

Boolean and free-choice semantics of

Event-driven Process Chains

Joachim Wehler
Ludwig-Maximilians-Universität München, Germany

joachim.wehler@gmx.net

Abstract. In parallel to the successful application of Event-driven Process

Chains (EPCs) in commercial IT-projects there is an ongoing scientific debate

about their semantics. It is even controversial, if one should provide EPCs with

a local or with a non-local semantics. In this paper, we unify two local EPC

semantics, which build on Petri nets. One of them is the free-choice semantics

due to the translation of EPCs into free-choice systems. The other one is the

Boolean semantics, which derives from translating the EPC into a certain class

of high-level Petri nets. The free-choice semantics is restricted to EPCs with

only AND or XOR-connectors, but allows arbitrary loops. The Boolean

semantics allows connectors of arbitrary logical type. But at this stage, it covers

only EPCs with well-structured loops. For EPCs, where both semantics are

defined, we derive the free-choice semantics from the Boolean semantics and

show as main result: The EPC is well-formed with respect to the Boolean

semantics if and only if it is well-formed with respect to the free-choice

semantics. After reviewing a series of examples from the literature we continue

the investigation of the Boolean semantics for EPCs with circuits different from

well-structured loops.

Keywords: EPC, local semantics, Boolean system, free-choice system, loop

1 Introduction

In the domain of business process management most commercial projects in Germany

use the language of Event-driven Process Chains (EPCs) to model their processes.

The widespread use of this language can be explained by two factors: In a successful

manner EPCs combine intuitive comprehensibility with sufficient expressiveness. A

second reason is a marketing aspect: EPCs are implemented into the tool ARIS1, the

market leader in the domain of business process modeling and controlling.

The language of EPCs has been invented by Keller, Nüttgens and Scheer in 1992

[KNS1992]. EPCs represent the control flow of a process as the interplay of three

components: Events, functions and logical rules. The rules use connectors of logical

type AND, XOR and OR. More specific, concurrency is represented by AND-splits

and AND-joins. Strong or exclusive alternatives are modeled by XOR-splits and

XOR-joins, while OR-splits and OR-joins model weak alternatives.

1 ARIS is a product of IDS Scheer AG

77

Nearly from the beginning EPCs have attracted the interest of the academic domain.

From 1994 until today there is a ongoing debate about the semantics of EPCs, about

the concept of their well-formedness and about formal methods to verify EPCs.

The problem of the semantics for the logical EPC connectors shows up in full

sharpness already for binary connectors. These are connectors with either one entry

and two exits (split) or two entries and one exit (join). In the following we restrict to

binary join- and split-connectors. About the semantics of AND-connectors there

prevails agreement. Highly debated remains the semantics of XOR-connectors and

OR-connectors. Most difficult seems the semantics of the OR-join.

The different approaches concerning the semantics of the connectors fall into two

classes: Local semantics and non-local semantics. A local semantics considers only

the given connector, a non-local semantics takes into consideration also a subset of all

process runs. Typical non-local semantics are the semantics of Kindler [Kin2006], a

typical local semantics is the free-choice semantics of van der Aalst [Aal1999].

The focus of this paper is to unify two different types of local EPC semantics. The

paper is organized as follows: Chapter 2 Examples of EPCs presents a series of

examples from the literature and provides them with a well-defined initial state.

Chapter 3 Non-local versus local semantics shortly reviews some approaches to the

problem of EPC semantics. Chapter 4 Boolean semantics is the main part of the

paper. After unifying the free-choice and the Boolean semantics we prove: Well-

formedness with respect to one semantics is equivalent to well-formedness with

respect to the other semantics. The paper ends with Chapter 5 Conclusion, which also

gives an outlook to further research.

The paper presupposes some familiarity with EPCs and Boolean systems. Such

knowledge can be obtained by reading, e.g., [KNS1992], [Rum1999], [LSW1998],

[Kin2006], ordered by increasing difficulty.

2 Examples of EPCs

In the present chapter we collect some EPCs from the literature. We will refer to them

in later chapters to illustrate our reasoning about the semantics of EPCs.

The first question concerning the semantics of EPCs asks about the type of objects,

which flow along the arcs of the EPC. In [KNS1992] the authors state, that an EPC

represents the flow of control. Even when EPCs allow for augmenting each function

by the processed data, these data do not participate in the flow.

All EPCs are assumed to be connected. EPCs from commercial projects are event-

bounded, i.e. they start with a set of one or more events (start events) and end with

one or more events (end events). The intended semantics expressed by this modeling

rule is the following: The start events trigger the process, the end events describe the

final state, which the process has to achieve. This simple rule assumes in particular,

that a process has a final state at all, i.e. that it terminates.

Due to the lack of markings any EPC needs an additional specification: One has to

determine, which combination of start events may happen and which combination of

end events is intended. As long as the initial state of EPCs is undefined, one cannot

expect a well-defined semantics for EPCs. Therefore several authors have borrowed

the marking concept from formal process languages like Petri nets. Annotating the

78

EPC with a marking implies, that one considers no longer a plain EPC. Instead one

asks for the semantics of a marked EPC.

In the present paper like in our previous paper [LSW1998] we use a different method,

striving to stay within the range of the original EPC language. To provide an EPC

with well-defined initial and final states we circuit each event-bounded EPC, i.e. we

augment it with a start/end connection. A start/end connection introduces a separate

event “start/end” and connects the events at the boundary to the new event with the

help of the logical connectors from the EPC language. The initial state of an EPC

occurs, when this distinguished event happens. The final state occurs, when it is

achieved a second time. EPCs with start/end connection are strongly connected.

