
On the Management Requirements of Web Service
Compositions

Anis Charfi 1, Rainer Berbner 2, Mira Mezini 3, Ralf Steinmetz 2

1 SAP Research CEC Darmstadt
Darmstadt, Germany

2 Multimedia Communication Lab, 3 Software Technology Group
Darmstadt University of Technology

Darmstadt, Germany

Abstract. Several works have addressed the management of individual Web
Services. However, the specific management requirements of workflow-based
web service compositions such as those specified in the BPEL have not yet
been considered. In this paper, we present several management requirements
in web service compositions such as discovery and selection management,
SLA and policy management, middleware services management, and manage-
ment of the composite service. Supporting these requirements is crucial for
providing a reliable service composition with well-defined QoS properties. We
also introduce web service composition management and present our vision of
having dedicated tool support for it in future BPEL engines.

1 Introduction

Web services [1] that are provided by different parties can be composed to cross-
organizational workflows and to value-added composite web services. Web service
composition languages such as BPEL (Business Process Execution Language) [2]
provide a cheap means for enterprise application integration and business-to-
business integration. However, we notice that whilst web service based workflows
cover the functional part of the composition (control flow, data flow, etc), the man-
agement of Quality of Service (QoS for short) properties in these compositions such
as performance, availability, security, and reliability have not yet been addressed
appropriately. On the other hand, research has revealed that the basic web service
protocol stack is not sufficient to establish web services in real-world scenarios [4]
and that considering QoS requirements is crucial for a sustainable success of web
services [7] including their compositions. In fact, without any guarantee regarding
QoS, no enterprise will be willing to rely on external web services within critical
business processes.

In this paper, we look at several management requirements in the lifecycle of web
service compositions, which are mostly not supported by current composition tools.

These requirements include discovery and selection management of partners, compo-
sition-side management of the QoS and middleware properties of the interactions
with and within the composition, the management of the composite web service, the
management and handling of the SLAs and policies of the services, and the man-
agement of business aspects.

We also define web service composition management (WSCM) as the management
of the composite web service, the composition-side management of the composed
services, and the management of the interactions that take place within and with the
composition including their QoS properties. The definition of WSCM is not specific
to BPEL but it works also with other composition languages. We merely assume the
use of a workflow-based language to compose services that are described in terms of
functionality and in terms of QoS. We will focus on BPEL because it is the standard
for web service composition.

It is important to note that WSCM is different from web service management be-
cause most existing works on web service management operate at the interface level,
i.e., on top of WSDL [19, 24, 30]. We look at the management requirements of web
service based workflows from the implementation perspective, i.e., the perspective of
the user who defines and deploys such workflows. Thus, web service composition
management is a form of application level management, whereby the application is
implemented in a workflow language such as BPEL.

The contribution of this paper is two-fold. First, it outlines management concerns
that are crucial but mostly not supported in current web service composition tools.
Second, it defines WSCM and explains how it differs from web service management
in general. Our vision is that future orchestration engines should provide WSCM
capabilities. How the WSCM requirements can be implemented is out of scope.

The remainder of this paper is organized as follows. Section 2 gives some back-
ground knowledge. Section 3 outlines the management requirements in web service
based workflows and defines web service composition management. In Section 4, we
report on related work. Section 5 concludes the paper.

2 Background

In this section, we provide some background knowledge that is relevant for under-
standing web service composition management.

2.1 Web Service Management

In Web Service Distributed Management (WSDM) OASIS defined a specification
called Management of Web Services (MOWS) [24], which defines an additional

management interface of a web service. The management interface provides infor-
mation about the identity, metrics, operational state, request processing state, etc.

In [2] web Service management is defined as an extension of enterprise application
management. Following this definition, web service management has two sides:
management of applications within an enterprise (internal management) and man-
agement of relationships with other web services across enterprises (external man-
agement). This distinction aims at the management of web services.

