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Abstract
Sequential recommendation aims to model a user’s preferences by looking at the order of interactions
in a user’s history. The evaluation of such algorithms requires robust datasets with genuine sequential
information. In this work we analyze the timestamp information of several commonly used datasets
and show that reported timestamps are not indicative of meaningful sequential order. In the datasets
explored, significant numbers of users have interactions occurring at identical timestamps. The actual
order of these interactions is therefore unknowable; the interaction history is pseudo-sequential. We
find that randomly shuffling the order of interactions has minimal impact on the performance of a
leading sequential recommender. Particular attention is paid to MovieLens because of its frequency of
use in the field of sequential recommendation. Our findings motivate the necessity for new datasets
with more meaningful ordering for the evaluation of sequential recommenders.
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1. Introduction

The ubiquity of and necessity for recommendation systems has given rise to an explosion of
research in the field. Recommendation algorithms are studied and implemented for use in
domains spanning media, e-commerce, social networks and more. The landscape of recom-
mendation research consists of a plethora of techniques, most of which attempt to model the
interactions between users and items in order to predict the items with which a user is most
likely to interact. Sequential recommendation, an increasingly popular trend in the field, works
by taking into account not only the users’ interaction history but the order of those interactions
as well. The goal of a sequential recommender is to utilize and exploit sequential patterns in
historical user behavior [1, 2, 3, 4].

As with any burgeoning field, the ability to accurately benchmark and compare results across
various datasets, models, and metrics is essential. Benchmarking the relative performance of
various recommendation algorithms on publicly available datasets is a core part of the research
and development of such systems. It is therefore of utmost importance to ensure the validity
of various benchmark datasets for accurately conducting research. Throughout the machine
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learning community emphasis is being increasingly placed on verifying all aspects of the datasets
used to benchmark models. Recent work on biases in image datasets [5, 6], language datasets
[7, 8], and the models trained on them focus primarily on the ethical and societal impacts of these
biases and how their presence and lack of mitigation can affect the wider world. Others have
looked at the frequency of label errors in various commonly used datasets spanning multiple
domains [9]. Misunderstanding and misuse of input data can lead to erroneous conclusions that
become tainted seeds for subsequent works. One such example, brought to attention by Li et al.
[10], shows how experimental procedure can imbue datasets with non-signal correlations that
models will pick up on and utilize. In an analogous manner, our work analyzes time-sequence
data in various recommendation datasets and calls into question their validity for assessing the
performance of sequential recommendation algorithms.

There are two main approaches to assessing the performance of a recommendation system,
online and offline tests. In the case of online testing, researchers are able to assess the perfor-
mance of two or more systems by using those systems to provide recommendation for different
user segments [11]. Often, researchers do not have access to online tests for recommendation
and thus have to rely on offline tests [12]. A core assumption for offline tests is that the dataset
on which they are conducted accurately reflects a real-world recommendation scenario, and if
not, the differences are established and understood.

In this work, we begin by exploring the timestamp information in several popular datasets
used for evaluating sequential recommendation algorithms. We find that for some of these
datasets the mere presence of timestamp information is not indicative of task relevant sequential
information. We discuss the construction of the datasets and explore issues therein. Additionally,
we show the impact of these issues by conducting experiments with a popular sequential
recommendation algorithm. Our findings call into question the validity of using these datasets
for the evaluation of sequential recommenders.

2. Related Work

2.1. Sequential Recommendation

The task of sequential recommendation is to provide relevant items to users by using the users’
historical interaction data and exploiting patterns between subsequent items. There has been
much work done in this area which we briefly summarize below1.

2.1.1. Baselines and Earlier Models

Simple baselines are often used to compare against more sophisticated methods. One frequently
used baseline is to rank items by their popularity and provide these as recommendations for
each user. Another simple yet performant baseline is to use ItemKNN, a K-Nearest Neighbors
approach on the items [15].

One particularly successful class of approaches has been to explore historical sequences using
K-th order Markov models to model stochastic transitions between items by utilizing sequential
patterns [16]. Rendle et al. [3] have combined Markov Chains (MC) with Matrix Factorization

1We refer to Quadrana et al. [13] and Campos et al. [14] for deeper studies on the subject.
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in their work Factorized Personalized Markov Chains which, although promising, struggles to
deal with sparsity issues. As an attempt to address this problems He and McAuley [4] introduce
Fossil, a model that fuses item similarity models with Markov Chain models.