In the following we seek to present all examples as EPCs with start/end connection.

Because we extracted some EPCs from the literature, we had to find out, which

start/end connection expresses best the intention of the author. Sometimes it could be

derived from an annotation of the EPC, for instance relating to the initial marking.

But some other time it is unclear, if the EPC models a terminating process at all.

To simplify matters we often have omitted all events and functions, which are

irrelevant to discuss the semantics of the logical connectors. Hence the EPCs are not

necessarily shown with their correct syntax.

Start/End function_2function_1

Fig. 1 Single loop

Fig. 2 Circuit [MA2006]

Start/End

Fig. 3 Entangled AND and XOR

[GT1984]

Start/End

Fig. 4 Entangled XOR and AND

[GT1984]

79

Start/End function 1 function 2

event 2 event 1

event 3 event 4

function 3

to left to right

decide

Fig. 5 Loop with multiple entries and exits

Start/End

event 2 event 1

function 1 function 2

Fig. 6 Entangled circuit [Kin2006]

E 1 E 2 E 3

Start/End

Fig. 7 Entangled circuit [Kin2006]

OR 1

OR 2

OR 3

XOR

Start/End

Fig. 8 Unpaired Or-connectors

80

Start/End

E1 E1' E2 E2' E3 E3'

Fig. 9 Entangled AND/XOR [Kin2006]

3 Non-local versus local semantics

All authors reasoning about the semantics of EPCs have provided EPCs at least with

the concept of state. Mostly, they even have translated EPCs into an other language

with a well-defined semantics. Such languages are transition systems or Petri nets.

The most recent survey of proposals for EPC semantics is contained in [MA2006].

The authors also assess each proposal and state its limitations. Concerning non-local

semantics the authors consider in particular the papers [Rit2000], [WEAH2005] and

[Kin2006]. Concerning local semantics they refer to [CS1994]2, [LSW1998],

[Aal1999] and [Rit2000]. In addition we would like to refer to [Rod1997] and

[GL2005]. The work of Rodenhagen is an early proposal to translate EPCs into Petri

nets. Gruhn-Laue translate EPCs into a modification of coloured Petri nets and use

low- and high-tokens.

In our opinion the question of non-local semantics for EPCs has been settled by the

result of Kindler. His work has been prompted by the attempt of Nüttgens-Rump

[NR2002], to formalize their intended non-local semantics by a transition system.

They introduced markings for the state of an EPC and considered transition systems

as a formalization of statefull EPCs. The resulting transition system depends heavily

on the semantics of the XOR-joins and OR-joins. In case one of the join-entries is

marked, one has the choice between an optimistic non-local semantics and a

pessimistic non-local semantics. In case of doubt the optimistic join fires, while the

2 We consider the translation into coloured Petri nets a local EPC-semantics, because the

constituents of Petri nets like places, arcs and transitions have a local semantics.

81

pessimistic one refrains from firing. The EPC has an ideal semantics, iff both non-

local semantics coincide. Concerning the intended non-local semantics Kindler proves

in [Kin2006]: An EPC has

1. either a unique ideal semantics

2. or two or more ideal semantics

3. or a pair of non-local semantics, which are not ideal but approximate best an

intended ideal semantics.

An example from case 2 is the EPC in Fig. 6. Examples from case 3 are the cyclic

EPCs in Fig. 7 and the acyclic EPC in Fig. 9. Apparently, in case 2 as well as in

case 3 the EPC does not have a unique ideal semantics.

4 Boolean semantics

Now - the question of non-local semantics being settled – we focus on local EPC

semantics. We do not aim at a new formal model for a semantics, which might have

been intended by the creators of EPCs. Instead we unify two existing local semantics.

The Boolean semantics of an EPC is a local one: It is the semantics of a high-level

Petri net, into which the EPC translates. A state of the EPC is a reachable marking of

its Petri net.

Boolean system

A Boolean system is a coloured Petri net ()µ,BNBS = with a Boolean net BN and

an initial marking µ . Each place of BN has the same token colour set

{ }lowhighBoole ,= .

A high-token, which marks a place, shows the presence of the control flow, while a

low-token explicitly excludes the control flow. Every transition of a Boolean net has a

binding colour set: An AND-transition has two binding elements, an XOR- transition

has three and an OR- transition has four binding elements. But transitions of a

Boolean net are not restricted to these logical types. More general formulas are

allowed, specifically asymmetric OR-connectors like L_XOR are well-defined.

Logical type Binding elements

AND (1,1):=(high, high; high), (0,0):=(low, low; low)

XOR (1,0):=(high, low; high), (0,1):=(low, high; high),

(0,0):=(low, low; low)

OR (1,0):=(high, low; high), (0,1):=(low, high; high)

(1,1):=(high, high; high), (0,0):=(low, low; low)

L_XOR (1,0):=(high, low; high), (1,1):=(high, high; high),

(0,0):=(low, low; low)

Fig. 10 Binding elements of join-transitions of different logical type

Fig. 10 enumerates the binding elements or firing modes of join-transitions of

different logical type. A notation like high) low, (high,:(1,0) = means that the binding

82

element (1,0) is enabled by a high-token at its left pre-place and a low-token at its

right pre-place. When firing it creates a high-token at its post-place. The asymmetric

L_XOR-join synchronizes the activation of both entries like an AND-join and it

allows the exclusive activation of its left entry like one of the XOR-modes.

