this section we give a structured overview of related work. Relevant works
come from the fields (i) Web services, SOAP and BPEL, (ii) Data-Grey-Box
Web services and (iii) specialized data propagation tools.



2.1 Web Services, SOAP, and BPEL

Web services are an innovative architecture paradigm for applications in a service-
oriented architecture (SOA). Fundamentally, Web services are considered as
black-box components, since they do not offer any information on how they
work; they only expose information on the structure of parameters and data
they expect as input and return as result.

The Simple Object Access Protocol (SOAP) is commonly used for commu-
nication with and between Web services. The SOAP protocol defines an XML-
based format for messages to be used in a Web service invocation. Such messages
include a reference to the target service to invoke as well as any number of param-
eters and data to be transmitted to the service (’by value’ semantics). Recently,
the performance of the SOAP protocol has received a lot of attention. Proposed
techniques try to reduce network bandwidth through compression [4, 7] or other
approaches like [24, 18]. Furthermore, serialisation and de-serialisation of XML
messages have been in the focus of optimization approaches [1, 2]. Furthermore,
SOAP messages with attachements are an option for binary data in the form of
image files or encapsulations of other XML documents [10].

On top of Web services, the Business Process Execution Language for Web
Services (BPEL4WS, or BPEL for short) provides a comprehensive syntax for
describing workflow logic. The BPEL language offers a number of predefined ac-
tivities to express control flow patterns. The ever necessary data flow is defined
implicitly by specifying variables that basically represent input and output mes-
sages of activities. In this case, the assign activity is of special interest because
assignments are used within BPEL to manipulate variables.

To execute BPEL processes, a corresponding execution engine is required.
Such a BPEL server controls the service invocations and coordinates the mes-
sage exchange between Web services. Therefore, BPEL follows the concept of
a centralized control flow and a centralized data flow. In this case, the BPEL
server is the broker for all SOAP message exchanges between participating Web
services in a process. To improve the capabilities of BPEL, a variety of exten-
sion have been proposed. One well-known extension is BPELJ [21] allowing to
include JAVA snippets (code) in BPEL definitions. Furthemore, Maier et al.
[14] proposed a similar extension to BPEL, BPEL4SQL supporting SQL snip-
pets as BPEL activities and BPEL conditions. This approach can be seen as an
embedded SQL approach for BPEL.

Aside from such extensions, there exist methods for (i) data-flow distribu-
tion (DFDP-WS) [19] and (ii) decentralizing the execution of composite Web
services [5, 16, 17]. The DFPD-WS approach [19] extends the Web service stack
with a Data-Flow Distribution Protocol for Web Services (DFDP-WS) to ex-
change data directly without the requirement of a central broker. Nanda et al.
[16] propose an approach for partitioning centralized BPEL descriptions into
smaller parts that are executed by distributed BPEL engines.



Fig. 2. Invocation Process of Data-Grey-Box Web Services

2.2 Data-Grey-Box Web Services

In [8], we introduced the concept of Data-Grey-Box Web Services. In contrast
to the original black-box Web services, we enhanced the Web service interface
with an explicit data aspect offering more information about the data semantics.
Aside from the separation of parameters and data in the interface description, we
introduced a novel binding format for structured data. Through this new data
binding, the Web service signals that data has not been transfered via SOAP
but that there is a separate data layer instead. As before, regular parameters
are handed over via SOAP when calling the Web service.

To handle our newly introduced data binding, we extended the SOAP frame-
work with the integration of a novel data layer component, as illustrated in Fig-
ure 2 that shows the whole invocation procedure. On the client side, enhanced
Web service call semantics are necessary. Aside from the transmission of the
endpoint and regular parameters in the SOAP message, the client has to deliver
access information as references for (i) where the input data is available (input
reference) and (ii) where the output data should be stored (output reference).
That means our new data binding is translated into no more than two additional
parameters for access information for input and output data on the client side.
These new parameters are included in the SOAP message for the invocation of
Web services. That means instead of propagating the pure data in an XML-
marshaled SOAP message, we only deliver access information as data pointers
in SOAP.

