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Abstract.   This paper describes Mo’K, a configurable
workbench that supports the development of conceptual
clustering methods for ontology building. Mo’K is intended to
assist ontology developers in the exploratory process of
defining the most suitable learning methods for a given task.
To do so, it provides facilities for evaluation, comparison,
characterization and elaboration of conceptual clustering
methods. Also, the model underlying Mo’K permits a fine-
grained definition of similarity measures and class
construction operators, easing the tasks of method
instantiation and configuration. This paper presents some
experimental results that illustrate the suitability of the model
to help characterize and assess the performance of different
methods that learn semantic classes from parsed corpora.

1. INTRODUCTION

In this paper we propose a workbench that supports the
development of conceptual clustering methods for the (semi-)
automatic construction of ontologies of a conceptual hierarchy
type from parsed corpora. The elaboration of any clustering
method involves the definition of two main elements—a
distance metrics and a classification algorithm. In the context
of conceptual hierarchy formation, the Natural Language
Processing (NLP) community has investigated the notion of
distance to elaborate the semantic classes underlying hierar-
chies. Classification algorithms have been broadly studied
within the Machine Learning and Data Analysis communities.

Different tools have been developed for the automatic or
semi-automatic acquisition of semantic classes from “near”
terms. The notion of semantic proximity is based upon distance
among terms, defined as a function of the degree of similarity of
the contexts. Descriptions of term contexts (the learning
examples) and of the regularities to be sought vary in different
approaches. Contexts can be purely graphic—words co-
occurring within a window—as in the case of [1], [4]; in some
cases, the window can cover the whole document (see e.g. [21]).
Contexts can also be syntactic, as in the approaches that we
have taken into account to develop our model, e.g. [13], [14],
[11], [20], [5], [26], [7]. However, the selection of a suitable
distance for a given corpus and task is still an open problem
that has not received much attention so far [25]. In most cases,
the criteria proposed to support this choice rely on the
evaluation of the application task for which learning takes
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place, as described for instance in [12]. Evaluation criteria
proposed to assess learning results are purely quantitative, and
comparative analyses of these criteria are rare [5]. A proper
characterization of the effects that different methods have on
the learning results would provide methodological guidelines
to help the designer select the most suitable method for a given
corpus and task, or to provide support to create a new one.

This observation also applies to classification algorithms.
No methodology or tool has been proposed to support the
elaboration of conceptual clustering algorithms that build task-
specific ontologies. Work on conceptual clustering (e.g., [19],
[8], [9], [2], [1], [26]) has not been extensively applied to the
problem of learning from corpora. One must however
acknowledge that the application of conceptual clustering
techniques to this domain is not straightforward, as existing
algorithms must be previously adapted. As in the case of
distances, the elaboration and selection of a suitable algorithm
for a given corpus and task requires the development of new
methodological guidelines and tools.

As a first step toward this goal we propose Mo’K, a
configurable workbench to support the comparison, evaluation,
and elaboration of methods to learn conceptual hierarchies. The
conceptual clustering model underlying Mo’K permits a fine-
grained definition of the components of distances and of class
construction operators, easing the tasks of method
instantiation and configuration. The model is extended with a
set of variables that permit to characterize features specific to
the elaboration of learning corpora, such as pruning, stop-lists,
etc. The workbench also includes evaluation criteria to assess
learning results obtained for different parameter configurations.
We finally present some experimental results that illustrate the
suitability of the model to help characterize different methods
and assess their performance. These results concern only class
formation, not classification algorithms.

