
Fast Interactive Region of Interest Selection for
Volume Visualization

Dominik Sibbing and Leif Kobbelt

Lehrstuhl für Informatik 8, RWTH Aachen, 52056 Aachen
Email: {sibbing,kobbelt}@informatik.rwth-aachen.de

Abstract. We describe a new method to support the segmentation of a
volumetric MRI- or CT-dataset such that only the components selected
by the user are displayed by a volume renderer for visual inspection.
The goal is to combine the advantages of direct volume rendering (high
efficiency and semi-transparent display of internal structures) and indi-
rect volume rendering (well defined surface geometry and topology). Our
approach is based on a re-labeling of the input volume’s set of isosur-
faces which allows the user to peel off the outer layers and to distinguish
unconnected voxel components which happen to have the same voxel
values. For memory and time efficiency, isosurfaces are never generated
explicitly. Instead a second voxel grid is computed which stores a dis-
cretization of the new isosurface labels. Hence the masking of unwanted
regions as well as the direct volume rendering of the desired regions of in-
terest (ROI) can be implemented on the GPU which enables interactive
frame rates even while the user changes the selection of the ROI.

1 Introduction

Generating 2D images from volumetric datasets like MRI or CT scans is an im-
portant visualization task in medicine. These images help to understand anatom-
ical structures, to make a diagnoses or to observe the healing process. They can
be used for planning an operation or for surgical training. With modern graph-
ics cards one can generate a 3D view of this data at interactive frame rates [1].
Unfortunately volumetric images often contain a lot of information, which one
would not like to see all at once. Using only a transfer function which maps inten-
sity values of the 3D image to colors and opacity values is not sufficient, because
in most of the scans different tissues show similar intensity values. This often
leads to the occlusion of the interesting components, for example the occlusion of
the human brain by the skull. Therefore one has to separate somehow the inter-
esting data for a certain application from the unimportant data [2]. We present
a method which segments the volumetric image in an automated way using a
set of isosurfaces. An isosurface is always closed and no isosurface can penetrate
another isosurface. Applying a transfer function to the volumetric dataset does
not change the set of isosurfaces (only their individual labels) and therefore one
can consider this set of isosurfaces as an invariant geometric representation of
the dataset.



339

The isosurfaces have a hierarchical structure which is induced by their in-
clusion relation. With this information the user can easily select regions like the
human brain by simply peeling of the layers outside the ROI.

2 State of the art and new contribution

The common techniques for volume rendering are divided in direct and indirect
methods. Direct methods render the voxels of the volumetric data and try to
mask out those voxels that do not belong to the ROI. This method is preferable
because it shows the original data and can therefore provide all the information
of the original 3D image. One direct rendering technique is the registration of
the input volume to a standard Talairach space and the usage of a template
to mask the uninteresting voxels, see e.g. [3]. Unfortunately this is limited to
healthy human brains and to a fixed set of templates. Another direct rendering
technique uses a transfer function which maps intensity values to colors and
opacities [1]. As said before this can lead to occlusions so the ROI is not visible
anymore.

A marching cubes algorithm [4] which can be used for indirect volume render-
ing computes a polygonal representation of an isosurface, that can be rendered.
Unfortunately the extraction of an isosurface surrounding the ROI often is a
trial and error method. A more advanced technique is it to use active contours
[5] which evolve until they approximate the boundary of the ROI. However, to
control the stopping criterion is a hard task, see also [6], so active contours will
not always produce a good approximation. Similar to that is the usage of de-
formable models for generating a certain ROI. But they are also limited to a
fixed set of templates and cannot be used for arbitrary volumetric datasets.

Our method is a direct volume rendering method in the sense that we render
the original volumetric data (OVD) in interactive framerates. But for the seg-
mentation and visual improvement of the volumetric dataset we use techniques
from indirect volume rendering, based on the extraction of isosurfaces. By com-
bining both techniques we obtain the best of both worlds, i.e. the structure and
geometry control from indirect methods and the flexibility and performance of
direct methods.

3 Methods

The idea of our method is to first extract a large set of isosurfaces with the well
known marching cubes algorithm [4], which provide the geometric information
contained in the OVD independent from a transfer function. After separating
these isosurfaces in connected components we relabel these components based
on their inclusion relation, and store them in a tree data structure. In this tree
component A is parent of B iff A encloses B. This will later allow the user to
easily mask out the irrelevant components, by selecting nodes from the tree (Fig.
1) similar to the navigation in a hierarchical file system. In our experiments
we extracted 64 isosurfaces for various gray levels between the minimum and



340

Fig. 1. Calculation of new labels, by traversing an thereby uniquely relabeling the
nodes of a tree in a depth first order

6

5

5 8

96 6

3
4

2
5

1

9

5
6

6
8

5

2

1

3 5

64

maximum voxel value. As we will show, these isosurfaces can be stored in a very
memory efficient way.

The new labels are assigned by a depth first traversal in the tree and are
used to generate an additional volumetric dataset where voxels are labeled by
the smallest isosurface in which they are contained. Both the OVD and the new
labeled volumetric data (LVD) are stored in the memory of the graphics card.
For displaying the tree we designed an interface similar to a file browsing system,
which is capable to visualize large structures in an easy way. One Click on one of
the nodes toggles the visibility of the whole subtree. During interactive display,
we only send the information which labels are visible to the graphics card, and
decide for each fragment if it is visible or not by looking up its label in the LVD.
After that we can render the fragment according to the value stored in the OVD
using a simple transfer function. This allows for interactive frame rates.