2.2 Web Service Composition and BPEL

Web service composition provides a means to create a value-added web service by
combining existing web services. It spans two important areas: the specification by
means of a composition language and the execution by means of an appropriate run-
time. The specification of a web service composition consists in specifying a set of
interactions between the composition and the composed web services as well as the
control flow and data flow around these interactions.

The Business Process Execution Language (BPEL) is a process-oriented web service
composition language, in which a composite web service is implemented using a
workflow process. BPEL is widely accepted by research and industry and it was re-
cently accepted as an OASIS standard [3]. The new standard is to a large extent
based on BPEL 1.1 [2]. BPEL processes are deployed on specific workflow engines,
which orchestrate the invocations of the partner web services according to the proc-
ess specification. The main concepts in BPEL are partners, variables, and activities.

The partners are the parties that the composite web service interacts with such as
clients and other web services. A partnerlink is a typed connector between two
WSDL port types. It specifies two roles: one role is played by the composition and
the other is played by the partner [2]. The variables act as containers for the data that
is exchanged between the partners as well as for the process data.

The activities are the units of work in the process. BPEL differentiates primitive
activities and structured activities. Primitive activities are atomic whereas structured
activities are composite. The core of a BPEL process is the set of atomic messaging
activities (e.g., receive, reply, invoke), which perform interactions between the part-
ners. The assign activity is used to modify the content of a variable. Structured ac-
tivities such as sequence and flow contain other activities, structuring the latter ac-
cording to control flow patterns such as sequential execution and concurrency.

2.3 Service Level Agreements and Policies

Service Level Agreements (SLAs) and policies are the most used means to describe
the non-functional properties of web services.

SLAs are widely established to guarantee Quality of Service (QoS) between Internet
Service Providers (ISP) on the network layer. Service Level Agreements (SLAs) are
bilateral contracts and defined in RFC 3198 [32] as the documented result of a nego-
tiation between a customer and a provider of a service that specifies the levels of
availability, serviceability, performance, operation or other attributes of the service.
A SLA contains a Service Level Specification (SLS). A SLS is a set of parameters
(e.g., availability, performance, and error rate) and their values which together de-
fine the service offered to the customer. Besides the SLS, an SLA can contain pricing
information, contractual information, etc. To model SLAs, we use IBM’s Web Ser-
vice Level Agreement (WSLA) framework [19]. WSLA is based on XML Schema
and it is divided in three parts. In the section Parties, the organizations involved are
described. Relevant parameters and the way how they are calculated are illustrated in
the section Service Descriptions. In the section Obligations, Service Level Objectives
(SLOs) are used to define criteria that have to be met by the provider.

Other QoS properties such as reliable messaging, security, and transactions are not
supported by SLAs but they rather by policy based languages. WS-Policy [10] is a
general model and XML-based syntax that can be used to express the requirements,
capabilities, and preferences of web services e.g., with respect to reliability (as in
WS-Reliability [27]) or security (as in WS-Security [6]). A policy is a collection of
assertions. There are several domain-specific assertion languages, e.g., WS-
SecurityPolicy [19] defines security assertions for integrity, confidentiality, etc.

3 Web Service Composition Management

We assume that we are building a composite service using a workflow-based web
service composition language by orchestrating existing web services that are de-
scribed not only in terms of their functionality (as supported by WSDL) but also in
terms of QoS (as supported by SLAs and policies). Further, we assume that we have
some requirements on the composite web service in terms of the QoS properties that
it will guarantee to its clients.

3.1 Requirements for Web Service Composition Management

We grouped several management requirements that arise when creating and deploy-
ing web service compositions into the following categories:

3.1.1 Discovery and selection management

Service composition is generally used to solve a complex problem or implement a
complex business process. The complex task of the composite web service is divided
into smaller tasks that can be performed by existing services.

Discovery Management is about finding appropriate web services to build the com-
posite web service. This activity takes place primarily at design time but can also
take place at runtime. Depending on the type of service to be used, discovery is done
in various ways. For instance in the case of business-to-business integration the part-
ner organizations tell each other about the services they expose. In the case of enter-
prise application integration the system administrator of the enterprise knows about
the services that wrap a certain application. In other cases, partner web services are
discovered by searching internal and external UDDI registries. A prerequisite for an
appropriate discovery is a sufficient description of partner web services.

