
Storing Auxiliary Data for Efficient Maintenance
and Lineage Tracing of Complex Views∗

Yingwei Cui and Jennifer Widom
Computer Science Department, Stanford University

{cyw, widom}@db.stanford.edu

Abstract

As views in a data warehouse become more
complex, the view maintenance process can
become very complicated and potentially
very inefficient. Storingauxiliary views in
the warehouse can reduce the complexity and
improve the efficiency of view maintenance,
and the same auxiliary views can help in ef-
ficiently answeringlineage tracing queries
over the warehouse views. In this paper, we
study the problem of selecting auxiliary views
to materialize in order to minimize the total
view maintenance and lineage tracing cost.
We consider relational views with arbitrary
use of aggregation operators, and we define
an initial search space for our optimization
problem based on a normal form for such
view definitions. We present several auxiliary
view selection algorithms, and to study their
performance we conduct experiments using
the TPC-D benchmark in addition to synthetic
view definitions and statistics. The results of
our experiments show: (1) the exhaustive al-

∗This work was supported by the National Science Foundation
under grant IIS-9811947, by Sagent Technology Inc., and by an
equipment grant from IBM Corporation.

The copyright of this paper belongs to the paper’s authors. Per-
mission to copy without fee all or part of this material is granted
provided that the copies are not made or distributed for direct
commercial advantage.

Proceedings of the International Workshop on Design
and Management of Data Warehouses (DMDW’2000)
Stockholm, Sweden, June 5-6, 2000

(M. Jeusfeld, H. Shu, M. Staudt, G. Vossen, eds.)

http://sunsite.informatik.rwth-aachen.de/Publications/CEUR-WS/Vol-28/

gorithm that selects the optimal set of auxil-
iary views is far too expensive in many cases;
(2) two heuristic algorithms that we present
select good (often optimal) sets of auxiliary
views in a much shorter time; (3) even aux-
iliary views selected by a very simple al-
gorithm can significantly reduce the overall
view maintenance and lineage tracing cost.

1 Introduction

Data warehousing systems collect data from multiple,
distributed sources and integrate the information as
materialized viewsin local databases [CD97, IK93,
LW95, Wid95]. Users can then perform data analy-
sis and mining on the warehouse views. The mate-
rialized views in the warehouse need to be kept up-
to-date when data at the sources changes. As the
view definitions become more complex in order to
support sophisticated data analyses, the view mainte-
nance process can become very complicated and po-
tentially very inefficient. Most previous work on view
maintenance, e.g., [CW91, GMS93, LW95, LYC+99,
Qua96], considers simple views containing at most
one level of aggregation. In order to efficiently main-
tain complex views which may contain multiple levels
of aggregation, it is clearly advantageous to storeaux-
iliary data in addition to the original view to reduce
overall view maintenance cost.

From a different perspective, for in-depth analysis
of warehouse data sometimes it is useful to be able
to “drill through” from selected interesting (or possi-
bly erroneous) view data to the original source data
that derived the view data. We call this processtrac-
ing the lineageof the view data [CWW97]. To trace
the lineage of a view data item efficiently, the ware-
house also needs to store auxiliary data—to reduce the
computation cost at the warehouse, and to reduce or

Y. Cui, J. Widom 11-1

entirely avoid expensive source accesses for lineage
tracing. It turns out that the same auxiliary data that
can be used to improve the performance of view main-
tenance as discussed in the first paragraph also can
improve the performance of lineage tracing queries.
Therefore, the problems of selecting auxiliary data for
the two purposes are closely related, and we study the
problems together.

The auxiliary data is stored as materialized views in
the warehouse, calledauxiliary views(as opposed to
the original warehouse views, which we callprimary
views). Given a complex relational primary view,
there are numerous possible sets of auxiliary views to
materialize for view maintenance and lineage tracing,
with significant performance tradeoffs. In general, the
more auxiliary views we materialize, the more effi-
ciently we can maintain and trace the lineage of data in
the primary view. However, the auxiliary views them-
selves also need to be maintained, so materializing too
many auxiliary views can increase overall cost.

Previous work has studied the selection of views
to materialize for answering queries, e.g., [HRU96,
Gup97], and the selection of auxiliary views for ef-
ficient maintenance of given primary views, e.g.,
[LQA97, RSS96]. (Further discussion of this work
appears in Section 2.) In [CW00], we introduced
the idea of materializing auxiliary views to minimize
overall view maintenance and lineage tracing cost,
and we studied the problem in the context of select-
project-join (SPJ) primary views. This paper inves-
tigates the more difficult and general problem of re-
lational views with arbitrary use of aggregation and
SPJ operators. As we will see, it is an expensive com-
binatorial problem, and our overall approach differs
from [CW00].

In this paper, we first define anormal form for
the primary view definition, which suggests an ini-
tial search space of possible auxiliary views. We then
propose a variety of algorithms for selecting auxiliary
views within this search space. Finally, we compare
empirically the running time of our algorithms and the
optimality of the auxiliary view sets they select, using
the TPC-D benchmark [TPC96] in addition to a suite
of synthetic view definitions and statistics. The results
of our experiments show:

• The exhaustive algorithm that selects the opti-
mal set of auxiliary views is far too expensive
in many cases.

• Two heuristic algorithms that we present select
good (often optimal) sets of auxiliary views in a
much shorter time.

• Even auxiliary views selected by a very sim-
ple algorithm can significantly reduce the overall
view maintenance and lineage tracing cost.

1.1 Outline of Paper

The remainder of the paper proceeds as follows. Sec-
tion 2 covers related work. Section 3 presents pre-
liminary material on materialized views, view main-
tenance, and lineage tracing, including a running ex-
ample. Section 4 introduces the auxiliary views we
consider for efficient view maintenance and lineage
tracing, and defines the search space for selecting aux-
iliary views to materialize. Section 5 describes the
cost model and statistics we use for estimating view
maintenance and lineage tracing costs, and for study-
ing the performance of our auxiliary view selection al-
gorithms. Section 6 presents several algorithms for se-
lecting auxiliary views within our search space. Sec-
tion 7 compares the performance of the algorithms us-
ing experiments on the TPC-D benchmark, as well as
using a variety of synthetic view definitions and statis-
tics.

