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Abstract 
A data warehouse is designed to consolidate and 
maintain all attributes that are relevant for the 
analysis processes.  Due to the rapid increase in the 
size of the modern operational systems, it becomes 
neither practical, nor necessary to load and maintain 
in the data warehouse every operational attribute.  
This paper presents a novel methodology for 
automated selection of the most relevant 
independent attributes in a data warehouse.  The 
method is based on the information-theoretic 
approach to knowledge discovery in databases.  
Attributes are selected by a stepwise forward 
procedure aimed at minimizing the uncertainty in 
the values of key performance indicators (KPI’s).  
Each selected attribute is assigned a score, 
expressing its degree of relevance.   Using the 
method does not require any prior expertise in the 
domain of the data and it can be equally applied to 
nominal and ordinal attributes.  An attribute will be 
included in a data warehouse schema, if it is found 
as relevant to at least one KPI.  We demonstrate the 
applicability of the method by reducing the 
dimensionality of a direct marketing database.  

1 Introduction 
A data warehouse is defined by Inmon (1994) as a 
“subject-oriented, integrated, time-variant, and non-
volatile collection of data in support of 
management’s decision making.”  Each 
organization has its own key performance indicators 
(KPI), which are used by management to monitor 
the organization’s performance.  Thus, a 
manufacturing company may measure its 
performance by throughput and cost, a KPI of a 
service company is the mean time to handle a 
service call, etc.  When designing a data warehouse, 

we assume that these KPI’s depend on some non-
key attributes (called classifying attributes) in data 
warehouse relations (Schouten, 1999). The form and 
the strength of these dependencies are often the 
subject of data analysis on a data warehouse. 

Since the operational systems and the data 
warehouses are built for different purposes (see 
Inmon, 1994), some attributes that are essential to 
the operational system, may be completely 
irrelevant to the performance measures of a 
company and thus excluded from its data 
warehouse.  This fact is emphasized by several 
authors (like Gupta, 1997), but usually their 
assumption is that the data warehouse designers are 
knowledgeable enough to choose the right set of 
attributes.  Though this assumption may be correct 
to certain extent in most data warehousing projects, 
the process of reducing the warehouse 
dimensionality, can be supported by an automated 
feature selection procedure that can quickly 
examine numerous potential dependencies, leading 
to automatic elimination of all irrelevant and 
redundant attributes. 

There is another advantage in reducing the 
warehouse dimensionality.  According to (Elder and 
Pregibon, 1996), large number of attributes 
constitutes a seriously obstacle to efficiency of most 
data mining algorithms, which may be applied to 
the detail data in a data warehouse.  Such popular 
methods as k-nearest neighbors, decision trees, and 
neural networks do not scale well in the presence of 
numerous features.  Moreover, some algorithms 
may be confused by irrelevant or noisy attributes 
and construct poor prediction models.  A successful 
choice of features provided to a data mining tool 
can increase its accuracy, save the computation 
time, and simplify its results. 

John et al. (1994) distinguishes between two models 
of selecting a “good” set of features under some 
objective function.  The feature filter model 
assumes filtering the features before applying a data 
mining algorithm, while the wrapper model uses the 
data mining algorithm itself to evaluate the features.  
The possible search strategies in the space of feature 
subsets include backward elimination and forward 
selection.  The performance criterion of the wrapper 
model in (John et al., 1994) is the prediction 
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accuracy of a data mining algorithm, estimated by 
n-fold cross validation.  

A new book on feature selection by Liu and Motoda 
(1998) suggests a unified model of the feature 
selection process.   Their model includes four parts: 
feature generation, feature evaluation, stopping 
criteria, and testing.  In addition to the “classic” 
evaluation measures (accuracy, information, 
distance, and dependence) that can be used for 
removing irrelevant features, they mention 
important consistency measures (e.g., inconsistency 
rate), required to find a minimum set of relevant 
features.  By decreasing the inconsistency rate of 
data, both irrelevant and redundant features are 
removed.  However, as indicated by Liu and 
Motoda (1998), consistency measures are only 
suitable for selecting discrete features. 