At first, the discovery management component of the web service composition tool
has to consider the functionality (business match) and find web services that match
the port type of each partner (e.g., make an offer for CPUs). The business match is
based only on the syntax and it can be improved by using some semantic web ser-
vices technology such as OWL-S [28]. Besides the functional match, the non-
functional properties of a web service are another important criterion in web service
discovery. For describing the non-functional QoS criteria of web services, SLAs and
policies are the mostly used means. Such QoS descriptions allow the selection of a
particular web service to be driven by QoS concerns.

When creating a new web service it is often the case that there are certain QoS re-
quirements on that new service. For instance, the creator of the composite service
may require a response time of 2 ms to be guaranteed. Inferring QoS criteria for the
individual services to be composed in terms of their SLAs and policies is a complex
task that requires tool support. Another example is that the creator of a composite
web service may have some transaction requirements that need to be translated to
requirements on the individual web services. In the case of BPEL, the programmer
may specify that a certain sequence with nested invoke activities has to be transac-
tional (e.g., using a deployment descriptor [12] or policies that are attached to the
process [13]). In such a case, appropriate tool support is required to restrict the selec-
tion of partners to web services with support for WS-AtomicTransaction.

In other scenarios, the discovery and selection of partners may pose certain non-
functional requirements on the composite service. For instance, assume that we build
a service in an intra-organizational setting, which provides one operation that checks
for product availability and places an order if the required product is available. If the
applications wrapped up by the availability service and the order service require
authentication it is then necessary to make the composite service require authentica-
tion as well to have the authentication data that will be passed to each composed
service.

In addition to the static specifications of QoS properties, the history, i.e., the runtime
behavior, of a web service is sometimes necessary for the selection. For instance, if
the SLA of some service specifies an availability of 80% then selection management
has to gather information about each call, i.e., it has to record the run-time behavior

of web services to decide which web service should be invoked. Therefore, the his-
tory of web services executions should be stored in a database. Selection based on
SLAs, policies, and history can be combined.

3.1.2 Management of the composite web service

In several composition languages including BPEL, the composition is exposed as a
new web service, which needs to be managed like any other web service. Typical
management concerns in web services are lifecycle management, the startup and the
shut down of the service, the number of instances, the ability of the service to provide
information about itself, its identity, its current load, the number of messages it is
currently processing, its dependencies on other services, error handling, forwarding
of errors to some third party, etc. Since the composite web service is implemented
using a workflow process (e.g., a BPEL process) we need to understand what does
each management concern means in terms of constructs of the workflow language,
e.g., what is the relationship of service instances to process instances what is the
number of messages the composite service is processing at a certain point in time.

As the lifecycle is rather implicit in BPEL, when we deploy a process we start the
composite service but the process might have not started yet. The service can be
shutdown by undeploying the process. Moreover, the current load of the composite
service can be inferred from the number of process instances1.

Fault handling is another important management issue in composite web services,
e.g., if an error occurs during the execution of an operation of the composite service,
it is important to identify the source of that error (whether it is a process error, an
error in one of the composed services, an error in the client messages, a network
error, etc). Some kind of process debugger (i.e., a tool that shows the execution state
of each process instance and the values of each variable) would be very helpful to
identify the source of the fault so that user can fix it and then redeploy the process.

To establish a reliable composition several QoS properties of the composite web
service have to be addressed such as:

Availability: Availability of a composite web service means the probability that
all web services involved in the composition are available when invoked by the
workflow process. A web service is considered available if it is able to respond to
a request within a defined time interval.