If one forgets about all colours of BS , i.e. about the difference between token

elements and about the difference between all binding elements of the same transition,

then one obtains the skeleton of the Boolean system: It is an ordinary Petri net

()skelskelskel BNBS µ,=

with the same net structure, together with a canonical map

skel
BSBS → .

For the formal definition of Boolean nets and Boolean systems3 we refer to

([LSW1998], Def. 2 and 7). All Boolean nets of the present paper are supposed to be

faithful concerning activation: Any high-mode, i.e. any firing mode, which consumes

at least one high-token, also creates at least one high-token.

As is well known, coloured Petri nets are no more than a compact notation for

ordinary Petri nets. Every coloured Petri net expands into an ordinary Petri net, named

its flattening: Every token element of a place of the coloured net induces a place of

the flattening. Every binding element of the coloured net induces a transition of the

flattening. And the token colour of any token of the coloured Petri net induces a token

at the corresponding place of the flattening.

In case of a Boolean system ()µ,BNBS = the flattening of the different join-

transitions from Fig. 10 are the ordinary nets from Fig. 11. An analogous flattening is

obtained for the split-transitions just by reversing arcs. In Fig. 11 the gray places and

transitions as well as their connecting arcs form part of an ordinary Petri net, which is

called the high-system

()highhighhigh
BNBS µ,=

of the given Boolean system. The white components form part of a second ordinary

Petri net, which is called the low-system of the Boolean system. It is the subnet of the

flattening, which is generated by all low-places and all low-transitions. Factoring out

the low-system from the flattening gives the high-system as a quotient of the

flattening.

3 In the present paper it is not required as part of the definition, that the skeleton of a Boolean

system is live and safe. But all examples will have this property

83

AND
1,1 0,0

1

1

1 00

0

ANDAND
1,1 0,0

1

1

1 00

0

1,1 0,0

1

1

1 00

0

OR
1,0 0,0

1

1

00

0

0,1

1

1,1
OR

1,0 0,0

1

1

00

0

0,1

1

1,1

L_XOR
1,0 0,0

1

1

00

0

1,1

1

L_XOR
1,0 0,0

1

1

00

0

1,1

1

XOR
1,0 0,0

1

1

00

0

0,1

1

XOR
1,0 0,0

1

1

00

0

0,1

1

Fig. 11 Flattening of join-transitions of different logical type (1 = high, 0 = low)

If all transitions of a Boolean system are of logical type AND or XOR and if all

places are unbranched, then the Boolean System is called a bipolar system

([LSW1998], Remark 7). Specifically, a bipolar system has no transitions of logical

type OR. Bipolar systems have been invented by Genrich-Thiagarajan [GT1984].

The high-net of a bipolar system is a free-choice net of restricted type: Every place

has either a single post-transition, or all post-transitions of the place have no other

pre-place. For the definition of general free-choice systems and for their theory

cf. [DE1995].

In the context of bipolar systems it is important to know, if the free-choice system

excludes any frozen tokens. Absence of frozen tokens is a fairness property: It is not

possible to fire an infinite occurrence sequence without moving all tokens.

1. Definition (Frozen token)

An ordinary Petri net ()0,µN has no frozen tokens, iff for every reachable marking µ

holds: For every strictly less marking µν < the Petri net ()ν,N has no infinite

occurrence sequence.

2. Remark. For a live free-choice system the absence of frozen tokens is even a

structural property: A live free-choice system has no frozen tokens iff it is safe and

every T-component has a nonempty intersection with every P-component ([BD1990],

Theor. 6.2).

84

In order to unify the Boolean and the free-choice semantics of an AND/XOR-EPC we

use a result, which relates the behaviour of a bipolar system to the behaviour of its

high-system and its skeleton. Here we characterize the behaviour of a Petri net by two

properties named respectively safeness and liveliness.

A Petri net is safe, if any reachable marking marks no place with more than a single

token. Safeness is an intuitive requirement for a Boolean system, which serves to

model the control-flow of a system. Note, that safeness does not exclude the

investigation of multiple process instantiation as long as different process instances do

not interact.

We call a Boolean system high-live, if for any reachable marking, for any transition

and for any of its high-modes there exists a follower marking, which activates the

given high-mode. A high-live Boolean system does not contain any starving high-

modes, which after a finite number of executions could not be enabled any longer.

Liveliness is a plausible requirement to intensify the structural constraint of strong

connectedness. It takes into account also the behaviour. Note that it is not reasonable

to require that the Boolean system is live with respect to the low-modes, too.

3. Theorem (Bipolar system and free-choice system)

i) A bipolar system is high-live and safe if and only if its high-system is live and safe

without frozen tokens and its skeleton is live and safe.

ii) Every restricted free-choice system, which is live and safe without frozen tokens, is

the high-system of a bipolar system, which is high-live and safe.

Proof. Cf. [Weh2007], Theor. 4.6 and 4.9.

A free-choice net is named well-formed, if it has a live and bounded marking. Due to

a result, which generalizes a theorem of Genrich, the existence of a live and bounded

marking even implies the existence of a live and safe marking ([DE1995],

Theor. 5.10). Hence a free-choice net is well-formed, iff it has a live and safe

marking. For free-choice nets of restricted type, in particular for the high-nets of

AND/XOR-EPCs, there exists a useful characterization of well-formedness due to

Esparza-Silva [ES1990].

4. Theorem (Well-formedness of restricted free-choice nets)

A restricted free-choice net is well-formed, iff it is strongly connected, no elementary

circuit has a TP-handle, and every PT-handle of an elementary circuit has a

TP-bridge.

