
Domain Specific Methods and Tools
for the Design of Advanced Interactive Techniques

Guillaume Gauffre, Emmanuel Dubois, Remi Bastide

IRIT - LIIHS
118, route de Narbonne

31062 Toulouse Cedex 9, France
+33 (0)5 61 55 74 05

{gauffre, emmanuel.dubois, bastide}@irit.fr

ABSTRACT

Novel interactive systems such as Augmented Reality are

promising tools considering the possibilities they offer, but no

real development methods exist at the moment to help designers

in their work. We present in this paper a design method for

tightly coupling early interaction design choices and software

design solutions. Our work is based on an existing model used

for abstract UI design, and introduces a second model dedicated

to the software UI specification and the model-based process

used to derive one from the other. To achieve this, we present

here a framework based on domain specific models and

transformations to link them and thus support the development

process.

Categories and Subject Descriptors

H.5.2 [Information Interfaces and Presentations]: User

Interfaces - Theory and Methods. D.2.2 [Software

Engineering]: Design Tools and Techniques - User Interfaces.

Keywords

Mixed Interactive Systems, Model-Driven Engineering,

Domain Specific Languages, Metamodeling, Model

Transformations, Design Process.

1. INTRODUCTION
In the past 10 years, a new HCI trend has emerged: traditional

“Window, Icon, Menu, Pointing device” interfaces tend to be

replaced by new forms of interaction that involve physical

artifacts, easily manipulated by users. Augmented Reality

systems for example, are interactive systems where the

realization of a physical task is enriched by the presence of

digital information. Tangible User Interfaces and ubiquitous

systems are other forms of interactive systems which merge

physical and digital worlds. To refer to these approaches and

because they deal with similar concepts and techniques, we

regroup them in one term: Mixed Interactive Systems (MIS).

Thereafter MIS frameworks have been developed and adopt

bottom-up or top-down approaches. Each of them brings

consequent advances at different level of abstraction of the

design [6] but interlacing them remains difficult to accomplish,

thus limiting the coverage of the development process.

As the use of Mixed Interactive Systems increases, elaborating

a convenient development process becomes necessary. To cover

the different steps of such process, our approach promotes the

results gathered in the early design steps and bridges the gap

between the abstraction level of these results and the

implementation. To do so, we articulate models to progress

along the development process and adopt a MDE approach, thus

introducing a Domain Specific Language [1] for MIS.

2. MIS ENGINEERING FRAMEWORK
Common processes for HCI development include four steps:

requirements gathering, design, implementation and evaluation.

Figure 1 presents how our tools cover the first three steps. Task

models are one of the major tools to support the requirement

step: they are used to describe the sequence of sub-tasks

(concerning user’s activities, system’s activities or interactive

activities) in a hierarchical form corresponding to the global

system task. The design step can be decomposed into two

separate phases: UI design and the underlying software

specification. The former step is concerned with user’s

interaction aspects. It may be linked to requirements gathering

by combining users’ observation, brainstorming or focus-group

to collect user needs, and an interaction model to organize them

according to the specificities of MIS [4]: domain objects

description, user abilities, physical and digital artifacts,

interaction forms. In the latter, design aspects related to the

software architecture are considered, using a specific model.

The next step is the implementation of the system by using

component-based platforms improving flexibility and

adaptability.

Figure 1: MIS domain specific process

In this context, rather than modifying the different models we

use (task models, interaction models and platform models) to

articulate them, we describe a DSL to provide a support to this

process:

� Multiple models are required in each step of the

development process and one role of MDE is to “promote

models to primary artifacts that drive the whole

development process” [1]. MDE will facilitate their

articulation and permit the elicitation of coherence rules.

� The MIS domain, with regards to their applications in our

every day life, produces emergent systems. Elaborating

methods to develop them requires to evaluate the

adequacy of models and to support their evolution when

required. MIS domain is in a phase of empiricism and

begins to develop theories; MDE will be a powerful

support of this evolution.

Software
Architecture
modeling

Mixed Interaction
Modeling

Component-based
Implementation

Task
Modeling

Focus-Group

3. TWO DOMAIN SPECIFIC MODELS
The DSL we proposed is based on two models:

� ASUR, an existing model which describes the user’s

interaction with a Mixed Interactive System. It can be

used by itself or as mentioned before, in combination with

a focus-group.

� ASUR-IL, a complementary model that we introduce to

cover the description of the software decomposition and

structure. Its aim is to prepare the implementation step by

producing a coherent architecture, promoting the

interactive forms chosen in a technological perspective.