Performance: It can be measured by the throughput and the response time.
Throughput means the number of requests that can be processed during a defined
time slot. In the case of BPEL processes throughput depends not only on the num-
ber of process instances that can run simultaneously but also on the number of

1 Some BPEL engines already provide this information in their management module.

messages that one process instance can consume2 and on whether BPEL-specific
concepts such as message correlation are used. In fact, the same process instance
with correlation may be able to process multiple client requests (e.g., one for log-
ging in, one for searching for a product, one for placing an order, etc).

The response time is the sum of transmission time and processing time and can be
measured as the time required for processing a request. In BPEL the processing
time is the time period from the point where a SOAP message with a matching a
startable receive3 arrives at the engine to the point where a response SOAP mes-
sage matching the same operation is sent using a reply activity.

One major challenge in composition management is performance modeling and
performance measurement of the composite service [14]. To analyze composite
services and plan the workflow control, network calculus can be used to describe
the worst-case performance behavior of a composite service. By addressing capac-
ity planning, resource usage becomes more and more important. Performance
modeling and measurement are crucial to ensure that the execution of the compos-
ite service remains feasible and SLA violations due to overload are avoided.

Error rate: The error rate specifies the number of processing errors within a
particular time interval. The error rate of the composite web service can be calcu-
lated based on the error rates of each partner web service whilst taking into ac-
count the number of interactions with each partner. When we define the error rate
for a composite service that is implemented in BPEL, we have to differentiate er-
rors that are generated by the process, errors that are thrown by partner services
using fault messages, errors caused by faulty client messages, and errors due to
network failures.

In addition, other QoS properties of the composite web service have to be managed
such as security, reliable messaging, and transactions (cf. Section 3.1.4).

3.1.3 SLA and policy management

After the selection phase, we have a required policy (resp. SLA) for each partner
(that was probably inferred from the non-functional requirements on the composite
service) and a published policy (resp. SLA) for the selected service.

Moreover, the composite Web Service may have two different policies: one that is
published to clients (server-side policy) and another that is used for interactions with
the composed services (client-side). As the partner services may specify options in
their policies, e.g., that they support either algorithm a or b for encryption, policy
management should allow the process deployer to specify parameters that drive the
decision on which option to choose. When such a client-side composition policy

2 This can be inferred from the number of receive and onMessage activities in the process.
3 A startable receive activity is an activity that leads to the creation of a new process instance.

exists an effective policy [10] has to be calculated using that policy and the published
policy of the partner service.

Appropriate policy management should also check whether the published policy of a
service has changed. In such a case, it should signal any mismatch to the user. Fur-
ther, the policy management component is supposed to know about the middleware
capabilities at the composition side, i.e., if a requirement of the partner after a policy
update cannot be supported then policy management should throw an error.

SLA and Policy management is about handling all these SLAs and policies of the
partner services and the composite service. Ideally, one would like to see a list of
policies (required, published, effective) and SLAs (required, published) for each
composed service and each interaction.

SLA Management should also monitor the composite service to check if the origi-
nally defined SLA is supported. It may turn out that this SLA should be modified
after a certain period of time (e.g., because of the performance of a partner service
that cannot be replaced, e.g., when that service is a wrapper around an internal ap-
plication). Further, the SLA descriptions of the selected partner web services have to
be monitored from the composition side by collecting execution data for each interac-
tion with that service to check whether the SLA has been violated.

In addition, some means are needed to define how the composition runtime should
behave in the case of SLA violation (e.g., notification of service provider and service
consumer, sending an e-mail to an administrator, selecting an alternative service and
in that case what selection strategy to follow, etc)

Based on SLAs, rankings for partner web services can be calculated for each service
category (e.g., delivery web service) [7, 8, 9]. This ranking can be later used as a
foundation for the dynamic selection of a particular web service. Furthermore, IT
experts can define additional rules to exclude web services that do not satisfy certain
minimal QoS requirements e.g., “Do not admit web services with a response time
longer than 10 ms”.

3.1.4 Management of middleware concerns

There are several middleware requirements in web service compositions [12], which
can be supported by WS-* based middleware services for security, transactions, reli-
able messaging, etc. Due to place limitations we focus only on security as a represen-
tative for the other middleware services.