An enhanced greedy algorithm, based on the 
wrapper model, is presented by Caruana and Freitag 
(1994).  Again, the metric used is the generalization 
performance of the learning algorithm (its accuracy 
over the validation data set), which increases the 
computation time of the entire process. 

An information-theoretic method for selecting 
relevant features is presented by Almuallim and 
Dietterich (1992).  In their Mutual-Information-
Greedy (MIG) Algorithm defined for Boolean 
noise-free features, the feature is selected if it leads 
to the minimum conditional entropy of the 
classification attribute.  Since the data is assumed 
being noise-free, no significance testing is required 
(any non-zero entropy is significant).  The above 
assumptions leave the MIG algorithm at quite a 
distance from most practical problems of reducing 
data warehouse dimensionality. 

Kira and Rendell (1992) have suggested an efficient 
feature selection algorithm, called Relief, which 
evaluates each attribute by its ability to distinguish 
among instances that are near each other.  Their 
selection criterion, the feature relevance, is 
applicable to numeric and nominal attributes.  The 
greatest limitation of Relief is its inability to 
identify redundant features within a set of relevant 
features.  Consequently, the set of features selected 
by Relief may not be optimal. 

To sum-up this section, the backward elimination 
strategy is very inefficient for reducing 
dimensionality of real-world data warehouses, 
which may have hundreds and thousands of original 
attributes. On the other hand, the forward selection 
wrapper methods are highly expensive in terms of 
the computational effort. The filter algorithms are 
computationally cheaper, but they usually fail to 
remove all redundant features.  In the next section, 
we are describing the information-theoretic method 
of feature selection in data warehouses, based on the 

knowledge discovery procedure introduced by us in 
(Maimon, Kandel, and Last, 1999).  The procedure 
integrates feature selection with a highly scalable 
data mining algorithm, leading to elimination of 
both irrelevant and redundant features.  The method 
description is followed by a case study of feature 
selection in a direct marketing database.  We 
conclude the paper with discussing the potential 
enhancements of the proposed approach. 

2 Information-Theoretic Method of 
Feature Selection 

The method selects features by constructing 
information-theoretic connectionist networks, which 
represent interactions between the classifying 
features and each dependent attribute (a key 
performance indicator).  The method is based on the 
extended relational data model, described in sub-
section 2.1. In sub-section 2.2, we present the main 
steps of the feature selection procedure. Extraction 
of functional dependencies from the constructed 
networks is covered by sub-section 2.3. Finally, in 
sub-section 2.4, we evaluate the computational 
complexity of the algorithm. 

2.1 Extended Relational Data Model 

We use the following standard notation of the 
relational data model (see Korth and Silberschatz, 
1991): 

1) R -  a relation schema including N attributes (N 
≥ 2).  A relation is a part of the operational 
database. 

2) Ai - an attribute No. i.  R = (A1,  ..., AN). 

3) Di - the domain of an attribute Ai.  We assume 
that each domain is a set of Mi discrete values.  
∀i: Mi ≥ 2, finite. For numeric attributes, the 
domain is a set of adjacent intervals.  The 
discretization of classifying continuous 
attributes is performed automatically in the 
process of feature selection (see next sub-
section). Continuous KPI’s may be discretized 
manually into pre-defined intervals. 

4) Vij- a value No. j of domain Di. Consequently, 
D i= (Vi1,..., ViMi).  For discretized numeric 
attributes, each value represents an interval 
between two continuous values.   

5) r -  a relation instance (table) of the relation 
schema R. 

6) n -  number of tuples (records) in a relation r 
(n≥2). 

7) tk[Ai] - value of an attribute No. i in a tuple 
(record) No. k.  ∀k,i:    tk[Ai] ∈ Di. 
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To find the set of classifying attributes in a relation 
of the operational database, we make the following 
partition of the relation schema: 

1) O - a subset of target (dependent) attributes (O 
⊂ R, |O| ≥1). These attributes represent the key 
performance indicators (KPI’s) of an 
organization. Such attributes are referred as 
facts in the data warehouse logical model 
(Inmon, 1994).  Each connectionist network is 
aimed at predicting the values of a KPI, based 
on the values of input attributes (see below). 

2) C - a subset of candidate input attributes (C ⊂ 
R, |C| ≥ 1).  This is a subset of attributes 
(features), which can be related to the target 
attributes. 