An elementary path in a net is a path without self-intersection. A handle at an

elementary circuit is an elementary path, which starts and ends with a node of the

circuit, but has no other node in common with the circuit. A handle, which starts with

a transition and ends with a place, is called TP-handle. If it starts with a place and

ends with a transition, it is called PT-handle. A TP-bridge of a handle at an

elementary circuit is a path, which starts with a node of the handle and ends with a

node of the circuit, but has no other nodes in common with the handle or the circuit.

For formal definitions of these concepts cf. [ES1990].

85

Fig. 12 Restricted free-choice net with TP-handles

The restricted free-choice net from Fig. 12 is not well-formed, because it contains

several forbidden TP-handles: The elementary path ()1321 ,,, ptpt is a TP-handle at

the left elementary circuit with six nodes, which passes through place 0p and the

three transitions 1t , 2t and 4t .

Translation of EPCs without circuits

In this section we consider EPCs, which are a priori acyclic, i.e. they are circuit-free

before performing their start/end connection from Chapter 2. Afterwards the circuited

EPC translates into a Boolean system ([LSW1998], Proced. 1), which is an

elementary Boolean loop system

()µ,, pBNEBLS = :

The skeleton of the Boolean net BN is an elementary loop ([LSW1998], Def. 9). The

place BNp ∈ is the baseplace, i.e. the distinguished place corresponding to the event

“start/end” of the EPC. The initial marking µ of BN has a single token, namely a

high-token, which marks the baseplace. If EBLS is high-live and safe, then the

Boolean net BN and the original EPC is named well-formed.

The skeleton skel
BN as well as the high-net high

BN are strongly connected and the

complements of their baseplaces skel
p and high

p do not contain any circuit. Note that

all circuits from skel
BN and high

BN are elementary circuits, which pass through the

baseplace. When cutting skel
BN or high

BN by splitting the baseplace into a source

place and a sink place one obtains a Workflow net.

5. Remark (Workflow net [Aal1996])

A Workflow net WN is an ordinary net, which satisfies two conditions:

• It has two special places: a source place i with no ingoing arc, i.e. () ∅=ipre ,

and a sink place o with no outgoing arc, i.e. () ∅=opost , and

86

• after adding a new transition t with () otpre = and () itpost = the net WN

extends to a strongly connected net WN .

By fusing the source and sink place of a Workflow net one obtains an ordinary net

with baseplace, which is covered by circuits passing through the baseplace. Skeletons

and high-nets of elementary Boolean loop systems are contained in the class of nets

obtained from the fusion of Workflow nets. But the inclusion is proper, because

elementary Boolean loop systems do not contain any loops, which omit the baseplace.

An a priori acyclic AND/XOR-EPC translates into a bipolar system. Its high-system

is the same free-choice system, which has been detected by Genrich-Thiagarajan

([GT1984], Chap. 3). And it is exactly the free-choice system, which has been

proposed by van der Aalst [Aal1999] as the translation of an AND/XOR-EPC.

6. Theorem (Deriving the free-choice semantics from the Boolean semantics)

The semantics of an a priori acyclic AND/XOR-EPC induced by the high-system of

its Boolean system according to [LSW1998] equals the free-choice semantics

according to [Aal1999].

Theorem 6 follows at once from the definition of the high-system. Accordingly the

free-choice semantics of an a priori acyclic AND/XOR-EPC can be obtained from its

Boolean semantics. But the Boolean semantics achieves more: It is defined for EPC

connectors of arbitrary logical type. In particular, it provides the OR-join with a local

semantics.

Note. In ([LSW1998], Def. 12) we proposed to model OR-connectors always as a

completed alternative with a pair of split- and join-connectors. At this point we would

like to emphasize, that this proposal is a modeling rule for EPCs, which facilitates

their analysis. But the Boolean semantics of an OR-connector is well-defined also for

isolated, unpaired connectors.

Van der Aalst discusses the OR-connector in the context of a completed

OR-alternative ([Aal1999], Fig. 10). When marking both pre-places in Fig. 11 of

transition (1,1) belonging to the OR-join, then not only transition (1,1), but also

transition (1,0) and transition (0,1) are enabled. Van der Aalst rejects the gray subnet

of the OR-join in Fig. 11 as a local semantics of the EPC connector. Instead he

discusses three alternatives: First the resolution of an OR according to the formula

x OR y <=> (x AND y) XOR (x XOR y),

secondly the introduction of additional places equal to the two white low-places in

Fig. 11 and thirdly a modification of the firing rule of Petri nets to a non-local rule.

He rejects all three procedures. Note: Not only the second proposal but also the first

one, which duplicates both branches of an OR-split, is not applicable for isolated

OR-splits. In [Aal1999] the author abstains from defining a local semantics of the

OR-connector. With different collaborators he devotes a series of successive papers to

87

the task to provide the OR-connector either with a non-local semantics, e.g.,

[WEAH2005] 4, or with a local semantics, e.g., [MA2006].

We follow the rejection of the high-net as a candidate for translating the OR-join. Fig.

11 shows the reason, why the high-net is insufficient to capture the intended

semantics of an OR-join: The three transitions (1,1), (1,0) and (0,1) from the

flattening of the Boolean OR-transition belong to a common cluster. Marking both

pre-places from the low-net is necessary to decide which transition of the cluster is

enabled. Apparently this cluster obstructs the free-choice property. In our opinion this

fact prevents any translation of an OR-join into a free-choice net.

