
Transforming a Discourse Model to an Abstract User
Interface Model

Sevan Kavaldjian, Cristian Bogdan, Jürgen Falb, Hermann Kaindl
{kavaldjian, bogdan, falb, kaindl}@ict.tuwien.ac.at

Vienna University of Technology
Institute of Computer Technology

A-1040 Vienna, Austria

ABSTRACT
User-interface design is still a time consuming and expen-
sive task to do, but recent advances allow generating them
from interaction design models. We present a model-driven
approach for generating user interfaces out of interaction
design models. Our interaction design models are discourse
models, more precisely models of classes of dialogues. They
are based on theories of human communication and should,
therefore, be more understandable to humans than programs
implementing user interfaces. Our discourse models also
contain enough semantics to transform them automatically
into user interfaces for multiple devices and modalities. This
paper presents a two-step transformation approach with an
intermediate abstract UI model. In this paper we concen-
trate on the first step, transforming discourse models to ab-
stract user interface models by showing transformation rules.

1. INTRODUCTION
In previous work [6], we have already been able to au-

tomatically generate usable user interfaces (UIs), even for
multiple devices and for real-world applications. We gener-
ated such UIs from models, but since these models included
finite-state machinery they were more in the spirit of ab-
stract UIs rather than high-level interaction design.

More recently, in the OntoUCP1 project, we wanted to
work with models that are more understandable to and pos-
sibly more easily to build for humans. Therefore, we studied
several theories of human communication from various fields.
Based on insights from some of these theories, we focus on
high-level specifications of discourse in the form of models.
These models specify discourse in the sense of dialogues,
where monologues are embedded and connected.

From our previous work, we inherit the use of commu-
nicative acts (and references to domain knowledge). Com-
municative acts are derived from Speech Act Theory and
express intentions in the sense of desired effects on the en-
vironment.

By integrating communicative acts with some results from
Rhetorical Structure Theory (RST) and Conversation Anal-
ysis, we developed a new discourse metamodel. The meta-

1OntoUCP (A Unified Communication Platform both for
Machine-Machine and Human-Machine Interaction based on
Ontologies), partially funded by the FIT-IT Program of the
Austrian FFG as project number 809254/9312. We also ac-
knowledge the (financial) support of the PSE division of
Siemens AG Österreich.

model defines what the discourse models should look like in
our approach.

So, we strive for high-level modeling of discourse, includ-
ing dialogues. Such a discourse model is inspired by human
communication and serves as an interaction design for a tra-
ditional information system. Currently we do not support
the generation of UIs with direct manipulation.

From such an interaction design, user interfaces for several
devices are to be generated automatically. Since we knew
already how to generate them from a kind of abstract UI
model, we strived for generating an abstract UI from our
new interaction design models. We explain our model-driven
transformation approach on the basis of our metamodels and
self-defined transformation rules.

2. TRANSFORMATION APPROACH
Our approach to fully automated UI generation is a two-

step process illustrated in Figure 1. Model-to-model and
model-to-code transformations are necessary to transform a
discourse model to an abstract UI model and the abstract
UI model to multiple concrete UIs for diverse platforms. In
the following, we will explain the input (discourse model
structure), the output (structure of the abstract UI model)
and the transformation rules for the model-to-model trans-
formation step.

Discourse
Model

Abstract UI
Platform:

PC

Abstract UI
Platform:

PDA

Abstract UI
Platform:

Cell Phone

M2M Transformation

Figure 1: The model transformation steps.

Our discourse models use a self-defined Domain Specific
Language (DSL) for specifying the classes of possible dia-
logues or interactions between the human and the machine.
The abstract syntax of the DSL is based on the metamodel
shown in Figure 2, which illustrates the used concepts. Ev-
ery discourse is composed of a tree where leaf nodes are
Communicative Acts and inner nodes are Rhetorical Rela-
tions based on RST. The conceptual UML class diagram

Discourse

Node

+ name:

RST Relation

+ nucleiCondition:
+ nucleusSatelliteCondition:
+ satelliteCondition:

Communicative Act

+ contentCondition:
+ degreeOfStrength:

Adjacency Pair

1

relates >

2..*

+inserted
sequence

0..*

1 is adjacent to >

1

+rootNode 1

Figure 2: Discourse Metamodel.

shown in Figure 2 is not as restrictive as our interpretation,
since it allows to create other kinds of graphs besides tree
structures. The association class is needed to model the
inserted sequence.