2.1.2. Recurrent Models

Another class of approaches use Recurrent Neural Networks (RNNs) and their extensions to
tackle the problem of sequential recommendation. Hidasi et al. [17] use an RNN architecture for
session recommendation. Quadrana et al. [18]. extend this work by incorporating user interests
via Gated Recurrent Unit (GRU) layer across user sessions. Zhu et al. [19] use a time interval
aware Long Short-Term Memory (LSTM) model in an attempt to better capture both long and
short term interactions in a users history. A key drawback of these models is that they require
large amounts of dense data to perform well.

2.1.3. Attentional Models

With the success of attentional methods and transformers in multiple domains with sequential
information, it is only natural that they would be applied to the problem of recommendation.
Kang and McAuley [1] present SASRec, a self-attention model that is able to capture both long
term semantics and provide recommendations based on a few salient actions. The success of
this model has prompted many children and extensions. One such extension, BERT4Rec, has
been developed by Sun et al. [2]. Inspired by the popular language model BERT, BERT4Rec uses
bi-directional self attention to better model users’ behavior sequences and deal with potentially
noisy input sequences [20]. Ying et al. [21] introduce a 2-level hierarchical attention network in
an attempt to better capture long and short term interests of users.

2.2. Evaluation and Benchmarking

The lack of effective benchmarks for evaluation of recommendation algorithms is a critical issue
facing the community. Although there have been recent dedicated works dissecting vision,
language and audio datasets [9] and the effect of errors therein on benchmark validity, the
field of recommendation still lags behind in this area. Conference tracks are being dedicated to
datasets and benchmarks23, and efforts are being made to properly review and badge artifacts
[22]. Various attempts to standardize dataset versioning have been proposed [23, 24, 25] but
have yet to be widely adopted.

Evaluating recommendation algorithms is difficult [26], and despite many attempts to stan-
dardize frameworks [27, 28, 29, 30, 31] the field as a whole still lacks the consistency desired.
Said and Bellogín [32] explore four aspects of recommendation contributions pertaining to their
reproducibility, the dataset, the evaluation framework, data details, and algorithmic details.
Within this structure, our work focuses primarily on the dataset and data details aspects.

A recent and vitally important publication by Rendle et al. [26] shows how several baselines
can be tuned to outperform reported results, thereby calling into question many results from the

2https://neurips.cc/Conferences/2021/CallForDatasetsBenchmarks
3https://recsys.acm.org/recsys21/perspectives/
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previous years. Sun et al. [29] provides an extensive look at many prominent recommendation
contributions. As shown in their Figure 1B, MovieLens-1M is the most frequently used dataset
for evaluating recommendation algorithms, appearing in just over 30% of the 85 papers studied.
The other MovieLens datasets explored (100K, 10M, and 20M) appear less frequently but all are
in the top 15 datasets by popularity. In Figure 5A of [29], results are shown on baseline models
using the MovieLens dataset split randomly or split by timestamp. The authors claim that the
time-aware split better simulates the real recommendation scenario, which may be true if the
timestamps represent a realistic interaction sequence.

Gruson et al. [12] discuss the challenges of offline recommendation evaluation and specifically
point out that some datasets include biases introduced in their construction, whether through
the user interface, internal recommendation algorithm or otherwise. Ji et al. [33] raise concerns
with offline evaluations on datasets which ignore the global timeline of interaction sequences in
the data. When datasets are collected over many years some items may not be available for the
entire duration of the data collection, thereby introducing biases that should be accounted for
in evaluation. In a similar vein, our work takes a deeper look at the local timestamp information
present in some leading recommendation datasets.

3. Datasets

Offline evaluation of recommendation systems requires robust datasets that are applicable to
the task under consideration. For sequential recommendation this means that datasets should
contain genuine order information that serves as a close proxy to the real world scenario
being simulated. Our primary focus in this work is on the timestamp information that most
recommendation datasets include and is often used to infer the order of interactions.

