
Markups for Knowledge Wikis

Joachim Baumeister, Jochen Reutelshoefer, Frank Puppe
Institute of Computer Science

University of Würzburg
Würzburg, Germany

baumeister/reutelshoefer/puppe@informatik.uni-wuerzburg.de

ABSTRACT
Knowledge wikis extend normal wikis by the representation
of explicit knowledge. In contrast to semantic wikis the
defined knowledge is mainly used for knowledge–intensive
tasks like collaborative recommendation and classification.
In this paper, we introduce a prototype implementation of
a knowledge wiki, and we discuss appropriate markups for
problem–solving knowledge to be used in knowledge wikis.
The main aspect of the proposed markups is their simplicity
and compactness, since it is aimed that these markups are
used by normal wiki users. Case studies report on practical
experiences we have made with the development of various
knowledge wikis.

Categories and Subject Descriptors
H.4 [Information Systems Applications]: Miscellaneous

1. INTRODUCTION
Many successful examples have shown that wiki systems
are a reasonable basis for building information systems in
a collaborative way, i.e., the creation and evolution of the
content is accomplished by the community itself. In gen-
eral, wiki systems [6] are web-based content–management
systems that allow for the simple construction of new con-
tent and the evolution of existing content, i.e., mostly text,
figures and pictures. Here, the content is viewed by a web
browser, but is also changed by editing the particular wiki
page in an edit pane. In order to simplify the interface for
the users, the formatting syntax is commonly less complex
than HTML. The arguably most prominent example of a
successful wiki system is the encyclopedia Wikipedia.

In this paper we focus on knowledge wikis to be used in the
context of classification systems, e.g., systems built for con-
sultation, selection, and recommendation tasks. Knowledge
wikis extend regular wikis by the possibility to create and
use explicit knowledge together with the classic wiki con-
tent. The creation and evolution of the knowledge is done
within the normal edit pane of the wiki, i.e., developers in-

sert and change problem–solving knowledge using a textual
knowledge markup. Examples for knowledge markup are
the definition of models, rules and the semantic annotation
of wiki text. The simplicity and the intuitive representation
of the markup is very important, since we address normal
but ”experienced users” to be the developers of the knowl-
edge wiki and not knowledge engineers that can be trained
thoroughly beforehand. In consequence, the markup should
support the formation of ”ad-hoc knowledge engineers”. The
formalized knowledge is also used through the wiki interface:
the user can enter findings into the wiki system and retrieves
appropriate recommendations as a solution for the given in-
put.

We describe different markups to be defined in knowledge
wikis to capture and maintain knowledge for the creation
of recommendation systems. As already emphasized before,
it is important to provide simple and intuitive markups in
order to enable standard users to adapt this representation.
All proposed markups have been implemented in the proto-
type system KnowWE (Knowledge Wiki Environment).

Wikis are an already proven technology that is well–adapted
by large communities, and therefore the approach of extend-
ing wikis by knowledge markup appears to be quite feasible.
Due to its open and immediate access to the knowledge a
wiki serves as a natural platform for knowledge communi-
ties. In consequence, we also expect a knowledge wiki to
be a suitable development tool for “closed communities” [2],
i.e., a community of interest with a particular goal that is
comparable to open–source software projects. Here, the re-
sulting software is actually used by a wide range of people,
but the development process itself is carried out by a smaller
(and often distributed) group of specialists. These develop-
ers have the access and the possibility to extend and modify
the system, since they are recognized by the rest of the com-
munity. For example, this clearly differs from systems like
Wikipedia that are mainly built for “open communities”.

The following is organized as follows: in Section 2 we give
a brief overview of the knowledge wiki KnowWE applica-
ble for recommendation tasks. Appropriate markups to be
used as explicit problem–solving knowledge are introduced
in Section 3. We discuss the possible integration of explicit
problem–solving knowledge and normal wiki text in Sec-
tion 4, and we provide case studies in Section 5. The paper
is concluded with a summary and outlook in Section 6.

(a)

(b)

(c)

Figure 1: The user interface of the knowledge wiki KnowWE: user inputs are provided by (a) in–place answers
or by (b) starting a structured interview; (c) currently derived solutions are displayed immediately.

