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Abstract. A software system for semi-automatic segmentation of the
patellar cartilage is introduced. Providing tools for sub-pixel accurate
edge tracing, automatic contour completion, and adequate visualization
we achieve a remarkable speed-up of the physician’s segmentation pro-
cess. The exactness for cartilage segmentation can be reached if expertise
and automation are merged in a meaningful way.

1 Introduction

Damage to the articular cartilage is an early and decisive step in the development
of osteoarthritis (OA) a major socio-economic burden nowadays. This disease is
among the ten leading causes of continued disability world-wide and annual costs
associated with OA are estimated to amount up to the equivalent of 1% of total
productivity in the USA. This is the motivation to develop and to continuously
refine therapies dedicated to cartilage repair contributing to at least postpone
and to slow down the development and progression of OA. This, in turn, creates
a strong need for non-invasive, accurate, and valid tools to establish appropriate
indications for new treatment options, to monitor the disease process and to con-
trol therapeutic efficacy. MRI, especially with recent advances in scanner, coil
and sequence design, is ideally suited for non-invasivly evaluating the cartilage.
In this respect and especially in view of statistical discriminatory power, quanti-
tative data are desirable in contrast to more or less subjective semiquantitative
evaluation by scoring methods. Such data would be cartilage volume, thickness
and the size of the cartilage bone interface, all of these parameters being directly
related with the disease process.

2 State of the art

Several methods and tools for segmentation of the patellar cartilage in MR im-
ages have been presented so far [1, 2, 3]. Some of them fully rely on manual
segmentation, which makes them cumbersome for daily routine. Some tools per-
form the segmentation more or less automatically and require the user only to
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define a region of interest, for instance. In general, non-manual segmentation
methods rely on gradient information from the image.

Depending on the MRI sequence used in the aquisition, however, slices with
no contrast between the patellar cartilage and the adjacent femoral cartilage
have to be segmented. In these cases, the radiologists have to rely on their
experience for segmenting the cartilage and therefore must be in full control of
the segmentation process. Tools not allowing for that will hardly be accepted
among physicians.

Fig. 1. MRI of the knee with
poor contrast between the patel-
lar (above) and femoral (below)
cartilages: the perspective visu-
alization of the segmented carti-
lage bone interface is visualized
throughout the slices.

3 Method

We present a robust system to support radiologists in semi-automatically seg-
menting patellar cartilage in MRI images in daily routine, which does not restrict
manual control of the segmentation process but at the same time facilitates this
task.

We work on three-dimensional one-channel data sets as supplied by the MRI
scanners. The data is organized as an array of slices sz(x, y). The ratio of slice
distance to in-slice pixel distance is about 5 to 10, and the slices are in most cases
oriented perpendicular to the bone cartilage interface and cartilage surface. We
therefore decided to do the segmentation in 2D slice by slice. Accordingly, the
preprocessing (3.1) is done in 2D.

The segmented regions in each of the slices are described by their sub-pixel
accurate boundaries. The boundaries are in turn represented by a sequence of
fragments, any of which can be manually drawn (3.2) or semi-automatically
computed (3.3) as well as corrected (3.4) at any time.

To support review of the results of segmentation, we provide a view of the
current slice superimposed with the segmentation of adjacent slices (using an
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orthographic projection) as well as a perspective visualization of the segmenta-
tion as in fig. 1. In Section 3.5, we introduce a unified projection matrix, which
allows for smooth transitions between orthographic and perspective projection
without the user getting lost.

3.1 Sub-pixel edge detection

Sub-pixel edge detection is an important preprocessing step of the proposed
system. Edge detection is done in 2D separately for each slice sz(x, y) using a
2D facet model [4]. The idea is to find the maxima in the gradient image
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which is obtained using the Sobel operator. In the following, we describe the
algorithm for one pixel at (i, j).

Based on the 3 × 3 environment of (i, j), the gradient image g is locally
approximated by a second degree polynomial in two variables p(x, y). The max-
imum of p along the straight line defined by the gradient vector g indicates a
point E on the edge in the original image s. If E lies within the boundaries of
the pixel at (i, j), we accept E as an edge point for further processing. We also
label it with the value of g(i, j) to indicate the sharpness of the edge at this
point.

This is done for all the pixels in every slice. The result is a set of edge points
and their respective sharpness for each slice.