The timestamps for the datasets we explore are provided either as a date format or in Unix
time. When presented Unix time, meaningful relations are obscured as the scale between
timestamps is less apparent to a visual inspection. To understand the nature of timestamps in
the field we explore six established recommendation datasets:

• MovieLens 1M and 25M : Our primary focus and one of the most widely used datasets
for benchmarking recommendation performance. We explore both the ML-1M and ML-
25M versions [34]. In these datasets the interactions represent a user rating a movie and
the timestamps indicate when the rating was submitted to the nearest second.

• Amazon Beauty: A dataset with reviews of beauty products from Amazon.com intro-
duced in [35]. The interactions are reviews of the products and the timestamps represent
the date of review.

• Amazon Video Games 2014 and 2018 : Datasets of video game products reviews. As
both were available we look at the 2014 version introduced in McAuley et al. [35] and
2018 version introduced in Ni et al. [36]. As with Amazon Beauty, the interactions in this
dataset represent a user reviewing an item and the timestamp is the date of the review.

• Steam: Introduced in Kang and McAuley [1], this dataset captures interactions between
users and video games on Steam. The interactions are reviews of the video games, and
the timestamps are the date of the review.

4
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Table 1
Dataset statistics after pre-processing steps.

Avg. Interactions Avg. Interactions
Dataset Users Items Per User Per Item Interactions

Amazon Beauty 2014 22,363 12,101 8.9 16.4 0.2M
Amazon Video Games 2014 24,303 10,672 9.5 21.7 0.23M
Amazon Video Games 2018 50,688 16,898 9.0 26.9 0.45M
Steam 281,455 11,961 12.6 297 3.5M
MovieLens-1M 6,040 3,416 165.5 292.6 1.0M
MovieLens-25M 162,541 32,720 153.5 762.4 24.9M

For all datasets we apply the same pre-processing steps as detailed in Kang and McAuley [1]
and Sun et al. [2] wherein we remove duplicate interactions and keep only users and items with
at least 5 interactions. All datasets include timestamp data, and all datasets have a maximum
resolution of days except for the two MovieLens datasets whose maximum resolution is at the
level of seconds.

As seen in Table 1, ML-1M is the most dense of the datasets explored with the three Amazon
datasets being the most sparse. ML-1M also has much longer interaction histories on average.
This makes it of particular interest to researchers looking to explore longer range dynamics in
user sequences for recommendation. However, as we show in the following sections, the use of
MovieLens is especially problematic for evaluating sequentially driven methods.

3.1. Timestamps
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Figure 1: The percentage of users in each dataset whose interactions happened on 𝑥 unique days.

In all datasets, each user history exists as a timestamp-ordered sequence of interactions with
items. In this and the following sections we show that although the datasets include timestamps,
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this does necessarily mean that these timestamps convey interaction order.
One way to clearly see the lack of true ordering in the ML-1M dataset is to look at the number

of interactions for each user that happen at unique timestamps. Figure 1 shows the difference
between the MovieLens datasets and others when viewed via the lens of interactions on unique
days. For both MovieLens datasets the vast majority of users (59% and 56.4% for ML-1M
and 25M respectively) have all their interactions occuring on a single date. When taken in
conjunction with an average sequence length of over 150, these facts make it clear that the
MovieLens datasets are not representative of a realistic sequence of movie watching. Steam is
the only dataset with no users whose interactions are all on one day, and although there are
single-day interaction sequences in the other datatsets, these users represent a much smaller
percentage of the total users than they do in the MovieLens datasets.

The timestamp information in the MovieLens datasets is at the level of seconds, not days.
Naturally then, it may be the case that although all interactions for a user occur on one or
two days their ordering still provides some estimate of a genuine interaction history. Ideally,
all users would have fully distinct interaction histories and therefore discernible order would
exist between the interactions. However, this is not the case in MovieLens datasets with 0
second intervals accounting for 53.2% of timestamp intervals in ML-1M (17.4% in ML-25M).
Further details are provided in Appendices A.1 & A.2. This further highlights the importance of
dataset inspection and special care with regards to the application of timestamps for ordering
in recommendation.