Several security concerns arise in a composite web service such as the authentication
of the composition in front of its partner services. That is, appropriate tool support is
needed to specify the data (e.g., user name and password, binary keys) that should be
passed to the security middleware before interacting with a partner. The security

middleware will then use that data to process the SOAP message according to the
WS-* specifications for security such as WS-Security and WS-Trust.

There are also confidentiality and integrity requirements for the interactions with
partners that can be enforced using a WS-Security based middleware service, which
encrypts, signs, and adds user credentials to the messages of messaging activities.
Appropriate tool support should allow the user to see the security properties of each
interaction in the composition and also to pass the necessary parameters needed by
the security service for enforcing that property. As there is a relationship between the
security properties of an interaction and the security policies of the involved parties,
the management of middleware concerns is related to policy management.

The composite web service could also have authentication requirements on its cli-
ents, i.e., it mandates incoming client requests to provide some claims; messages
without appropriate user claims will be ignored. This can be the case when the client
has to pay a fee for using the service. Authentication is then used to associate a con-
tract (including a pricing model) with the client. There are further security issues
such as trust, federation, secure conversations, and privacy that need to be managed
and configured, e.g., if some of the partner services can be grouped into a trust do-
main, then the process would not have to authenticate itself separately in front of
each partner (i.e., some kind of single sign-on can be introduced).

There are other middleware concerns [12] in composite web services such as persis-
tence, transactions, and notification, etc. For each concern, tool support is needed to
see the middleware properties of each interaction (i.e., messaging activity in BPEL)
and also other process activities (e.g., a transactional sequence in BPEL) as well as
the parameters passed to the middleware services to enforce these properties

3.1.5 Management of business aspects

Several business aspects have to be dealt with in Web Services such as enforcing
legal contracts between the partners, accounting, billing, etc.

Accounting is the process of tracing information systems activities to a responsible
source [5] usually conducted by the service provider as a foundation for charging and
billing. In the context of web service composition, there are two forms of accounting
(as being the provider of the composite web service, and as being the client of the
partner web services). Logging and tracing are accounting activities with the purpose
of keeping track of which requests and responses have been sent to or received from
clients and partner web services including the respective data.

Billing is concerned with the bills that should be given to the clients of the composite
service and also the bills between the composition and the composed services. The
web service composition may have to pay a fee for using a partner web service based
on different pricing models, i.e., pay-per-use or volume-based rates. At the composi-
tion side, the management module should collect the necessary data and statistics

about the usage of partner web services. This can be helpful to assign costs to inter-
nal business units according the cause of the costs. Additionally, the service re-
questor (i.e., the composition) can make use of accounting information to check the
provider’s invoice. Since the composition itself is a web service, which could charge
clients a fee also according to various pricing models, the management module
should correlate contracts and usage statistics to produce a bill to the client.

3.2 Definition of Web Service Composition Management

We define Web Service Composition Management (WSCM) as the management of
the composite Web Service, the composition-side management of the composed ser-
vices, and the management of the interactions that take place within and with the
composition including their QoS properties. In a broader sense, it includes the sup-
porting activities that are needed to provide a reliable Web Service composition with
well-defined QoS properties such as:

the discovery and selection of appropriate services to build the composition,

the management of interactions with and within the composition in terms of
SLAs, policies, middleware properties, and business aspects,

the management of the composite web service

It is important to note that we look at the composite Web Service from the imple-
mentation perspective, i.e., the workflow process definition is available to us and not
only the interface definition of the composite web service. This perspective is differ-
ent from the one taken by general web service management approaches [19, 24, 30].
The latter assume only a WSDL interface and no knowledge about the internal im-
plementation of the web service.

Web services and web service compositions can be managed from the technical per-
spective and also from the business perspective [15]. From the technical perspective,
web service compositions are considered as distributed computing systems. From the
business perspective, they represent business processes. Thus, WSCM is positioned
between traditional systems and network management on the one side, and business
process management on the other side [15].

