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Abstract. The projection data measured in computed tomography
(CT) and, consequently, the slices reconstructed from these data are
noisy. For a reliable diagnosis and subsequent image processing, like seg-
mentation, the ratio between relevant tissue contrasts and the noise am-
plitude must be sufficiently large. By separate reconstruction from even
and odd numbered projections, two images can be computed, which only
differ with respect to noise. We show that these images allow an orienta-
tion and position adaptive noise estimation for level-dependent threshold
determination in the wavelet domain.

1 Introduction

In computed tomography (CT), the projections acquired at the detector are
noisy, predominantly caused by quantum statistics. This noise propagates
through the reconstruction algorithm to the reconstructed slices. Pixel noise
in the images can be reduced by increasing the radiation dose or by choosing
a smoothing reconstruction [1]. However, with respect to patient care, the least
possible radiation dose is required and a smoothing reconstruction lowers im-
age resolution. This shows that pixel noise in the images cannot be reduced
arbitrarily.

Nevertheless, an increased signal-to-noise ratio is beneficial for a reliable di-
agnosis and subsequent image processing, like registration or segmentation. This
paper presents a new wavelet based method for edge-preserving noise reduction
in CT-images.

2 State of the art and new contribution

A very important requirement for any noise reduction in medical images is that
all clinically relevant image content must be preserved. A common approach for
edge-preserving noise reduction is wavelet thresholding, based on the work of
Donoho and Johnstone [2]. The input image is decomposed into wavelet coeffi-
cients. Insignificant detail coefficients below a defined threshold are erased, but
those with larger values are preserved. The noise suppressed image is obtained
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Fig. 1. Block diagram of the noise reduction method

by an inverse wavelet transformation from the modified coefficients. The diffi-
culty is to find a suitable threshold, especially for noise with spatially varying
power and directed noise, which is commonly present in CT-images. Choosing
the threshold too high may lead to visible loss of image structures, but the effect
of noise suppression may be insufficient, if the threshold was chosen too low.
Therefore, a reliable estimation of noise for threshold determination is one of
the main issues.

We show that the local and orientation dependent noise power in CT can
be estimated from two separately reconstructed images, which only differ with
respect to image noise. Therefore, the noise reduction method adapts itself to
the noise power and allows for the reduction of spatially varying and oriented
noise.

3 Methods

3.1 Overview

An overview of the noise reduction method is shown in Fig. 1. First, two images
A and B are generated, which only differ with respect to image noise. In CT, this
can be achieved by separate reconstruction from disjoint subsets of projections
P1 ⊂ P and P2 ⊂ P, with P1∩P2 = ∅. More precisely, one image is reconstructed
from the even and the other from the odd numbered projections. The two re-
sulting images include the same information but different noise. Both images are
decomposed by a two dimensional stationary wavelet transformation (SWT) [3].
After this transformation, at each decomposition level, four two-dimensional
blocks of coefficients are available for both images: the lowpass filtered approx-
imation image C and three detail images W H, W V and W D including high
frequency structures in horizontal (H), vertical (V) and diagonal (D) direction,
together with noise in the respective frequency bands. The computation of the
differences between the detail coefficients of the two input images shows just the
noise in the respective frequency band and orientation. These noise images can
then be used for the estimation of the spatial and orientation dependent stan-
dard deviation of noise in A and B. From this estimation, a thresholding mask is
computed and applied to the averaged detail coefficients of the input images. The
computation of the inverse wavelet transformation from the modified coefficients
results in a noise-suppressed image. This again corresponds to the reconstruction
from the complete set of projections but with improved signal-to-noise ratio.
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3.2 Threshold determination

The two images A and B only differ with respect to image noise, but include the
same information

A = S + NA , B = S + NB (1)

where S represents information and NA 6= NB noise included in image A and B,
respectively. The standard deviations of noise in the two separately reconstructed
images can be assumed to be equivalent (σA ≈ σB), because the number of
contributing quanta for both images is approximately the same. However, the
noise level in A and B is increased by a factor of