2. FRAMEWORK

2.1 Learning semantic classes

In the context of learning semantic classes, learning from
syntactic contexts exploits syntactic relations among words to
derive semantic relations, following Harris’ hypothesis [15].
According to this hypothesis, the study of syntactic
regularities within a specialized corpus permits to identify
syntactic schemata made out of combinations of word classes
reflecting specific domain knowledge. The fact of using
specialized corpora eases the learning task, given that we have
to deal with a limited vocabulary with reduced polysemy, and
limited syntactic variability.
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In syntactic approaches, learning results can be of different
types, depending on the method employed. They can be
distances that reflect the degree of similarity among terms [13],
[26], [22], distance-based term classes elaborated with the help
of nearest-neighbor methods [11], [14], degrees of membership
in term classes [24], class hierarchies formed by conceptual
clustering [20], or predicative schemata that use concepts to
constraint selection [1], [10], [7]. The notion of distance is
fundamental in all cases, as it allows to calculate the degree of
proximity between two objects—terms in this case—as a
function of the degree of similarity between the syntactic
contexts in which they appear. Classes built by aggregation of
near terms can afterwards be used for different applications,
such as syntactic disambiguation [23], [24] or document
retrieval [11]. Distances are however calculated using the same
similarity notion in all cases, and our model relies on these
studies regardless of the application task.

2.2 Conceptual Clustering

In our case, ontologies are organized as multiple hierarchies
that form an acyclic graph where nodes are term categories
described by intention, and links represent inclusion, seen in
this case as a generality relation. Learning though hierarchical
classification of a set of objects can be performed in two main
ways: top-down, by incremental specialization of classes, and
bottom-up, by incremental generalization. We have adopted a
bottom-up approach due to its smaller algorithmic complexity,
and its understandability to the user in view of an interactive
validation task. In this article we focus on the elements needed
to build and evaluate the basic classes of this graph, i.e. criteria
for building the initial corpus, distances, and evaluation
criteria to asses results. We do not address the generic class
construction algorithm. With respect to this latter, let us just
mention that the application of hierarchical (conceptual [19] or
numerical [6]) clustering algorithms to our problem is not
straightforward, given that we must build acyclic graphs with
few abstraction levels, rather than deep and strict hierarchies.

3. THE MO’K MODEL AND WORKBENCH

3.1  Representation of examples and results

Following the standard practice, we use binary grammatical
relations as syntactic contexts. Examples are therefore
represented by triplets <Head – Grammatical Relation –
Modifier head>, where <Modifier head> is the object that must
be classified and <Head – Grammatical Relation> represents the
attribute. The number of occurrences of a triplet in a corpus
characterizes the attribute for an example. For instance, if we are
interested in verbal attachments, the following two sentences:

• This causes a decrease in […].
• This high rate results from an increase in […].

allow to generate two triplets, <cause Dobj decrease > (29), and
<Result from(Adj) increase > (2), both presenting the structure
<Verb – grammatical relation– Head noun> (total number of
occurrences of these triads in the corpus). In the remaining of
the paper, we will designate by Action the tuple <Verb –
grammatical relation>. Actions <Cause Dobj> and <Result
from(Adj)> can be regarded as objects, and nouns <Decrease>
and <Increase> can be considered as attributes with values 29
and 2, respectively.

In bottom-up clustering, couples of near objects or of
objects and classes are incrementally grouped in order to form
hierarchies or graphs of object classes. The standard in NLP is
to use object classes (Figure 1.a) for the application task. In our

experiments, we depart from this practice to compare learned
classes, as we are interested in an extensional representation; we
therefore use classes formed by the union of attributes of near
objects (Figure 1.b).
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Figure 1.a. Object classes (= Nouns).
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Figure 1.b. Attribute classes (= Nouns).

Let us take an example. If the objects <Cause Dobj> and <Result
from(Adj)> are selected to form a class, their attribute sets are
merged. Let us suppose that <Cause Dobj> is described by the
nouns {decrease, increase, modification, loss, etc.}, and
<Result from(Adj)> by {decrease, increase, composition,
evolution, etc.}. The noun class learned will include nouns
shared by both objects (in bold), and also the complementary
terms (in italics); therefore, four new triplets are induced. We
will then use the “attribute class” strategy, as th is way the “leaf”
classes that we will later evaluate will be larger than those
formed using the “object class” strategy. We will not further
develop here the differences between these two viewpoints,
intension and extension, since this topic is out of the scope of
the paper. Let us however insist on the fact that the selection of
one or the other has major effects on the learning results.