On the service side, our extended SOAP framework receives the SOAP mes-
sage and conducts a separation into the functional aspect and the data aspect.
As illustrated in Figure 2, the associated data layer calls an appropriate mediator
for the data propagation based on the access information of the client and the
service. While the data access information of the client can be found in the re-



ceived SOAP message, the data access information for the service instance must
be queried from our extended service infrastructure [8]. Fundamentally, a medi-
ator is a neutral partner which is responsible for the data propagation between
client and Web service. Examples of mediators are ETL, e.g. IBM DataStage,
or data replication tools (see Section 2.3). Those mediators have to be accessi-
ble over a standard Web service interface. Advantages of the proposed mediator
concept are (i) the optimized data propagation through specialized tools, (ii) the
availability of an independent concept enabling an exchange of the mediators,
and (iii) the release of data propagation to a third party.

If a Data-Grey-Box Web service receives and returns a data set, two data
propagation tasks will be initiated. The first propagation task for the input data
is conducted before the pure functionality of the service is invoked. The corre-
lation of this input data to the Web service instance is done by our extended
service infrastructure. If the input data propagation task is finished, the func-
tionality is automatically invoked. The last step is the initiation of the data
propagation task to deliver the output data to the client.

2.3 Specialized Data Propagation Tools

Fundamentally, the database research community has paid a lot of attention to
the field of data exchange between different database systems. A well-known
method is the ETL (Extract-Transform-Load) approach, where data from dif-
ferent data sources are loaded into a common data warehouse [23]. Such ETL
processes consist of three parts: (i) extraction of data from the different source
systems, (ii) application of a series of rules and functions to the extracted data
to derive the data to be loaded, and (iii) loading of the data into a data ware-
house system. This ETL approach is a data-specialized technique to efficiently
transmit structured data to various different data management systems, e.g. re-
lational or XML database systems. A further popular data propagation method
is replication [13]. In database systems, this is used to provide redundancy or to
balance the load across multiple database servers.

It is already possible today to include such tools in the service-oriented envi-
ronment. With IBM’s information server [12], for example, pre-defined ETL jobs
can be provided as Web services. These Web services can then be included in
the process orchestration. Disadvantages of this approach lie in the fact that (i)
such data operations are explicitly integrated in the control flow and (ii) when-
ever such an operation is to realize the data exchange between two Web services
(source and target WS) in a process, these 3 Web services are then no longer
loosely coupled but can only be used together. The reason is that the source and
target WS have to be designed appropriately, i.e. the source WS do not deliver
and the target WS do not receive the data via the service interface.

3 BPEL Data Transitions

Our proposed Data-Grey-Box Web Services (DGB Services) [8] are only one step
in the right direction towards the efficient support of data-intensive service ap-



plications. The subsequent step is the orchestration of DGB Services to create
comprehensive processes. Therefore, we present our novel BPEL data transi-
tions (BPELDT ) as a data-aware extension of BPEL in this section. These data
transitions are a new explicit link type connecting several DGB Services on the
data level. Fundamentally, our newly introduced BPEL data transitions are an
orthogonal data flow concept to the control flow, similar to the data aspect in
BPMN [3].

3.1 Modeling Perspective

From the modeling perspective, the original BPEL approach follows a two-level
programming model [14, 20]. The first level (lower level) consists of Web services
as executable software components realizing the basic activities. The upper level
is often called ’programming in the large;’ there, the order of the activities is
orchestrated. With our explicit BPEL data transitions, we extend this program-
ming model to a three-level approach. The three levels are:

1. Lower Level: This level includes Web services as executable software com-
ponents; in our case, as Data-Grey-Box Web Services with an explicitly
published data aspect.

2. Functional Flow Modeling Level: On this level, a domain expert models the
pure functional process logic without considering data flows. The main ad-
vantage is that the domain expert can focus on the functional logic, and the
data flow is modeled by data placeholders. The result on this level is a com-
prehensive functional process description. Such descriptions are essentially
not executable.

3. Data Flow Modeling Level: This third level represents our extensions, where
a data management expert takes the functional process description and an-
notates this process with all necessary data flows using our BPEL data tran-
sitions. The functional description of the process is not changed by this data
flow annotation concept.

Fig. 3. ETL Process Inside BPEL Data Transition



In Figure 3, a simple process with an explicit data transition between two ser-
vices is depicted. In this case, the modeling of the illustrated data flow is done
with the specialized data propagation tool ETL. As illustrated in the figure,
the output of WS1 consists of two data sets (outputSchema1, outputSchema2 ).
Then, two different transformation operations are separately applied on the data
sets (Transformer V0S2, Transformer 86 ). Since service WS3 expects only one
input data set (inputSchema1 ), the transformed data sets are joined together
(Join 87 ). Fundamentally, the following data flow relationships between func-
tional operations exist: 1 : 1, 1 : N , N : M , N : 1. For example, a 1 : N
relationship signifies that the output data of a Web service is used as input data
for a set of Web services.

