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Abstract. We show the impacts of various signal preprocessing tech-
niques – dimensionality reduction and transformations – for high-reso-
lution NMR spectra on the classification accuracy of different breast
cancer tissue. Our results show that some preprocessing algorithms that
are widely used nowadays will not reduce the data dimensionality in an
information-preserving way: the classification accuracy drops. Besides
showing the most successful preprocessing steps, we can report excellent
results on a challenging classification problem.

1 Introduction

Despite growing research efforts on the identification of good prognostic factors
for breast cancer, only few of them are proving clinically useful for identifying
patients at minimal risk of relapse, patients with a worse prognosis, or patients
likely to benefit from specific treatments. Traditional prognostic factors as lymph
node status and tumor size are insufficiently accurate. Better or supplementary
predictors of high-risk and treatment response are needed. Today, a number of
new experimental methods are being explored to improve diagnostic and prog-
nostic information on the genetic, protein or metabolite level, such as gene ex-
pression arrays, protein arrays and magnetic resonance spectroscopy (MRS),
respectively. The MRS method gives a comprehensive window into tissue bio-
chemistry and interrogates cancer tissue for diagnostic and prognostic markers.
MRS of tissue specimens is an ex vivo technique with very high spectral resolu-
tion and signal-to-noise ratio. To explore the complex nature of such spectra with
high reproducibility, automated classification schemes have to be implemented.
There are many ways of processing [1, 2] and classifying [3, 4] NMR spectro-
scopic datasets. Our effort is to aid physicians in the everyday clinical routine
of cancer diagnosis by automated high-resolution MR spectra classification.

2 State of the art and new contribution

In previous work carried out by Derr [5] various simple approaches for dimen-
sionality reduction on high-resolution MRS spectra are compared. It is suggested
to firstly refine the alignment of the spectra iteratively before performing piece-
wise integration such that neighbouring integration intervals overlap with a ratio
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that is selected to account for natural chemical shifts of metabolites. In a paper
by Baumgartner and co-workers [6] a method reducing spectral data with ap-
proximately 1500 dimensions is presented by employing a genetic algorithm that
is constrained to deliver a maximum of 30 regions. This promising approach is
to be explored for its ability to scale well with the dimensions of the data, which
is work-in-progress.

Although a pathologist’s expertise can determine the tumor grading of tissue
biopsates with high accuracy, there are several disadvantages which the MRS
diagnosis of tissue can overcome: the need for rather voluminous biopsates, the
time-consuming procedure as such and therefore the elongated period of un-
wanted remaining in uncertainty for the patient. Additionally, not only the state
can be determined from the spectra, but also a quantitative assessment of can-
cer indicating metabolites is possible. Moreover, the results of the basic research
conducted here have the potential to be transferred to examinations of tissue by
in-vivo MRS-Imaging methods, thus limiting the need for biopsy to cases where
automatic classification results are ambiguous.

From the computer assisted diagnosis perspective, the first step is to identify
methods to deal with the high dimensionality of the data in question. Therefore
the impacts of various preprocessing steps on the final classification results are
shown and compared. We believe this to be a major contribution to the system-
atic analysis of processing methods for high dimensionality data in general and
for the assessment of spectral information based on MRS in particular.

3 Methods

Breast tissue biopsates have been WHO graded by pathology and measured by
MRS. The complete dataset consists of 91 high resolution NMR spectra acquired
on a Bruker Avance 600 spectrometer with a spectral width of 9kHz (see [7] for
details). Of this dataset, 41 were rated to be of grading 0, two of grading 1, 26 of
grading 2, 21 of grading 3 and one of grading 4. All classification results reported
within this paper improve considerably (about 3%) when omitting the 3 samples
of grading 1 and 4. Within an experimental pipeline approach consisting of three
steps, we systematically modify the processing.

3.1 Alignment of data

Upon acquisition of spectral data, reference points are manually set in the data.
Therefore, instances are not correctly aligned with each other in general. This
is a common problem in all research done where NMR spectral data is to be
handled automatically. To overcome this unfavorable situation, we implemented
an algorithm to estimate and correct this data misalignment. Regions present in
all training spectra instances are identified manually. These regions are cut out
and convolved with a a slightly broader region in all other examples. The peak
of the convolution shows the respective “best fit” positions of the region in the
test instance.
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It is acknowledged, that all alignment performed by a rigid shift according
to the displacement of only one section will only produce displacements in other
regions. Still we achieved systematically increased classification rates after align-
ment, which may be due to fact that more important regions were now aligned
with each other.