3.2 Corpus parameters

The parameters used to form a learning corpus in Mo’K include,
among others, selection of learning examples, level of pruning,
and “cleaning” of the corpus. Let us examine the first two.

3.2.1 Selection of learning examples

One of the goals of our model is to allow the user to compare
learning results as a function of the grammatical relations
selected as input. Objects and syntactic contexts used in
classification vary in different approaches—i.e. verbs or nouns
which are considered as similar on the grounds of their shared
verbal or nominal contexts, where nouns can be verb
complement heads (arguments [14], or adjuncts [7]), noun
complements [11] or all of them [5], [13]. None of these
approaches proposes a comparative study of results based on
grammatical relations chosen in the initial corpus. Our model
easily allows to specify these relations. Experiments
concerning verbal relations reported below (Section 4.2)
illustrate this and show significant differences among results
depending on the nature of objects and attributes (whether they
are nouns or verbs), and on the type of corpus.

3.2.2 Pruning

A second parameter, taken into account by most existing
methods and included in our model, concerns corpus pruning
as a function of the number of occurrences of an element.
Pruning removes occurrences that are too infrequent and
therefore would cause noise, as well as those which are too
frequent and do not provide any information regarding the link
between an object and an attribute. The other side of the coin is



that infrequent but important cases can be removed. Our model
also allows to specify the minimum number of examples
characterizing an attribute and the minimal number of attributes
for an example and, for each of these constraints, the minimal
total number of occurrences of the triplets being considered.
The experiments reported in Section 4.3 show that the level of
pruning has a major impact on the results of learning, and that
the optimal level depends on the corpus.

3.3 Distance Modeling

Our goal is not to cover all the possible methods that can be
used to measure similarity between examples. On the contrary,
our approach focuses on methods with very precise features:
• They take syntactic analysis as input;
• They do not take into account external resources (e.g.

ontologies such as WordNet [18]);
• They are based on a comparison of the distribution profiles of

the attributes describing the couples of object to classify.
Different methods have been proposed in the NLP literature
with in  this framework—among others [14], [11] [13], [5] and
[7]. We have developed a generic model of these methods and
implemented it in Mo’K with the aim of elaborating a
comparison and evaluation methodology for them.  In order to
come up with a generic implementation, we have identified the
steps shared by all these methods, as we will see below. Mo’K is
thus a workbench that implements a set of instantiable generic
methods using an object-oriented representation, as opposed to
the idea of a library of methods. This approach is made possible
by the fact that similarity measures can in general be regarded
as a comparison of the “distribution profiles” of couples of
examples. This way, two objects will be considered as
neighbors if the relative occurrence frequencies of each of their
attributes (i.e. of the syntactic contexts) are close. Learning
examples taken into account in our model can be represented by
means of a contingency table. Depending on the representation
hypothesis adopted, rows (examples) and columns (attributes)
of the table represent different things. For example, in the
experiments reported in Section 4.2 they first represent actions
and nouns, respectively, and nouns and actions later on. In any
case, a table cell contains the number of occurrences of an
attribute for a given example. This table is obviously very
sparse, as examples are generally described by a small number
of attributes (see Figure 2).

In practice, computation of similarity can be decomposed
into two major steps—weighting and similarity computation.
• The weighting phase changes every raw value of co-

occurrences appearing in the contingency table by a
coefficient, often normalized, which can be regarded as a
weight or measure of the significance of the fact of examples
and attributes co-occurring in the corpus. Its computation can
entail two steps—the initialization of the weights of
examples and attributes, usually according to their number of
occurrences, and the calculation of a normalized weight of the
relevance of each attribute for each example. Technically, this
weighting phase is implemented in Mo’K using the 5
functions described (in pseudo-code) in  Table 1.

