
Role Based Access Control for the interaction
with Search Engines

??Alessandro Bozzon\, Tereza Iofciu¦, Wolfgang Nejdl¦, Antonio Vincenzo
Taddeo¤, and Sascha Tönnies¦

{bozzon}@elet.polimi.it, {iofciu,nejdl,toennies}@l3s.de, {taddeo}@alari.ch
\Politecnico di Milano , P.zza L. da Vinci 32, I-20133 Milano, Italy
¦Forschungszentrum L3S, Appelstr. 9a, 30167 Hannover, Germany

¤ALaRI, Faculty of Informatics, University of Lugano, Lugano, Switzerland

Abstract. Search engine-based features are a basic interaction mean
for users to find information inside a Web-based Learning Management
Systems (LMS); nonetheless, traditional solutions lack in mechanisms
for access rights management for data contained in search engines’ in-
dexes. This paper explores the integration of a Role Based Access Control
(RBAC) mechanism for the interaction with a search engine in a Web-
based LMS. We first outline a reference conceptual model for the design
of Web-based LMSs exploiting RBAC by means of WebML, a visual
modeling language for the high-level specification of data-intensive Web
applications. Then, we propose a model-driven approach for the defi-
nition of a RBAC-driven interaction between users and search engines,
extending WebML with new modeling primitives and outlining significa-
tive modeling patterns for the specification of the visibility and action
access control levels.

Key words: Web Engineering, Search Engine Design, Index Modeling,
Access Control Modeling

1 Introduction and Motivation

Web-based Learning Management Systems (LMS) are gaining large consensus in
several organizations. They are especially developed in the world of e-learning, as
well in as general-purpose Web authoring tools and video-conferencing products.
Being large-scale and multi-user applications, Web-based LMS are developed to
manage a huge volume of data; their advantages can be recognized in their easy
to use user-interface and in the common and customizable technological back-
ground provided by a Web application. Such extended collection of information
is basically composed of documents, constituting the know-how on which the
learning experience relies. These considerations suggest a clear need for an ef-
ficient knowledge sharing and knowledge management system. Therefore, a key
point for an e-learning system is to implement a Knowledge Repository (KR)
with access rights mechanism for the management of its resources: the simplest
way to do this is by assuming the presence of a centralized repository, containing
information entities for documents. This structure can be enhanced, for instance,
?? In alphabetical order

Proceedings of the 1st International Workshop on Collaborative Open Environments for Project-Centered Learning

24



by adding other information entities to categorize documents, to store author-
ship information, to label a set of documents and so on. Such model implies
that all the documents are stored without any specific document access con-
trol. Nevertheless, in a multi-user web application not all the documents have
to be available to all the users. In this situation, an access control mechanism
is required in order to grant permissions for document managing only to au-
thorized persons. This scenario applies also for the search features offered by
LMSs: when searching for information in the KR, users should be allowed to
consult only the resources for which they have proper permissions by filtering
the overall collection of results for the performed queries against their assigned
access rights. In data-intensive Web applications traditional searching function-
alities are based on site navigation and database-driven search interfaces with
exact query matching and no results ranking: such approach easily complies with
the need for an access control mechanism as the results filtering can be directly
performed by the database when queried (if access information are stored and
related with the repository data); nonetheless, this approach is less effective w.r.t
search engines (using information retrieval, IR, techniques), which, on the con-
trary, provide keyword-based queries, ranked results, and better performances
in managing a lot of unstructured textual data residing outside the database.
On the other hand, integrating IR functionalities within the Web applications
introduces problems of data integrity, portability and run-time performance: im-
plementing an access control mechanisms results in an additional effort, which
can be solved only by means of integration software designed for the specific
adopted technologies, databases schema and applications.

This paper explores the integration of an access control mechanism for the
interaction with a search engine in the frame of the Web Modeling Language
(WebML), a visual modeling language for the high-level specification of data-
intensive Web applications and the automatic generation of their implementation
code. The aim is to overcome the aforementioned problems by using a model-
driven approach to declaratively specify (and automatically generate) search
engines’ index structures, content composition and access rules. We leverage on
the role based access control (RBAC) method, which exploit the association
between users and permissions through the assignment of user’s roles: users
can be assigned to roles, having associated permissions and, thus, users acquire
permissions by having roles. We propose a high flexible RBAC for being applied
to any kind of indexed resources either documents, or users, project and so on.