3.2. Intervals

In order to better understand the sequences in these datasets we look at each user’s sequence of
𝑛 interactions as a list of 𝑛− 1 consecutive intervals. For example if a user interacted with item
A on 2018-01-02 and item B on 2018-01-03 the interval would be one day. Some key statistics of
this interval information are presented in Table 2. The mean-mode interval is the dataset-mean
user-mode interval in days or seconds. The mode-mode interval statistic is the dataset-mode
user-mode interval in days or seconds. We define the unique interaction ratio for a dataset as
the number of interactions at distinct timestamps divided by the total number of interactions
for each user averaged over the dataset. Of key importance is that if two interactions have an
interval of zero, then the order in which those interactions occurred is unknowable.

Table 2
Interval statistics

Dataset Mean-Mode Mode-Mode Unique Interaction
Interval (Days/Seconds) Interval (Days/Seconds) Ratio (Days/Seconds)

Beauty 2014 4 0 0.61
Video 2014 9 0 0.69
Video 2018 7.8 0 0.6
Steam 14.7 0 0.86
ML-1M ~0 / 0.05 0 / 0 0.03 / 0.48
ML-25M ~0 / 3.24 0 / 0 0.04 / 0.8
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As can be seen in Table 2, the mean-mode day-interval for ML-1M is nearly 0 over both days
and seconds. This means that on average, users’ interaction sequences contain more interactions
happening at the same second as another interaction in the same user’s sequence than not.
Therefore the order of items in such a sequence is ill-posed and, given the time-scale under
consideration, divorced from a realistic viewing pattern. Also of note is that for all datasets
the mode-mode interval is 0 days or seconds. The significant amount of indistinct regions of
interactions implied by this value means that interaction orders derived from all these datasets
are contaminated with some amount of noise.

Figure 2 visualizes the percentage of intervals for each dataset that are of zero days in length.
While all datasets have large amounts of zero-day intervals, ranging from 19.4% for Steam to
98.5% for ML-1M, the MovieLens datasets stand out as severely divergent from a real-world
scenario. These distributions of timestamps do not reflect a natural interaction behavior where,
for example, a person is unlikely to watch more than two or three movies in a single day. In
fact the 59% of users in the ML-1M dataset whose entire interaction sequence is on a single
day have a median sequence length of 62 interactions.

A large percentage of interactions in MovieLens share timestamps with ‘adjacent’ interactions.
This behavior is problematic when using the ordering of these interactions as input information
for modelling. Given these overlaps, the ordering only partly exists, and in the case of ML-1M
mostly does not. See Appendix A.1 for further analysis.

98.5%

1.47%

96% 80.6%

19.4%

65.4%

34.6%
54.2%45.8% 56.1%
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All Other Intervals 0 Days
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Figure 2: Percentage of intervals between consecutive interactions of length 0 days.

The data presented in Table 2 and Figure 2 raise interesting questions for the validity of these
datasets as offline proxies for genuine sequential interaction data. By presenting Figures 1 and 2
as well as Table 2 we hope to convey that although the timestamp information in the MovieLens
datasets is particularly problematic, the other datasets all suffer from the same affliction to
lesser and varying degrees. We propose that the above analysis or something analogous to it
becomes standard procedure for datasets when they are being used for evaluation sequential
recommenders.
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3.3. MovieLens for Sequential Recommendation

The MovieLens datasets are well established for evaluating recommendation engines [37, 38]
and continue to be used by many of the leading models as one of the benchmarks for sequential
recommendation [39, 1, 2, 40, 41, 42]. While the MovieLens datasets are incredibly valuable
for assessing general recommendation algorithms, we find that they are not good datasets for
assessing the performance of sequential recommendation. In fact, the originators of the datasets
raise evidentiary concerns regarding the value of timestamps in their 2015 paper [34].

An argument could be made that although the ordered interaction data present in the dataset
does not closely represent a real-world scenario, the sequences nonetheless do represent some
estimate of order of interest. This is, however, in conflict with our findings that over 50% of
interactions in user sequences from ML-1M have an equal timestamp as another interaction in the
same user sequence. For ML-25M this percentage is 17.4%, showing that despite improvements
to MovieLens, regions of ambiguous order still exist in a meaningful portion of the dataset.