After an overview of the ASUR metamodel in the next section,

we present the ASUR-IL metamodel to enable the collaboration

of our two domain specific models.

3.1 ASUR Overview
For a given task, the role of ASUR is to support the description

of the physical and digital entities that make up a mixed

interactive system and the boundaries among them. ASUR

components include adapters (AIn, AOut) bridging the gap

between both digital and physical worlds, digital tools (Stool) or

concepts (SInfo, SObject), user (U) and physical artifacts used as

tools (RTool) or object of the task (RObject).

Components can be inter-connected by several kinds of

relationships. The major one, Data Exchange, is used to

describe the kind of data transmitted. In the physical part, they

represent the information channels between components, and in

the digital part the way the system treats them. The

Representation link expresses a coupling between a physical

component and a digital one in terms of behavior and rendering.

Finally Real associations express a physical proximity of two

physical components and Triggers represent an action of one

component over another. On the basis of previous works in the

domain, design-significant aspects have been identified and

added to the model: ASUR characteristics improve the

specification of components (perception/action sense, location,

etc.) and relationships (type of language, point of view,

dimension, etc.). By analyzing the characteristics of each

element, the model supports the predictive analysis of two

properties: continuity and compatibility of interactions.

3.2 ASUR-Implementation Layer: Towards

the Implementation Phase
For each ASUR model, i.e. a given mixed interactive task, an

ASUR-IL model is associated. The main contribution of this

model is to identify the software components and relationships

required to implement this specific task. Only the components

involved in the interaction part of the system are described. The

description of functional parts of the application is out of

ASUR-IL scope. This model is also the frontier between

Platform Independent Model and Platform Specific Model: it

describes the software components involved in the task and

their communications, the next step being the transfer to a PSM

where each ASUR-IL component will be associated to software

component, existing assembly or new ones.

To present this assembly of components, the main concepts of

the ASUR-IL metamodel are Components and Data Flows. A

third item Port, represents the interfaces between each of them.

The correctness of the data flow between two components is

ensured by the value given to the attribute data type of each

port. There is only one kind of relationships as opposed to

components for which the definition follows two principles:

correlation with the ASUR components (ASUR adapters �

ASUR-IL adapters, ASUR System components � ASUR-IL

Entities) and roles in the architecture (Devices, APIs, Models,

Controls, and Views).

ASUR-IL Adapters in input or output, correspond to the

adapters in the ASUR model and group devices and software

libraries used to connect physical and digital worlds. Devices

are used to capture/render data from/to the physical world. They

can translate physical phenomenon into digital data. The second

part of an adapter is an assembly of specific APIs which permit

to combine several computing facilities to obtain required data,

such as ARToolKit, a specific toolkit for Augmented Reality,

which, from a captured frame, produces 3D coordinates of the

recognized markers.

ASUR-IL Entities are the other concepts that make up an

ASUR-IL model. They correspond to the digital concepts

involved during interaction and identified in ASUR as STool,

SObject or SInfo. They are triplets of three ASUR-IL components

called Models, Views and Controls, inspired from the MVC

decomposition [7]. Controls are in charge of interpreting the

physical phenomena translating data from Adapters into

commands on Model parts. Models are the entry point to the

functional core. They are an abstraction of it, enabling the

dialog with the application core. Finally, Views are in charge of

the computation required to reflect the state of each digital

concept on each Adapter connected.

3.3 MIS Design Support

Figure 2 : Tools integration

ASUR has its own editor: GuideMe. It is a graphical editor

which can export diagrams as XML files. After its metamodel

was defined [3], a second version of the editor has been

developed using EMF to separate graphical editing from model

manipulation. As mentioned above, ASUR and ASUR-IL are

two models required at different steps of a MIS design process.

Other models could also be required such as task model for

requirements gathering or UML for functional core

specification. To support the integration of our two models and

further evolution, we adopt an MDE approach and choose to

instrument it with tools from the Eclipse Modeling Project

(EMP [5]). It enables the creation of dedicated tools for each

model with EMF, GMF, and others. Therefore each model can

be edited using the corresponding plug-ins in Eclipse (cf. Figure

2).

Thanks to these tools, the designer can manipulate the two

models easily. The main challenge is now to couple them by

model transformations to rapidly observe the consequences of

modifying the description of the interactive situation modeled

with ASUR on the software architecture described with ASUR-

IL. The next section presents the transformation between ASUR

and ASUR-IL and finally introduces the transformation

Eclipse

GuideMe Plugins

ASUR

EMF .codegen

 .edit

GMF .diagram

ASUR-IL

EMF .codegen

 .edit

GMF .diagram

ASUR2IL

ATL

WComp

between ASUR-IL and a software component model: WComp

[2].

