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Email: zidowitz@mevis.de

Abstract. The software-assisted planning of radiofrequency-ablation of
liver tumors calls for robust and fast methods to segment the tumor and
surrounding vascular structures from clinical data to allow a numerical
estimation, whether a complete thermal destruction of the tumor is fea-
sible taking the cooling effect of the vessels into account. As the clinical
workflow in radiofrequency-ablation does not allow for time consuming
planning procedures, the implementation of robust and fast segmenta-
tion algorithms is critical in building a streamlined software application
tailored to the clinical needs. To suppress typical artifacts in clinical CT
or MRT data - like inhomogeneous background density due to the imag-
ing procedure - a Bayesian background compensation is developed, which
subsequently allows a robust segmentation of the vessels by fast thresh-
old based algorithms. The presented Bayesian background compensation
has proven to handle a wide range of image perturbances in MRT and CT
data and leads to a fast and reliable identification of vascular structures
in clinical data.

1 Introduction

To assist the complete thermal destruction of the tumor in radiofrequency-
therapy a software-assisted image based planning of the ablation must consider
the extension of the tumor as well as the vascular structures in the vicinity of
the tumor, to incorporate the cooling effect of the vessels. Hence the software-
assisted planning of radiofrequency-ablation of liver tumors calls for robust and
fast methods to segment the tumor and the surrounding vascular structures from
clinical data. However, the use of fast threshold based algorithms is prevented by
inhomogeneous image intensities present in clinical CT and MRT data. A reliable
reduction of this image perturbances subsequently speeds up the segmentation
procedures and leads to a fast and robust one-click segmentation of relevant
anatomical structures. As the clinical workflow in radiofrequency-ablation does
not allow for time consuming planning procedures, the implementation of robust
and fast segmentation algorithms is critical in building a streamlined software
application tailored to the clinical needs.
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2 State of the art and new contribution

The problem of removing intensity nonuniformity from MRT images has been ex-
tensively addressed by many researchers [1]. Beside homomorphic unsharp mask-
ing and other filtering techniques [2] the problem of nonuniformity is addressed
using an approach becoming known under the name nonparametric nonuniform
intensity normalization [3]. In this a gain field is estimated to sharpen the his-
togramm of the MRT data. Other researchers look uppon the intensity correc-
tion as intrinsic part of the enclosing classification and segmentation problem
[4]. Commonly these algorithms for the inhomogeneity correction in MRT data
rely on the estimation of multiplicative correction factors, whereas the method
presented here is based on an additive two-component model. Comparable meth-
ods are used for background compensation in astrophysics [5, 6]. The proposed
method has proven suitable to handle a wide range of image perturbances in
MRT and CT data likewise. While we exploit the local intensity only, the statis-
tical model provides in addition an easy to use framework to incorporate more
sophisticated image measures if needed.

3 Methods

The widespread problem of separating vascular structures from parenchymal
background in inhomogeneous clinical CT or MRT images is solved with
Bayesian probability theory. To capture the defining characteristics of the images
- namely that the parenchymal regions are smoother than the vascular structures
- a two-component mixture model is used. Given the MRT image intensity {yi}
at each voxel i, our complemetary hypotheses for the measurement process are

(B) yi is purly background: yi= bi + εi

(S) yi contains signal contribution: yi= bi + si + εi

While the first hypothesis specifies that the image intensity consists only of
background bi spoiled with noise εi, the complementary hypothesis specifies the
case where additional signal intensity si contributes to the image. An additional
assumption is that the background is smoother than the signal. This is enforced
by approximating the data by a linear combination of smooth basis functions,
namely by modelling the background using B-spline approximation of the data.
Spline approximation incorporating smoothness constraints is superior to filter-
ing techniques in dealing with given situation of data inhomogenities with a wide
range of spacial scales [7]. As the spline approximation are used as filter for this
application, the smoothing parameters of the B-splines - primarily the distance
between basis functions - are not derived from the data but choosen a priory.

The image noise {εi} is approximated with Gaussian or Poisson statistic

Gaussian: p(yi|ξi)= (2πσ2) exp
[
− (ξi−yi)

2

2σ2

]

Poisson: p(yi|ξi)=
y

ξi
i

ξi!
exp (−yi)
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where the expected value ξi is given by the background ξi = bi for B or by
the background with additional signal contribution ξi = bi + si for hypothesis S
respectively.