√
2 in comparison to the

reconstruction from the complete set of projections or the average of the two
input images M = 0.5(A + B). It can be assumed that we have zero-mean noise
in both images. By the computation of the difference image

D = A−B = NA −NB (2)

we get a noise-image free of structures. The standard deviations σA and σB of
noise can be approximated from the standard deviation in the difference image
σD by

σA = σB =
σD√

2
(3)

Thus, the standard deviation of noise in the average image M results in:

σM =
σA√

2
=

σD

2
(4)

In order to compute a level and orientation dependent threshold for denoising
in the wavelet domain, noise in the different frequency bands and orientations
should be estimated in separation. The discrete wavelet transformation is a linear
transformation. Therefore, the differences between the detail coefficients can also
be directly used for noise estimation. At each decomposition level l the difference
images

DH
l = WH

Al −WH
Bl , DV

l = WV
Al −WV

Bl , DD
l = WD

Al −WD
Bl (5)

between the detail coefficients are computed, where the subscripts A and B
correspond to the two images. These difference images are then used for the
estimation of noise in the respective frequency band and orientation. In CT-
images, the noise power is spatially varying. Therefore, noise should be estimated
position dependent. In order to achieve this, a region of m×m pixels is chosen
around each position in the difference image and the standard deviations of the
pixel values are locally computed within these regions. Thus, we obtain three
images σH

l , σV
l and σD

l with the local standard deviations of noise in the difference
images in the horizontal, vertical and diagonal directions. Together with Eq. (4),
orientation, position and level dependent thresholds are computed

τH
l = k

σH
l

2
, τV

l = k
σV

l

2
, τD

l = k
σD

l

2
(6)
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Fig. 2. Example of orientation and position dependent threshold at the first decompo-
sition level for thoracic image with strongly directed noise

(a) average M (b) difference D

(c) threshold τH
1 (d) threshold τV

1 (e) threshold τD
1

The constant k controls the amount of noise suppression. With increasing k more
noise is removed. In Fig. 3(c)- 3(e) the thresholds computed with m = 32 for the
first decomposition level in the horizontal, vertical and diagonal directions are
shown for a thorax-slice (see average of input images in Fig. 3(a)) with strongly
directed noise (see difference of input images in Fig. 3(b)).

3.3 Averaging and thresholding

The computed thresholds from Eq. (6) are then applied to the averaged wavelet
coefficients of the input images. We perform a hard thresholding, meaning that
all coefficients with an absolute value below the threshold are set to zero and
values above are kept unchanged. The final noise suppressed image is computed
by an inverse wavelet transformation from the averaged and weighted wavelet
coefficients of the input images.

4 Results

In Fig. 4(d) and 4(f), zoomed-in noise suppressed results from the proposed
method applied to a thoracic image (see Fig. 3(a)) are shown for two differ-
ent settings of k. Further, the difference images (Fig. 4(e), 4(g)) between the
denoised and average of input images (Fig. 4(a)) are displayed. The images are
compared to the denoising result achieved with the SWT De-noising 2D tool
from the Matlab wavelet toolbox [4] (see Fig. 4(b) and 4(c)). All computations
were performed using a Haar wavelet decomposition up to the fourth decom-
position level. For denoising in Matlab, we used a Balance Sparsity-Norm hard
thresholding method with a non-white-noise model.
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Fig. 3. Denoising result of the proposed method in pixel region taken from thorax-
slice with strongly directed noise. Center and window settings used for displaying CT-
images: c = 50, w = 400. Center and window settings used for displaying difference
images: c = 0, w = 30

(a) original (b) matlab, den. (c) matlab, diff.

(d) den., k = 1.0 (e) diff., k = 1.0 (f) den., k = 1.5 (g) diff., k = 1.5

5 Discussion

The difference image in Fig. 4(c) shows that standard wavelet denoising methods
reduce noise in the images but also blurr edges. The reason for this is that no
reliable noise estimation is possible if just one CT-image is available. In contrast,
the proposed method adapts itself to the spatially varying noise power in the
different frequency bands and orientations and, therefore, performs much better
especially in images with directed noise.
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