• The similarity computation phase builds a similarity matrix
between couples of examples. Similarity increases as a
function of the number of shared attributes, but the way in
which similarity between these distributions is calculated
varies in the different approaches. In Mo’K this phase is
implemented by a single function.

We thus see that, by means of 6 functions and using a few lines
of code, it is possible to implement most similarity measures

that follow a schema based on comparison of pairs of
distribution profiles. Let us no te that we do not make more
specific hypotheses concerning the formal properties of
measures—they can be similarities or dissimilarities,
symmetrical or asymmetrical, and computed information can be
of any type. This approach thus favors the comparison of
existing methods, but also the elaboration of variants of these
methods and even the creation of new ones. Once integrated in
Mo'K, a method can access all the test and conceptual clustering
resources of the system.

Name of the step Method
Initialization  of the weight of each example E: W(E)
Initialization of the weight of each attribute A: W(A)
For each example E

For each attribute A of the example
Calculate W(A) in the context of E

Update global W(E)
For each attribute A of the example

Normalization of the W(A) by W(E)

Init_Weight_Example
Init_Weight_Attribute

Eval_Weight_Example
Eval_Weight_Attribute

Init_Similarity

Table 1. Functions implementing the weighting phase in Mo’K.

3.4 Distance evaluation

Even though our goal is the construction of hierarchies, it is
interesting to evaluate the relevance of a distance metrics with
respect to more simple tasks and to analyze its behavior as a
function of the application domain and of the parameters of
elaboration of the learning corpus. Mo'K offers different means
of evaluation based on the first N couples of examples built by
binary aggregation, i.e. the first N couples of examples with
highest scores in the similarity matrix.

3.4.1 Measure of recall

As already mentioned in Section 3, the elaboration of a class
gives rise to the induction of new triplets not observed in the
initial corpus. Therefore, the evaluation process follows the
classical schema of dividing the corpus in two
partitions—learning and test. The former is used to build the
similarity matrix according to the measure to be evaluated. The
latter allows to measure the coverage rates of classes, i.e. their
ability to recognize the triplets in the test set. We have adopted
this evaluation task for two reasons. First, it corresponds to the
elementary step in every process of bottom-up hierarchical
clustering. Second, from a NLP perspective, it conforms to a
disambiguation task.

3.4.2 Measure of precision

Despite its interest, the coverage measure only allows to
evaluate the recall rate associated with the set N of selected
classes. However, precision—a measure of the ability to avoid
erroneous recognition of negative examples—is an equally
important property of the metrics. In the end, a similarity
measure that tends to over-generalize and describe object
couples using a large number of attributes would reach high
coverage rates, but produce classes that lack in meaning and
precision. It is difficult to automatically solve the problem of
evaluating unsupervised learning in the absence of negative
examples. Given that we do not deal with annotated corpora,
and we do not have negative examples, we face this problem in
Mo’K by means of automatically generated (artificial) sample
corpora. Following [5], we assume that examples generated this
way will be negatives for the most part.  Artifical examples are
formed by randomly choosing an object and an attribute from
the initial corpus, taking care that none of these examples
appears in  the learning set. We measure coverage rates on



artificial examples using learned classes. Since examples are
randomly generated, some positive examples are generated as
well (about 0.5% in the studied corpora). Although this rate of
artificial positive examples might seem very low, it
unexpectedly constitutes an important part of the artificial
examples covered by learned classes—they cover between 0.5%
and 2.5% artificial examples in our experiments. Hence, real
precision can only be evaluated after negative examples in the
artificially generated set have been computed by hand.

As we will see in the experiments reported in next section, it
is interesting to measure other criteria in order to assess the
relevance of a similarity measure—for example, the induction
rate measuring the ratio between the number of induced triplets
and the total number of triplets learned.