4. DOMAIN TRANSFORMATIONS
In order to implement these transformations, the Atlas

Transformation Language (ATL) has been chosen. One of the

main reasons is that ATL is now fully integrated in the Eclipse

Modeling Project [5] and so ensures us a complete coherence

between the different tools. As the targeted platform embeds its

metamodel as code and thus using a Model-2-Model engine is

actually not possible, we also use a Model-2-Text engine: JET

Figure 3 : Specific transformations of MIS process

4.1 ASUR 2 ASUR-IL: Software Modeling

Initialization
The goal of this transformation is to prepare the construction of

a component-based architecture. ASUR identifies several digital

concepts considering their roles in the interaction: this is the left

hand side of the transformation. On the right hand side, ASUR-

IL is in charge of describing the different kinds of components

involved in the interactive part of the system, with adequate

ports and data flows between them. Major rules were already

defined, but not formalized. The goal was to convert them into

ATL rules.

Each ATL rule follows roughly the same behavior. By

identifying the type of each ASUR component plus the

relationships between them, specific matched rules are

involved. It consists, for example, in creating for each ASUR

adapter, an ASUR-IL adapter (Figure 3 - 1) containing one

default device, and a default API. Each rule contains imperative

code used to interconnect components (Figure 3 - 3) and to

factorize common processes. For example, when ASUR digital

components are transposed in ASUR-IL (Figure 3 - 2), they

trigger the creation of multiple Views and Controls, after

Models have been created.

This transformation is the starting point of the software

architecture design. From the characterisation of a mixed

interactive situation with ASUR, it produces the base of the

software architecture. It offers to rapidly design the structure of

a concrete system before starting its implementation. This

combination enables now to easily support the designers during

the crucial phase linking abstract UI design and software UI

specification. Following the transformation, designers can

extend the specification by additional design decisions before

the next step which is to define a component-based model of the

system.

4.2 ASUR-IL 2 WComp: Platform Specific

Model Definition
Assuming, that during ASUR-IL edition the designers carefully

identified each component of the system, they now must be

transposed on the platform model. The currently chosen

platform is WComp [2] which is dedicated to rapid prototyping

of wearable and ubiquitous interactive systems. Considering

these goals, this platform allows the creation of assemblies of

components with a small granularity and the runtime adaptation

to the platform context (i.e. low battery level, devices

disconnected, etc.). Its flexibility and its simplicity are the

major points to use it.

The definition of this transformation is an on-going work using

ATL and JET. It will make the bridge between our PIM

(ASUR-IL) and a PSM (an assembly of WComp components),

with two goals:

� to create a component by describing the data manipulated

and the interfaces associated (Figure 3 - 4), or to identify

a component in a repository (Figure 3 - 6) of already

defined components from older projects or standard APIs,

� to manage the assembly of components (Figure 3 - 5) i.e.

establishing the connections between each components in

accordance with the ASUR-IL model.

Once this transformation is realized, it will be possible to offer

designers a range of tools from interaction design to

implementation. It will help to rapidly experiment with

designed interactive situations from the ASUR results to the

WComp assembly of components dedicated to MIS. To

illustrate the kind of process it will create, we next describe our

tools on a particular case study.

5. TUI FOR MUSEUM EXHIBITIONS
The goal is to design innovative interactive situations in the

context of museum exhibitions. Our work is to design solutions

promoting knowledge transmission and entertainment in a

science museum for particular themes: in this case the species

evolution. By using this approach, we can rapidly experiment

advanced interaction and adapt them to other themes by reusing

components.

Figure 4 : ASUR model for evolution-tree construction

The current project aims at proposing to visitors to discover

species evolution by elaborating an evolution tree based on

phylogenetic criteria. Adopting MIS in that context offer the

opportunities to manipulate physical objects and to enlarge the

experience by digital rendering (video, 3D, sound, etc.). To

elaborate the evolution tree, the user manipulates physical

representation of species (a frog, a crocodile, etc.) to add them

to the tree which is rendered by video on the interactive space

with related phylogenetic criteria. The first solution (Figure 4)

uses marker-based detection to capture tangible objects

(species) and video projection to report the data.