3.2 Manual tracing of contours

As a first interaction step, we provide tools to manually trace edges for segmen-
tation. This can be accomplished by drawing with the mouse (also with sub-pixel
accuracy), as well as by relying on the previously computed edge points. In the
latter case, for every point the mouse cursor passes, the edge points in a window
around the cursor are weighted depending on the distance to the cursor and the
sharpness of the edge they represent. Thus, the contour made up by these points
is close to the trace of the mouse cursor, and is located on a sharp edge of the
current slice with sub-pixel accuracy.

3.3 Semi-automatic tracing and propagation of contours

We also provide the user with a tool to semi-automatically find the contours
of the patella. User interaction is minimized to the input of a starting point A
and an end point B of the contour fragment to be traced. Between A and B, a
guiding contour c is constructed either from previously segmented contours in
adjacent slices, if there exist any. Otherwise, we simply use a straight line. The
contour fragment f to be found is initialized with A. Let E denote the last point
of f .
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The guiding contour is then discretized into a sequence of control points Ci

at steps of one third of a pixel. For each Ci, the following steps are performed:
(1) A set of edge points having a distance of less than 5 pixels to the end E of f is
computed. (2) These edge points are weighted with respect to (a) their respective
gradient magnitude, (b) their distance from E, (c) their position relative to E
compared to the direction of c in the environment of Ci, (d) their position relative
to E compared to the direction of f at E, and (e) whether they are farther from
Ci than E. The weight for (e) increases as Ci gets closer to B. (3) The edge
point with the highest weight is appended to f , if it is different from its current
end point E.

Thus, a contour fragment f is constructed, that consists of rather uniformly
spaced edge points with high magnitude, is shaped smoothly and similar to the
guiding contour c.

3.4 Correction and user interaction

Correction of segmentation results (be they generated automatically or manu-
ally) is simply done by re-drawing the part of the contour that is to be corrected.
Similar to the manual segmentation, re-drawing can be done either fully man-
ually or based on the previously calculated edge points. For the first and last
point of a newly drawn contour fragment, the respective closest point on an
existing contour is determined. If they belong to the same contour, the section
in-between is replaced with the new contour. Similarly, open contours can be
extended and shortened.

3.5 Unified projection matrix

Standard OpenGL projection matrices are limited either to orthographic projec-
tion or perspective projection. We therefore propose a unified projection matrix
depending on a parameter p to control perspective foreshortening and on param-
eters dx, dy to control perspective displacement (Fig. 2). If p = 0, the unified
projection matrix is of the same shape as an orthographic projection matrix. If
p > 0, perspective foreshortening is enabled and the projection becomes per-
spective.
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(a) (b) (c)
Fig. 2. Standard OpenGL orthographic projection matrix (a) and perspective projec-
tion matrix (b) compared to unified projection matrix (c)
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4 Results

Tools and algorithms were implemented in C++ using a Qt-based User Interface
and OpenGL as graphics engine. We segmented a set of MR images of healthy
patellae, which were acquired using a FLASH sequence.

Fig. 3. Segmentation of the patellar car-
tilage in one slice with sub-pixel accu-
racy. The contour fragments show the
cartilage bone inteface (gray, top) and
cartilage surface (white, bottom) respec-
tively. The nodes in the contour indicate
the edge points that were determined in
the preprocessing step.

Semi-automatic tracing and propagation of contours turned out to be highly
effective on the cartilage bone interface (fig. 3). This technique was also success-
fully conducted on the cartilage surface in some cases, whereas in cases like the
one in fig. 1 manual segmentation was required.

5 Discussion

We introduced a semi-automatic segmentation system for patellar cartilage ex-
traction. Its slice-by-slice approach corresponds to the way radiologists are used
to look at anatomy and thus enables radiologists to directly transfer their day-to-
day experience in the segmentation process without any relevant training period.
The focus of the system lies on user-friendliness instead of purely automatic pro-
cedures. We believe this to be more vital for a speed-up in segmentation, which
is expected by clinicians to save 50 % of the time used on the segmentation task
nowadays, using fully manual tools.
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3. Cohen ZA, McCarthy DM, Kwak SD, Legrand P, Fogarasi F, Ciaccio EJ, et al. Knee
cartilage topography, thickness, and contact areas from MRI: In-vitro calibration
and in-vivo measurements. Osteoarthritis Cartilage 1999;7(1):95–109.

4. Haralick RM, Shapiro LG. Computer and Robot Vision. vol. 1. Reading, Mas-
sachusetts, USA: Addison-Wesley; 1992.