4. EXPERIMENTS AND RESULTS

The experiments reported here aim to illustrate Mo'K’s
parameterization possibilities and the impact that different
parameter settings have on the learning results. These
experiments make thus a case for the use of generic platforms to
perform a systematic exploratory analysis in order to obtain
sensible results in a given domain (corpus).

4.1 Training corpora

We have conducted experiments on two different French
corpora—one contains cooking recipes gathered over the world
wide web; the other, Agrovoc, contains scientific abstracts in
the agricultural domain, and has been assembled by the INIST
(Institut de l’Information Scientifique et Technique) of the
CNRS. We have chosen these two corpora as they differ in
generality and amount of technical terms, but are still close
enough to allow for meaningful comparison of results. Both
corpora have been analyzed using the same shallow parser. Only
verbal relations of the form <Verb – Grammatical Relation –
Noun> have been considered in our experiments. The output of
syntactic parsing is highly noisy (between 30% and 50%
mistakes) due to several factors such as grammatical and
spelling mistakes, typos, and accentuation errors in the case of
the cooking corpus. In Agrovoc, noise is mostly produced by
the high number of technical terms mistaken by verbs, and of
embedded noun complements which are erroneously attached to
verbs. In Agrovoc, only 300 verbs are found versus 18,828
nouns. This is due to the fact that only part of the corpus has
been considered—those triplets with a verb that appears in a
list of verbs giving rise to nominalizations in the corpus. In the
cooking corpus we find 1,181 verbs for 3,300 nouns, i.e. the
ratio between nouns and verbs is, in average, divided by a factor
of 20 with respect to Agrovoc. This reflects a higher
specialization in this corpus. Finally, Agrovoc is three times as
big as the cooking corpus (117,156 triplets for 168,287
occurrences in total).

4.2 Selection of example representation

The first experiment illustrates the importance of the choice of
the object to be clustered and of the attribute which
characterizes it.We have compared the classes learned by
considering actions as objects and head nouns as attributes
(denoted as action-based representation), with those learned
using nouns as objects and actions as attributes (denoted as
noun-based representation). The comparison (see Table 2) has
been performed on both corpora, the other parameters remaining
unchanged. We have applied Asium’s distance. Pruning criteria
are light—no minimum number of triplet occurrences, the

minimum number of examples characterizing a given attribute
has been set to 2, and the minimum number of attributes for an
example to 3. We will further comment this setting in Section
4.3. For each corpus, the first 25 learned classes are evaluated.
Coverage is measured on the test set, which comprises 20% of
the whole corpus, and on the artificial set, which contains
50,000 triplets randomly generated (see Section 3.3). Each test
has been repeated four times.

The first experiment has been conducted on Agrovoc. The
classes learned in the action-based representation are twice as
large as those learned in the noun-based representation.
However, induction rates (number of induced triplets divided
by the number of triplets learned by rote) are very similar (40%
compared to 38%) and so are precision rates (45% in both
cases). Precision rate represents the rate of negative examples
among learned examples which cover artificial examples. The
recall measured by the coverage rate of induced triplets on the
test set is slightly better for the noun-based representation
(5.3% compared to 4.7%) but remains quite low. This can be
explained by the level of generality of what is learned: the best
couples of learned nouns involved very general terms such as
[technique-method], [influence-effect], in contrast with the
numerous technical words of the corpus. Most of the actions
characterizing these nouns concern general verbs such as [to
present], [to observe], and [to report]. This is confirmed by
looking at the best pairs of actions such as <to study Dobj> -
<to analyze Dobj>. This explains why learned classes are of
rather poor quality in both representations.

Corpus Learning
object

% Induced tripl./
learned tripl.