2 Related Work

Previous work related to this paper falls into three
categories: selecting views to materialize in order to
minimize query costs, e.g., [HRU96, Gup97], select-
ing auxiliary views to materialize in order to min-
imize the cost of maintaining given primary views,
e.g., [LQA97, RSS96], and our own previous work
in lineage tracing and view maintenance [CWW97,
CW00].

[HRU96] proposes a greedy algorithm for selecting
auxiliary views to materialize, with the goal of mini-
mizing the cost of queries over aggregate views given
certain constraints such as the maximum number of
views that can be materialized. The work considers
data-cube views only, and can make certain simpli-
fying assumptions based on this restriction. [Gup97]
extends the work in [HRU96] to general relational
views, and proves that the auxiliary view selection
problem under maintenance cost constraints is NP-
hard.

Y. Cui, J. Widom 11-2

[RSS96] proposes an exhaustive algorithm for se-
lecting auxiliary views to optimize view maintenance,
and suggests simple search space pruning strategies
when the view is too complex for exhaustive search.
[LQA97] presents an A* algorithm for selecting aux-
iliary views and indexes on different join combina-
tions for SPJ view maintenance. Both [RSS96] and
[LQA97] consider a single algorithm for selecting
auxiliary views (and indexes in the case of [LQA97]),
designed specifically for optimizing view mainte-
nance. They consider as potential auxiliary views all
nodes in all possible relevant query plans, making the
search space doubly exponential in the view definition
size.

We introduced lineage tracing for relational data
warehouses in [CWW97], presenting a formal frame-
work and basic algorithms. In [CW00], we introduced
the problem of selecting auxiliary views to simulta-
neously reduce view maintenance and lineage trac-
ing costs, and we considered the restricted case of
SPJ views. We suggested several alternative auxil-
iary view schemes and compared their performance.
In this paper, we tackle the problem for complex rela-
tional views with arbitrary use of aggregation and SPJ
operators. Arbitrarily complex primary views make
the auxiliary view selection problem more compli-
cated and expensive than for SPJ views, and we take a
different approach to solving it than for the restricted
case considered in [CW00]. We introduce a normal
form for our view definitions that suggests an initial
(still exponential) search space for useful auxiliary
view sets, and then we consider heuristic algorithms
that explore various view sets in this search space.

Our work differs from the previous work discussed
above in several ways:

• Unlike all previous work besides our own, we
consider lineage tracing as well as view main-
tenance costs when selecting auxiliary views to
materialize.

• Instead of considering a doubly exponential
search space of auxiliary views (as in [HRU96,
Gup97, LQA97, RSS96]), or a very simple
fixed set (as in [CW00]), we explore a “mid-
dle ground” based on our view definition normal
form.

• We propose several different auxiliary view se-
lection algorithms, as opposed to a single algo-

rithm, and we compare the performance of our
algorithms (both running time and quality of so-
lution) through experiments.

3 Preliminaries

We now introduce the relational materialized views
we consider, as well as the processes of view main-
tenance and lineage tracing, using a running example.
Along the way, we illustrate why materializing auxil-
iary views is important for view maintenance and lin-
eage tracing, and why it is useful to consider the two
problems together.

3.1 Materialized Views

To answer a variety of user queries efficiently, a data
warehouse typically computes and stores a number of
materialized views[LW95]. In this paper, we con-
sider relational views with arbitrary use of aggrega-
tion, selection, projection, and join operators, which
we callASPJ views. We use an algebraic representa-
tion for the operators:α for grouping and aggregation,
σ for selection,π for (duplicate-eliminating) projec-
tion, and./ for join. A view definition is presented
using a rooted operator DAG with source tables at the
leaves.

Any ASPJ view definitionv can be transformed
into an equivalent formv′ composed ofα-π-σ-./
operator sequences, by commuting and combining
some select-project-join operators in the view defini-
tion [CWW97]. We call the resulting formv’s ASPJ
normal form, and we call eachα-π-σ-./ sequence a
segment. An example will be given shortly. In ASPJ
normal form, a segment may omit theπ, σ, or ./ op-
erator, but each segment except the topmost must in-
clude a non-trivial aggregation operator (or it would
be merged with an adjacent segment). Since our view
definitions are DAGs, they may contain multiple ref-
erences to a source table or to a segment at any level.

We say that a view is ann-level ASPJ view if
traversing from the root to any leaf in its normalized
definition crosses at mostn segments. Thefan-outof
a segment is the number of operands of the segment’s
join operator, or 1 if there is no join.

Example 3.1 (Materialized View and Normal Form)
Consider a data warehouse for a department store
chain based on the following four tables, some or all
of which may reside at remote source databases.

Y. Cui, J. Widom 11-3

• Store(store-id, city, expenses)
gives the city and monthly operating expenses of
each store. We assume that each city contains at
most one store, and that the operating expenses
do not include employee salaries.

• Product(product-id, price, cost)
gives the retail price and wholesale cost of each
product item.

• Sales(store-id, product-id, num)
gives the expected monthly number of sales for
each product at each store.

• Employee(emp-id, store-id,
salary) gives the monthly salary of each
employee at each store.

Consider a materialized viewHighProfit that
keeps track of those cities whose stores are very
profitable, i.e., whose monthly income exceeds ex-
penses by at least $100,000. An SQL definition for
HighProfit is shown in Figure 1, and its normal-
ized view definition tree is shown in Figure 2. We
useαG,aggr(A) to represent grouping and aggregation,
whereG is a list of grouping attributes, andaggr(A)
abbreviates a list of aggregate functions over attributes
in setA [CWW97].1 HighProfit is a 2-level ASPJ
view containing three segments: the topmostπ-σ-./
segment with fan-out 3, the leftmostα segment with
fan-out 1, and the middleα-./ segment with fan-out
2. 2

3.2 View Maintenance Procedures

Materialized views must bemaintainedto keep their
contents up-to-date as the source tables they are de-
fined over change. We assume a standardincremental
view maintenanceapproach, as in [GMS93, Qua96].
Insertions and deletions to each source table are mon-
itored and recorded indelta tables(∆ and∇ respec-
tively) in the warehouse. Updates are modeled as
deletions followed by insertions. During view mainte-
nance, changes to the view (also expressed as deltas)
are computed based on the source delta tables, the
view contents, and the source data, using a predefined

1This operator is similar to thegeneralized projectionof
[GHQ95], but we distinguish between projection and aggregation
operators because of the way our segments and auxiliary views
are defined.

sequence of queries and updates called themainte-
nance procedure. For 1-level ASPJ views we use the
maintenance procedures from [GMS93, Qua96]. The
following example shows a 1-level ASPJ view and its
maintenance procedure.