The setup for the algorithm is as follows. We call an edge of the voxel grid
x-edge if the adjacent grid point differ by one in the x-coordinate.

For building the tree and calculating the LVD we need two important proce-
dures. The ’IsIn’-Test which decides whether a surface is inside another surface
and a scanline algorithms which line by line assigns the new labels for the voxels.

3.1 IsIn-Test and Scanline Algorithm

To test whether a surface A lies inside a surface B we first locate the point p ∈ A
with the highest x-coordinate. Note that p always lies on an x-edge. From p we
shoot a ray in x-direction and count the number N of intersections with surface
B. We observe

A inside B ⇔ Nmod 2 = 1 (1)

Due to the linear interpolation between the voxel samples, one (and only one)
intersection with B happens for each x-edge which connects two voxel with values
V − ≤ B < V +.

For setting the values in the LVD we use a scanline algorithm, which traverses
rays along the positive x-direction. Everytime we enter a surface s, we activate
s. If we leave s we deactivate it. Then a voxel will get the label of the last surface
we marked so far.



341

Fig. 2. Results: Direct volume rendering with high performance but occlusions may
occur (a);i Indirect volume rendering based on Isosurfaces but finding the right labels is
a trial and error method with low interactivity (b); Combining the best of both methods
lead to a flexible and efficient direct volume renderer which is capable to distinguish
every connected voxel component (c); Integrating lighting and shadows further improve
the 3D impression of the image (d)

(a) (b) (c) (d)

To put it more precisely, we process one of the ny ·nz scanlines by first
initializing a stack with label 0 on top. For every voxel p = (x, y, z) we encounter,
we first set the label to the value stored on top of the stack. We update the stack
by looking at all the intersections on the next x-edge right of p. Intersecting a
surface which has the same label as stored on top of the stack will remove the
element on top of the stack. In the other case we push the label of the intersected
surface on the stack. Note that each x-edge can intersect only once with a specific
surface, because the marching cube algorithm linearly and hence monotonically
interpolates between adjacent grid points to generate a vertex of the surface.

3.2 Efficient storage of the isosurfaces

As said before isosurfaces provide a lot of information, like vertex positions in
3D and the connectivity of the mesh. For our purpose we don’t need all of
the information. All we have to ensure is that the ’IsIn’-Test and the scanline
algorithm work. We observe that in both procedures we shoot a ray along x-
edges of the grid. Because the marching cube algorithm only generates vertices
on the edges of the grid we only can enter or leave a surface by passing a vertex
on a x-edge. So we only store those vertices in form of an offset in x-direction
w.r.t the left grid point, which extremely reduce the memory consumption. Both
procedures can be executed very efficient if we store for every grid point a list of
vertices which lie on the right x-edge and a list of their corresponding surfaces.

4 Results

We generated all results with an AMD64 with 2.2GHz, 2GB RAM and a NVidia
GeForce 7800 GTX graphics card. The images 2a-d were generated from a MRI
scan with a resolution of 256x256x170. The extraction of 64 isosurfaces and the



342

calculation of the tree and the new labels took less than 15 Min. Fig. 2c and d
show our method in comparison to a direct (Fig. 2a) and an indirect (Fig. 2b)
method.

5 Discussion

The advantage of this method is that it works on differend kind of volume
images. Nevertheless these images should not contain too much noise, because
then it is difficult to extract smooth isosurfaces. In our case we use a bilateral
filter [7] to denoise the intensity distribution of the OVD. The selection of the
interesting regions is very intuitive, because the result of each selection can be
seen immediately. If the user wants to see a deeper layer, he simply traverses the
tree downwards. But for a large set of isosurfaces the tree can get rather large.
Therefore we allow the user to decimate this tree, by discarding surfaces which
have approximately the same volume as the parent surface, i.e. we can combine
the nodes {1,2}, {3,4} and {5,6} in the example of Fig. 1.

6 Acknowledgement

This work is supported by the DFG (IRTG 1328).

References

1. Engel K, Hadwiger M, Kniss JM, et al. Real-time volume graphics. In: ACM
SIGGRAPH 2004 Course Notes; 2004. 29.

2. Wang L, Zhao Y, Mueller K, et al. The magic volume lens: An interactive fo-
cus+context technique for volume rendering. In: IEEE Visualization; 2005. 47.

3. Collins DL, Neelin P, Peters TM, et al. Automatic 3D intersubject registration
of MR volumetric data in standardized talairach space. J Comput Assist Tomogr
1994;18(2):192–205.

4. Lorenson W, Cline H. Marching cubes: A high resolution 3D surface construction
algorithm. Computer Graphics 1987;21(4):163–169.

5. Davatzikos C, Prince J. An active contour model for mapping the cortex. IEEE
Trans Med Imaging 1995;14:65–80.

6. Bischoff S, Kobbelt L. Sub-voxel topology control for level set surfaces. In: Procs
Eurographics; 2003. 273–280.

7. Tomasi C, Manduchi R. Bilateral filtering for gray and color images. In: Procs
ICCV; 1998. 839–846.