Recall (test
set)

Precision

Agrovoc Action 40 % 4.7 % 45 %
Nom 38 % 5.3 % 45 %

Cooking Action 34 % 12 % 32 %
Nom 38 % 9.1 % 52 %

Table 2. Experimentation about example representation

The experiments on the cooking corpus have built classes of
similar size in both representations. Induction rate is slightly
higher for the noun-based representation—38% compared to
34%. However, recall on the test set is better in the action-based
representation, (12% and 9.1%, respectively). Induced triplets
are thus more useful in the case of action-based representation,
even though they are less numerous. Moreover, the precision
measured by the rate of negative artificial examples covered by
learned examples is much better for the action-based
representation (32% compared to 52%). Precision and recall
rates are thus better in this representation, although the rate of
induced triplets is smaller than in the noun-based
representation. In any case, all rates are much better than the
ones computed for the Agrovoc experiments. A closer
examination of the best pairs of actions and nouns confirms the
idea that overgeneralization is less of a problem here than in
Agrovoc. Noun pairs are more precise (e.g., [fridge-freezer],
[olive oil–oil]) and described by more technical actions. In the
same way, the best pairs of actions, such as [absorb Dobj ,
evaporate Dobj ], are characterized by nouns (in this case
[vinegar, water, wine, excess, etc.]) which are significantly more
specific than in Agrovoc. The smaller variability of the cooking
corpus explains these observations, showing that the larger size
of Agrovoc does not improve the meaningfulness of the
regularities observed.

This experiment thus shows that the choice of a
representation can have a major impact on the learning results.
It is therefore advisable to select a suitable representation
before addressing a new domain.



4.3 Pruning parameters

To illustrate the importance of pruning, two pruning settings
have been applied to both corpora and compared. In both cases
we have used Asium’s distance, objects are actions and
attributes are nouns. The first setting is the one described in the
previous section. In the second one, we have set the minimum
number of occurrences for an example (triplet) to 2, in order to
remove triplets occurring only once in the corpus, as they may
represent noise. We have also augmented the values of the
minimal number of examples that must characterize an attribute
(from 2 to 3), and of the minimal number of attributes per object
(from 3 to 5, i.e. in this version the objects being compared
appear in at least 5 different syntactic contexts). As it can be
inferred from the histogram in Fig. 2, this setting excludes 80%
of the corpus, versus 70% in the first setting. We can thus hope
for a more reliable classification, to the risk of removing so
many examples that coverage (recall) is drastically affected. The
experiments show that, for the cooking corpus, induction rate
(32%) and coverage (11.2%) on the whole test set are nearly
unaffected. On the contrary, the rate of artificial triplets covered
scales by a factor of 3 with respect to the previous rate; we think
that this significant increase indicates that this pruning rate
increases the rate of erroneously induced examples. In Agrovoc,
induction rate decreases by a factor of three and coverage rate
by a factor of two, whereas the rate of artificial triplets covered
scales by a factor superior to 2. Recall is therefore much
strongly affected by pruning than in the cooking corpus. In
both cases, this new pruning setting gives rise to a decrease in
performance.

Figure 2. Example distribution per number of attribute

However, this conclusion drawn from the evaluation of basic
classes must be tempered in the case of hierarchy formation. In
this case, the more constraining version of pruning allows to
eliminate many non-significant classes that result from the
presence of closely similar actions described by a small number
of attributes. It seems clear that, in a process of hierarchical
clustering, this type of class would cause problems, as it would
alter some groupings. Therefore, the type of pruning to be
applied partly depends on the task to be performed.

4.4 Comparison of methods

This last experiment illustrates some aspects of the use of Mo'K
to compare results obtained with different distances. Among the
methods that we have tested with Mo’K (such as those proposed
by Dagan et al ., Hindle, Grefenstette, and Grishman et al . among
the best known in the literature, as well as other distances
proposed by the authors, e.g. Asium, and Greedy) we have
chosen to compare here the distances used in Asium [7], the one
proposed by  Dagan [5], and Greedy3. The reason for th is choice
relies on the fact that these three methods have shown good
                                                                        
3 Greedy has a simple behavior: it is based on a measure, inspired from
the χ2, which favors the selection of pairs of examples described by a
large number of attributes (the method is named after this feature).

performance when compared with others, while presenting
rather different behaviors. They are thus a representative sample
of the subset of methods that we have modeled as characterized
in Section 3.3. These methods have been applied to the corpus
of cooking recipes. Learning parameters are the same as those
described in Section 4.2, objects are actions and attributes are
names. In addition, we have tested the influence on learning of
the number of disjointed classes on which recall performance is
evaluated. To do this, we have varied this number (in abscissa
of the diagrams below) between 10 and 200.