It may be true that some user interactions that share timestamps were added to the dataset in
such a way that the order of interaction was preserved. Following this, it may seem reasonable
to infer that they present a valid source of order. However, if we sort the datasets by timestamp,
as is often done during pre-processing, we are left to the whims of the sorting algorithm and how
it decides to order the equal valued entries. This allows for the situation of two researchers using
the same dataset to have different interaction orders for the same users. This problem could be
remedied by an unambiguous ’interaction order’ field included along side the timestamps at
construction.

An additional factor mentioned by Harper and Konstan [34] is that the movies rated by users
in the MovieLens datasets are often prompted by an internal recommendation engine. This
means that the items users are served to rate depend on the items the user has previously
rated. For the larger MovieLens datasets (10M, 20M and 25M) the interface and underlying
recommendation engine have changed over the course of the dataset collection [34]. The
presence of an internal recommendation engine introduces an implicit signal into a user’s
interaction sequence since it controls the scope of which items a user is served for rating at any
given position in the sequence.

The examination of the datasets throughout this section points towards several issues with
their applicability as evaluation benchmarks for sequential recommendation. In the following
section we perform a set of experiments aimed to explore the breadth of impact of these
pseudo-sequences on a sequential recommender model.

4. Experiments

We aim to explore the impact that the pervasive ordering pathologies of several common rec-
ommendation datasets have, if any, on sequential recommendation performance. Specifically,
the goals of our experiments are to answer the following research questions: Given the ques-
tionable timestamp informed sequences in the datasets, how much impact does shuffling this
information have on performance? Does the explicit construction by internal recommendation
for MovieLens introduce a signal that sequential recommenders inadvertently exploit? If we
adapt the experimental design to control for the conflated signal in MovieLens, what impact

8
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does shuffling the data have on performance?

4.1. Implementation Details

We choose to use SASRec as the basis for our experiments because it is an established model
with a left to right architecture whose training paradigm predicts the next item for each position
in the sequence. We re-implement SASRec from the ground up in Tensorflow 2. For all datasets
used we pull fresh copies from the sources4. We omit ML-25M from our experiments due
to computational and time constraints, and leave this for future work. We adopt the same
hyperparameters for each dataset as in Kang and McAuley [1].

Following the lead of Kang and McAuley [1], the metrics evaluated are Hit Rate (HR) and
Normalized Discounted Cumulative Gain (NDCG) [43] at 10. Evaluation is done by taking 100
items from the dataset that the user did not interact with and calculating relevance scores for
these items. The relevance score for the held out item, either belonging to the validation or test
set, is then compared to and ranked with the negative items. These metrics assume that the
user has equal opportunity to pick any item in the dataset to interact with next. The MovieLens
rating interface and internal recommendation engine explicitly invalidates this assumption.

4.2. Shuffled vs. Unshuffled

Our first experiment aims to determine the impact of explicitly randomizing the order of the
training items for each user. We follow the training paradigm in Kang and McAuley [1]. The
input for each user is the last 𝑁 items in their history, where the second to last item is held
out for validation and the last item is held out for test evaluation. To avoid biases from random
seed selection, we perform twenty total runs for each dataset, ten shuffled and ten unshuffled
with both sets sharing the same ten random seeds. In the shuffled cases we randomly re-order
the users interaction history but keep the last two items untouched (for validation and test).

In Table 3 we report the results of our experiments as well as the reported results from
Kang and McAuley [1]. Although all differences between shuffled and unshuffled results are
statistically significant (except in the case of Steam where shuffling had no effect on performance)
the differences are not qualitatively substantial outside of ML-1M where the ranges of shuffled
and unshuffled are non-overlapping (and Beauty, though there the difference favors shuffled
and will be explored briefly later). From a replication stand point our unshuffled results align
well with the SASRec reported scores5. The focus of our subsequent analysis is on the difference
in performance between the shuffled and unshuffled cases. The largest such difference on
both HR@10 and NDCG@10 occurs for ML-1M. We propose that this difference is caused
by the shuffling process destroying most of the detectable signal provided by the internal
recommendation engine introduced by the MovieLens dataset construction.

Notably, shuffling has little effect on the performance of the other datasets. One factor that
may explain how robust SASRec is to shuffling of the input sequences is that recommendations
are made by looking at few items in the history due to the attentional mechanism [1]. Whether
this robustness to input-sequence shuffling is a general property of sequential recommenders or

4We will provide all model and data cleaning code upon publication.
5There is a noticeable variation on the Steam dataset. We suspect this is due to differences in pre-processing.
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Table 3
Mean scores over ten random initializations. All runs use the same parameters as in [1] and were ran
for 200 epochs.