2. KNOWWE – A KNOWLEDGE WIKI
The knowledge wiki KnowWE is an extension of the classic
wiki engine TWiki1 in order to support classification tasks in
a knowledge–based manner. For the classification task and
its corresponding problem–solving, respectively, we identify
two main ontological classes: user inputs represented by
questions to the user and solutions (recommendations) de-
rived by the system for a set of given inputs. We support
different types of user inputs, namely one–choice, multiple–
choice and numeric inputs. In the presented system the
reasoning engine d3web [1, 8] is integrated, which provides
a variety of problem–solving methods like heuristic scoring
rules, decision trees, set–covering models, and case–based
reasoning.

In this section, we briefly introduce the basic concepts of
KnowWE, i.e., the creation of new knowledge, the inte-
gration of explicit knowledge into the normal wiki context,
and the extensions of the wiki for a structured problem–
solving process. Throughout the sections we use an exem-
plary sport recommendation system, that tries to select ap-
propriate forms of sports as solutions for given user inputs
(i.e., the entered preferences).

In Figure 1 the standard interface of KnowWE is shown:
user inputs can be given by (a) inplace–answers of an anno-

1http://www.twiki.org

tated text or by (b) activating a knowledge–based interview
provided by a link. The right pane of the wiki displays cur-
rently derived recommendations for the given inputs (c).

2.1 Knowledge Creation
The acquisition and maintenance of knowledge in a knowl-
edge wiki is done within the edit pane, i.e., by entering and
changing text in a browser window. Since we propose an
extension of classic wikis the problem–solving knowledge
is managed together with the text contained in the nor-
mal wiki. Thus, the knowledge is embedded “in–text”, i.e.,
the textual representation of the actual knowledge is jointly
edited together with the textual content of a wiki page.

Figure 2 shows a screenshot of the edit pane of the wiki page
“Swimming” of a knowledge wiki for the consultation and
selection of a form of sport (see case study in Section 5 for
more details). Thereafter, explicit knowledge is added to the
normal wiki text surrounded by the special tag Kopic (for
knowledge topic). In the example, we see the textual defi-
nition of a set–covering model for the solution “Swimming
(occasional)”, i.e., the listing of typical preferences/findings
that would derive this solution as an appropriate recom-
mendation. Besides set–covering models the knowledge wiki
is able to process further types of knowledge like decision
trees and (heuristic scoring) rules. We describe the possible
knowledge representations in Section 3 in more detail.

Figure 2: Creating an article on “Swimming” with the definition of set–covering knowledge.

The user is supported by a help page describing the syntax
of the knowledge wiki extensions and by an auto completion
feature. The auto completion suggests findings and solu-
tions, that are defined in the current or other wiki pages,
and thus encourages the reuse of already known ontological
concepts. A syntax check gives verbose feedback in the case
of an incorrect use of definitions.

2.2 Knowledge Integration
The entered text and knowledge, respectively, is stored by
simply using the “Save” button, and usually the page is then
filed to the repository. KnowWE additionally extracts the
distinguished parts tagged by “Kopic” in order to compile
an executable knowledge base. The knowledge base is then
stored in the knowledge repository. Both, the repository
of wiki pages and the repository of knowledge bases, are
defining the knowledge wiki repository, which is depicted in
Figure 3.

Knowledge Wiki Repository

Knowledge Wiki Article
 - (annotated) wiki text
 - knowledge

save page
wiki article repository

knowledge base
repositoryextracted and

compiled
knowledge

Figure 3: Workflow for saving articles of the knowl-
edge wiki.

In the context of recommendation wikis we commonly define

one wiki page for one solution (or a coherent group of so-
lutions). The corresponding knowledge is captured on this
page within the tag “Kopic”. In consequence, we usually
get a large number of knowledge bases for the entire wiki.
These knowledge bases are loosely coupled by an alignment
process that automatically aligns user inputs with the same
name and type. The alignment process can be simplified
by limiting the allowed inputs to a pre–defined terminology.
Then, new knowledge bases to be inserted are bound to use
this fixed set of possible user inputs. In this case, the inputs
of the particular knowledge bases are trivially aligned to the
corresponding inputs pre-defined in the global ontology.