1.1 Driving Scenario

In order to exemplify the integration of a RBAC system in the management of a
search engine, we refer to a simple e-learning scenario, in which a generic orga-
nization makes its knowledge repository (consisting in a collection of resources)
available for consultation and, eventually, modification, to registered users. The

Proceedings of the 1st International Workshop on Collaborative Open Environments for Project-Centered Learning

25



application in question is specified and developed through WebML 1 and incor-
porates a search engine for the retrieval of data stored both as database tuples
and external documents (e.g. in TXT, PDF or DOC formats). The application
exploits a RBCA system for the hypertext-driven management of (i) raw in-
formation stored in the database and for (ii) indexed information stored into a
search engine’s indexes.

2 Enabling Methodologies

2.1 Role Based Access Control Model with WebML

In this section we introduce a reference model for the design of a Web applica-
tion exploiting RBAC. Although the approach we propose relies on the WebML
language [1], we stress its adaptivity to most Web engineering methodologies.

User

oid: Integer

fullName: String

username: String

password: String

/defaultRole: String

Role

oid: Integer

roleName: String

Operation

oid: Integer

opName: String

Permission

oid: Integer

/roleOID: Integer

/Operation: String

/ObjectOID: Integer

Resource

oid: Integer

Name: String

OriginalFile: BLOB

Description: Text

/owner: String

0:N

0:N0:N

0:1

DefaultRole

UserRoles

0:N
1:1 1:1

0:N

1:1

0:N

1:1

0:N

Owner

ResourceAuthors

0:N

0:N

A
u

th
o

re
d

R
e

s
o

u
rc

e
s

O
w

n
e
d

R
e

s
o

u
rc

e
s

0:N
0:N

ResourceToPermission P
e

rm
is

s
io

n
T

o
R

e
s
o

u
rc

e0:N

0:N

RoleToResources

ResourceToRoles

RoleToPermissions
PermissionToRoles

Fig. 1. Access Rights data model. Dashed lines and attribute with Italic font represents
derived information.

Data model for RBAC In WebML, the content to be published is modeled
using Entity-Relationship (E-R) or UML class diagrams. Figure 1 depicts the
data model for a RBAC system, applied to our driving scenario. The reader
can recognize the classical entities characterizing the reference model[2]: the
user entity represents the Web application users; a Role is defined as a job
function within an organization. Each role has associated semantics regarding
the authority and responsibility conferred to the set of users belonging to it: a role
can be assigned to different users, and a user can have different roles. A Resource
is an information container (stored in the the knowledge repository) whos access
has to be protected. Permission is an operation authorization given on protected
resource. Operations are system dependent, and they refer to a set of executable
functions for the user; for instance, in our case the allowed operations related to
a resource can be the classical CRUD operations. In the schema of Figure 1, the
entity Permission represents a many-to-many ternary relationship among Role,
1 This scenario is suggested by the COOPER Initiative; see

http://www.http://cooper-project.org. A running example of a RBAC system
with WebML has been developed by ALARI

Proceedings of the 1st International Workshop on Collaborative Open Environments for Project-Centered Learning

26



Operation and Resource. Thus, each role has associated a permission which
allows an operation to a protected resource. This design of the data schema
provides high flexibility and granularity for managing permissions to roles and
users to roles. An important aspects of a RBAC is the concept of role hierarchies
(RH). We managed such a key feature introducing a self-relationship on the
Role entity with many-to-many cardinality in both directions (see Figure 1).
Role hierarchies reflect the natural organization of roles in structured levels
of responsibility and authority. Permission inheritance among roles has to be
considered in a role hierarchy. In the case of web applications, we can add some
constraints on the number of roles, the type of role hierarchies, and the allowed
operations. Eventually, these constraints can be also managed through an ad-hoc
web interface. Finally, an ownership relationship, between User and Resource,
has been added. Usually, the owner of an object has some specific grants on the
object, just for being its creator. These particular privileges are usually applied
when the objects are documents, like in our case. These features have been
captured from the current approach adopted in operating systems to manage
file permissions (e.g. unix based).

Hypertext model for RBAC In WebML the hypertext model specifies the
organization of the front-end interface of a Web Application by providing a set
of modeling primitives for the specification of its publication (pages and content
units), operation (content units) and navigation (links) aspects [1].