When considering BPEL, the WSCM requirements mentioned so far can be sup-
ported by a WSCM module that will be hopefully part of future BPEL design-time
and runtime tools as shown in Fig. 1. The nature of the WSCM requirements and
their dependency on workflow-level details make supporting them necessarily a task
of a component that is part of the orchestration engine because only the engine has
knowledge about the workflow constructs and their execution state. This tool should
show the different partners in the composition and allow the user to define criteria
for their discovery and selection as well as criteria for selecting other services if some

QoS assurances are not met. The SLA and policy management view of the WSCM
tool shows the SLAs and policies for each party that is involved in the composition
and also the effective policy for each interaction. Further, it should provide informa-
tion on the real QoS properties for each interaction via messaging activities in each
process instance. The middleware concerns view shows the middleware properties of
all interactions with clients and partners as well as the middleware properties of non-
messaging BPEL activities such as sequence and scope. The business aspects view
shows contracts and also accounting and billing information. The most important
view of that component is definitely the one concerned with the management of the
composite web service. It includes the policies and SLAs of that service, shows val-
ues for each QoS parameters such as availability and performance, and several
server-side measurements for its SLA.

Figure 1. Architecture of a Service Composition Engine with a WSCM Module

4 Related Work

A lot of research has been done in the area of web service management (WSM) from
the application management perspective [16], [21], [30]. OASIS proposes the "Web
Services Distributed Management" specification that addresses the management of
IT resources by defining web services interfaces (management through web services)
[25], [26] and the management of web services by defining messages, events state

Execution Engine (WfMS)

Workflow Process

Web Services

Discovery / Selection
management

WSCM Module

SLA and Policy
management

Management of the
composite service

Management of
middleware concerns

Management of
business aspects

Composite
Service

Clients

properties [24]. However, these specifications do not address the management of web
services compositions at all.

In [1] Web Service Management is defined as an extension of enterprise application
management, which can be seen as the task of monitoring and controlling applica-
tions in an enterprise so that they can be resilient to failures, configurable to chang-
ing needs of the business, accountable for billing and auditing, capable of performing
under varying workloads, and secure to intended or unintended attacks [1]. Follow-
ing this definition, Web Service Management has two sides: management of applica-
tions within an enterprise (internal management) and management of relationships
with other web services across enterprises (external management). The external web
service management is characterized by a limited visibility and control over portions
of the application. In that work the management of service compositions from the
composer's view is not discussed.

The Web Service Offerings Language (WSOL) discussed in [30] supports the man-
agement of web services as well as the management of web service compositions. So
this work comes close to our own. However, we believe that it is more beneficial to
use widely-accepted standards, such as BPEL, instead of designing new languages.

In [22], BPEL is extended with capabilities for performance measurements (e.g.,
logging and auditing). However, there is no complete support for the management
requirements presented in our paper. Several other works such as [17], [18], [29]
have considered QoS related non-functional properties but none of them took into
consideration management issues of compositions of web services.

In [31], the authors present a Web Service Management Layer (WSML), which is
placed in between the client application and the external web services to offer ge-
neric management functionality using aspects, e.g., billing, accounting, security and
transactional support. Furthermore, the WSML proposed in [31] allows dynamically
selecting and integrating web services at runtime based on rules and policies. How-
ever, there is no integration of this concept into a composition language and no focus
on the management of the composition. A similar approach to the one adopted by
WSML can be used together with AO4BPEL [11] to implement a WSCM layer.

The Web Service Agent Framework (WSAF) [22] achieves service selection taking
into account the preferences of service consumers as well as the trustworthiness of
providers. Policies are used by providers and consumers as a formal description of
the offered or needed QoS. Due to possible discrepancies between the formally of-
fered and the real QoS, service selection relying only on provider policies may lead
to suboptimal service selections. To optimize service selection, the trustworthiness of
provider policies has to be taken into account. Agents are used as service proxies to
select services which propose the best fit between expressed offers and needs in con-
sideration of the trustworthiness of policies. During execution agents monitor the
QoS and calculate the deviation between the offered and the real QoS as a measure

for the trustworthiness of the policy, which influences further service selections. This
work is also not concerns with the management requirements in service composition.