The Communicative Acts are used to model the intention
of a communication and refer to elements of the domain of
discourse. Figure 3 shows a selection of the most impor-
tant Communicative Acts used in our approach. Two corre-
sponding Communicative Acts, like Offer and Accept, form
a sequence, which is called Adjacency Pair. The Adjacency
Pairs build up the dialogue structure.

Node
Communicative Act

+ contentCondition:
+ degreeOfStrength:

Assertion Directive Commissive

Informing Answer Question Request Accept Offer

is adjacent to
is adjacent to
is adjacent to

Figure 3: Communicative Act Taxonomy.

The Rhetorical Relations are used to connect Commu-
nicative Acts or Rhetorical Relations with each other. They
represent the dependencies between single interactions of
dialogues. More detailed information about our discourse
metamodel can be found in [4] and [1].

SN

adjacentTo

Background

Accept
(category)

Informing
(category details)

O�er
(product categories)Shop

Customer

Figure 4: Subtree of an online shop discourse.

Figure 4 shows a small part of an online shop discourse
model, that is typical for discourse models and which we

will use as a running example throughout the paper. The
example describes the interaction between the user and the
online shop. The nucleus branch N of the Background rela-
tion conveys the main interaction sequence. The online shop
system offers a list of product categories to the user. The
user accepts one of them. During the offering process the
satellite branch S provides background information about
the product categories to the user. This part of an online
shop discourse model gets transformed to the abstract UI
model shown in Figure 5 by applying the rules Adjacency
Pair, Offer-Accept and Informing in the listed order. De-
tails on each rule are described below.

Panel
(�ow layout)

Panel
(grid layout)

ListWidget

Button
(category)

Widget
(nucleus !f(x))

ListWidget

Label
(cat. details)

Panel
(grid layout)

Figure 5: Online Shop Abstract UI Model.

The abstract UI model is basically a tree representing the
UI structure. It is not completely independent of the target
device, since the device’s real estate is considered for build-
ing up the abstract UI structure. However, our abstract
user interface is completely independent of the considered
UI toolkit (e.g. Web, Java Swing, etc.). This tree struc-
ture will be transformed to a toolkit-specific concrete UI.
The concepts which are used in an abstract UI model are
specified in the abstract UI metamodel shown in Figure 6.
The most important concept of the metamodel is the Wid-
get class. It is specialized into two functional categories,
the OutputWidgets which have the function of only present-
ing information and the InputWidgets which have the func-
tion of presenting and gathering information from the user.
Thus, they are actually input/output widgets, but Figure 6
puts the focus on gathering information.

AudioBox

Widget

+ name: int [0..1] {ordered}
+ visible: int [0..1] {ordered}

Textbox

TabControl

Style

RadioButton PictureBox

Panel

+ layout: int [0..1] {ordered}

ListWidget

OutputWidget

Label

+ text: int [0..1] {ordered}

InputWidget

ImageMap HyperlinkDateTimePicker

+ date: int [0..1] {ordered}

ComboBox

+ list: int [0..1] {ordered}

Choice

Button

+ event: int [0..1] {ordered}
+ text: int [0..1] {ordered}

+style

0

+widgets 0..*

+tabs 0..*

+elements

0..*

+screens 0..*

Figure 6: Abstract UI Metamodel.

The main issue that we address in this paper is how to
transfer models as exemplified in Figure 4 to user interface
models at the abstract widget level. In particular, it means
a transformation from a mainly declarative model to a user
interface featuring procedural behaviour.

The general principle behind our approach is that the ab-
stract UI model is made up of “presentation” units that are
set visible when the logic of the interaction with the user so
requires. Once this principle is established, our problem can
be specified as follows:

• Given a discourse tree with communicative acts as
leafs, generate the possible set of presentation units,
and the transitions between these presentation units.
Since a presentation unit has to be a coherent dis-
course, it corresponds to a subtree of the overall dis-
course tree. As such, we call this problem the discourse
tree partitioning problem. This problem and a solution
to it is described in [1].

• Given a presentation unit as a discourse subtree, gen-
erate an abstract UI model based on heuristic rules.
Since this effectively “pre-renders” a discourse tree into
an abstract UI model, we call this problem the pre-
rendering problem.

In the abstract UI model, a complete tree or subtree with a
Panel as root element represents a presentation unit. Hence,
a complete abstract UI model can be a forest. Our exam-
ple in 4 represents exactly one presentation unit that corre-
sponds to the tree shown in Figure 5.