In a web application, the RBAC is used to control the user’s access rights
on the KR. Two levels of access control are considered for each user logged into
the web application: the visibility level and the action level. In the former level,
visibility, we filter the KR obtaining all documents visible to the logged user; the
WebML model depicted in Figure 2(a) shows how, first, the user’s role(s) having
a read permission are retrieved and, then, documents are queried against such
role(s), with an additional check over their ownership relationship.

In the latter level, action, once a visible document is selected by an user, its
permissions are considered in order to provide the user with the list of allowed
operations. Figure 2(b) shows how to filter, using WebML units, over such a list.
For example, depending on the presence of the modifiable permission associated
to the current user, the Modifiable data unit is shown, showing a link which allows
the user to get to the modification page for the current document. Visibility and
action can be also addressed in the design of the hypertext model by limiting
the access to protected pages; in fact, WebML allows the definition of different
site views, targeted to different user roles.

2.2 Modeling Search Engines’ Indexes and Interaction

[3] introduced a conceptual model for data-intensive Web applications supporting
search engines integration. An additional design layer (the index data model)
enables (i)the specification of the search engine’ indexes and their structure and
(ii)the mapping between the resources of the Web application and their indexed
representation in the search engine.

Proceedings of the 1st International Workshop on Collaborative Open Environments for Project-Centered Learning

27



Available Resources

Get Current User

CurrentUser User’s Role

Role

[UserRoles]

[DefaultRole]

[RoleToPermission]

Visible Resources

Resource

[RoleToResource]

[OwnedResources]

UserID

UserID
RoleIDs

Resource Details

Resource

Resource Info
Permission

[Operation = Modifiable]

[Permission2Resource]

[Permission2Roles]

Modifiable

Permission

[Operation = Deletable]

[Permission2Resource]

[Permission2Roles]

Deletable

To Modification Page

To Deletion Page

(a) (b)

Read Permissions

Permission

[Operation = Read]

PerIDs

R
oleID

s

R
esourceID

R
o
le

ID
s

R
e
so

u
rc

e
ID

RoleIDs

ResourceID

Fig. 2. WebML model of an example page to (a) get all the documents visible by a
logged user and (b) manage the different document’s operations based on the role of
the logged user.

In the index data model, an index represents a description of the common
features of a set of resources to index and, hence, contains a collection of docu-
ments having uniform structure. An index document, the indexed representation
of a resource, is composed of a set of fields representing the properties of the
index data that are relevant for the application’s purposes. In order to uniquely
distinguish an index document, a field named object identifier, or OID, is de-
fined. Additional fields are typed by assigning them to a particular domain (e.i.
String, BLOB etc).
The mapping between the search engine and the indexed data source(s) is per-

ResourceIndex {/Resource}

Ownership {context}: String

Description {/Description}: String

IndexingDate {unmapped}: Date

OriginalFile {/OriginalFIle}: BLOB

Name {/Name}: String

AuthoredBy {context}: String

{/ResourceAuthors}R

C

C

C

R

R

AuthoredBy

{/User}

Name {/fullName}

{/User}

Name {/fullName}

{/Owner}

1:1
Ownership

1:N

(a) (b)

Fig. 3. Example of index data model with mapping information.

formed by specifying an association between an index in the index schema and
an entity in the data schema. To uniquely identify the indexed information,
the index will contain an additional implicit field, (named entityOID or EOID)
containing the unique identifier of the indexed database tuple. Other fields are
classified according to two orthogonal mapping dimensions: the storing policy
specifies if the field should contain an indexed representation (reference) or a
copy cached of the original data; in accordance with their association, instead,
fields may contains data extracted from an entity’s attribute (Mapped fields),
data not directly derived from the database nor from indexed documents (Un-
mapped fields) or data originating from the context of the indexed entity (Context

Proceedings of the 1st International Workshop on Collaborative Open Environments for Project-Centered Learning

28



fields) 2. In the latter case, the content is composed aggregating data indexed
from attributes belonging to entities related to the one defining the index; the
aggregation expression is defined using the WebML data derivation language.