2.3 Knowledge Consumption
With knowledge consumption we basically consider the pro-
cess of (interactive) problem–solving when the defined knowl-
edge is used. In contrast, today’s problem–solving in the
web typically comprises the search of appropriate web sites
and browsing some of them in order to retrieve sufficient in-
formation for solving the actual problem. We call this pro-
cedure manual problem–solving. Common places for man-
ual problem–solving are knowledge clusters in the web: bul-
letin boards and wikis are prominent sources of collaborative
knowledge clusters, i.e., places where many people capture
and share their knowledge. Examples for wikis can be found
in various documentation projects of open–source software,
the encyclopedia Wikipedia and many enterprise wikis. In
knowledge wikis we try to enhance the manual problem–
solving process described above by knowledge–based tech-
niques: The wiki still provides the content to be read by
the user, but adds interactive elements and offers structured
dialogs to solve the problem in a more formalized way.

In such an interactive problem–solving session the user en-

ters findings into the knowledge wiki in order to derive ap-
propriate solutions. User inputs are collected by knowledge
services, that contain the corresponding knowledge base but
are also responsible for the data acquisition strategy. Inputs
from a particular knowledge service are propagated to a bro-
ker that aligns the respective inputs to globally known on-
tological concepts and subsequently stores the aligned con-
cepts in a central blackboard. In consequence, all further
knowledge services are notified of the newly aligned concepts
and their particular value is propagated to the correspond-
ing knowledge bases. Thus, an entered finding of a user is
not only given to the currently active knowledge base, but
also to all other knowledge bases in the wiki that share the
particular finding (see Section 2.2). Subsequently, reasoning
results of every registered knowledge base are again returned
to the blackboard for further broadcasting and interpreta-
tion.

Blackboard

Broker

Knowledge Service
[KS1]

Knowledge
Base 1

Knowledge Service
[KS2]

Knowledge
Base 2

Knowledge Service
[KSn]

Knowledge
Base n. . .

Alignments

inputs

solutions

aligned inputs aligned solutions

align

update

propagate
propagatepropagate

Figure 4: Blackboard architecture for the dis-
tributed problem–solving of the knowledge wiki
KnowWE.

Figure 4 depicts the communication paths during a dis-
tributed problem–solving session using a blackboard archi-
tecture with a simple broker for alignments. Within the
proposed knowledge wiki we distinguish two possible ways
for the acquisition of user inputs. We discuss them in more
detail in the following.

2.3.1 Structured Data Acquisition
The developer can add links to any wiki page that reference
to a structured questionnaire for a solving a problem in a
classic knowledge–based manner, e.g., Figure 1(b) displays
a standardized interview generated from a knowledge base.

In the example, the user clarifies the appropriateness of the
specific sports type by answering a couple of questions, e.g.,

the training goals of the user that should fit with the ques-
tioned form of sports.

Since the given user inputs are not only submitted to the
currently active knowledge base but also to all other rele-
vant knowledge bases contained in the wiki, further solu-
tions (e.g., forms of sport) are derived as possible solutions.
This possibility for generating differential solutions during
the clarification process enhances the problem–solving capa-
bilities of a knowledge wiki when compared to a traditional
wiki application.

2.3.2 In–Place Answers
Often, users are not comfortable with answering structured
questions but are more used to solve a specific problem by
browsing (mostly appropriate) texts, i.e., by manual problem–
solving. For this reason, knowledge wikis additionally of-
fer the possibility to make in–place answers, which allows
for a seamless acquisition of findings during the browsing
process. Here, tagged text phrases with a distinct seman-
tics provide pop–up menus to answer questions during the
browsing process. For example, in Figure 1 the click on the
text phrase “endurance” activates a pop–up asking for the
“Training Goals” of the user, where “endurance” is a pos-
sible answer. As the structured problem–solving approach
described above, the entered findings are also given to the
problem–solving engine in order to derive suitable solutions.
In summary, in–place answers provide a technique for the
smooth integration of unstructured browsing and structured
problem–solving.

In this section, we briefly described the main ideas of the
knowledge wiki KnowWE that supports knowledge–based
recommendation tasks in a collaborative way. In the follow-
ing section, we introduce a selection of knowledge markups
of KnowWE in more detail.