ASUR
model

ASUR-ILmodel

SObjects

Adapters
Adapters :

APIs + Devices

Entities :
M + V + C

WComp
configuration

Components

Repository

Components

Components

Assembly

(1)

(2)

(3)

(4)

(5)

(6)

Figure 5: Asur2IL transformation result

Figure 5 shows the ASUR-IL model resulting from the asur2il

transformation. The designer can now extend the model: Figure

6 shows an insertion of another camera to modify the marker

detection and a specification of the rendering APIs.

Figure 6: ASUR-IL model extended

To illustrate the dependencies between the two models, we can

focus on the case the museum visitors wish to see the evolution

tree. It results (Figure 7) by the insertion of an AOut in the ASUR

model and in the ASUR-IL model (only one view is used

because the same interaction modality is used).

Figure 7: Models evolution

6. CONCLUSION AND FUTURE WORKS
This work is a step toward the definition and instrumentation of

a design process for Mixed Interactive Systems. This process

will permit to increment on the designed solution until

obtaining a convenient degree of usability. The advances

presented here, ASUR-IL model and related transformations,

offer to rapidly navigate between the abstract design of

innovative interaction techniques and their concrete realizations.

The Domain Specific Language developed is an efficient tool

for promoting the characteristics issued from the user-centered

design, into the crucial phase of implementation. As this

approach uses models as primary artifacts, thanks to the MDE

tools, each level of abstraction defined in the development

process embeds properties standing for the usability of the

interactive system.

ASUR model defines some properties related to the quality of

the interaction between a user and a mixed environment. Our

goal is to plainly integrate them among the entire process, to

finally evaluate their evolution during each cycle of the process.

Further work will aim at identifying additional properties,

relevant at the software design level (ASUR-IL) such as

computing time or hardware constraints, and structuring their

impacts on the remaining design steps of our process. It will

increase the ability to evaluate the quality of each interactive

situation.

Another perspective is to study the feasibility of reverse

transformations between each step and their impact on the

higher levels of abstraction. In Figure 7, what would be the

impacts of applying a reverse transformation from the modified

ASUR-IL model to the ASUR model?

Finally, we focus here on specific models for MIS. To make

possible the development of concrete systems, others aspects

must be included: collaboration with business models for the

connection with the functional core, interactive modalities

ontology to support the choice of specific devices and APIs. In

this way, we planned to describe, in ASUR-IL, the behaviour of

the components using dialog models (State charts, Petri nets,

etc.).

As already mentioned, the MDE approach is very helpful to

articulate and transform models. However, it appears that

designing MIS may rely on a lot of models and maintaining the

coherence among all of them may be difficult. The management

of this combination of models and transformations need to be

investigated to better assess the usability of the MDE approach

for a MIS development process.

7. REFERENCES
[1] Bézivin, J., Jouault, F., Kurtev, I., Valduriez, P.: Model-

based DSL frameworks. 21st ACM SIGPLAN conference

on Object-oriented programming systems, languages, and

applications, Portland - USA (2006)

[2] Cheung, D.F.W., Tigli, J.Y., Lavirotte, S., Riveill, M.:

WComp: a Multi-Design Approach for Prototyping

Applications using Heterogeneous Resources. In

Proceedings of the 17th IEEE International Workshop on

Rapid System Prototyping, Chania - Crete (2006)

[3] Dupuy-Chessa, S., Dubois, E.: Requirements and Impacts

of Model Driven Engineering on Mixed Systems Design. In

Proceedings of the conference IDM'05, Sébastien Gérard,

Jean-Marie Favre, Pierre-Alain Muller et Xavier Blanc

(eds.), Paris - France (2005) 43-54

[4] Dubois, E., Gauffre, G., Bach, C., Salembier, P.:

Participatory Design Meets Mixed Reality Design Models.

In conference Proceedings of Computer Assisted Design of

User Interface (CADUI'06), Springer-Verlag, Information

Systems Series, Bucarest - Romania (2006) 71-84

[5] Eclipse modeling Project -

http://www.eclipse.org/modeling/

[6] Hampshire, A., Seichter, H., Grasset, R., Bilinghurst, M.:

Augmented Reality Authoring: Generic Context from

Programmer to Designer. In proceedings of the 20th

conference CHISIG of Australia, OZCHI’06, ACM Press,

Sydney – Australia (2006) 409-412

[7] Krasner, G.E., Pope, T.: A cookbook for using the Model-

View-Controller User Interface Paradigm in Smalltalk-80.

In the Journal of Object Oriented Programming, (1988)

26-49