Figure 3(a) depicts an example of index data model for our reference appli-
cation as well as its mapping over the data model. We modeled an index for
the resources managed by the application (ResourceIndex ) by specifying a set
of fields composed by a subset of the associated data model entity’s attributes
(Name, Description and OriginalFile) plus further fields specifically aimed to
enrich the information contained in the index in order to improve its retrieval
performances (e.g. AuthoredBy). Figure 3 also reports the graphical representa-
tion of the data model mapping for the ResourceIndex index: for instance, the
OriginalFile field is defined as cached over the OriginalFile attributes of the
indexed entity while the AuthoredBy context field is defined as reference and
its derivation expression representation is depicted in Figure 3(b). In order to

Keyword Search

Search Fields

NameField

AuthorField

Search Results Result Details

OID : oid
Search Index

ResourceIndex
[Name = nameP]

[WrittenBy = wrbP]

ResourceIndex

<OID:=oid>

Resource Details
NameField:nameP

AuthorField:wrbP

Fig. 4. Example of user to search engine interaction: result selection.

allow the specification of the interaction between the Web application, the user
and the search engine, [3] also introduced extensions to the default WebML hy-
pertextual primitives to cover the spectrum of operation specifiable for a search
engine; a set of content units (the Search, Document and Search Scroller units)
model the publication, in the hypertext, of documents extracted from an index
defined in the index schema. For these units, the source index specifies the index
to query while a selector, which is a predicate used to define queries over the
search engine, specifies a (possibly empty) set of matching conditions over the
source index’s fields. Figure 4 depicts an example of usage for the Search and
Document unit in our scenario: from the Keyword Search page, the parameters
provided on the Search Fields’s outgoing links are used by the Search Index
unit to perform a query on the index and to display its results. The selection
of a result moves the navigation to the Result Details page, where the Resource
Detail unit shows the details for the retrieved result. On the other hand, a set
of operation units model the integration between the search engine and the un-
derlying data back-end of a Web application in order to keep the content of the
latter synchronized with the content of the former: the Indexer unit models the
process of adding new content into an index to make it available for searching,

2 By context we mean information semantically associated to a single concept scattered
across different related entities in the data schema design process.

Proceedings of the 1st International Workshop on Collaborative Open Environments for Project-Centered Learning

29



Resource Management

Resource Index

Resource

Resource Data
Name, File

Description

Delete

Resource

<OID := OID_2>

OID : OID_2

EOID : OID_2

Un-Indexer

ResourceIndex
<EOID := OID_2>

OK

OK

Create

Resource

<Name := value1><File := value2><Description := value3>

EOID : OID_2

Indexer

ResourceIndex
<EOID := OID_2><IndexingDate=now()>

Name : value1, File : value2

Description : value3

OK

OK

Fig. 5. Example of index management: index document creation and deletion.

the Un-Indexer unit models the process of removing content from an index and
making it unavailable for search and the Re-Indexer unit models the process of
updating the content of index documents by re-indexing again their source data.
Referring to our scenario, Figure 5 depicts a typical example of usage for the
Indexer unit (adding new resources into the knowledge repository and indexing
it) and for the Un-Indexer unit (synchronization of the index after the deletion
of a resource from the knowledge repository).

3 RBAC for interaction with Search Engines

Our model-driven approach aims at offering an homogeneous environment for the
conceptual modeling and automatic code generation of Web-based LMS lever-
aging on fine-grained access policies to the content stored in their KR. Such
approach requires the extension of WebML in order to apply the method illus-
trated in Section 2.1 to the modeling primitives described in Section 2.2; the
integration is loose, in order to preserve the distinctive features of the two sys-
tems while allowing their independent evolutions and maintenance.

3.1 Defining permissions on the search engine

In RBAC systems, the list of grantable permissions for a user role includes the
possibility of executing CRUD operations (create/read/update and delete) over
the controlled resources. To apply such permission list over a search engine, we
first have to define what it means for a resource to be searchable by a user:
starting from the assumption that a user belonging to a role providing a read
permission over a resource should be also allowed to search it, we define as
searchable a resource whose content is accessible by a user. Transitively, we also
define as searchable, by the same user, the indexed representation (in the search
engine) of such resource. The same assumption, though, cannot be applied to
the remaining CRUD operations: the Create operations represents a resource
indexing, the Update operation represent a resource re-indexing and, finally,
the Delete operation represent the removal of documents from the index. Such
operations require a consistent computational effort, so this processes are usually
performed asynchronously w.r.t. the KR management, typically by means of
batch operation performed periodically by the search engine administrator(s).