3. KNOWLEDGE MARKUPS FOR WIKIS
Knowledge markups are textual representations of “knowl-
edge” in arbitrary forms. In this paper, we propose textual
representations for different types of knowledge representa-
tions, that can be easily embedded into the normal wiki text.
Here, the syntax of the knowledge markup should be as sim-
ple as possible in order to allow for an intuitive creation and
evolution of the knowledge together with the normal wiki
text. In the best case, typical wiki users are capable to
understand and use the knowledge wiki syntax without a
thorough training.

In general, we enclose the definition of a knowledge base in a
wiki page with the tag <Kopic id="theID"> ... </Kopic>,
where theID is the unique identifier of the knowledge base.
In this Kopic tag further sub–tags are used for the particular
knowledge representations.

An important issue is the understandability of the knowledge
representation itself: we provide (heuristic scoring) rules, de-
cision trees, and set-covering models as possible knowledge
representations. Furthermore, we plan to include case–based
reasoning in the system, since cases are probably the most
intuitive representation to formalize experience knowledge.
In the following, we introduce the particular knowledge rep-
resentations and their markup, respectively, in more detail.

3.1 Rules
Rules are certainly the most applied knowledge representa-
tion for building intelligent systems. A rule r = cr → ar

derives facts as defined in its consequent (rule action) ar, if
the specified rule condition cr is satisfied. Facts derived by
the rule can be interpreted as solutions or further inputs that
are used in conditions of other rules. The rule condition typ-
ically consists of an arbitrary combination of conjunctions
and/or disjunctions constraining the user inputs. For sake
of simplicity we distinguish two basic types of rules, that can
be used in the knowledge wiki: abstraction rules for deriving
new input facts and scoring rules for deriving a new state of
a solution. Then, the consequent of the rule either assigns a
value to an input (abstraction rule), or derives a new state
for a particular solution (scoring rule).

Scoring Rules. Scores are used to represent a qualita-
tive approach for deriving solutions with symbolic confirma-
tion weight. These weights state the degree of confirmation
or disconfirmation of a particular solution. In this way, a
symbolic weight c expresses the strength for which satis-
fied rule condition will confirm/disconfirm the solution s.
The definition and semantics of scoring rules goes back to
the INTERNIST/QMR project [7]. Analogous to the repre-
sentation of the d3web rule system [1] we distinguish seven
positive weights (P1, . . . , P7) and seven negative weights
(N1, . . . , N7). Here, the weight P7 stands for the categoric
derivation of a solution, the counter–weight N7 yields the
categoric exclusion of a solution. The remaining weights
are defined in a way, so that the aggregation of two equal
weights results in the weight of the next higher weight, e.g.,
N3 + N3 = N4; two equal weights with opposite sign nullify,
e.g., N3 + P3 = 0.

In the context of knowledge wikis the readability and in-
tuitiveness of the markup is crucial for the success and its
application, respectively. Therefore, we decided to not use
an already existing standardized markup for (horn clause)
rules like SWRL/RuleML [4], but to promote a more com-
pact and human–readable notion.

In the following example two rules are given: the abstraction
rule r1 derives the body-mass index BMI as a new fact, if the
two inputs Height and Weight are defined and greater than
zero. The scoring rule r2 adds the new scoring weight P4
to the score of the solution Running, if the user has entered
the input Training Goal is endurance but has not answered
the question Physical Problems with the value knees.

<Rules-section>

// Abstraction rule r1

IF (Height > 0) AND (Weight > 0)

THEN BMI = (Weight / (Height * Height))

// Scoring rule r2

IF ("Training goals" = endurance)

AND ("BMI" < 30)

AND NOT("Physical Problems" = knees)

THEN Running = P4

</Rules-section>

The surrounding tag <Rules-section> is used as a sub-tag

of <Kopic> and collects all rules defined for the correspond-
ing knowledge base. The order of rules is not meaningful,
e.g., with respect to a conflict resolution strategy of rule
engines.

3.2 Decision Trees
The representation of classification knowledge using deci-
sion trees is very popular in machine learning research, but
is also widely used for building knowledge systems manu-
ally. A tree–like structure cannot be represented directly in
a textual notion. Therefore, we have decided to use hyphens
(“-”) in order to express the depth of a particular tree node.
The root of a tree has no preceding hyphen, whereas the
ancestors of a root are depicted with an increasing number
of hyphens. The following example shows the two decision
trees Naive Sport Advisor and Muscle Questions (the line
numbers are only added for describing the particular lines).