Advanced shifting algorithms – dynamic time warping (DTW) and correla-
tion optimized warping (COW) – were also employed recently [8, 9]. Both were
introduced for real-time processing of speech data, but were found to be use-
ful in chemometrics as well. Our results with COW are more promising than
those with DTW, but both require further research as to assess the side-effects,
introduced with respect to the robustness of the overall system.

3.2 Transformations and data reduction

We performed data reduction with the following transformations on aligned and
unaligned data, plus unchanged as control, ending up with four output datasets
per input.

In subsampling every 5th and also every 6th data point with different starting
points was kept.

For threshold-guided cutting we reduced the data to regions with signals
above a threshold τ and longer than a threshold ρ. Only one configuration with
τ = 800 and ρ = 0.034 ppm was further considered, because the information
loss seemed to worsen disproportionate to increasing τ and ρ, whereas the de-
sired dimensionality reduction effect deteriorates disproportionate to decreasing
thresholds. For the thresholds given above, the dimensionality approximately
halves.

Additionally, we decomposed the data with predominantly biorthogonal
wavelets, which were chosen based on prior experiences on mass spectrometric
data. For further processing we used both detail and approximation coefficients
from level 3 to 6, but also other wavelets like symlets and Daubechies were used.

Exhaustively searching all possible attribute combinations – although guar-
anteed to find the optimal solution – is clearly not feasible computationally on
datasets of tens of thousands of attributes. A very common alternative is a fea-
ture selection, based on correlation, although it is doubted in [10]. The “Best
First” forward selection (FS) method adds single best attributes iteratively un-
less some optimality criterion stops improving. FS is guaranteed to converge,
but not necessarily to the optimal solution, because it will not combine individ-
ually inferior attributes, which may however perform better if combined. For our
experiments, we used the WEKA implementation of this algorithm [11]. Also,
we employed a Genetic Algorithm (GA) guided selection from the same toolbox,
using its default parameters.

3.3 Evaluation by classification

To evaluate the performance of the data alignment, data transformation, and
dimensionality reduction techniques on our data, we chose the classification accu-
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Table 1. Best classification results with forward selection

Method # Attributes / Accuracy
Unaligned Aligned

Subsampling (5th) 42 74.7% 30 80.2%
Threshold+Subsampling 29 70.3% 35 71.4%
Bior3.7-Approx.3 24 70.3% 33 74.7%
Bior3.7-Det.3 37 76.9% 34 73.6%
Only FS 72 79.1% 66 81.3%
Only FS w/o grad.I+IV 78 83.0% 68 84.1%

racy as the performance measure. The input of this pipeline step are the datasets
produced from the above preprocessing.

We compare the results of all feature reduction algorithms by applying a
Random Forest classification algorithm to the reduced data [12]. Random Forests
are collections of Random Trees built from randomly selected subsets of all
training subjects, where the split at each node is performed based on a random
selection of attributes. The parametrization of the number of random attributes
used for each split in the trees was chosen based on suggestions of Breiman [12].
The number of random trees to build was determined by our experiments and
finally fixed at 100 trees.

4 Results

In our experiments we found that subsampling worsens the classification ac-
curacy while not substantially reducing the feature number. If, however, FS is
applied on the subsampled data, 80.2% on the aligned data resulted.

Threshold-guided cutting in combination with subsampling the spectra per-
formed worse, although the classification accuracy increases with FS. Doing a
classification only on the wavelet-transformed spectra was not successful, but
here with FS better accuracies were achieved.

Table 1 summarizes our results from the main set of experiments where the
pipeline steps were varied. We give only the best accuracies together with the
according configuration. As the GA guided selection performed worse on almost
every approach, no results are in here.

Reducing the problem to a two-class-problem (benign vs. malignant), we
achieved 92.0% sensitivity and 95.1% specificity on the aligned data by applying
only FS without any previous transformation or data reduction.

5 Discussion

Our comparison of feature selection algorithms showed the unexpected superi-
ority of Forward Selection over all competing approaches. The results generally
improved after a coarse alignment of the instance vectors motivating further
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research in this area. A wavelet transformation did not improve classification re-
sults as expected. Nevertheless, since the accuracy did not drop significantly and
since wavelet decomposition is a fast and widely used approach to dimensionality
reduction, we will also explore these topics in the future.

Since we only examined the spectra from the lipid phase of the breast tissue
we expect an improved classification result when the water soluble phase is
also taken into account. In general, the classification on lipid-spectra is more
challenging due to the high demand on the measurement accuracy [7], suggesting
the possibility to generalize our approach on this data.

We wish to cross-check our results with other classifications schemes. In our
ongoing research we implement projective classification schemes which promise
to provide dimensionality reduction by projection and classification in a joint
approach [9]. Besides, we are currently evaluating established methods of spectral
analysis to be able to compare our findings better with widely acknowledged
“ground truth” methods.
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