Figure 7 illustrates that the transformation is fulfilled by
mapping elements of the discourse metamodel to elements of
the abstract UI metamodel. Both metamodels are based on
the Ecore2 meta-metamodel. Transformation languages like
the ATLAS Transformation Language (ATL) support this
transformation concept. At the same time a state machine is
derived from the discourse model which controls the sending
and receiving of Communicative Acts.

Ecore

Discourse Metamodel Abstract UI Metamodel

Discourse Model Abstract UI

Instance of Instance of

Instance of

mapping

Instance of

transformation

Figure 7: The transformation process.

After having introduced the general transformation prin-
ciples, we concentrate only on the pre-rendering problem in
the remainder of this paper and introduce some rules that
are specific to certain structural patterns occurring in the
discourse models. We have found many such patterns dur-
ing our modeling experience, and we continue to find new

2Essential MOF like core meta model of the Eclipse Model-
ing Framework (http://www.eclipse.org/emf/)

ones. Due to limited space, we only exemplify five rules
which we believe illustrate the principle.

Heavy Background Rule: Figure 8 shows a rule for a
“Heavy Background” relation, relating a large satellite sub-
tree with a nucleus subtree. The “nuclear” part is rendered
directly, but if there is no space for its background informa-
tion (which is presumed to be heavy for this rule to apply),
the background information is rendered in a separate pre-
sentation unit, to which a link is presented.

S

heavy
subtree

subtree

N

Background

Discourse Model

x

link to satellite S

widget for nucleus N
(in most cases a panel)

Concrete UI

Panel
(�ow layout)

Hyperlink
(satellite)

Widget
(nucleus)

Abstract UI Model

Figure 8: Heavy Background Rule.

Light Background Rule: Figure 9 shows another rule
for a Background relation on an interface. The satellite is
rendered on the right side of the presentation unit, while
the nucleus occupies the left area. In accordance to the
rule above, the “most nuclear part” takes the interface space
that is of highest surface and most central to the user focus.
This rule is used in our example to generate the basic tree
structure of Figure 5. The Light Background Rule can also
be localized (adapted), e.g., for cultures that write from right
to left, where it may be more suitable to place the satellite
at the left side.

S

light
subtree

subtree

N

Background

Discourse Model

x

widget for
nucleus N
(in most
cases a
panel)

widget for
satellite S
(in most
cases a
panel)

Concrete UI

Panel
(�ow layout)

Widget
(nucleus)

Widget
(satellite)

Abstract UI Model

Figure 9: Light Background Rule.

Adjacency Pair Rule: Every adjacency pair is trans-
formed to a Panel element of the abstract UI model contain-
ing widgets according to the actual related communicative
acts. In our example, the first panel on the second level in
Figure 5 results from the Offer-Accept adjacency pair. If a
communicative act does not take part in an adjacency pair,
as it is the case with the Informing in Figure 4, a Panel
element is also created for the communicative act.

Offer-Accept Rule: Every Offer -Accept adjacency pair
is transformed either to a Button element or to a ListWidget
element containing a Button element depending on the num-
ber of content elements offered. Because our example offers
more than one product category, the ListWidget element is
needed to model an undefined number of categories. Since
the acceptance of an Offer requires a user action, a Button
element is used.

Informing Rule: Every Informing communicative act is
transformed either to a Label element or to a ListWidget el-
ement containing a Label element, depending on the number
of content elements offered. This rule assumes that the in-
formation will be forwarded in textual form, otherwise, e.g.,

a PictureBox or Audio element will be used. In the online
shop example, Label elements are used.

More detailed information about the automatic generation
that is used as a basis for this approach can be found in [5]
and [6].

3. RELATED WORK
Model-based UI design methods developed and published

in the nineties including OVID [9], STUDIO [3], Idiom [11]
and Point-of-View Analysis [10] focus on creating different
kinds of models, like user’s conceptual models, task mod-
els and interaction models. Unlike our approach, which is
model-driven, all the mentioned approaches above are model-
based. That is, they allow expressing an interactive system
by abstract models in a first step and use them in an infor-
mal process or in a sequence of systematic steps to construct
a concrete user interface.

In contrast, UI Frameworks like XUL3 (XML User Inter-
face Language) are able to generate UIs automatically but
they rely on UI models at the abstract widget level, which
is on a lower level than our discourse models.

An advanced approach to specifying multi-device user in-
terfaces based on task models instead of discourse models
is presented in [8]. The basic approach is to start model-
ing tasks and to generate user interfaces for diverse devices
according to specific device characteristics. In contrast to
our approach, some of the transformations between models
are done semi-automatically or manually. The transforma-
tions are implicitly coded in the system, there is no genuine
transformation engine like ATL or ATOMS3.