3) Ii - a subset of input attributes (classifying 
features) selected by the algorithm as related to 
the target attribute i (∀i: Ii ⊂ C).  These 
attributes are going to be loaded as dimensions 
into the data warehouse.  

Assumptions:  

1) ∅=∩∀ OIi i :  (An attribute cannot be both 
an input and a target). 

2) ROIi
i

⊆∪∀  :  (Some attributes may be 
neither input, nor target).  For example, the 
attributes used as primary keys in the 
operational database (like a social security 
number) may be completely useless for a data 
warehouse, which has primary keys of its own.  
Sometimes, (e.g., in health care) the identifying 
attributes are removed from the data warehouse 
to preserve the privacy of the historic records. 

2.2 Feature Selection Procedure 

The main steps of the feature selection procedure 
are given below. 

Step1 - Obtain the relation schema (name, type, and 
domain size of each attribute) and the schema 
partition into a subset of candidate input and a 
subset of target attribute (see the extended relational 
model in sub-section 2.1 above). 

Step 2 - Read the relation tuples (records) from the 
operational database. Tuples with illegal or missing 
target values are ignored by the algorithm.   

Step 2.1- Encode missing values of candidate input 
attributes in a pre-determined form.  

Step 2.2- Discretize each continuous attribute by 
maximizing its mutual information with the target 
attribute.  Mutual information (see Cover, 1991) is 
defined as a decrease in the uncertainty of one 
attribute, given the value of another attribute. 

Step 3 - Enter minimum significance level for 
splitting a network node (default = 0.1%).  This 
significance level is used by the likelihood ratio test 
(see Step 4.2.1.2.3 below). 

Step 4 - Repeat for every target attribute (KPI) i: 

Step 4.1 - Initialize the information-theoretic 
network (one hidden layer including the root node 
associated with all tuples, no input attributes, one 
target layer for values of the target attribute).  A 
new network is built for every target attribute.  An 
example of the initial network structure for a three-
valued target attribute is shown in Figure 1. 

 

Step 4.2 - Repeat for the maximum number of 
hidden layers (default = number of candidate input 
attributes).  

Step 4.2.1 - Repeat for every candidate input 
attribute i’ which is still not an input attribute: 

Step 4.2.1.1 - Initialize to zero the degrees of 
freedom, the estimated conditional mutual 
information, and the likelihood-ratio statistic of the 
candidate input attribute and the target attribute, 
given the final hidden layer of nodes.  Conditional 
mutual information (Cover, 1991) measures the net 
decrease in the entropy (uncertainty) of the 
dependent attribute due to adding information about 
each new classifying attribute.  If the target is 
completely independent of an attribute, the 
conditional mutual information, given that attribute 
is zero. 

Step 4.2.1.2 - Repeat for every node of the final 
hidden layer: 

Step 4.2.1.2.1 - Calculate the estimated conditional 
mutual information of the candidate input attribute 
and the target attribute, given the node. 

Step 4.2.1.2.2 - Calculate the likelihood-ratio 
statistic of the candidate input attribute and the 
target attribute, given the node. 

Step 4.2.1.2.3 - If the likelihood-ratio statistic is 
significant, mark the node as “splitted” and 
increment the conditional mutual information of the 

Layer No. 0
(the root node)

0

1

2

3

Connection 
Weights

Target 
Layer

Figure 1: Information-Theoretic 
Connectionist Network  - Initial Structure 
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candidate input attribute and the target attribute, 
given the final hidden layer of nodes; else mark the 
node as “unsplitted”. 

Step 4.2.1.2.4 - Go to next node. 

Step 4.2.1.3 - Go to next candidate input attribute. 

Step 4.2.2 - Find the candidate input attribute 
maximizing the estimated conditional mutual 
information.  According to the information theory, 
this attribute is the best predictor of the target, given 
the values of the other input attributes. 

Step 4.2.3 - If the maximum estimated conditional 
mutual information is greater than zero: 

• Make the best candidate attribute an input 
attribute. 

• Define a new layer of hidden nodes for a 
Cartesian product of splitted hidden nodes of 
the previous layer and values of the best 
candidate attribute.  