   
Figure 4a&b. Recall rate and Class efficiency

These diagrams show, respectively, the recall rate of each
method on the test set (Figure 4a), and the efficiency of classes
rate (Figure 4b). The latter is assessed by the ratio between the
number of triplets learned (by rote and induced), and the
number of triplets effectively used in the recall test. As we can
see in the first diagram, the coverage rate of the three methods
grows as expected according to the number of classes
considered, Dagan’s method yielding the best results. On the
contrary, if we pay attention to the efficiency of classes, Asium
takes better advantage of the triplets learned. Looking at both
diagrams, we can conclude that these methods have different
behaviors. Dagan’s gives rise to more general classes (more
triplets are learned, but the number of useless ones is higher).
Asium constructs more specific classes (fewer triplets learned,
but more of them are useful). We can take a closer look at the
behavior of these methods and study the quality of induction
in terms of the rate of induced triplets which are effectively
used in the recall test (Figure 5).

Figure 5. Quality of induction.

While the previous conclusion is confirmed for Asium and
Dagan’s methods, we can also note that Greedy and Dagan’s
methods have the same behavior along this criterion. In fact, it
seems that Dagan's method is able to induce more useful
triplets than Greedy, whereas this latter tends to learn by rote a
more representative sample subset of the corpus.

The tests performed on the artificial examples confirm these
results. Therefore, it seems that the classes learned by Dagan's
method and, to a lesser extent, by Greedy are less robust and
present lower precision rates for of the learning parameters
chosen. We must emphasize that these conclusions only apply
to the recipe corpus. For Agrovoc, results are considerably
different. These experiments therefore show the importance of
going through an exploratory process in order to come up with
the most suitable methods and representation.



5. CONCLUSIONS AND PROSPECTS

Mo’K is a configurable workbench that supports the
development of conceptual clustering methods for specific
ontology building. The learning model proposed here takes
parsed corpora as input. No additional (terminological or
semantic) knowledge is used for labeling the input, guiding
learning, or validating the learning results. Preliminary
experiments showed that the quality of learning decreases with
the generality of the corpus. This makes somehow unrealistic
the use of general ontologies for guiding such learning, as they
seem too incomplete and polysemic to allow for efficient
learning in specific domains. For example, [16] points out that
40% of the words in canonical form in the titles and abstracts of
the Communications of the ACM are not included in the LDOCE
(Longman Dictionary of Contemporary English). This problem
posed in the case of learning specific ontologies obviously
does not apply in the case of guiding learning of general
semantic classes, as shown in the abundant literature on the
topic (see e.g. [23], [22], [24], [17]). It would however be highly
valuable to take advantage of existing ontologies to improve
the quality of learning. We consider that this can be achieved in
two main ways. First, learning could be improved by the use of
specific terminologies, dictionaries and nomenclature, such as
SNOMED International in the medical domain [3]. Second, some
methodological guidelines would be needed to integrate
specialized learned ontologies into more general ontologies
such as WordNet [18].

Although we have focused on a disambiguation-based task,
other validation tasks could be integrated in Mo’K, such as
query extension and information extraction. Learning
specialized ontologies of high quality for these tasks will allow
the development of applications in technical and rapidly
evolving domains, in which manual acquisition is too costly.
In this sense, we have started exploring information extraction
from molecular biology abstracts.
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