Florins et.al. describe in [7] transformation rules for pag-
ination of UIs on different levels. In our approach, we sup-
port splitting only while transforming the abstract UI model
to the concrete UI, but partitioning our discourse model in
presentation sets in the first transformation step provides
important guidance for pagination [1].

Botterweck shows in [2] a model-driven approach that
starts on the abstract UI level, but contains rich procedural
UI descriptions together with UI elements. Thus, it requires
UI modeling as well as dialogue modeling.

4. CONCLUSION
In this paper, we present a new approach to generating ab-

stract user interface models by applying model-driven trans-
formations to discourse models. Our discourse models are
derived from results of human communication theories, cog-
nitive science and sociology and are used for specifying inter-
action design of human-computer interaction of information
systems. Thus, they contain additional metainformation,
like the intention of an interaction, which allows us to de-
fine sophisticated pre-rendering rules to transform the dis-
course models to abstract UI models. Our transformation
takes already device constraints into account to generate a
UI structure well suited for the target device, but the result-
ing abstract UI models are still independent of UI toolkits.
Taking this together with our previous work on automati-
cally generating concrete UIs, this paves the way for auto-
matic generation of concrete UIs from our new interaction
design models.

3http://www.mozilla.org/projects/xul/

5. REFERENCES
[1] C. Bogdan, J. Falb, H. Kaindl, S. Kavaldjian, R. Popp,

H. Horacek, E. Arnautovic, and A. Szep. Generating
an abstract user interface from a discourse model
inspired by human communication. In Proceedings of
the 41th Annual Hawaii International Conference on
System Sciences (HICSS-41), Piscataway, NJ, USA, to
appear 2008. IEEE Computer Society Press.

[2] G. Botterweck. A model-driven approach to the
engineering of multiple user interfaces. In Proceedings
of the MoDELS’06 Workshop on Model Driven
Development of Advanced User Interfaces, Genova,
Italy, Oct. 2006. CEUR-WS.

[3] D. Browne. STUDIO: STructured User-Interface
Design for Interaction Optimisation. Prentice Hall,
Englewood Cliffs, NJ, USA, 1993.

[4] J. Falb, H. Kaindl, H. Horacek, C. Bogdan, R. Popp,
and E. Arnautovic. A discourse model for interaction
design based on theories of human communication. In
CHI ’06 extended abstracts on Human factors in
computing systems CHI ’06, 2006.

[5] J. Falb, R. Popp, T. Röck, H. Jelinek, E. Arnautovic,
and H. Kaindl. Using communicative acts in
interaction design specifications for automated
synthesis of user interfaces. In Proceedings of the 21th
IEEE/ACM International Conference on Automated
Software Engineering (ASE’06), pages 261–264,
Piscataway, NJ, USA, 2006. IEEE Computer Society
Press.

[6] J. Falb, R. Popp, T. Röck, H. Jelinek, E. Arnautovic,
and H. Kaindl. Fully-automatic generation of user
interfaces for multiple devices from a high-level model
based on communicative acts. In Proceedings of the
40th Annual Hawaii International Conference on
System Sciences (HICSS-40), Piscataway, NJ, USA,
Jan 2007. IEEE Computer Society Press.

[7] M. Florins, F. M. Simarro, J. Vanderdonckt,
B. Michotte, and B. Michotto. Splitting rules for
graceful degradation of user interfaces. In AVI ’06:
Proceedings of the working conference on Advanced
visual interfaces, pages 59–66, New York, NY, USA,
2006. ACM Press.

[8] G. Mori, F. Paterno, and C. Santoro. Design and
development of multidevice user interfaces through
multiple logical descriptions. IEEE Transactions on
Software Engineering, 30(8):507–520, 8 2004.

[9] D. Roberts, D. Berry, S. Isensee, and J. Mullaly.
Developing software using OVID. IEEE Software,
14(4):51–57, July-Aug. 1997.

[10] S. R. Robertson, J. M. Carroll, R. L. Mack, M. B.
Rosson, S. R. Alpert, and J. Koenemann-Belliveau. A
self-guided, scenario-based learning environment for
object-oriented design principles. In Proceedings of
OOPSLA 94, 1994.

[11] M. van Harmelen. Object oriented modelling and
specification for user interface design. In Interactive
Systems: Design, Specification and Verification, 1994.