Dataset Metric SASRec Unshuffled Shuffled Delta Percentage

ML-1M HR@10 0.825 0.814 0.681 -0.133 -16.3%
NDCG@10 0.591 0.583 0.408 -0.175 -30.0%

Video Games 2014 HR@10 0.741 0.729 0.715 -0.014 -2.0%
NDCG@10 0.536 0.506 0.486 -0.020 -4.0%

Video Games 2018 HR@10 - 0.710 0.705 -0.005 -0.7%
NDCG@10 - 0.494 0.482 -0.012 -2.5%

Steam HR@10 0.873 0.836 0.839 0.003 0.4%
NDCG@10 0.631 0.587 0.586 -0.001 -0.2%

Beauty HR@10 0.485 0.484 0.508 0.024 5.0%
NDCG@10 0.322 0.325 0.332 0.007 2.0%

is specific to attention based sequential recommenders exclusively is an interesting question and
one we leave for future work. Another factor may be in the dataset construction itself, given
that the other datasets come from processes that better proxy a realistic interaction scenario
than MovieLens.

Although small, the difference in NDCG@10 for Video 2014, Video 2018 and Beauty are all
statistically significant. While shuffling negatively impacts the performance for the two Video
datasets, interestingly, shuffling seems to improve the performance on Beauty. Statistically,
Beauty is not too dissimilar to Video 2018 as shown in Section 3. We propose that the difference
in response to shuffling may be due to domain specific differences in how users interact with
items. Analysis of the loss characteristics for these runs suggest that shuffling the Beauty dataset
improves generalization of the model. Learning is slower but eventually crosses the plateau
reached by the model on the unshuffled data.

4.3. Rating Prediction Experiments

For this experiment we modify SASRec to predict the ratings of the held-out items rather than
predicting the items themselves. Our goal is to remove the impact of the internal recommenda-
tion engine in ML-1M by limiting the scope of the model to only items that users interacted
with. This separation of ratings from item identification allows for a more fair comparison
between the shuffled and unshuffed cases. That is, by asking the model to rate items rather
than suggest items, we remove the benefit of being able to predict which items the internal
recommendation engine would have suggested.6 We modify the loss function of SASRec to
have two parts, one mean squared error component that penalizes distance from the true rating
for predictions and one cross-entropy component that penalizes wrong labels.

Table 4 show the results of shuffled and unshuffled runs on ML-1M for the rating prediction

6It has been noted that rating prediction is a poor measure for recommendation algorithm evaluation [44]. We
nonetheless find it useful for teasing apart our confounded data-sequence.
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Table 4
Results of the rating prediction experiment. Delta is this difference between shuffled and unshuffled.
The relative performance drop reframes delta as a percentage of the unshuffled score for a given metric.

Relative
Holdout N Metric Unshuffled Shuffled Delta Performance Drop

3 Accuracy 0.416 0.411 0.005 -1.2%
RMSE 1.156 1.168 -0.012 -1%

1 Accuracy 0.421 0.412 0.009 -2.1%
RMSE 1.141 1.167 -0.026 -2.3%

version of SASRec. We present accuracy and root mean squared error (RMSE) for two values
of holdout N, this value represents the number of items held out for test and validation. By
changing the evaluation method to one that does not depend on scores for items with which the
user did not interact we are able to close the performance gap considerably, from tens of percent
to single digits. These results provide further evidence that the difference in performance on the
ML-1M dataset between shuffled and unshuffled shown in Section 4.2 is due to a sequential bias
that constrains the possibility space of items that can appear later in a user’s sequence. That
being the case, this suggests that a model’s ability to utilize the order information in ML-1M
does not translate beyond the dataset and thus ML-1M is an especially poor benchmark for
sequential recommenders in general.