Example 3.2 (View Maintenance Procedure)
Consider the source tables from Example 3.1 and
a 1-level ASPJ viewProfit corresponding to the
middleα-./ segment in Figure 2:

CREATE VIEW Profit AS
SELECT store-id, SUM(num*(price−cost)) AS profit
FROM Sales, Product
WHERE Sales.product-id = Product.product-id
GROUP BY store-id

Suppose theSales table changes over time, and
a set of insertions and deletions to the table are
stored in delta tables∆Sales and∇Sales , respec-
tively. The resulting changes to the viewProfit
(∆Profit and∇Profit) can be computed by the
following maintenance procedure, which uses the
summary-deltaapproach from [Qua96]:

SELECT store-id, SUM(profit) AS profit INTO SummaryDelta
FROM (SELECT store-id, (num*(price−cost)) as profit

FROM∆Sales, Product
WHERE∆Sales.product-id = Product.product-id)

UNION
(SELECT store-id, -1*(num*(price−cost)) as profit

FROM∇Sales, Product
WHERE∇Sales.product-id = Product.product-id)

GROUP BY store-id

SELECT * INTO∇Profit
FROM Profit
WHERE store-id IN

(SELECT store-id FROM SummaryDelta)

SELECT store-id, SUM(profit) INTO∆Profit
FROM∇Profit UNION SummaryDelta
GROUP BY store-id

2

For ann-level ASPJ view wheren > 1, to com-
pute the changes to the entire view we can com-
pute the changes for one segment at a time using
the maintenance procedure for 1-level views, prop-
agating the deltas upward through the view defini-
tion DAG. Just as we needed source tableProd-
uct along with∆Sales and∇Sales to compute
the deltas forProfit in Example 3.2, to compute
the deltas for a higher-level segment we may need
deltas and/or full contents for each lower segment.

Y. Cui, J. Widom 11-4

CREATE VIEW HighProfit AS
SELECT city
FROM Store,

(SELECT store-id, SUM(num*(price−cost)) AS profit
FROM Sales, Product
WHERE Sales.product-id = Product.product-id
GROUP BY store-id) AS P,

(SELECT store-id, SUM(salary) AS salaries
FROM Employee
GROUP BY store-id) AS E

WHERE Store.store-id = E.store-id
AND E.store-id = P.store-id
AND P.profit−E.salaries−Store.expenses> 100000

Figure 1: SQL definition forHighProfit

HighProfit

π city

σprofit - expenses - salaries

store-id,
α

sum(salary)
store-id,

α

as profit

Sales ProductEmployee Store

> 100000

as salaries
sum(num (price - cost))*

Figure 2: Normal form forHighProfit

For example, suppose we want to compute the deltas
for HighProfit given∆Profit and∇Profit ,
where againProfit corresponds to the middleα-./
segment as in Example 3.2. We need to join the delta
tables forProfit with source tableStore , as well
as with the leftmostα segment in Figure 2, then per-
form the selection and projection in the topmost seg-
ment. If we materialize an auxiliary viewSalary cor-
responding to the leftmostα segment, we can signif-
icantly improve the performance of the maintenance
procedure by avoiding recomputation of the aggre-
gate values. In addition to materializing “intermedi-
ate” views, if source tables are remote and expensive
(or impossible) to access, we may want to replicate
some or all of the source tables as auxiliary views at
the warehouse.

Note that our approach in this paper applies to all
views, including those with non-incrementally main-
tainable aggregates (e.g.,min, max). In the presence
of such aggregates, the maintenance procedure must
involve some recomputation, but auxiliary views may
still be of benefit.

3.3 Lineage Tracing

Given a materialized view in a data warehouse, in ad-
dition to issuing regular queries or performing other
kinds of analysis over the view, we may want totrace
the lineageof selected “interesting” tuples in the view.
The lineage of a view tuple is defined as the set of
original source tuples that derived the given view tu-
ple. To trace the lineage of a view tuple, we use a
predefined sequence of queries calledtracing queries
(TQs)[CWW97].

Given a 1-level ASPJ viewV whose definition is
v = αG,aggr(B)(πA(σC(T1 ./ · · · ./ Tm))), and

given tuplet ∈ V , t’s lineage inT1, . . . , Tm accord-
ing tov can be computed with the following query:

TQt,v = SplitT1,...,Tm(σC∧G=t.G(T1 ./ · · · ./ Tm))

where Ti, denotes the schema of tableTi, i =
1..m, and Split is an operator that breaks a ta-
ble into multiple projections:SplitA1,...,Am(T) =
〈πA1(T), . . . , πAm(T)〉.2 Given a tuple setT ⊆ V ,
we can simultaneously trace all the tuples inT with:

TQT,v = SplitT1,...,Tm(σC(T1 ./ · · · ./ Tm)n T)

Example 3.3 (Lineage Tracing Query)Consider
the view Profit in Example 3.2. The lineage
tracing query for a tuplet ∈ Profit is

TQt,Profit = SplitT1,T2(σC(T1 ./ T2))

where T1 = Sales, T2 = Product, and C =
“store-id = t.store-id”. The SQL presentation of
the query is as follows:

SELECT Sales.* INTO LNSales
FROM Sales, Product
WHERE Sales.product-id = Product.product-id AND
Sales.store-id =t.store-id

SELECT Product.* INTO LNProduct
FROM Sales, Product
WHERE Sales.product-id = Product.product-id AND
Sales.store-id =t.store-id

where LN Sales and LN Product contain the
lineage oft according to viewProfit in the source
tablesSales andProduct , respectively. 2

2When we execute the tracing query, the selection condition
σC∧G=t.G is pushed down to individualTi’s whenever possible
to improve tracing query performance.