Proceedings of the 1st International Workshop on Collaborative Open Environments for Project-Centered Learning

30



We therefore can identify two different levels for the management (and, hence,
the modeling) of permissions over the content of a search engine index: the
(i)document level, and the (ii) index level. The (i) Document level tackles the
problem of modeling the permission, for a user, to access the indexed content of
a resource when performing a search. As stated above, such permission directly
derives from the read authorization the user has on the original resource. To ad-
dress this issue, we extended the Index data model with an additional reference,
unmapped field, named AccessRoles: such field will contain the name of the user’s
roles having read access on the indexed document. Being part of the index, the
AccessRoles field can be part of a query addressed to the search engine, allowing
a fast and efficient filtering of the results accordingly to the given role(s). Fig-
ure 6(a) depicts the index model of Figure 3 modified with the additional field.
The (ii) Index level, instead, models the assignment of permissions to users

ResourceIndex {/Resource}

BelongingTo {context}: String

Description {/Description}: String

IndexingDate {unmapped}: Date

OriginalFile {/OriginalFIle}: BLOB

Name {/Name}: String

WrittenBy {context}: String

AccessRoles {unmapped}: String

R

C

C

C

R

R

a) b)

User

oid: Integer

fullName: String

username: String

password: String

/defaultRole: String

Role

oid: Integer

roleName: String

Operation

oid: Integer

opName: String

Permission

oid: Integer

/roleOID: Integer

/Operation: String

/ObjectOID: Integer

ResourceIndex

indexName: String

0:N

0:N
0:N

0:1

0:N
1:1 1:1

0:N

1:1

0:N

1:1

0:N0:N

0:N

0:N
0:N

0:N

0:N

R

Fig. 6. Extended Access Rights and Index Data Model for RBAC

for createing/deleting and updating entries over an index. This is obtained by
considering, in the access right data model, an index as an additional object
managed by the RBAC mechanism. Indexes, hence, are simply represented as
database entities (named ResourceIndex ) defined by a unique identifier having
the same name as the involved index. Figure 6(b) depicts a chunk of the access
right data model of Figure 1 containing the additional entity: this simple yet
effective modeling solution guarantees a uniform and centralized management of
the access roles, while allowing an easy extension of the permission list to other
operation specifically tailored for search engines.

3.2 Hypertext Model Extension

As introduced in Section 2.2, searching, indexing, re-indexing and un-indexing
operations are represented in WebML respectively by the Search, Indexer, Re-
Indexer and Un-Indexer units. In order to keep a loose integration between
the RBAC method and the search engine, we adapted the hypertext models
presented in Section 2.1 to the specific need of a search engine management:
we still provide the visibility and action levels for access control by exploiting
the existing content and operation unit, with the help of the existing RBAC
management pattern shown, for instance, in Figure 2.

In details, visibility is addressed for the index content units by making use
of the additional AccessRoles field introduced in Section 3.1: when defining a
Search Unit, as in Figure Figure 7(a), an additional query predicate over such

Proceedings of the 1st International Workshop on Collaborative Open Environments for Project-Centered Learning

31



field automatically expands the query submitted to the search engine with the
list of roles currently executing the search; the retrieved results will be automat-
ically filtered over such roles, with no further computational effort for the Web
application. For the action level, instead, we use a slightly modified version of

Resource DetailSearch Results

Get Current User

CurrentUser

UserID

Resource

Resource Info
EOID

(a) (b)

Permission

[Operation = Re-Indexable] 

[PermissionToResourceIndex]

[PermissionToRoles]

Re-Index Permission

User’s Role

Role

[UserRoles][DefaultRole]

UserID

ResourceIndex

[IndexName=”ResourceIndex’]

Resource Index

IndexName

Get Current User

CurrentUser

User’s Role

Role

[UserRoles]

[DefaultRole]

Keyword Search

Search Fields

NameField

AuthorField

NameField:nameP

AuthorField:wrbP

Search Index

ResourceIndex

[Name = nameP] AND

[WrittenBy = wrbP] AND

[AccessRoles = Roles]

UserID

Roles

To Re-Indexing Page

Fig. 7. Managing access rights for search engines in the hypertext model.

the pattern depicted in Figure 2(b): in Figure 7(b), for a selected resource, only
allowed users will have the possibility of executing a re-indexing operation. On
the other hand, when indexing a resource, also information about the roles hav-
ing read permission have to be added, enabling access control of search results.