1| <Questions-section>

2| Naive Sport Advisor

3| - Training goals [oc]

4| -- endurance

5| --- Physical problems [oc]

6| ---- knees

7| ----- Swimming (!)

8| ---- no problems

9| ----- Running (!)

10| -- increase muscles

11| --- Muscle Questions

12|

13| Muscle Questions

14| - Favorite regions of muscles [mc]

15| -- arms

16| ...

17| </Questions-section>

Inputs. Inner nodes of a decision tree define the user in-
puts with their type information in one line. In the example
above, three questions are defined in the lines 3, 5, and 14.
The type of an input is defined in brackets right after its
name, e.g., [oc] stands for a one–choice input, [mc] stands
for a multiple–choice input, and [num] stands for a numeric
input. The possible answers of the particular inputs (with
indent i) are defined in the subsequent lines using an in-
dent increased by one, i.e., i + 1. For example, the question
Training goals (line 3 with indent i = 1) defines the possible
answers endurance (line 4) and increase muscles (line 10),
both with indent i = 2. Besides the creation of the user in-
puts a dialog strategy is also defined by decision trees: pos-
sible answers of an input are denoted in an extra line of the
markup. If such an answer is followed by a user input with
an indent increased by one, then this input is interpreted as
a follow–up input to be presented when the previous input
was answered with the given value.

In knowledge wikis we also use the markup of decision trees
to define new user inputs. Then, the attachment of solutions
and indications at the leafs of a tree are optional.

Solutions/Indication. The leafs of a decision tree are lines
that have no immediate subsequent line with a larger num-
ber of hyphens, e.g. lines 7, 9, and 11. Typically, solutions

are derived in the leafs of a decision tree by writing a scor-
ing weight in parentheses right after the name of the solu-
tion. We use scoring weights that were already introduced
for scoring rules (cf. Section 3.1) Alternatively, solutions can
be derived categorically by using a exclamation mark, e.g., in
line 9 the solution Running is derived categorically by “(!)”.
Besides solutions the leaf of a decision tree can also contain
the indication of another decision tree, e.g. as the decision
tree Muscle Questions is called in line 11. Then, another de-
cision tree is activated at this point of interview instead of
deriving a solution. The activation of other decision trees al-
low for the modularization of larger decision trees into com-
ponents, as for example proposed by the pattern heuristic
decision tree [9].

The most prominent advantage of decision trees is their in-
tuitive definition of a dialog control, i.e., the structuring
and order of inputs to be presented to the user. In the ex-
ample above, the input Physical problems is only presented
if the preceding input Training goals was answered with
endurance. Thus, a compact and meaningful interview is
defined very easily. Decision trees having the shown size
are very easy to understand and to maintain. However, for
larger decision trees it is recommendable to partition the tree
logic in a set of sub–trees and refer to these sub–trees from
a main tree. This is sketched with the two exemplary trees
Naive Sport Advisor as the main tree and Muscle Questions
as a sub–tree.

The surrounding tag <Questions-section> is used as a sub-
tag of <Kopic> and collects all decision trees defined for the
corresponding knowledge base. Since trees can be easily for-
mulated using XML it would have been an obvious approach
to also represent the decision tree by an XML structure. Al-
though this would yield a reduced compilation effort due to
the existence of well–established XML parsers the resulting
markup appears to be too verbose and complex for standard
wiki users. In contrast, the proposed markup is by far more
compact and less vulnerable to syntax errors made by the
user when defining the decision tree.

3.3 Set–Covering Models
The knowledge markups introduced above considered deduc-
tive knowledge representations, that are commonly useful
for defining classification knowledge. However, in the con-
text of recommendation systems it is sometimes preferable
to implement an abductive knowledge representation.

Set–covering models [10] are a prominent and intuitive ex-
ample of an abductive knowledge representation. Solutions
are described by features that can be typically observed
when the solution is present. When the user enters inputs
the best matching solution is selected, i.e., the solution that
best covers its expected features with the entered findings.
As a special feature, such models can be incrementally ex-
tended by background knowledge in order to improve the
expressiveness of the knowledge [3].