Y. Cui, J. Widom 11-5

To trace the lineage of ann-level ASPJ view where
n > 1, we logically define an intermediate view for
each segment, and then recursively trace through the
hierarchy of intermediate views top-down. At each
level, we use the tracing query for a 1-level ASPJ view
to compute the lineage for the current traced tuples
with respect to the intermediate views or source ta-
bles at the next level below. The necessary interme-
diate results can either be computed at tracing time,
or we can materialize certain intermediate results as
auxiliary views for the purpose of lineage tracing.

For example, to trace the lineage of a tuplet in
view HighProfit , we logically define intermedi-
ate viewsSalary and Profit corresponding to
the leftmostα segment and middleα-./ segment, re-
spectively, in Figure 2. We trace the lineage of tu-
ple t in Salary , Profit , andStore , producing
〈LN Salary, LN Profit, LN Store〉, using the fol-
lowing tracing query:

TQ = SplitT1,T2,T3(σC(T1 ./ T2 ./ T3))

whereT1 = Salary, T2 = Profit,T3 = Store, and
C = “profit− expenses− salaries > 100000
∧city = t.city”. Then, we further trace the lineage
of the tuples inLN Salary andLN Profit in the
source tables to produceLN Employee , LN Sales ,
andLN Product . As with view maintenance, ma-
terializing rather than recomputing intermediate re-
sults can significantly improve tracing performance.
Since lineage tracing queries always return data from
source tables by definition, replicating (portions of)
the source data at the warehouse may be advanta-
geous, for the same reasons outlined in Section 3.2.

4 Auxiliary Views for View Maintenance and
Lineage Tracing

As motivated in Section 3, it may be advantageous
to materialize certainauxiliary viewsin a data ware-
house to improve the performance of view mainte-
nance and lineage tracing. View maintenance pro-
cedures and lineage tracing queries use the auxil-
iary views to avoid recomputations and expensive
source queries, thereby reducing maintenance and
query costs. There are many possible sets of auxiliary
views to materialize. In this section, we first specify
a number of potentially useful auxiliary views for ar-
bitraryn-level ASPJ primary views (Section 4.1). We
then discuss how view maintenance procedures and

lineage tracing queries take advantage of the auxiliary
views (Section 4.2). Finally, we formally define the
auxiliary view selection problem and estimate the size
of our search space (Section 4.3).

4.1 The Auxiliary Views We Consider

Let us first define two types of potentially useful aux-
iliary views, based on a single segment. (Similar aux-
iliary views were introduced in the context of SPJ pri-
mary views in [CW00].) Any segment can be thought
of as a view definitionv = αG,aggr(B)(πA(σC(T1 ./
· · · ./ Tm))), where eachT1, . . . , Tm is either a
source table or a lower-level segment (view). LetV
denote the materialization ofv overT1, . . . , Tm.

1. Lineage View (LV)for v: We can store the inter-
mediate resultLV (v) = σC(T1 ./ · · · ./ Tm)
to help trace the lineage of tuples inV . We can
rewrite the lineage tracing queries in Section 3.3
usingLV (v) as:

TQt,v = SplitT1,...,Tm(σG=t.G(LV (v)))

TQT,v = SplitT1,...,Tm(LV (v)n T)

The maintenance procedure forV also can be
simplified. If LV (v) is materialized, then we
compute∆LV (v) and∇LV (v), and the query
for computing thesummary-deltatable in the
maintenance procedure (Section 3.2) can be
rewritten as:

SummaryDelta =αG,aggr(B)(αG,aggr(B)(∆LV)

∪ αG,−aggr(B)(∇LV))

2. Split Lineage Tables (SLTs)for v: For a view
(segment) v′ whose joins is many-to-many,
LV (v′) can be very large and inefficient to main-
tain. Thus, another possibility is to “split” the
Lineage View and store a set of smaller tables:
SLTi(v) = πTi(σC(T1 ./ · · · ./ Tm)), i =
1..m. The lineage tracing queries can then be
rewritten using the SLTs as:

TQt,v =SplitT1,...,Tm(σG=t.G(σC((SLT1(v)

n T) ./ · · · ./ (SLTm(v)n T))n T))
TQT,v =SplitT1,...,Tm(σC((SLT1(v) n T)

./ · · · ./ (SLTm(v) n T))n T)

Y. Cui, J. Widom 11-6

Although these tracing queries look much more
complex than with LV, performance can some-
times be much better due to the smaller size of
the SLTs. Furthermore, as with LV, the mainte-
nance procedure forV can use the deltas for the
SLTs to be much more efficient. See [CW00] for
details.

Given a general ASPJ view definition in normal
form, in addition to considering Lineage Views and
Split Lineage Tables for each segment, we also may
consider storing copies of some or all of the source ta-
bles, to avoid expensive (remote) source queries dur-
ing view maintenance and lineage tracing. We refer
to these source table copies in the warehouse asBase
Tables(BTs). Finally, maintaining the results of in-
termediate aggregations in the view (AGs) also can be
very helpful in view maintenance and lineage tracing,
as motivated in Section 3.

To summarize, we divide the normalized view def-
inition into three types of components, and for each
type of component we have certain choices of possi-
ble auxiliary views to materialize:

1. Topmost Segment: the segment at the root of
the view definition DAG. Note that theα, π, σ,
and/or./ operators (but not all of them) may be
omitted in this segment. Also note that the top-
most node corresponds to the primary view itself,
so its contents are always materialized. We may
further choose to materialize the Lineage View
(LV) or the Split Lineage Tables (SLTs) for this
segment, but not both. (If we store one, then stor-
ing the other will not further reduce the lineage
tracing or overall maintenance cost.)