The signal contribution is descripted probablistically in terms of its prior
distribution. Assuming, we know only the average value λ of the signal intensity,
the prior distribution is given by an exponential function (for positive signal
intensities)

p(yi|λ) =
exp

[−yi

λ

]

λ

Using this prior, the likelihood for the hypothesis ”(S) yi contains signal
contribution” is obtained by marginalizing the noise probability over the signal.
For positive signal intensities this leads to

Gaussian: p(S)(yi|bi, λ)= 1
2λ

{
1 + erf

[
λ(yi−bi)−σ2

λ
√

2σ2

]}
exp

[
−2λ(yi−bi)+σ2

2λ2

]

Poisson: p(S)(yi|bi, λ)=
exp

[
bi
λ

]

λ(1+λ−1)yi+1

Γ [(yi+1),bi(1+λ−1)]
Γ [yi+1]

where Γ [a, x] is the incomplete Gamma-function and Γ [a] = Γ [a, 0]. The
extension to negative signale intensities is straightforward.

For the mixture model the prior probability for the two complementary hy-
potheses is chosen to be independent of the localization: p(B) = β and p(S) =
1− β.

While the background intensities {bi} are calculated using spline approxima-
tion of the data, the probility parameters σ, λ, and β are estimated by histogram
analysis of the remaining image intensities. Subsequently for each voxel the prob-
ability of not being background is calculated. Afterwards, a fast threshold based
region growing algorithm is used on this probability map to segment the vascular
structures.

4 Results

Combining a threshold based region growing algorithm with a Bayesian back-
ground compensation, we were able to implement a robust one-click segmen-
tation of vascular structures for clinical CT and MRT data of the liver. The
background compensation is based on two successive steps: First the background
intensity variations are approximated as illustrated in figure 1. Taking the in-
duced shift of the intensities into account, the probility parameters σ, λ, and β
are extracted by fitting the modelized intensity distribution to the histogram of
the remaining image intensities. Figure 2 exemplifies the gain for the archivable
segmentation result. The presented combination of the developed statistical data
analysis with a simple threshold based region growing ensures a robust and fast
vascular segmentation with results comparable to data segmentations with more
sophisticated, time consuming algorithms.



190

Fig. 1. Left: Slice of clinical MRT-data of the liver with typical data inhomogeneties;
Right: Corresponding slice of the smoothed background intensity calculated by spline
approximation (MRI is courtesy of Prof. Broelsch, University Hospital Essen)

Fig. 2. Vascular structure segmented by region growing algorithm with optimized
global threshold: Segmentation based on original MRT-data (left); Corresponding ob-
ject segmented from probability map resulting from the bayesian data analysis (right)

5 Discussion

The presented Bayesian background compensation has proven to handle a wide
range of image perturbances in MRT and CT data and leads to a fast and reliable
identification of vascular structure in clinical data. The presented background
compensation is robust, fully automatic, and requires litte image specific knowl-
edge. Hence it is attractive as a preprocessing step for further data analysis.
Moreover, the statistical model provides an easy to use framework to incorpo-
rate more sophisticated image measures if needed. The incorporation of this
algorithm improves the robustness and speed of the segmentation algorithms.
This robust segmentation is a mandatory part of the carefully tailored workflow
for the software-assisted patient individual planning of radiofrequency-ablation
of liver tumors.

Bundling the presented vascular segmentation with a robust tumor segmenta-
tion [8], an interactive positioning of a virtual applicator-model and a numerical
estimation of the region destroyed by the induced thermal energy, a clinical ap-
plicable software-assistant for the patient individual planning of radiofrequency-
ablation is developed [9]. Extracting anatomical information about the tumor
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and the close by vascular structures from clinical data, the implemented software-
assistant allows to approximate the effect of the radiofrequency-ablation tak-
ing the cooling effect of local vessels into account [10]. Tailored to the clinical
needs, this application makes a patient individual planning of the radiofrequency-
ablation available in a clinical feasible workflow. Thereby the developed software-
assisted patient individual planning reduces uncertainty in the planned applica-
tor positioning and supports the evaluation of the achievable thermal destruc-
tion. This enhances the confidence in achieving a complete thermal destruction
of the tumor.
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