For example, the features can be weighted with respect to
their importance for the respective solution or partial simi-
larities can be defined to refine the abductive matching pro-
cess. In Figure 5 a visual notion for describing the sport
“Running” is depicted; e.g., for a present solution “Running”

we would expect to observe the feature “Favorite regions of
muscles” with value “legs” or “bottom” etc.

Running

Favorite regions of muscles
in {legs, bottom}

Training goals in {reducing
weight, endurance} . . .

Figure 5: A visual notion of set–covering models.

For the application of set–covering models in knowledge wikis
we introduce the simplified version set-covering lists: here,
for each solution a collection of inputs is defined that are
typically observed/entered when the solution is appropri-
ate; the inputs are enclosed in braces. The example below
shows a set–covering list for the solution Running :

<SetCoveringList-section>

Running {

Favorite regions of muscles = legs,

Favorite regions of muscles = bottom,

Training goals = reducing weight,

Training goals = endurance,

Calorie consumption (30min, 75kg) = high,

...

}

</SetCoveringList-section>

Typical user inputs are listed that were expected to be ob-
served for the sports form Running, e.g., the preferred mus-
cle parts to be trained would be answered with legs and bot-
tom, and the goals of doing the sport are (amongst others)
reducing weight and endurance.

The surrounding tag <SetCoveringList-section> is used
as a sub-tag of <Kopic> and collects all set–covering lists
defined for the corresponding knowledge base.

3.4 Reuse of Terminologies
For every solution we commonly create a new wiki page, that
describes its characteristics as text and multimedia (as done
in normal wikis), and also defines explicit problem–solving
knowledge to derive the particular solution for possible user
inputs.

With the growth of the wiki a number of knowledge bases
is defined distributed over the available wiki pages of the
entire wiki. The particular knowledge bases are connected
with each other by using user inputs with the same names.
The reuse of inputs can be encouraged by providing a pre–
defined terminology, that is referenced in every wiki page.
In a particular knowledge base we reference to a pre–defined
terminology by adding the optional attribute terminology

to the Kopic tag, e.g., in the following markup

<Kopic id = "myKopic"

terminology = "WikiPage..kopicID">

...

</Kopic>

the knowledge base with ID myKopic references to the ter-
minology of another knowledge base with the ID kopicID

having the namespace WikiPage.

4. SEMANTIC ANNOTATION OF KNOWL-
EDGE WIKIS

In the previous section, the inclusion of explicit problem–
solving knowledge was described. Ontological concepts (in-
puts, solutions) and the corresponding derivation knowledge
is easily defined in a textual manner together with the text
of the corresponding wiki page. For each knowledge base a
link is created in the view mode of the wiki; the link initi-
ates an interview to collect user inputs in a structured way.
In this section, we describe a more integrative approach for
collecting user inputs: by annotating particular phrases of
the wiki text the user is able to answer distinguished inputs
in–place during browsing a wiki page.

User inputs are used to annotate text phrases, when they
were previously defined in knowledge bases of an arbitrary
wiki page. Similar to the annotation techniques known from
semantic wikis, e.g. [5, 11], in knowledge wikis the semantic
meaning of text phrases can be annotated by concepts of the
input terminology. In contrast to semantic wikis the annota-
tion in knowledge wikis is mainly used for problem–solving,
i.e., by creating interactive menus to enable data entries of
the user within a wiki page. The presented knowledge wiki
introduces the markup

%TAG{ns="a" input="b" text="c"}%

in order to annotate the displayed wiki text c with an input
concept b known from the knowledge base with the names-
pace a. If the optional namespace ns is not specified, then
the knowledge base contained in the corresponding wiki ar-
ticle is used to align the annotated input. In the exam-
ple below, an extract of the normal wiki text of the article
Swimming is annotated in order to link text phrases with
corresponding user inputs, i.e., questions.

Swimming is good for

%TAG{input="Training goals"

text="reducing weight"}%

successfully or to train

%TAG{input="Training goals" text="endurance"}%.

Here, the input “Training goals” defined in the wiki page
“Swimming” and its included knowledge base “Swim” is an-
notated twice: first, with the text “reducing weight” and
second with the text “endurance”.