2. Intermediate Segment: a non-root segment that
is defined over the source tables and/or other seg-
ments. Note that theπ, σ, and/or./ operators
may be omitted in this segment, but theα opera-
tor is always present. For an intermediate seg-
ment, we consider materializing the following
auxiliary views:

(a) The contents of theα node (AG)

(b) The Lineage View (LV) or the Split Lineage
Tables (SLTs), but not both

3. Source Table: We assume that all local selec-
tion conditions in the view—predicates that in-
volve a single source table—are pushed down to

α

ProductSales

π
σ

BT

1LV or SLT1

BT2 3

LV or SLT2

2AGα

Employee

AG

BT

1

1 BT4

Store

2

HighProfit

Figure 3: Possible auxiliary views forHighProfit

the source tables. For each source tableR, we
decide whether to store a Base Table (BT) copy
of R. If BT is not materialized, we may need to
issue queries directly to source tableR for view
maintenance and lineage tracing.3

Example 4.1 (Auxiliary Views) Recall our example
view HighProfit from Figure 2. Figure 3 shows
the three ASPJ segments in the view definition and all
of the possible auxiliary views we consider material-
izing for HighProfit . 2

Notice that because of our search space reduction,
it is possible that there are useful auxiliary views we
are not considering, notably different join combina-
tions in the case of a many-way join. This special
case is considered in detail in [LQA97], and we could
extend our search space accordingly.

4.2 Using Auxiliary Views for View Maintenance
and Lineage Tracing

In Section 4.1 we gave examples of how to rewrite
queries for view maintenance and lineage tracing us-
ing auxiliary views. In general, when we have a set
of auxiliary views available, there may be more than
one way to rewrite a query to take advantage of aux-
iliary views. We assume that the “best” rewriting is
selected, and this assumption is reflected in the cost
model we present in Section 5.

As an example, Figure 4 shows the rewritings of the
lineage tracing query TQ for a tuplet according to the
topmost segment in the definition ofHighProfit
using the auxiliary views in Figure 3:

3Most existing data warehousing systems automatically store
a copy of each source table in the warehouse. However, as we will
see in Section 6, sometimes it is not beneficial to store a copy.

Y. Cui, J. Widom 11-7

TQ1 =SplitSalary,Profit,Store(σprofit−expenses−salaries>100000∧city=t.city(AG1 ./ AG2 ./ BT4))
TQ2 =SplitSalary,Profit,Store(σcity=t.city(LV2))

TQ3 =SplitSalary,Profit,Store(σcity=t.city(SLT
Salary
2 ./ SLT Profit2 ./ SLT Store2))

Figure 4: Tracing query rewritings

Suppose thatLV2,AG1, andBT4 are materialized.
Then we could use queryTQ2, or (among other op-
tions) we could use a tracing query similar toTQ1
that recomputes the contents ofAG2. In this case it
is likely thatTQ2 would be chosen as the best query
rewriting based on the available auxiliary views.

4.3 The View Selection Problem and the Search
Space Size

We have shown that various auxiliary views can be
used in the view maintenance and lineage tracing pro-
cesses. Our goal is to select among the choices of aux-
iliary views described in Section 4.1 a set that mini-
mizes overall cost: the cost of lineage tracing plus the
cost of maintaining the primary and auxiliary views.
Our cost model is described in Section 5. Here let
us consider the size of our search space. Suppose we
have ann-level ASPJ view in normal form, and con-
sider a balanced view definition tree4 with a fan-out
ofm in each segment. There is one topmost segment,
and for that segment we have3 auxiliary view options:
LV, SLTs, or nothing (case 1 in Section 4.1). There
arem1+m2+ · · ·+mn−1 = O(mn−1) intermediate
segments, each having 2 options for case 2(a) in Sec-
tion 4.1 (AG or nothing) and 3 options for case 2(b)
(LV, SLTs, or nothing). Finally, there aremn source
tables, each having 2 options: BT or nothing. There-
fore, the size of the entire search space is

31 · (2 · 3)O(mn−1) · 2(mn) = O(2mn)

If k is the total number of components in the view def-
inition, where a component is a segment or a source
table, thenk = O(mn) and the search space size is
O(2k).

Example 4.2 (Search Space Size)Consider our ex-
ample viewHighProfit (Figure 3). The number

4A tree is balanced if each leaf node in the tree has the same
depth. We consider this view definition shape since it represents
the largest search space size for ann-level view.

Table 1: Statistics for cost estimation

Parameter Description

usage statistics (for each primary view)

query rate # of tracing queries per unit time period
query size # of tuples traced per query

usage statistics (for each source table)

updaterate # of source table updates per unit time period
updatesize # of changed tuples per source table update

data statistics (for each source table)

tuple num # of tuples in a source table
tuple size size of tuples in a source table (in bytes)

data statistics (for each view segment)

fan-out # of joined tables
join ratio # of joining tuples / # of tuples in cross-product
selectratio # of selected tuples / # of tuples before selection
proj ratio # of bytes projected / tuple size before projection
aggr ratio # of aggr tuples / # of tuples before aggregation

system statistics (for each source or warehouse)

block size # of bytes in a block
disk cost cost to read/write a disk block (in ms/block)
net cost network transmission cost (in ms/byte)

of possible auxiliary view sets forHighProfit is
26 · 32 = 384. 2

The number of choices forHighProfit is quite
manageable. However, real warehouse views tend to
have much higher fan-outs, as well as possibly more
levels. As we will see in Section 7, even for a view
with only 2 levels and average fan-out of 5, we can-
not consider all possible auxiliary view sets due to the
large search space.

5 Cost Model

In this section we present the model that we use to es-
timate view maintenance and lineage tracing costs for
a given primary view and set of auxiliary views. The
statistics our cost model relies on are listed in Table 1.
Values for these statistics are set for each experiment,
as described in Section 7. We briefly outline our cost
estimation procedure as follows.

Y. Cui, J. Widom 11-8

Let cost(Q, s) denote the estimated cost of evaluat-
ing a queryQ at the warehouse given a set of statistics
s. Q could be a lineage tracing query, or a query or
update in a view maintenance procedure. To compute
cost(Q, s) we use a fairly conventional cost model
for relational queries in a distributed database setting,
similar to, e.g., [LQA97, Ull89, ZGMHW95]. Details
are omitted, but the cost formulas rely on all of the
statistics from Table 1, and assume no indexes.