5 Summary

In this paper, we illustrated several management requirements in web service com-
positions and defined web service composition management. Our definition is not
specific to one composition language and BPEL was taken as an example for illustra-
tion because it is the standard. We also explained why and how managing a compos-
ite web service is different from the general web service management. Moreover, we
argued that state of the art BPEL engines are lacking support for composition man-
agement but hopefully future composition tools such as BPEL orchestration engines
will provide support for the WSCM requirements discussed in this paper.

References

1. Alonso, G., Casati, F., Kuno, H., Machiraju, V.: Web Services. Concepts, Architectures
and Applications. Springer-Verlag, Berlin (2003).

2. Andrews, T. et al: Business Process Execution Language for Web Services. Version 1.1.
http://www.ibm.com/developerworks/library/ws-bpel. (2003).

3. Arkin A. et al: Web Services Business Process Execution Language 2.0, Public Review
Draft, August 2006.

4. Alonso, G.: Myths around Web Services. Bulletin of the Technical Committee on Data
Engineering. Vol. 25, No. 4. IEEE (2002) 3-9.

5. ATIS Committee: Accountability. http://www.atis.org/tg2k/_accountability.html (2001).
6. Atkinson, B. et al: Web Services Security (WS-Security).

http://www.ibm.com/developerworks/library/ws-secure/ (2002).
7. Berbner, R., Heckmann, O., Steinmetz, R.: An Architecture for a QoS driven composition

of Web Service based Workflows. In Proc. of Networking and Electronic Commerce Re-
search Conference - NAEC 2005 (Lake Garda, Italy, Oct. 2005).

8. Berbner, R., Grollius, T., Repp, N., Heckmann, O., Ortner, E., Steinmetz, R., An ap-
proach for the Management of Service-oriented Architecture (SoA) based Application
Systems. In: Proc. of Enterprise Modeling and Information Systems Architectures
(EMISA 2005), (Klagenfurt, Austria) 208-221.

9. Berbner, R.; Grollius, T.; Repp, N., et al.: Management of Service-oriented Architecture
(SoA) based Application Systems. In: Enterprise Modelling and Information Systems Ar-
chitectures - An International Journal, 2 (2007) 1, S. 14-25.

10. Box, D. et Al: Web Services Policy Framework (WS-Policy).
http://www.ibm.com/developerworks/library/ws-policy (2004).

11. Charfi, A., Mezini, M.: AO4BPEL: An Aspect-Oriented Extension to BPEL. World Wide
Web Journal, published online March 2007, Springer

12. Charfi, A, Schmeling B, Heizenreder A., Mezini M, Reliable, Secure and Transacted
Web Service Composition with AO4BPEL. Proc. of ECOWS 06, pp. 23-34. IEEE.

13. Charfi, A. Khalaf R., Mukhi N., QoS-aware Web Service Compositions Using Non-
Intrusive Policy Attachment to BPEL, Proc. of ICSOC 07, LNCS 4749, pp. 582-593,
Springer, Vienna, Austria 2007,

http://www.ibm.com/developerworks/library/ws-bpel.
http://www.atis.org/tg2k/_accountability.html
http://www.ibm.com/developerworks/library/ws-secure/
http://www.ibm.com/developerworks/library/ws-policy

14. Eckert, J ; Pandit, K ; Repp, N ; Berbner, R ; Steinmetz, R Worst-Case Performance
Analysis of Web Service Workflows In: 9th International Conference on Information In-
tegration and Web-based Application & Services (IIWAS); Jakarta, Indonesia (2007).

15. Esfandiari, B., Tosic, V.: Requirements for Web Service Composition Management. In
Proc. of 11th HP-OVUA Workshop (Paris, France 2004).