Analysis of behaviour

Safeness and liveliness are two properties to describe the behaviour of a Petri net. As

a third property we now add being cyclic. A Boolean system is called cyclic, if the

initial marking is reachable from any reachable marking. A cyclic Boolean system can

always return to its initial state.

7. Lemma (Liveliness and absence of frozen tokens)

Consider an elementary Boolean loop system ()µ,, pBNEBLS = .

i) The skeleton of EBLS is a live and safe T-net.

ii) If EBLS is high-live and safe, then it is also cyclic and any reachable marking,

which marks the baseplace p , equals the initial marking µ .

iii) The high-system of a bipolar system EBLS has no frozen tokens, if it is live and

safe.

Proof. i) The skeleton is a strongly connected T-system. Each place belongs to a

circuit and every circuit is marked at skelµ with the single token at skelp . Hence the

skeleton is live and safe.

ii) We apply part i). It is well-known, that a live T-system is also cyclic. Moreover

two reachable markings agree, if they mark every circuit with the same number of

tokens ([DES1995], Theor. 3.21). Because every circuit passes through skelp , the

initial marking skelµ is the only reachable marking with a token at skelp . Now we lift

this result from the skeleton to the Boolean system EBLS . By assumption EBLS is

high-live and therefore deadlock-free. Hence any enabled occurrence sequence of its

skeleton lifts to an enabled occurrence sequence of EBLS . Consider a reachable

marking 1µ of EBLS . Any occurrence sequence of the skeleton, which is enabled

at
skel

1µ and after firing creates the initial marking, lifts to an occurrence sequence

of EBLS , which is enabled at 1µ and after firing creates a marking 2µ with a single

token. This token marks the baseplace p . Because an elementary Boolean loop

4 In Definition 16 of this paper there has to be added the requirement, that firing one of the

resulting transitions in question consumes exactly one token from every marked pre-place.

88

system is faithful with respect to activation, this token must be a high-token, which

proves 2µµ = .

iii) Every elementary circuit of BN as well as of its high-net passes through

respectively p and highp . Because P-components and T-components of the high-net

are strongly connected, they are covered by elementary circuits. Hence all

P-components and all T-components of the high-net pass through highp . According to

Remark 2 the high-system has no frozen tokens, q. e. d.

Lemma 7, part ii) demonstrates a property, which has been called sound in the context

of Workflow nets.

8. Remark (Soundness [Aal1996])

A Workflow net WN is named sound, if marking the source place with a single token

provides an initial marking µ , such that ()µ,WN has the following properties:

• Each reachable marking has a follower marking, which marks the sink place,

• each reachable marking, which marks the sink place, does not contain a second

token and

• for each transition t of WN there exists a reachable marking, which enables t .

It is well-known, that a Workflow net WN is sound, iff the extended net WN is live

and bounded with respect to the induced marking µ .

Theorem 6 rises the following question concerning a priori acyclic AND/XOR-EPCs:

How does soundness with respect to their free-choice semantics relate to soundness

with respect to their Boolean semantics? The answer is given by Theorem 9, which

heavily depends on Theorem 3:

9. Theorem (Behaviour with respect to the Boolean and the free-choice semantics)

Any a priori acyclic AND/XOR-EPC translates into a live and safe free-choice

system, iff it translates into a high-live and safe Boolean system.

Proof. The elementary Boolean loop EBLS of the EPC is a bipolar system. Its high-

system highEBLS defines the free-choice semantics of the EPC according to

Theorem 6. If the bipolar system EBLS is high-live and safe, then its high-

system highEBLS is live and safe according to Theorem 3. Conversely: According to

Lemma 7, part i) the skeleton skelEBLS is live and safe. In order to apply Theorem 3

it suffices to show, that highEBLS has no frozen tokens. This follows from Lemma 7,

part iii), q. e. d.

The two EPCs from Fig. 3 and Fig. 4 translate into elementary Boolean systems with

the same skeleton, which is a live and safe T-system. But their corresponding high-

systems differ. Both high-systems are safe. But the high-system of the EPC from Fig.

4 is also live, while the high-system of the EPC from Fig. 3 has a reachable marking,

which is a deadlock. According to Lemma 7, part iii) and Theorem 3 the Boolean

system of the EPC from Fig. 4 is high-live and safe, while the Boolean system of the

89

EPC from Fig. 3 is not high-live and safe. Hence the EPC from Fig. 4 is well-formed,

while the EPC from Fig. 3 lacks well-formedness.

The AND/XOR-EPC from Fig. 9 translates into an elementary Boolean loop system,

which is a bipolar system. Hence the Boolean semantics of the EPC is well-defined.

The skeleton of the bipolar system is live and safe. The bipolar system is not high-live

and safe according to Theorem 3. Because Theorem 4 shows, that the high-net is not

well-formed due to the existence of TP-handles. The example is taken from

([Kin2006], Fig. 4). Kindler proves, that the EPC lacks a non-local ideal semantics.

EPCs with circuits

In the present section we consider a priori cyclic EPCs. They contain circuits already

before attaching their start/end connection.

If a circuit of an EPC has a unique XOR-node, which serves as entry-point as well as

exit-point, then the circuit is considered a loop and the intended semantics of the

XOR-node is as following: The control flow either enters the loop or it passes the

loop or it leaves the loop. Concerning entering or passing the node has the same

semantics as an XOR-split: Either the control flow enters a given branch of the

alternative or it passes this branch. After the control flow has entered the loop scope,

it is decoupled from the rest of the net. There is no interaction between the control

flow inside the loop and the control flow outside.