Suppose we have a primary viewv and a set of aux-
iliary viewsA = {v1, ..., vn}. To trace the lineage of
tuples in the primary view given the materialized aux-
iliary views in A, there are various possible rewrit-
ings of the lineage tracing queries using the auxiliary
views (recall Section 4.2). Our cost model selects the
sequence of lineage tracing queries with the lowest es-
timated cost. Letq(v,A, s) denote the estimated lin-
eage tracing cost for a given primary viewv, set of
auxiliary viewsA, and statisticss:

q(v,A, s) =
∑

1..m

cost(Qi, s)

whereQ1, . . . , Qm is the set of tracing queries se-
lected forv given auxiliary view setA. Note that the
lineage query rate and the average number of tuples
traced in a lineage query (part of our usage statistics
in Table 1) are included in the input statisticss, and
thus are incorporated into the lineage cost estimated
by q(v,A, s).

Maintenance costs are incurred both for the pri-
mary view v and for the auxiliary views inA =
{v1, ..., vn}. As with lineage tracing, when there are
multiple possible rewritings for the view maintenance
queries and updates using the auxiliary views inA,
our cost model selects the ones with the lowest es-
timated cost. Letm(v,A, s) denote the estimated
maintenance cost for a given primary viewv, set of
auxiliary viewsA, and statisticss:

m(v,A, s) =
∑

1..n

cost(Mi, s)

whereM1, . . . ,Mn is the set of maintenance queries
and updates selected to maintain primary viewv and
the auxiliary views inA. Note that the source ta-
ble update rate and average number of source tuples
changed in each update (part of our usage statistics in
Table 1) are included in the input statisticss, and thus
are incorporated into the maintenance cost estimated
bym(v,A, s).

Finally, the total cost is the combination of lineage
tracing cost and view maintenance cost:

total cost(v,A, s) = q(v,A, s) +m(v,A, s)
In our experiments, we measure theoptimality of
given sets of auxiliary views, by which we mean how
close the sets of views come to the set that yields the
lowest estimated cost. For a given primary viewv and
statisticss, letAopt denote the set of auxiliary views
within our search space (Section 4) with the lowest
total costtotal cost(v,Aopt, s). For a set of auxiliary
viewsA, we define the optimality ofA as:

optimality(A) = total cost(v,Aopt, s)
total cost(v,A, s)

6 Algorithms for Selecting Auxiliary Views

Having defined the search space for the optimization
problem and the cost model that we use, we now in-
troduce four different algorithms for selecting a set
of auxiliary views within the search space. The in-
put to each algorithm is the primary view definitionv
in ASPJ normal form, and a set of statisticss as speci-
fied in Section 5. The output is a set of auxiliary views
A.

6.1 Exhaustive Algorithm

The exhaustive algorithm enumerates all choices in
the search space, estimates the cost of each choice,
and picks the cheapest one. For our example view
HighProfit , the exhaustive algorithm considers
all 384 possible combinations of auxiliary views (re-
call Figure 3). We set a sample set of statisticss
as shown in Table 2, including statistics for view
HighProfit , source tablesEmployee , Sales ,
Product , and Store , as well as each ASPJ seg-
ment in the view definition (Figure 3). Over this set
of statistics, the exhaustive algorithm selectsA =
{BT4, AG1, AG2, SLT1, LV2}. The exhaustive algo-
rithm always finds the optimal auxiliary view set ac-
cording to our cost model. However, the complexity
of the algorithm is the same as the search space size:
O(2k) wherek is the number of components in the
view definition (recall Section 4.3).

6.2 Naive Algorithm

At the other end of the spectrum, we con-
sider a naive algorithm that selects a fixed set

Y. Cui, J. Widom 11-9

Table 2: Statistics for view HighProfit

Parameter name Values
HighProfit Employee Sales Product Store segment 1 segment 2 segment 3

query rate (#/unit time) 100
query size (tuples) 1
updaterate (#/unit time) 10 10 10 0
updatesize (tuples) 1 100 1 0
tuple num 10000 1000000 100000 100
tuple size (bytes) 1000 500 500 400
fan-out 1 2 3
join ratio 0.0002 0.0001
selectratio 0.1
proj ratio 0.1 0.1 0.1
aggr ratio 0.01 0.001 0.2
block size (bytes) 8K 8K 8K 8K 8K
disk cost (ms/block) 1 1 1 1 1
net cost (ms/byte) 0 0.00001 0.0001 0.0001 0.0001

of auxiliary views: Lineage Views (LVs) for the
topmost and all intermediate segments, aggrega-
tion results (AGs) for all intermediate segments,
and all Base Tables (BTs). For example view
HighProfit , the naive algorithm selectsA =
{BT1, BT2, BT3, BT4, AG1, AG2, LV1, LV2}. Even
though this naive fixed set of auxiliary views may not
be optimal—in fact it can be arbitrarily bad compared
to the optimal set—our experimental results in Sec-
tion 7 show that the naive algorithm selects reasonably
good view sets in many cases, especially considering
its simplicity. The complexity of the naive algorithm
isO(1).

6.3 Greedy Algorithm

We also consider a conventional greedy algorithm.
This algorithm initializes the auxiliary view setA to
be empty. In each iteration, it adds intoA the auxiliary
view (not yet inA) that brings the most benefit, i.e.,
reduces the total cost the most given the current set of
views inA. Iteration continues until there are no more
auxiliary views outsideA that can further reduce the
total cost. For our example viewHighProfit and
the same sample statistics used in the exhaustive algo-
rithm (Section 6.1), the greedy algorithm selects the
optimal set of auxiliary views in the following order:
AG2, SLT1,AG1, LV2, BT4.