The result of the three modeling steps is a process definition with an explicit
control flow and with an explicit data flow as well.

3.2 Execution Perspective

In Section 2.2, we reviewed our Data-Grey-Box Web Services. These services
offer more information on the data aspect than standard Web services do. As we
demonstrated in [8], the usage of Data-Grey-Box Web Services creates an obvious
performance benefit in the classic client-server scenario. The composition of Web
services with BPEL generates more dependencies. These dependencies are built
during the additional modeling phase in the form of data transitions.

Standard Web services do not dispose of the qualification to handle these
explicit data flows. Up to now, implicit data flows have been used in BPEL
engines, resulting in centralized data flows where the BPEL engine is used as a
central data broker. With this principle, BPEL engines do not scale well on data-
intensive processes. The additional data aspect information in Data-Grey-Box
Web Services now enable us to handle these data transitions with specialized
tools. Thereby, every data transition joins the data output reference of the pro-
ducing service with the data input reference of the consuming services. The data
propagation is conducted by a neutral mediator. In the composition scenario, the
mediator may now handle the propagation and data transformation as well. The
additional transformation execution by the mediator has several advantages: (i)
the service does not lose its autonomy, (ii) better load balancing is possible, since
the BPEL engine is not responsible any longer for the data transformation with
BPELJ or for mediation flows, and (iii) already allocated resources are used,
since mediators have to handle the data anyway.

If mediators are used to realize our BPEL data transitions with Data-Grey-
Box Web Services, then three service invocation protocols are possible. These
protocols can be categorized as pessimistic ones and optimistic ones. Pessimistic
means that the allocation of the data input reference of the consuming (target)
service is done after the producing service has finished. In case of an optimistic
approach, the data input references are allocated before the producing service
is executed. The resulting three service invocation protocol approaches are de-
scribed in more detail in the next section. This description is oriented at a small
example BPEL process: two Data-Grey-Box Web Services WS1 and WS2 are



connected on the control level and the output data of WS1 is used as input data
for WS2. That means WS1 and WS2 are connected by a control flow and a
data flow.

Pessimistic and Control-Flow-Oriented With this method, a decentralized
data flow is realized in consideration of the control flow. That means that the
control flow triggers the execution of the data flows. As a pessimistic approach,
the data propagation is not started until it is really needed, that means until the
consuming service is started (see Figure 4). Based on our example, WS1 commits
its output reference to the BPEL engine. In the invocation procedure of WS2,
this reference will be transmitted to WS2, calling the mediator (the mediation
invocation is done by the introduced data layer in the SOAP framework; see
Section 2.2 or [8]). The mediator finally transforms the data and delivers them to
WS2. After the data propagation has been finished, the functional part of WS2
can be executed. The advantage of this approach is that data is not transfered
over a broker in vain but the data is stored at WS1 until WS2 triggers the
mediator. In the worst case, the duration can amount to hours or days.

Fig. 4. Pessimistic and Control-Flow-Bound Service Invocation

Semi-Pessimistic With this method, centralized as well as decentralized data
flows are possible. Figure 5 illustrates the service invocation protocol approach.
In this case, the BPEL server pre-defines all input and output references for
the participating Web services independent from control flow or data flow in-
formation. That means the data is temporarily stored at a third-party site. In
the centralized case, the BPEL server must own a data source to temporarily
store the data, while in the distributed case, the BPEL server uses arbitrarily
distributed data stores as temporary storage devices.

Fundamentally, this service-invocation approach is compatible to the exist-
ing procedure (centralized data flow). However, instead of handling the data
’by value’, the data is coordinated by reference. If necessary, the data can be
propagated to the BPEL server to get ’by value’ access. Disadvantages are (i)
the interlocking of the engine with the data flow, and (ii) the fact that two data
propagation operations (two mediator calls) are necessary to exchange data be-
tween two services. An advantage of this invocation principle is that it is always
applicable.