The free-choice semantics of an AND/XOR-EPCs considers only a single type of

tokens which correspond to high-tokens. Hence it is suggesting that the free-choice

semantics does not discriminate between an XOR-split at the start of a loop and an

XOR-split at the start of an alternative. In both cases the XOR-splits translates into a

place, branched in forward direction. A similar reasoning holds for XOR-joins.

The situation is different for the Boolean semantics. If the control flow enters a given

branch at an XOR-split, it has decided not to activate the other branch. Hence the

Boolean system propagates a high-token into the activated branch and a low-token

along the other one. On the other hand: If the control flow enters the loop at an XOR-

split, the decision about activation or not-activation of the loop’s complement is

postponed until the control flow exits from the loop. Hence the Boolean semantics

propagates a high-token into the loop and no other token into its complement.

Therefore the loop entry as well as the loop exit cannot be represented by a Boolean

XOR-transition. Instead one has to use a branching place.

A Boolean system treats the high-token alike in both situations, but it discriminates

concerning the low-token. Free-choice systems, which do not care about low-tokens,

can deal with both situations in the same fashion.

In [LSW1998] we have undertaken a first step to deal with circuits of an EPC. We

have investigated well-structured loops. A well-structured loop is an elementary

circuit, which starts and ends with the same XOR-connector. The connector has two

entries and two exits. EPCs with all elementary circuits of this type translate into a

Boolean loop system ()µ,, pBNBLS = : The Boolean net BN , being a Boolean

loop tree, is covered by a finite family of elementary Boolean loops. Each elementary

Boolean loop represents a single loop with its baseplace serving as loop-entry and as

90

loop-exit. Each loop is linked up in a tree-like fashion by fusing its baseplace with a

distinguished place of the loop’s complement ([LSW1998], Def. 9, 10). The

distinguished place BNp ∈ is the baseplace of the root and the marking µ of BN

marks p with a single high-token and has no other tokens.

The Boolean loop tree as well as the original EPC is named well-formed, iff BLS is

high-live and safe. Analogously to Lemma 7 one can prove the following result.

10. Remark (Boolean loop system)

Consider a Boolean loop system ()µ,, pBNBLS = .

i) The skeleton of BLS is live and safe.

ii) A Boolean loop tree is well-formed, iff each of its elementary Boolean loops is

well-formed.

iii) If BLS is high-live and safe, then it is also cyclic and any reachable marking,

which marks the baseplace p , equals the initial marking µ .

Theorem 9 and Remark 10 imply the following Theorem 11.

11. Theorem (Behaviour with respect to the Boolean and the free-choice semantics)

Any AND/XOR-EPC, which has only well-structured loops, translates into a live and

safe free-choice system, iff it translates into a high-live and safe Boolean loop system.

Thanks to Theorem 11 and 4 it is easy to verify the well-formedness of an

AND/XOR-EPC with only well-structured loops: One checks the high-net of each

elementary Boolean loop for the different types of handles and bridges. If the high-net

is well-formed, then its basemarking is live and safe, because each P-component is

marked with the single token at the basepoint (cf. [DE1995], Theor. 5.8 and 5.9).

The EPC from Fig. 1 with a single loop is well-structured. Fig. 13 shows its Boolean

loop system BLS . It defines the Boolean semantics of the EPC. The Boolean loop

tree is covered by two elementary loops, the root with baseplace 0p and a second

loop with baseplace 1p . Each elementary Boolean loop, when marking its baseplace

with a high-token, is a high-live and safe elementary Boolean loop system.

Fig. 13 Boolean loop system BLS

12. Remark (Counterexample)

Apparently one can disregard the loop character of the EPC from Fig. 1 and translate

the AND/XOR-EPC directly into the bipolar system BS from Fig. 14. Its initial

91

marking has an additional low-token to assure liveliness of the skeleton. But BS does

not provide the intended semantics of the given EPC. It is not high-live: Depending

on the selected firing mode of the XOR-transition one can reach a deadlock.

Fig. 14 Bipolar system BS

Fig. 15 High-system FS of BS

Fig. 15 shows the high-system FS of BS from Fig. 14. The free-choice system FS

is live and safe, but it has a frozen token: After firing the split-transition one can fire

the loop (“function_2”) an infinite time without moving the token at the pre-place

“event” of the join-transition. Hence Theorem 3 does not apply to this situation.

Note that FS defines the free-choice semantics of the EPC from Fig. 1 according to

van Aalst. It also results from place fusing the high-systems of the two loop

components of BLS from Fig. 13.

The EPC from Fig. 1 illustrates the following issue, mentioned in the beginning of

this section: The Boolean semantics of an EPC discriminates between an XOR-

connector either as entry point of a well-structured loop (Fig. 13) or as XOR-split of

an alternative (Fig. 14). The free-choice semantics (Fig. 15) considers both the same.

Due to its specified composition from elementary loops a Boolean loop tree excludes

any circuits as in Fig. 2, Fig. 5, Fig. 6 or Fig. 7. It does not provide a Boolean

semantics for the corresponding EPCs. We do not even know, which process is

intended by the EPC from Fig. 2. It seems reasonable to consider the event with the

outgoing arc as start event. But what is the final state of the EPC, does there exist a

final state at all, does the process terminate?

We now take a step forward in the investigation of EPCs with circuits. The three

EPCs from Fig. 5, Fig. 6 and Fig. 7 have in common the existence of an elementary

circuit, which neither passes through the baseplace nor forms a well-structured loop.