• Record the tuples associated with every node of 
the new layer (a new node is defined if there is 
at least one tuple associated with it). 

Else stop the search and output the subset Ii of input 
attributes (classifying features) associated with the 
target attribute i.   

Step 4.3 - Go to next target attribute. 

Step 5 - Define the set I of selected attributes 
(dimensions) as the union of sets of input attributes 
with respect to every target attribute by: 

�
||

1

O

i
iII

=

=  

Step 6 - End. 

In Figure 2, a structure of a two-layered network 
(based on two selected input attributes) is shown. 
The first input attribute has three values, represented 
by nodes no. 1,2, and 3 in the first layer, but only 
nodes no. 1 and 3 are splitted due to the statistical 
significance testing in Step 4.2.1.2 above.  The 
second layer has four nodes standing for  the 
combinations of two values of the second input 
attribute with two splitted nodes of the first layer. 
Like in Figure 2, the target attribute has three 
values, represented by three nodes in the target 
layer. 

Details of the network construction procedure for a 
single target attribute are provided in (Maimon et 
al., 1999).  The application of the algorithm to 
design of data warehouses is presented here for the 
first time. 

 

2.3 Extracting Functional Dependencies 

Each connection between a terminal (unsplitted / 
final layer) node and a target node in the 
information-theoretic network represents an 
association rule between a conjunction of input 
attribute-values and a target value. Due to the 
inherent noisiness of the real-world data, this rule 
can be considered a weak (probabilistic) functional 
dependency as opposed to deterministic functional 
dependencies of primary and alternate keys 
(Schouten, 1999).   In the relational model (see 
Korth and Silberschatz, 1991), a functional 
dependency between sets of attributes X and Y 
means that the values of the Y component of a tuple 
are determined by the values of the X component.  
On the contrast, an association rule between X and Y 
has a more limited meaning: given values of X, we 
can estimate the probability distribution of Y. 

An information-theoretic weight of each rule is 
given by: 

w z
ij= P V z

P V z

P Vij
ij

ij

( ; ) log
( / )

( )
•  

Where 

P(Vij;z) - an estimated joint probability of the target 
value Vij and the node z. 

P (Vij/ z) - an estimated conditional (a posteriori) 
probability of the target value Vij, given the node z. 

P(Vij) - an estimated unconditional (a priori) 
probability of the target value Vij. 

Figure 2: Information-Theoretic Connectionist 
Network - Two-Layered Structure 
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The connection weights express the mutual 
information between hidden and target nodes.  A 
connection weight is positive if the conditional 
probability of a target attribute value, given the 
node, is higher than its unconditional probability 
and negative otherwise.  A weight close to zero 
means that the target attribute value is almost 
independent of the node value.  This means that 
each rule having a positive connection weight can 
be interpreted as if node, then target value.  
Accordingly, a negative weight refers to a rule of 
the form if node, then not target value. 

The most informative rules can be found by ranking 
the information-theoretic connection weights (w z

ij) 
in decreasing order.  Both the rules having the 
highest positive and the lowest negative weights are 
of potential interest to a user.  The sum of 
connection weights at all unsplitted and final layer 
nodes is equal to the estimated mutual information 
between a set of input attributes and a target 
attribute (see the definition of mutual information in 
Cover, 1991).  According to the well-known Pareto 
principle, a small number of informative rules are 
expected to explain a major part of the total mutual 
information, which agrees with the experimental 
results presented in the next section. 

2.4 Computational Complexity 

To calculate the computational complexity of the 
feature selection procedure, we are using the 
following notation: 

n - total number of tuples in a training data set 

|C| -  total number of candidate input attributes 

p - portion of significant input attributes, 
selected by the search procedure 

m - number of hidden layers (input attributes), 
m ≤ |C| 

|O| -  total number of target attributes 

MC - maximum domain size of a candidate input 
attribute 

MT - maximum domain size of a target attribute 

The computational “bottleneck” of the algorithm is 
calculating the estimated conditional mutual 
information MI (Ai’ ; Ai / z) of the candidate input 
attribute Ai’ and the target attribute Ai, given a 
hidden node z.  Since each node of m-th hidden 
layer represents a conjunction of values of m input 
attributes, the total number of nodes at a layer No. m 
is apparently bounded by (Mc)

m.  However, we 
restrict defining a new node (see step 4.2.3 above) 
by the requirement that there is at least one tuple 
associated with it.  Thus, the total number of nodes 
at any hidden layer cannot exceed the total number 

of tuples (n).  In most cases the number of nodes 
will be much smaller than n, due to tuples having 
identical values and the statistical significance 
requirement of the likelihood-ratio test. 