16. Farrell, J.A., Kreger, H.: Web services management approaches. IBM SYSTEMS
JOURNAL. Vol. 41, No 2. (2002) 212-227.

17. Gouscos, D., Kalikakis, M., Georgiadis, P.: An Approach to Modeling Web Service QoS
and Provision Price. In Proc. of 4th International Conference on Web Information Sys-
tems Engineering Workshops - WISEW 2003. IEEE. (Rom, Italy 2003) 121-130.

18. Kalepu, S., Krishnaswamy, S., Loke, S.W.: Verity: A QoS Metric for Selecting Web
Services and Providers. In Proc. of 4th International Conference on Web Information Sys-
tems Engineering Workshops - WISEW 2003. IEEE. (Rom, Italy 2003) 131-139.

19. Kaler, C., Nadalin A. (Eds.). Web Services Security Policy Language (WS-
SecurityPolicy), Version 1.1, July 2005

20. Keller, A., Ludwig, H.: The WSLA Framework: Specifying and Monitoring Service Level
Agreements for Web Services. Journal of Network and Systems Management, Vol. 11,
No. 1. (2003), 57-81.

21. Machiraju, V., Sahai, A., van Moorsel, A., Web Services Management Network. 2002,
hp labs. Technical Report HPL-2002-234 (2002) 1-17.

22. Maximilien, E. M., Singh, M. P., Toward autonomic web services trust and selection.
Proc. of the 2nd international conference on Service oriented computing, ICSOC 04,
(New York, NY, USA) 212-221.

23. McGregor, C.: A Method to extend BPEL4WS to enable Business Performance Meas-
urement. Technical Report No. CIT/15/2003. University of Western Sydney (2003).

24. OASIS, Web Services Distributed Management: Management of Web Services (WSDM-
MOWS 1.0). http://docs.oasis-open.org/wsdm/2004/12/wsdm-mows-1.0.pdf (2004).

25. OASIS, Web Services Distributed Management: Management Using Web Services
(MUWS 1.0) Part 1. http://docs.oasis-open.org/wsdm/2004/12/wsdm-muws-part1-1.0.pdf

26. OASIS, Web Services Distributed Management: Management Using Web Services
(MUWS 1.0) Part 2. http://docs.oasis-open.org/wsdm/2004/12/wsdm-muws-part2-1.0.pdf

27. OASIS Web Services Reliable Messaging (WSRM) TC, Web Services Reliability (WS-
Reliability) version 1.1 (2004).

28. The OWL Services Coalition: OWL-S: Semantic Markup for Web Services. Technical
White Paper. http://www.daml.org/services/owl-s/1.0/owl-s.html (2003).

29. Ran, S.: A model for Web Services discovery with QoS. ACM SIGecom Exchanges. Vol.
4, No. 1. (2003) 1-10.

30. Tosic, V., Pagurek, B., Patel, K., Esfandiari, B., Ma, W., Management Applications of
the Web Service Offerings Language (WSOL). Proc. of 15th International Conference on
Advanced Information Systems Engineering - CAiSE. (Velden, Austria 2003) 468-484.

31. Verheecke, B., Cibrán, M.A.: AOP for Dynamic Configuration and Management of Web
Services. In: Proc. of International Conference on Web Services - ICWS-Europe 2003,
(Erfurt, Germany 2003) 137–151.

32. Westerinen, A., Schnizlein, J., Strassner, J., Scherling, M., Quinn, B., Herzog, S.,
Huynh, A., Carlson, M., Perry, J., Waldbusser, S.: Terminology for Policy-Based Man-
agement, RFC 3198. http://rfc3198.x42.com (2001).

http://docs.oasis-open.org/wsdm/2004/12/wsdm-mows-1.0.pdf
http://docs.oasis-open.org/wsdm/2004/12/wsdm-muws-part1-1.0.pdf
http://docs.oasis-open.org/wsdm/2004/12/wsdm-muws-part2-1.0.pdf
http://www.daml.org/services/owl-s/1.0/owl-s.html
http://rfc3198.x42.com/