The EPC from Fig. 5 models the following scenario: You need an information, which

can be obtained from two information offices. Therefore you decide, which office to

ring up first. Assume you ring up the first office first (“function 1”). Either it answers

the call or you ring up the second office (“function 2”). Now either the second office

92

answers the call or you try again the first office … . After leaving the loop you

complete your work (“function 3”).5

The elementary circuit passing through “function 1” and “function 2” is a loop with

two entry points as well as with two exit points. We translate each XOR-connector,

which corresponds to an entry or exit point, into a branching place of the Petri net.

We have to assure, that no reachable marking marks the loop with more than one

token. Therefore we connect all entry places with a single ENTER-connector to the

places corresponding to the events “to_left” and “to_right”. The connector waits for

information, that one of the two events happens and the other cannot happen. Then its

firing mode reduces the pair of high- and low-token at its two preplaces to a single

high-token. This high-token initializes the loop at the entry point corresponding to the

triggering event. The ENTER-connector has two high-modes and two low-modes

according to Fig. 16. Note, that each firing mode consumes two tokens, but creates

only one token.

Connector Binding elements

ENTER left_high := (high, low; high, -), right_high := (low, high; -, high),

left_low := (low, low; low, -), right_low := (low, low; -, low)

Fig. 16 Binding elements of the ENTER-connector

Symmetrically, there is an EXIT-connector with analogous firing modes. It splits an

arriving high-token into a pair of high- and low-tokens and an arriving low-token into

a pair of low-tokens. For syntactical reasons we have to add inside the loop four

unbranched transitions.

5 I thank Walter Vogler for communicating this example to me.

Fig. 17 BS as translation of the EPC from Fig. 5

Fig. 18 Abstraction abstrBS

93

Fig. 17 shows the final Petri net BS . It is safe and every high-mode is live.

The EPC from Fig. 6 has been discovered by Kindler as an example of an EPC with

two non-local, but ideal semantics. We refrain from translating the EPC into a

Boolean system: The two exit points of the loop are represented by AND-connectors,

but we do not know about a corresponding loop semantics.

The EPC from Fig. 7 has been discovered by Kindler as an example of an EPC

without any ideal semantics at all. Instead, it has a pair of non-local semantics, which

are best approximations of an intended ideal semantics. The loop has three exit points,

which are represented by AND-connectors. By similar reasons we refrain from

translating the EPC into a Boolean system.

The Boolean semantics of a hierarchy of EPCs

The Boolean semantics of an EPC is defined by a coloured Petri net. Hence the

semantics of a hierarchy of EPCs is well-defined as soon as one has at hand an

analogous concept for coloured Petri nets.

A hierarchy of coloured Petri nets is a family of coloured Petri nets, which are linked

by morphisms in a tree-like fashion. We have proposed the concept of a morphism

between coloured Petri nets in a previous paper ([Weh2007], Def. 2.6). The fibres of

such a morphism refine a place by a place-bordered subnet, a transition by a

transition-bordered subnet, a binding element by a T-flow and a token element by a

P-flow. The morphism maps certain occurrence sequences of the Petri net in the

domain to occurrence sequences of the Petri net in the image. Apparently the

semantics of all Petri nets is independent from each other.

A simple example for such a morphism is the abstraction map

abstrBSBSabstr →:

from the Petri net BS of Fig. 17 onto the Petri net abstrBS of Fig. 18: The elementary

circuit in the centre of BS as well as the transitions ENTER and EXIT map onto the

central XOR-transition of abstrBS . All other nodes and arcs from BS map injectively

onto the corresponding net element of abstrBS . Hence the EPC from Fig. 5, which

translates into BS , abstracts onto the EPC corresponding to abstrBS .

5 Conclusion

The task to formalize the intended semantics of EPCs is an ill-posed problem. As

Kindler rightly remarks “Actually, there is not a single well-accepted informal

semantics for EPCs. There are many variants and modifications.”

We are skeptic about all attempts to enrich EPCs with additional concepts like tokens,

internal states, reset arcs, context, time … . These concepts are either introduced in an

94

ad-hoc fashion or they are borrowed from formal process languages, which have their

own well-defined semantics. Of course such concepts are useful, the concept of state

is even indispensable for process modeling. Instead of borrowing concepts from other

languages, we are advocating to first translate the EPC into a target language and then

to argue on the solid ground of that formal language.

Since 1994 we have accomplished numerous process modeling projects in the

commercial field. Never there was a problem to read a given EPC as a Boolean net -

at least after untangling the intended loops. And after discussing with the domain

experts the intended start/end connection it was also possible to provide the initial

marking. Of course this type of discussion with the customer from the user

department seldom uses explicit formal reasoning. Neither it applies any algorithm,

which transforms a given EPC into a well-formed one. Main ingredients are the

consultants experience with similar cases and her knowledge about the standards and

pitfalls of process modeling.

Questions concerning the intended semantics of EPCs are challenging from a

theoretical point of view. But in the context of commercial applications they are not

debated. We explain this lack of interest in a formal semantics with the imprecision of

“real-world” EPCs. Up to now, commercial projects had no need to model precise

EPCs, which are executable like a program.

In our opinion the question of non-local semantics for EPCs has been settled by the

remarkable result of Kindler: There is no single transition relation, which captures the

non-local semantics intended by Nüttgens and Rump. In general, there exist two

related transition relations, which approximate best the intended semantics from two

different directions.