The calculation of MI (Ai’ ; Ai / z) is performed at 
each hidden layer of every target attribute for all 
candidate input attributes at that layer. The 
summation members of MI (Ai’ ; Ai / z)  refer to a 
Cartesian product of values of a candidate input 
attribute and a target attribute. The number of 
hidden layers is equal to p|C|.   This implies that the 
total number of calculations is bounded by:  

2

)2(||||
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Thus, the feature selection algorithm can be applied 
to large-scale databases in a time, which is linear in 
the number of records and quadratic polynomial in 
the number of candidate input attributes.  It is also 
directly proportional to the number of target 
attributes (key performance indicators).  

3 Case Study: Direct Marketing 
Database 

3.1 Background and Objectives 

The original source of data is the Paralyzed 
Veterans of America (PVA), a non-profit 
organization that provides programs and services for 
US veterans with spinal cord injuries or disease.  
With an in-house database of over 13 million 
donors, PVA is also one of the largest direct mail 
fundraisers in the US.  The data set presents the 
results of one of PVA's recent fund raising appeals.  
This mailing was sent to 3.5 million PVA donors 
who were on the PVA database as of June 1997.  
Everyone included in this mailing had donated at 
least once to PVA. 

One group that is of particular interest to PVA is 
"Lapsed" donors.  These individuals donated to 
PVA 13 to 24 months ago.  They represent an 
important group to PVA, since the longer someone 
goes without donating, the less likely they will be to 
give again.  Therefore, recapture of these former 
donors is a critical aspect of PVA's fund raising 
efforts.  The data set to be analyzed includes all 
lapsed donors, who received the mailing 
(responders and non-responders).  The total dollar 
amount of gift is given for each responder.  The 
attributes extracted from the database can be used 
for understanding the behavior of both the most and 
the least profitable individuals.  This important 
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insight may lead to more successful promotion 
campaigns in the future. 

The dataset of lapsed donors, extracted from the 
PVA database, is publicly available on the UCI 
KDD Archive [http://kdd.ics.uci.edu] as KDD Cup 
1998 Data.  It has been originally used for the 
Second International Knowledge Discovery and 
Data Mining Tools Competition in 1998. 

3.2 Database Characteristics 

The special characteristics of the Direct Marketing 
database include the following: 

• Dimensionality.  The data set to be used 
contains 95,412 tuples, including 5.1 % (4,843 
cases) of responders to the mailing.  Each tuple 
has 481 attributes, namely one key, 478 input 
and 2 target attributes. 

• Input Attributes.  There are 76 character 
(nominal) and 402 numeric (continuous) 
attributes.  These attributes include donor 
demographic data (as collected by PVA and 
third-party data sources), the promotion / 
donation history, and the characteristics of 
donors neighborhood, as collected from the 
1990 US Census.  For privacy reasons, no 
identifying data (like the donor name, address, 
etc.) has been included in the data set. 

• Target Attributes.  There are two target 
attributes in each tuple: the binary indicator for 
response (the attribute TARGET_B) and the 
dollar amount of the donation (the attribute 
TARGET_D).  Naturally, the donation amount 
is zero for all non-responders.  Both can be 
considered as key performance indicators 
(KPI’s) for the fund raising organization. 

• Data Quality. As indicated in the database 
documentation, some of the fields in the 
analysis file may contain data entry and/or 
formatting errors. 

• Missing Values. Most input attributes contain a 
certain amount of missing values, which should 
be inferred from known values at the pre-
processing stage. 

3.3 Data Pre-processing 

The pre-processing tasks included the following: 

• Attribute decoding. The original attributes, 
presenting donor promotion history and status, 
contain codes, where each byte has a different 
meaning (e.g., recency, frequency and amount 
of donation).  These codes have been decoded 
by splitting each encoded attribute into several 
separate attributes.  The decoding operation has 
increased the total number of attributes from 
481 to 518. 