The greedy algorithm has complexityO(k2) in-
stead ofO(2k) as in the exhaustive algorithm, and it
selects the optimal auxiliary view set in most cases
(see Section 7). However, the greedy algorithm can-

not guarantee an optimal answer, nor even an answer
within some percentage of optimal. In Section 7.3, we
will see a scenario where the greedy algorithm per-
forms very poorly.

6.4 Three-Step Algorithm

Our last algorithm divides the auxiliary view selec-
tion process into three phases. See Figure 5. In the
first phase, we use a greedy approach to add auxiliary
views of the AG and BT types only. In the second
phase, we decide for the topmost and each intermedi-
ate segment whether to add LV or SLTs. At this point,
it may turn out that some of the AG or BT views se-
lected in the first phase are no longer beneficial given
the LV or SLT views selected in the second phase, and
they incur maintenance cost. Thus, in third phase we
remove AG and BT views that are not beneficial, and
we do so in a greedy manner.

For example viewHighProfit and the same
statistics used in Sections 6.1 and 6.3, the three-step
algorithm also selects the optimal set of auxiliary
views. In phase 1, it selects AG and BT views in
the following order:AG2, AG1, BT2, BT3, BT4. In
phase 2, it selectsSLT1 andLV2. In phase 3, it re-
movesBT2 andBT3 (in that order) because they are
no longer beneficial given the views selected in phase
2.

The three-step algorithm has complexityO(k2),
which is the same as the greedy algorithm, but its ac-
tual running time is less than the greedy algorithm by
a linear factor. The first phase of the three-step algo-

Y. Cui, J. Widom 11-10

input: primary viewv, statisticss
output: auxiliary view setA
begin
A ← ∅;

// phase 1: use greedy algorithm on AG and BT nodes
Aall ← all possible auxiliary views forv;
while truedo

for eachvi ∈ Aall of type AG or BT such thatvi 6∈ A do
benefiti ← total cost(v,A, s)− total cost(v,A ∪ {vi}, s);

pick vi with the highestbenefiti;
if benefiti ≤ 0 then breakelseA ← A∪ {vi};

endwhile;

// phase 2: decide LV and SLTs
for the topmost and each intermediate segmentdo

// LetLV andSLT be the Lineage View and Split Lineage Tables for the segment
cost1 ← cost(v,A ∪ {LV }, s);
cost2 ← cost(v,A ∪ {SLT }, s);
if cost1 ≥ cost2 > cost(v,A, s) thenA ← A∪ {LV }
else ifcost2 > cost1 > cost(v,A, s) thenA ← A∪ {SLT };

endfor;

// phase 3: remove useless AGs and BTs
while truedo

for eachvi ∈ A of type AG or BTdo
benefiti ← total cost(v,A− {vi}, s)− total cost(v,A, s);

pick vi with the lowestbenefiti;
if benefiti > 0 then breakelseA ← A− {vi};

endwhile;

return A;
end

Figure 5: The three-step algorithm

rithm is faster than the greedy algorithm since it only
selects from the AG and BT views, instead of from
all auxiliary views. The second phase is linear in the
number of segments. The third phase only examines
the AG and BT views selected in the first phase, which
is a small number in most cases.

Like the greedy algorithm, the three-step algorithm
usually selects the optimal set of auxiliary views (see
Section 7). However, also like the greedy algorithm,
the three-step algorithm cannot make any guarantees
about the optimality of its answers. In Section 7.3 we
will see a scenario where the three-step algorithm per-
forms poorly. Interestingly, in the case we show where
the three-step algorithm performs poorly, the greedy
algorithm performs well, and vice-versa. Thus, one

practical option is to combine the two algorithms:
run both algorithms and select whichever answer has
lower estimated cost. The running time of the com-
bined algorithm remainsO(k2).

7 Performance Study

In this section, we study the performance of the four
algorithms specified in Section 6, comparing their
running times and the optimality of the answers they
produce. We also compare the cost of the answers pro-
duced by these algorithms against the cost of storing
no auxiliary views. In Section 7.1, we present results
of experiments using the schema, statistics, and some
views from the TPC-D benchmark. In Section 7.2,
we present results of experiments using more complex

Y. Cui, J. Widom 11-11

Region
Order

Lineitem Supplier
Nation

α
π

π

PartSupp
Supplier

Nation

Part

Lineitem

π
α

Q11Q5 Q17

α
π
σ

α
π
σ

σ

α
π

σCustomer

Figure 6: Materialized views for TPC-D experiments

Q5 Q11 Q17
0%

20%

40%

60%

80%

100%

Q5 Q11 Q17
0%

20%

40%

60%

80%

100%

exhaustive

greedy

three-step

naive

none

Figure 7: Optimality for TPC-D views

exhaustive greedy three-step naive none

Q5 11.15 4.79 2.38 0.08 0.09
Q11 14.07 0.94 0.38 0.03 0.04
Q17 0.62 0.29 0.10 0.02 0.03

Figure 8: Running time in seconds for TPC-D

synthetic view definitions. Since the greedy and three-
step algorithms perform quite well in all of the experi-
ments in Sections 7.1 and 7.2, in Section 7.3 we show
experiments illustrating that greedy and three-step can
perform poorly.

7.1 TPC-D Experiments

Our first set of experiments is based on the TPC-D
benchmark [TPC96]. We use the schema of tables
Customer , Order , Lineitem , Supplier , Na-
tion , Region , PartSupp , and Part from the
benchmark for our experiments. The table statistics
we use correspond to a scaling factor of 1. The re-
maining statistics from Table 1 are set according to
the benchmark and commonly used database and net-
work system settings. For example, we set the update
rate for theLineitem andOrder tables to be much
higher than other tables, sinceLineitem andOr-

levels = 2
fan-out = 3

R1 R2 R3 R4 R5 R6 R7 R8 R9

π π π
σ σ σ

α α α

1V

σ

α
π

Figure 9: Structure of viewv1

levels fan-out query/update ratio

v1 2 3 100
v2 2 3 10
v3 2 3 1
v4 2 3 0.1
v5 2 3 0
v6 6 1 10
v7 2 5 10

Figure 10: Synthetic configurations

der are thefact tablesaccording to the benchmark
specification. For views, we select queriesQ5, Q11,
andQ17 from the benchmark, since they are relatively
complex and differ somewhat from each other. In each
case, we treat the benchmark query as the definition
of our primary materialized view to be stored at the
warehouse. The general structure of each of the three
views is shown in Figure 6. The complete list of sta-
tistical settings (recall Table 1) for our three TPC-D
experiments is shown in Appendix A, Tables 3–5.