In the view mode of an wiki article for the tagged text
phrases pop–up menus are generated that enable the user
to answer the annotated inputs in–place. For example, Fig-
ure 1 shows the view mode of the wiki page“Swimming”; the

click on the text phrase “endurance” activates a pop–up ask-
ing for the“Training Goals”of the user, where“endurance” is
a possible answer. As described in Section 2.3 the acquired
user inputs are mainly used for problem–solving.

5. CASE STUDIES
The applicability of knowledge wikis and their markup, re-
spectively, was evaluated in two preliminary case studies.

5.1 Sport Recommendation Wiki
The first case study was intended as a “proof–of–concept”
experiment: here, an exemplary recommendation system
for forms of sport was implemented by three students, that
were already familiar with the wiki system and the underly-
ing knowledge representation. The recommendation system
comprises 56 knowledge bases for 31 of the most common
forms of sports (some sports are redundantly defined reflect-
ing different opinions of the students), and defines in total 38
user inputs. The knowledge bases mostly use set–covering
knowledge for the definition of the derivation knowledge, but
some decision trees are also included.
With this first case study the general applicability of the
knowledge wiki and its markup was evaluated. An initial
table–like representation of set–covering knowledge for defin-
ing knowledge for multiple solutions was discarded, since the
markup proved to be not very comfortable for the acquisition
and maintenance of the relations. Because the knowledge
bases in a knowledge wiki mostly define knowledge for a sin-
gle solution, a table representation could not show its actual
power. Furthermore, tables are often difficult to maintain in
the textual edit pane of a wiki. Instead a list–like markup
of set–covering knowledge as presented in this paper was in-
troduced. This was experienced to be more compact and
intuitive for the definition of the knowledge for single so-
lutions. In summary, the results were encouraging and a
second, now larger case study was initiated.

5.2 General Recommender Wikis
The second case study considered the creation of knowl-
edge wikis with a larger group of initially untrained per-
sons. In total, 45 students started to implement 11 knowl-
edge wikis with varying sizes. The students formed groups,
where each group undertook the development and evolution
of one knowledge wiki. For example, knowledge wikis for
meal selection, recommenders for holidays and recreation, a
movie advisor, and a wine selection were created. The un-
trained students were initially introduced into the concepts
of the knowledge wiki and its markup (about 1h). Then,
the students started to build initial versions of their sys-
tems. A trivial movie recommender was included as a demo
knowledge wiki and helped the new users to get familiar
with the system. In fact, most of the new knowledge bases
were implemented by simply copying, pasting, and adapt-
ing the demo markup. The set–covering list appeared to
be the predominant knowledge markup for the second case
study, since it was experienced to be intuitive and compact
in most of the cases. A significant disadvantage of set–
covering models are their inability of representing negative
(exclusion) knowledge, i.e., the presence of user inputs for
which a solution should be discarded from the recommen-
dations. This problem was tackled by the introduction of a
hybrid rule–extension: here, the users are able to define rule

conditions under which a solution is excluded even when the
set–covering result was positive. The second case study pro-
duced about 700 knowledge bases spread over 11 knowledge
wikis; we counted about 2500 edits of the particular knowl-
edge bases not including the initial creation of the projects
(the logs were not available from the beginning of the case
study).

In summary, we experienced the proposed knowledge markup
as an intuitive and compact representation to enable nearly
untrained users to capture and maintain knowledge in a
collaborative way. Whereas the markup for implementing
derivation knowledge (rules, set–covering lists) was success-
fully applied in both case studies, the semantic annotation
of text phrases was only evaluated in the first case study.
Since, the manual annotation of text appeared to be very
time–consuming the simplification of this approach, e.g., by
semi–automatic methods, is an important issue for future
work.