• Missing values.  Missing values have been 
replaced with the mode (the most frequent 
value of an attribute). As recommended by the 
data documentation, attributes containing 99.5 
and more missing values have been omitted 
from the analysis. 

• Rare values.  All values of nominal attributes 
that occur less than 100 times in the data set 
have been encoded as “Other”. 

• Transformation by division.  To decrease the 
number of distinct values for large scale 
continuous attributes, the values of some 
attributes have been divided by a constant 
factor (10, 100, etc.) and then rounded off to 
the nearest integer number. 

• Discretization of Target Attribute.  The 
continuous target attribute TARGET_D has 
been discretized to equal width intervals of $10 
donation each. The total number of 
discretization intervals has been 20, covering 
the attribute range between $0 and $200. 

• Discretization of Input Attributes.  Numeric 
attributes have been discretized by using the 
significance level of 99%.  For 191 attributes 
(out of 404), no statistically significant partition 
has been found and these attributes have been 
omitted from the further stages of the analysis.  
The remaining 213 attributes have been left as 
candidate input attributes.   

3.4 Feature Selection 

The process of feature selection in the Direct 
Marketing database requires building separate 
networks for two KPI’s: TARGET_B (the binary 
indicator for response) and TARGET_D (the dollar 
amount of the donation). However, when we have 
applied the dimensionality reduction procedure of 
sub-section 2.2 above to the first target attribute 
(TARGET_B), no significant input attributes have 
been found. In other words, no candidate input 
attribute, presenting in the database, is relevant to 
the fact of somebody responding to the mailing.  
Thus, we proceed with the results of the 
information-theoretic network built for the second 
target attribute (TARGET_D) only.    
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The dimensionality reduction procedure of sub-
section 2.2 above has been applied to all tuples of 
responders to the raising appeal (4,843).   The 
algorithm has selected five significant input 
attributes, which are about 1% of the original 
candidate input attributes (478).  Thus, the resulting 
information-theoretic network includes five hidden 
layers only. The selected attributes and their 
information-theoretic scores are presented in Table 
1 below. 

Table 1 shows three information-theoretic measures 
of association between the input attributes and the 
target attribute: Mutual Information, Conditional 
Mutual Information, and Conditional Entropy.  All 
these parameters are based on the notion of Entropy 
(see Cover, 1991), which represents the uncertainty 
of a random variable.  The entropy is measured in 
bits.  Information on input attributes, associated 
with the target, can decrease the uncertainty and the 
resulting entropy of the target. 

The column “Mutual Information” shows the 
cumulative association between a subset of input 
attributes, selected up to a given iteration 
inclusively, and the target attribute.  The next 
column, “Conditional MI (Mutual Information)” 
shows the net decrease in the entropy of the target 
attribute “Target_D” due to adding each input 
attribute.  The last column (“Conditional Entropy”) 
is equal to the difference between the unconditional 
entropy of  Target_D (1.916 bits) and the estimated 
mutual information.  

As you can see from the description column, the 
first four attributes selected represent the person’s 
donation history, while the fifth significant input 
attribute characterizes the donor neighborhood. The 
most significant attribute LASTGIFT contributes 
alone about 90% of total mutual information.  From 
the viewpoint of interestingness, the last attribute 
(TPE13) seems to be the most unexpected one.  It is 
rather unreasonable that an average human expert in 
donations and direct mailing would pick this 
attribute out of the list of more than 500 attributes. 

If the PVA organization is designing a data 
warehouse for supporting its fundraising activities, 
the results of the feature selection algorithm can 
cause a dramatic reduction in the amount of stored 
data. Given that an average attribute (field) requires 
four bytes of memory, one donor tuple (record) of 
478 input attributes takes about 2k bytes.  Since 
PVA has a donor database of about 13 million 
records, dimensionality reduction of 99% means 
saving about 25 GB of computer storage at the time 
of data creation (1997).  Perhaps, PVA could be 
interested in storing additional information in its 
data warehouse, based on its business expertise, but 
still the above results suggest that the majority of 
operational data is not needed for loading into the 
data warehouse: that data is either redundant, or 
completely irrelevant to PVA’s fundraising 
performance. 