Fig. 5. Semi-Pessimistic Service Invocation

Optimistic and Data-Flow-Oriented The third service invocation protocol
approach is optimistic. That means the output data is transfered immediately
after its creation in WS1. Therefore, the input reference of WS2 is committed
during the invocation of WS1. The data propagation through a mediator is done
before WS2 is invoked. To realize this approach, the invocation protocol has to
be changed in general. We introduce a preinvoke, which is illustrated in Figure 6.
During this preinvoke, the data resources for the input data will be allocated in
WS2. This input reference will be returned to the BPEL engine and used during
the invocation of WS1. This preinvoke allocation implies a policy mechanism to
ensure that only authorized invocations are processed. This approach is efficient
if Web services are invoked asynchronously. Thus, a parallel control and data
flow is possible.

Fig. 6. Optimistic and Data-Flow-Bound Service Invocation

3.3 Summary and Further Investigations

The result of the combination of Data-Grey-Box Web Services with our pro-
posed BPEL data transitions is a data-aware SOA environment as illustrated
in Figure 7. In such an environment, a functional component (BPEL server)
and a data component interact together. Data-Grey-Box Web Services are still
loosely coupled as regular Web services. Moreover, the data exchange between
participating Web services happens with specialized data propagation tools.

The presented BPEL data transitions with the three service invocation prin-
ciples create some interesting questions for further research. The additional
data-flow modeling phase for data transitions is the starting point of several
optimization approaches (see Figure 8). It is desirable to have the possibility to
model the data propagation and transformation in an abstract way. From this, it



Fig. 7. Data-Aware SOA Environment

should be possible to choose the best strategy to transfer the data, for example,
through ETL, stored procedures or other specialized approaches. Depending on
the concrete underlying scenario, several optimized process execution plans can
be derived from this abstract process model.

Fig. 8. Optimization Approach

The second point deals with the execution of the process, in particular with
the selection of one out of the three presented service invocation principles. The
optimistic as well as the pessimistic approach have the disadvantage that one side
has to store the data for a long time (in the worst case). The advantage, however,
is that in both approaches, only one data propagation operation is required to
deliver data from the source Web service to the target Web service, while the
semi-pessimistic principle uses two data propagation operations. To tackle this
problem from a process perspective, we want to introduce a Data-Grey-Box Web
Service policy indicating the time span before and after a certain event during
which data can be stored on the service’s side. With the help of some process



statistics, we want to determine the best invocation principle. Moreover, some
runtime adaptation techniques have to be developed.

4 Implementation Details

Fig. 9. Two-Phase Clustering with BPELDT

In this section, we describe our prototypical realization of the entire concept
within the Websphere Integration Developer (WID). The BPELDT process for
our two-phase clustering strategy is depicted in Figure 9. Again, we used three
different microarray data sets as starting point. These microarrray data sets
are persistently stored in a relational database system (IBM DB2), and Data-
Grey-Box Web Services allow access to them. The normalization and clustering
are realized as single Data-Grey-Box Web Service (getLocalModel Service). The
aggregation of the local clustering result to a global clustering result is done
by the data-grey-box Web service computeGlobalModel. All data-grey-box Web
services use a relational database system in order to allow the efficient and
scalable processing of incoming data and some tasks within those services are
pushed down to the database system [11].

In contrast to the more general implementation presented in [8], Data-Grey-
Box Web Services are realized in a slightly different way within WID. The sep-
aration of parameters and data in the interface description is done by embed-
ding schema descriptions in the DBM format for input and output data in the
types section. Through naming conventions, a service requestor is able to deter-
mine which database-oriented schemas for input and output data are assigned



to each functional operation. Moreover, instead of integrating of the introduced
data-layer component within the SOAP framework, each Data-Grey-Box Web
Service interface includes various administrative operations. These administra-
tive operations are normally hidden from the service requestor by the data-layer
component.

BPEL data transitions are prototypically realized using <flow>-link types
with transition conditions. These transition conditions include the data flow task
descriptions. As execution strategy, we use the optimistic and data-flow-oriented
approach. We think this strategy offers some advantages with regard to perfor-
mance compared to the other execution approaches. To enable the optimistic
approach, two additional activities are necessary. The first activity, initDF, con-
sists of the initialization of all data flow sessions at the participating Data-Grey-
Box Web Services one th process has been started. That means necessary data
resources are allocated at the services. The last activity of the process, final-
izeDF, closes all data sessions and deallocates all data resources at the services.
However, the implementation of the semi-pessimistic strategy is straightforward.