The problem to handle EPC circuits in the context of Boolean systems is not yet

solved. The example from Fig. 5 and the proposal of its translation in Fig. 17 mark the

starting point of some work in progress. We study Boolean systems with components

corresponding to loops with multiple entry and exit points.

Concerning Boolean systems another question seems interesting from a theoretical

point of view. For a high-live and safe bipolar system all binding elements of the low-

system are irrelevant for the flow of the high-tokens. The next step would be to study

high-live and safe Boolean systems with transitions of logical type L_XOR or OR:

Does there exist a maximal, non-empty subsystem of the low-system, which can be

factored out without disturbing the flow of the high-tokens? One of the simplest

Boolean systems in question is the Boolean system of the EPC from Fig. 8.

Acknowledgments

I thank the anonymous referees as well as Peter Rittgen for their helpful comments

during the review. I tried to follow their suggestions and to answer their questions.

95

6 References

[Aal1996] van der Aalst, Wil: Structural Characterizations of Sound Workflow Nets.

Computing Science Reports 96/23, Eindhoven University of Technology, Eindhoven, 1996

[Aal1999] van der Aalst, Wil: Formalization and verification of event-driven process chains.

Information & Software Technology, 41 (10), 1999, p. 639-650

[BD1990] Best, Eike; Desel, Jörg: Partial Order Behaviour and Structure of Petri Nets. Formal

Aspects of Computing (1990), p. 123-138

[CS1994] Chen, R.; Scheer, August-Wilhelm: Modellierung von Prozeßketten mittels Petri-Netz

Theorie. Veröffentlichungen des Instituts für Wirtschaftsinformatik, Heft 107, Saarbrücken

1994

[DE1995] Desel, Jörg, Esparza, Javier: Free Choice Petri Nets. Cambridge University Press,

Cambridge 1995

[ES1990] Esparza, Javier; Silva, Manuel: Circuits, Handles, Bridges and Nets. In: Rozenberg,

Grzegorz (Ed.) Advances in Petri nets 1990. Lecture Notes in Computer Science, vol. 483,

Springer, Berlin 1990, p. 210-242

[GL2005] Gruhn, Volker; Laue, Ralf: Einfache EPK-Semantik durch praxistaugliche Stilregeln.

In: Nüttgens, Markus; Rump, Frank (Hrsg.): EPK 2005. Geschäftsprozeßmanagement mit

Ereignisgesteuerten Prozeßketten. Proceedings, Hamburg 2005

[GT1984] Genrich, H.J.; Thiagarajan, P.S.: A Theory of Bipolar Synchronization Schemes.

Theoretical Computer Science 30 (1984), p. 241-318

[Kin2006] Kindler, Ekkhart: On the semantics of EPCs: Resolving the vicious circle. Data &

Knowledge Engineering 56, (2006), p. 23-40

[KNS1992] Keller, Gerhard; Nüttgens, Markus; Scheer, August-Wilhelm: Semantische

Prozeßmodellierung auf der Grundlage „Ereignisgesteuerter Prozeßketten (EPK)“.

Veröffentlichungen des Instituts für Wirtschaftsinformatik, Heft 89, Saarbrücken 1992

[LSW1998] Langner, Peter; Schneider, Christoph; Wehler, Joachim: Petri Net based

Certification of Event-driven Process Chains. In: Desel, Jörg; Silva, Manuel (Eds.):

Application and Theory of Petri Nets 1998. Lecture notes in Computer science, vol. 1420.

Springer, Berlin et al. 1998

[NR2002] Nüttgens, Markus; Rump, Frank: Syntax und Semantik Ereignisgesteuerter

Prozessketten (EPK). In: Desel, Jörg; Wesel, M. (Hrsg.): Promise 2002 – Prozessorientierte

Methoden und Werkzeuge für die Entwicklung von Informationssystemen. GI Lecture

Notes in Informatics P-21, pp. 64-77, Gesellschaft für Informatik, 2002

[MA2006] Mendling, Jan; van der Aalst, Wil: Towards EPC Semantics based on State and

Context. In: Nüttgens, Marcus; Rump, Frank: EPK 2006. Geschäftsprozeßmanagement mit

Ereignisgesteuerten Prozessketten. 5. Workshop der Gesellschaft für Informatik, Wien, 2006

[Rit2000] Rittgen, Peter: Paving the road to Business Process Automation. In Proc. of the

Europ. Conf. on Information Systems (ECIS), p. 313-319, 2000

[Rod1997] Rodenhagen, Jörg: Darstellung ereignisgesteuerter Prozeßketten (EPK) mit Hilfe

von Petrinetzen. Diplomarbeit, Universität Hamburg, Fachbereich Informatik, Hamburg

1997

[Rum1999] Rump, Frank: Geschäftsprozeßmanagement auf der Basis ereignisgesteuerter

Prozeßketten. Teuber, Stuttgart et al. 1999

[Weh2007] Wehler, Joachim: Free Choice Petri Nets without frozen tokens and Bipolar

Synchronization Systems. arXiv: cs/0609095, 2007

[WEAH2005] Wynn, Moe; Edmond, David; van der Aalst, Wil; ter Hofstede, Arthur:

Achieving a General, Formal and Decidable Approach to the OR-join in Workflow using

Reset nets. In Ciardo, G.; Darondeau, P. (Eds.): Applications and Theory of Petri Nets

2005, vol. 3536 of Lecture Notes in Computer Science, p. 423-443. Springer, Berlin et al.

2005

96