Table 1: Direct marketing database – dimensionality reduction procedure 

Iteration Attribute Attribute Attribute Mutual Conditional Conditional 

 Number Name Description Information MI Entropy 

1 318 LASTGIFT Dollar amount of most 
recent gift 

0.6976 0.6976 1.2188 

2 316 MAXRAMNT Dollar amount of largest gift 
to date 

0.7599 0.0624 1.1564 

3 314 MINRAMNT Dollar amount of smallest gift 
to date 

0.7671 0.0072 1.1492 

4 319 LASTDATE Date associated with the most 
recent gift 

0.7711 0.004 1.1452 

5 233 TPE13 Percent Traveling 15 - 59 
Minutes to Work 

0.7737 0.0025 1.1427 
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3.5 Functional Dependencies 

The connections between input and target nodes in 
the information-theoretic network, constructed in 
the previous sub-section, have been used to extract 
disjunctive association rules between the significant 
input attributes and the target attribute (Target_D).  
The total of 935 positive and 85 negative rules have 
been extracted.  The rules have been scored by the 
information-theoretic weights of their connections 
(see sub-section 2.3 above).    

In Table 2 below, we are presenting only the rules 
having the highest connection weights in the 

network. Most rules in this table indicate that there 
is a direct relationship between the donation history 
and the actual amount of donation (TARGET_D).  
Thus, rule no. 2 says that if the last gift is between 
$20.5 and $28, then the actual donation is expected 
to be between $20 and $29 (almost in the same 
range).  A similar interpretation can be given to rule 
no. 3: those who were poor donors for the last time 
are expected to preserve their behavior.  Rule no. 1 
is a slight but interesting exception: it says that 
those who donated about $20 for the last time are 
expected to increase their donation by as much as 
50%.    

 

Table 2: Direct marketing database – highest positive connection weights 

 
Rule LASTGIFT MAXRAMNT MINRAMNT TARGET_D weight Cum. Weight Cum. Percent 

1 $19 - $20.25   $20 - $29 0.1164 0.1164 11.9% 

2 $20.5 - $28   $20 - $29 0.0859 0.2023 20.7% 

3 $1 - $5   $0 - $9 0.0841 0.2864 29.3% 

4 $12 - $14   $10 - $19 0.0596 0.346 35.4% 

5 $1 - $5 $7 - $9  $0 - $9 0.0534 0.3994 40.9% 

6 $1 - $5 $10 - $11  $0 - $9 0.0402 0.4396 45.0% 

7 $6 - $7 $7 - $9  $0 - $9 0.0392 0.4788 49.0% 

8 $10 - $11 $10 - $11  $10 - $19 0.0377 0.5165 52.9% 

9 $20.5 - $28   $30 - $39 0.0307 0.5472 56.0% 

10 $15 - $15.5 $15 - $15.5 $4.68 - $8.99 $10 - $19 0.0293 0.5765 59.0% 
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4 Conclusions 
The paper presents a method for automated 
selection of attributes in a data warehouse. The 
method is based on the information-theoretic 
approach to knowledge discovery in databases 
(Maimon et al., 1999).  It does not require any prior 
knowledge about the business domain, can 
eliminate both irrelevant and redundant features, 
and is applicable to any type of data (nominal, 
numeric, etc.).  While no automated procedure can 
fully replace a human expert, the decisions of data 
warehouse designers can certainly be supported by a 
feature selection system presented here.  As shown 
by the direct marketing example, integrating the 
automated feature selection in the design process 
can lead to a significant dimensionality reduction of 
data warehouse. 

Developing automated approaches to the design of 
data warehouses requires further investigation of 
several issues.  For example, automated methods 
need to be developed for determining the set of 
transformations to be applied to the original 
attributes.  A cost associated with each attribute 
(e.g., cost of third-party data) can be integrated in 
the feature selection procedure.  The data model 
(see sub-section 2.1 above) can be further extended 
to include candidate input attributes from multiple 
relations (via foreign keys).  Another important 
problem is detecting dynamic changes in the weak 
functional dependencies and updating the data 
warehouse structure accordingly.  
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