5. Discussion

We have shown that the MovieLens datasets, while important contributions and useful bench-
marks for recommendation in general, are inappropriate for use in the subfield of sequential
recommendation. Of note is that, while the presence of a sequential signal to the data implies
that MovieLens is an effective benchmark for sequential pattern recognition, the detachment
of that signal from real-world watch habits makes it unsuitable as a benchmark for sequential
recommendation specifically. That is, any pattern embedded into a sequence of data would
make a valid test case for sequential pattern recognition, but recommendation, while related,
has different constraints and more specific goals. Facts pertaining to these issues were acknowl-
edged in the original release of the datasets, but seem to be often overlooked and/or forgotten
in the field. We performed a rigorous analysis on two of the MovieLens datasets and compared
them to other benchmark datasets to further elucidate the inherent issues therein. Though
the MovieLens datasets clearly stood-out, the other datasets all contain significant amounts of
ratings with indistinct timestamps for users as well, suggesting that ordering issues may be
generally pervasive across benchmarks in the field.

To directly examine the impact of ordering information in these datasets for sequential
recommendation we conducted the following two experiments. The first explicitly destroyed
any sequential information in the datasets by randomly shuffling the training sequence. The
difference between shuffled and unshuffled was found to be small in most cases with the notable
exception being ML-1M. Shuffling caused a large drop in performance for ML-1M, which we
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propose is a symptom of the dataset’s construction, namely the contribution to a sequential
signal introduced by the internal recommendation engine. Our second experiment aimed to
remove the impact from this internal recommendation system by attempting to predict the rating
given by users for items they interacted with. We showed that doing this greatly reduced the
performance gap between shuffled and unshuffled, providing further evidence that a large chunk
of the performance of SASRec on ML-1M comes from modelling the internal recommendation
engine of the MovieLens system and not genuine sequential information.

Assessing the value of offline testing requires a precise understanding of the differences
between benchmarks and the real-world scenarios we aim to emulate. What constitutes a
true sequence looks different depending on the domain. For example, you may purchase
multiple beauty items at the same time but you are unlikely to watch more than one movie at
once. Furthermore, when the timestamp and ordering information is distanced from a natural
interaction sequence, the ability of sequential recommendation models to generalize is called
into question. Our evaluation does not speak to the performance of such algorithms, rather
that the true performance may be obscured by a lack of appropriate datasets.

6. Conclusion

Our work highlights the importance of further scrutiny for dataset creation methodologies when
using those datasets as benchmarks for tasks beyond their initial scope. Specifically, we find
there is a necessity for further exploration and creation of new datasets for evaluating sequential
recommendation, with special attention paid to temporal tagging and order information.
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A. Appendices - Additional Figures

A.1. Indistinct Sequences

Figure A.1 (a) shows that the user sequences in ML-1M are particularly contaminated with large
regions of indistinct interactions. These regions represent areas where the actual interaction
order is unknowable, and thus unusable by sequential recommenders. While less pronounced,
this issue persists for ML-25M.

A.2. Per Second Data

The timestamps associated with interactions in the MovieLens datasets are distinct to the level
of seconds. Figure A.2 shows both the percentages of zero second intervals in the ML-1M (a) and
ML-25M (b) datasets as well as the cumulative percentage of users plotted against the number
of interactions with unique timestamps. Figure A.2 (c) shows that over two-thirds of the users
in both datatsets have interaction histories containing less than 100 unique timestamps. Only
2 of the 6040 users in ML-1M have all their interactions at distinct timestamps. The average
interaction history contains 165.5 and 153.5 interactions for ML-1M and ML-25M respectively.

A.3. Shuffled Experiment Visualization

Figure A.3 shows the performance difference between shuffled and unshuffled runs. Figure
A.3 (a) shows a significantly larger difference than the others, illustrating presence of a strong
sequential signal in ML-1M.
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Figure A.1: The last 20 interactions for 10 randomly selected users for each of the six datasets. Each
row represents a single user’s last 20 interactions and each box represents a single interaction. All
interactions with a unique timestamp are presented in blue. Interactions that share a timestamp with
a neighboring interaction are colored one of two shades of grey. We use the two shades to separate
neighboring chunks of same-timestamp interactions. Uncolored sections represent users with fewer
than 20 total interactions.
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and maximum values. Red points and box-plots are shuffled results and blue represent unshuffled.
Though overlapping, only the difference between shuffled and unshuffled for Steam is not statistically
significant.
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