4 Related Work

In the last years, systems for collaborative work like the COOPER Platform
[4] got increased popularity. For this kind of systems there is a strong need for
effective search inside their knowledge sharing repositories, and the increasing
amount of information in those context pushed forward further development of
search infrastructures for enterprise data management systems [5]. However, the
partial private nature of shared information makes the application of traditional
document indexing schemes difficult: the problem of allying search-engines’ rank-
ing algorithms to access-controlled collections is outlined in [6]. The access levels
and access control policies have to be reflected in the index structure and/or re-
trieval algorithms as well as in ranking the search results. In literature, several
solutions address the problem defining privacy policies for data stored on re-
mote servers, which typically provide the basis for the collaborative platforms.
For example cryptographic techniques can enable users to store encrypted files
on a remote server and retrieve them using keyword search [7][8]. But these so-
lutions are not suitable for a collaborative multi-user environment making use of
external search-indexes, resulting in a lack of methodologies for the definition of
secure searching inside collaborative systems. Our solution aims at overcoming
such lack by means of a role based access control model. Details on RBAC can
be found in [2] and, as studied in [9], RBAC has shown its advantages in allow-
ing security for web-based applications by performing large-scale authorization
management.

Proceedings of the 1st International Workshop on Collaborative Open Environments for Project-Centered Learning

32



5 Conclusions and Future Work

In this paper we have addressed the problem of the integration of an access
control mechanism for the interaction with a search engine in the context of
Web-based Learning Management Systems. We have proposed an extension for
a specific modeling notation (WebML) to support the specification of search
engine indexes enriched with access control information; in addition, we also
proposed WebML reference patterns to model the access-controlled management
of the typical operation specifiable for a search engine.

For future work, we plan to enrich the proposed access control solution with
finer-grained policies working at field level, while providing new modeling prim-
itives for a better specification of access policies management. We also intend to
integrate the proposed extension to WebRatio[10] (the development suite based
on WebML) to support the automatic generation of Web application integrating
access rule control over the interaction with search engines.

References

1. S. Ceri, P. Fraternali, and A. Bongio. Web modeling language (webml): a modeling
language for designing web sites. In WWW9 Conference, Amsterdam, Holland.,
2000.

2. David F. Ferraiolo and Ravi Sandhu and Serban Gavrila and D. Richard Khun
and Ramaswamy Chandamouli. Proposed NIST Standard for Role-Based Access
Control. In ACM Transactions on Information and System Security, volume 4,
pages 224–274. ACM, August 2001.

3. A. Bozzon, T. Iofciu, W. Nejdl, and S Tönnies. Integrating databases, search
engines and web applications: a model-driven approach. In ICWE2007, Como,
Italy, 2007.

4. A. Bongio, Jan van Bruggen, S. Ceri, M. Matera, A. Taddeo, X. Zhou, and et.
al. COOPER: Towards A Collaborative Open Environment of Project-centred
Learning. In EC-TEL’06, Crete, Greece - October 1-4, 2006, 2006.

5. D. Hawking. Challenges in enterprise search. Proceedings Fifteenth Australasian
Database Conference, 2004.

6. S. Buttcher and C.L.A. Clarke. A Security Model for Full-Text File System Search
in Multi-User Environments. Proceedings of the 4th USENIX Conference on File
and Storage Technologies (FAST 2005).

7. H. Hacigümüş, B. Iyer, C. Li, and S. Mehrotra. Executing SQL over encrypted data
in the database-service-provider model. Proceedings of the 2002 ACM SIGMOD
international conference on Management of data, pages 216–227, 2002.

8. D.X. Song, D. Wagner, and A. Perrig. Practical techniques for searches on en-
crypted data. Security and Privacy, 2000. S&P 2000. Proceedings. 2000 IEEE
Symposium on, pages 44–55, 2000.

9. J. B. D. Joshi, W. G. Aref, A. Ghafoor, and E.H. Spafford. Security models for
web-baed applications. Communication ACM, 2:38–44, 2001.

10. Web Models s.r.l.

Proceedings of the 1st International Workshop on Collaborative Open Environments for Project-Centered Learning

33