The abstract definition of the data transformation is done with the XML-
based Mapping Specification Language (MSL) [15]. The Rational Data Architect
(RDA) can be used to specify such transformations based on schema information.
For each data flow, an MSL template will be generated containing the data
output schema of the data-producing Web service (source schema) and the input
schema of the data-consuming service (target schema) (see Figure 10). Those
templates have to be refined by the user.

Fig. 10. MSL Template in Rational Data Architect

The result of the entire modeling part is a functional process definition with
explicit data flows containing transformation specifications in MSL form. During
the process deployment, the BPEL process definition is investigated and included
data flows will be mapped to parametrized DataStage ETL job descriptions. In



this mapping step, the MSL specification will be considered. That means the
data propagation is restricted to ETL for now.

At process runtime, the data flows are executed according to our optimistic
and data-flow-oriented strategy. The parametrized DataStage ETL job descrip-
tions are invoked with the current information regarding the data source from
our Data-Grey-Box Web Services.

5 Evaluation

In this section, we evaluate our proposed BPELDT approach regarding the per-
formance gain. An evaluation of the data-grey-box Web services is presented in
[8]. In this BPELDT evaluation, we delivered microarray data matrices from a
provider service to an analysis service. In the experiment, we measured the time
for the data exchange between these two services (ii) with the original BPEL
approach, where the BPEL server is the broker, (ii) with BPELDT with the
optimistic execution strategy and (iii) with BPELDT with the semi-pessimistic
approach. The resulting times are depicted in Figure 11(a). In the conducted ex-
periments, we changed the number of columns of the microarray data matrices,
whereas the number of rows remained fixed (rows=20, 000).

(a) Evaluation Times BPEL and BPELDT (b) Speedup of BPELDT

Fig. 11. Evaluation of BPELDT

As illustrated in Figure 11(a), both BPELDT execution strategies are faster
than the original BPEL approach. The data flows in case of BPELDT are ex-
ecuted with the ETL tool DataStage. The resulting speedups compared to the
SOAP transmission in case of the original BPEL approach are depicted in Figure
11(b). As expected, the semi-pessimistic execution strategy is slower than the
optimistic as well as the pessimistic approach. In the semi-pessimistic case, an
additional data propagation is necessary, since the data is temporarily stored at
a third position. Therefore, this strategy is slower than the other two execution
approaches. In general, this experiment confirms the evaluation results of our
Data-Grey-Box Web Services. Data-Grey-Box Web Services and BPELDT are



more suitable for data-intensive service applications with regard to performance
issues than the original approach.

6 Conclusion

Up to now, the current standards of SOAP, WSDL and BPEL define a ’by
value’ handling of data in the service-oriented architecture. However, this ’by
value’ handling is not suitable for data-intensive application. In this paper, we
have illustrated our whole service-oriented solution for data-intensive applica-
tions. This solution includes Data-Grey-Box Web Services [8] which allows the
integration of specialized data propagation tools in the invocation process. In this
case, the data is not longer handed ’by value’. The main focus of this paper is the
introduction of BPEL data transitions to enable an efficient composition and ex-
ecution of Data-Grey-Box Web Services. Aside from theoretical background, we
present our prototypical realization, and some evaluation result. Furthermore,
we highlight further reseach aspects in this direction.

References

1. Nayef Abu-Ghazaleh and Michael J. Lewis. Differential deserialization for opti-
mized soap performance. In Proceedings of the ACM/IEEE SC2005 Conference on
High Performance Networking and Computing (SC 2005, November 12-18, 2005,
Seattle, WA, USA), 2005.

2. Nayef Abu-Ghazaleh, Michael J. Lewis, and Madhusudhan Govindaraju. Differen-
tial serialization for optimized soap performance. In Proceedings of the 13th Inter-
national Symposium on High-Performance Distributed Computing (HPDC 2004,
4-6 June, Honolulu, Hawaii, USA), pages 55–64, 2004.

3. Business Process Modeling Notation (BPMN) Information.
http://www.bpmn.org/.

4. Min Cai, Shahram Ghandeharizadeh, Rolfe R. Schmidt, and Saihong Song. A
comparison of alternative encoding mechanisms for web services. In Database and
Expert Systems Applications, 13th International Conference, 2002.

5. Girish Chafle, Sunil Chandra, Vijay Mann, and Mangala Gowri Nanda. Decentral-
ized orchestration of composite web services. In Proceedings of the 13th Interna-
tional Conference on World Wide Web-Alternate Track Papers and Posters(WWW
2004, New York, NY, USA, May 17-20), page 134143, 2004.