6. CONCLUSIONS AND OUTLOOK
The development of larger knowledge systems and especially
their maintenance is still a complex and open problem. Even
before the success of Web 2.0 applications with the collab-
orative creation of information and knowledge, e.g., by tag-
ging and writing, many researchers have started to think
about the collaborative capture and update of knowledge
systems. The presented work introduced a collaborative
approach for knowledge capture and its necessary markup
tightly integrated in a wiki system. Here, wiki systems al-
low not only for the development of unstructured content
like text and multimedia, but also provide the intuitive ac-
quisition of explicit knowledge. From our point of view, the
most important aspect for the success of such a proposal is
the presence of intuitive markups, in order to enable even
untrained/little trained users to become knowledge wiki de-
velopers. We have presented different possible knowledge
markups that are easy to understand and to apply, and that
are used to collaboratively build knowledge wikis for recom-
mendation tasks. The case studies showed the applicabil-
ity of the presented approach and especially the proposed
knowledge markups.

Most related to knowledge wikis are the approaches pro-
posed for the development of semantic wikis. For example,
Semantic MediaWiki [5] enhances a normal wiki semanti-
cally in order to annotate wiki texts with explicit ontological
concepts. Annotations are placed in–text and are based on
the top concept the actual wiki page is describing. Prop-
erties for that concept can be easily formalized within the
normal wiki text. Semantic wikis usually provide markups
for ontological relations and attributes using a web ontology
language like OWL. In contrast, the ontological expressive-
ness of the proposed knowledge wikis is limited to two basic
objects, i.e., input concepts and solution concepts. How-
ever, we additionally support various knowledge markups to
formalize problem–solving knowledge in a simple manner.
Semantic wikis support the manual problem–solving pro-
cess, i.e., the search for appropriate information for a given
problem, by semantically enhanced search engines and dy-
namic linking between related concepts. Knowledge wikis

exploit explicit problem–solving knowledge to handle stated
problems in a more knowledge–based way.

In the near future we are planning to exploit existing learn-
ing methods for automatic annotation: Since the manual
annotation of text phrases in the wiki text appeared to be
very time–consuming, we want to simplify this approach by
(semi–)automatic methods. Besides the introduction of ap-
propriate tools attached to the edit pane of the wiki to insert
annotation templates by a mouse click, we are also planning
to suggest annotations based on the results of learning meth-
ods.

7. REFERENCES
[1] J. Baumeister. Agile Development of Diagnostic

Knowledge Systems. IOS Press, AKA, DISKI 284,
2004.

[2] J. Baumeister, J. Reutelshoefer, K. Nadrowski, and
A. Misok. Using Knowledge Wikis to Support
Scientific Communities. In Proceedings of 1st
Workshop on Scientific Communities of Practice
(SCOOP), Bremen, Germany, 2007.

[3] J. Baumeister, D. Seipel, and F. Puppe. Incremental
Development of Diagnostic Set-Covering Models with
Therapy Effects. International Journal of Uncertainty,
Fuzziness and Knowledge-Based Systems,
11(Suppl.):25–50, November 2003.

[4] I. Horrocks, P. F. Patel-Schneider, S. Bechhofer, and
D. Tsarkov. OWL Rules: A Proposal and Prototype
Implementation. Journal of Web Semantics,
3(1):23–40, 2005.

[5] M. Krötzsch, D. Vrandecic, and M. Völkel. Semantic
MediaWiki. In Proceedings of the 5th International
Semantic Web Conference (ISWC06), LNAI 4273,
pages 935–942, Berlin, 2006. Springer.

[6] B. Leuf and W. Cunningham. The Wiki Way: Quick
Collaboration on the Web. Addison-Wesley, New York,
2001.

[7] R. A. Miller, H. E. Pople, and J. Myers.
INTERNIST-1, an Experimental Computer-Based
Diagnostic Consultant for General Internal Medicine.
New England Journal of Medicine, 307:468–476, 1982.

[8] F. Puppe. Knowledge Reuse among Diagnostic
Problem-Solving Methods in the Shell-Kit D3.
International Journal of Human-Computer Studies,
49:627–649, 1998.

[9] F. Puppe. Knowledge Formalization Patterns. In
Proceedings of PKAW 2000, Sydney, Australia, 2000.

[10] J. A. Reggia, D. S. Nau, and P. Y. Wang. Diagnostic
Expert Systems Based on a Set Covering Model.
Journal of Man-Machine Studies, 19(5):437–460, 1983.

[11] S. Schaffert. IkeWiki: A Semantic Wiki for
Collaborative Knowledge Management. In 1st
International Workshop on Semantic Technologies in
Collaborative Applications (STICA’06), 2006.