6. Kenneth Chiu, Madhusudhan Govindaraju, and Randall Bramley. Investigating
the limits of soap performance for scientific computing. In 11th IEEE International
Symposium on High Performance Distributed Computing, 2002.

7. Marc Girardot and Neel Sundaresan. Millau: an encoding format for efficient
representation and exchange of xmlover the web,http://www9.org./w9cdrom/154/
154.html.

8. Dirk Habich, Steffen Preissler, Wolfgang Lehner, Sebastian Richly, Uwe Assmann,
Mike Grasselt, and Albert Maier. Data-grey-box web services in data centric en-
vironments. In Proceedings of the 2007 International Conference on Web Services
(ICWS 2007), pages 976–983, 2007.



9. Dirk Habich, Thomas Wächter, Wolfgang Lehner, and Christian Pilarsky. Two-
phase clustering strategy for gene expression data sets. In Proceedings of the 2006
ACM Symposium on Applied Computing - Bioinformatics Track (SAC 2006, Dijon,
France, April 23-27), pages 145–150, 2006.

10. Steffen Heinzl, Markus Mathes, Thomas Friese, Matthew Smith, and Bernd
Freisleben. Flex-swa: Flexible exchange of binary data based on soap messages
with attachments. In Proceedings of the IEEE International Conference on Web
Services (ICWS’06), Washington, DC, USA, 2006. IEEE Computer Society.

11. Alexander Hinneburg, Wolfgang Lehner, and Dirk Habich. Combi-operator:
Database support for data mining applications. In Proc. of 29th International
Conference on Very Large Data Bases, 2003.

12. IBM. Ibm information server, 2007. http://www-
306.ibm.com/software/data/integration/info server/.

13. Bettina Kemme and Gustavo Alonso. A new approach to developing and im-
plementing eager database replication protocols. ACM Trans. Database Syst.,
25(3):333–379, 2000.

14. Albert Maier, Bernhard Mitschang, Frank Leymann, and Dan Wolfson. On com-
bining business process integration and etl technologies. In Datenbanksysteme in
Business, Technologie und Web, 11. Fachtagung des GI-Fachbereichs ”Datenbanken
und Informationssysteme” (BTW 2005, Karlsruhe, 2.-4. März), pages 533–546,
2005.

15. Mapping Specification Language. http://www.research.ibm.com/journal/sj/
452/roth.html.

16. Mangala Gowri Nanda, Satish Chandra, and Vivek Sarkar. Decentralizing execu-
tion of composite web services. In Proceedings of the 19th Annual ACM SIGPLAN
Conference on Object-Oriented Programming, Systems, Languages, and Applica-
tions (OOPSLA 2004, October 24-28, Vancouver, BC, Canada), page 170187, 2004.

17. Mangala Gowri Nanda and Neeran M. Karnik. Synchronization analysis for de-
centralizing composite web services. In Proceedings of the 2003 ACM Symposium
on Applied Computing (SAC03, Melbourne, FL, USA, March 9-12), page 407414,
2003.

18. Alex Ng. Optimising web services performance with table driven xml. In Proc. of
the 17th Australian Software Engineering Conference, 2006.

19. Lucian-Mircea Patcas, John Murphy, and Gabriel-Miro Muntean. Middleware sup-
port for data-flow distribution in web service composition. In Proceedings of the
combined Doctoral Symposium and 15th PhDOOS Workshop at the 19th European
Conference on Object Oriented Programming(PhDOSS, Glasgow, Scotland, July
25), 2005.

20. Specification of BPEL. http://www-128.ibm.com/developerworks/library/
specification/ws-bpel/.

21. Specification of BPELJ. http://www-128.ibm.com/developerworks/library/
specification/ws-bpelj/.

22. Robert van Engelen. Pushing the soap envelope with web services for scientific
computing. In Proc. of the International Conference on Web Services (ICWS’03),
2003.

23. Panos Vassiliadis, Alkis Simitsis, and Spiros Skiadopoulos. Conceptual modeling
for etl processes. In Proc. of the 5th ACM international workshop on Data Ware-
housing and OLAP, pages 14–21, New York, NY, USA, 2002. ACM Press.

24. Patrick Widener, Greg Eisenhauer, and Karsten Schwan. Open metadata formats:
Efficient xml-based communication for high performance computing. In 10th IEEE
International Symposium on High Performance Distributed Computing, 2001.