Recall that we are comparing five algorithms—the
four algorithms from Section 6, as well as the “algo-
rithm” that selects no auxiliary views (which we call
algorithmnone). Figure 7 plots the optimality of the
five algorithms for each of the TPC-D views we con-
sider. Recall from Section 5 that optimality is defined
as the cost of the optimal auxiliary view set divided
by the cost of the chosen view set. Figure 8 plots the
running time of the algorithms. Note that algorithms
naiveandnonedo incur a small running time, which
is the time required to compute the cost of their one
solution.

We can see from Figure 7 that storing no auxiliary
views can be dramatically worse than storing some,
even those selected by the naive algorithm. We also
see from Figure 7 that the greedy and three-step al-
gorithms select the optimal auxiliary view set for all
three views, and from Figure 8 we see that they do so

Y. Cui, J. Widom 11-12

V1 V2 V3 V4 V5 V6 V7
0%

20%

40%

60%

80%

100%

V1 V2 V3 V4 V5 V6 V7
0%

20%

40%

60%

80%

100%

exhaustive

greedy

three-step

naive

none

Figure 11: Optimality for synthetic views

exhaustive greedy three-step naive none

v1 2411.68 3.18 0.67 0.05 0.07
v2 2414.86 3.18 0.99 0.03 0.03
v3 2455.74 3.28 0.71 0.08 0.03
v4 2493.06 3.17 0.63 0.03 0.05
v5 2376.53 3.93 0.64 0.03 0.03
v6 757.49 0.99 0.17 0.02 0.02
v7 156.36 35.29 0.33 0.21

Figure 12: Running time for synthetic views (sec)

in a small fraction of the running time required by the
exhaustive algorithm. We also note that the three-step
algorithm runs considerably faster than the greedy al-
gorithm.

7.2 Synthetic Experiments

Our next set of experiments is conducted using syn-
thetic views and data statistics. The views we consider
all have a regular tree definition, as illustrated by view
v1 in Figure 9. We consider seven different views.
Figure 10 summarizes the “shape” of each view defi-
nition tree (number of levels and fan-out of each seg-
ment), along with the query/update ratio, which repre-
sents the ratio of the average number of tracing queries
per unit time to the average number of source updates
(recall Table 1). The complete set of statistical set-
tings for the seven experiments is summarized in Ap-
pendix A, Tables 6–8.

Figure 11 plots the optimality of our five algorithms
for each of the seven synthetic views we consider. Fig-
ure 12 plots the running time of the algorithms. The
greedy and three-step algorithms always select the op-
timal auxiliary view set or, in the one case of the three-
step algorithm onv1, very near to optimal. (Actually,

for view v7 the exhaustive algorithm never finished,
so optimality is measured against the auxiliary view
set selected by the greedy algorithm.) The greedy and
three-step algorithms find their answer in a small frac-
tion of the running time required by the exhaustive
algorithm, and three-step is much faster than greedy.
Another interesting result is that algorithmnoneper-
forms better when the query/update ratio is lower (ex-
perimentsv3–v5). However, we should not infer that
the benefit of auxiliary views is primarily for lineage
tracing. In fact, in experimentv5 the query/update ra-
tio is set to 0 (indicating view maintenance only), and
we still see significant benefit to using auxiliary views.

Next, we consider in more detail how the running
times of the exhaustive, greedy, and three-step algo-
rithms are affected by view complexity. In Figure 13,
we consider views where we fix the number of levels
at 2 and increase the fan-out from 1 to 9. The exhaus-
tive, greedy, and three-step algorithms become pro-
hibitive when the fan-out exceeds 3, 7, and 8, respec-
tively. We see similar behavior in Figure 14, where we
fix the fan-out at 2 and increase the number of levels
from 1 to 8.

7.3 When Greedy and Three-Step Fail

The greedy and three-step algorithms select the op-
timal (or in one case very near to optimal) auxiliary
view set in all of the experiments reported in Sec-
tions 7.1 and 7.2. However, there are cases in which
these algorithms fail to pick an optimal or even near-
optimal answer.

Consider a simple view definitionv and the auxil-
iary views that are considered forv in Figure 15. By

Y. Cui, J. Widom 11-13

three-step
greedy

exhaustive

fan-out

ru
nn

in
g

tim
e

(s
ec

)

987654321

10000

8000

6000

4000

2000

0

Figure 13: Running time vs. fan-out

three-step
greedy

exhaustive

levels

ru
nn

in
g

tim
e

(s
ec

)

87654321

10000

8000

6000

4000

2000

0

Figure 14: Running time vs. # levels

setting the data statistics (Table 1) to different values,
we can vary the costs and benefits of the four differ-
ent auxiliary views. We have set two different con-
figurations, which we callv8 and v9, both based on
the view in Figure 15. The complete set of statistical
settings for these two experiments is summarized in
Appendix A, Tables 9 and 10. In particular, we set the
source table network costs forv8 to be much higher
than forv9, and we set the join ratio ofv8 higher (less
selective) thanv9. The optimal set of auxiliary views
for v8 is {BTR, BTS}, and the optimal set forv9 is
{LV }.

Figure 16 plots the optimality of all five algorithms
on views v8 and v9. In particular, the greedy al-
gorithm performs extremely poorly onv8 (selecting
{LV } instead of{BTR, BTS}), while the three-step
algorithm misses the optimal solution forv9 (select-
ing {BTR, BTS} instead of{LV }). However, as sug-
gested in Section 6, if we use a combined algorithm
that runs both greedy and three-step and then selects
the lower-cost solution, we will select the optimal
view set for bothv8 andv9.

R S

LV or SLTs

α

V

π

σ

RBT SBT

Figure 15: View structure used forv8 andv9

V8 V9
0%

20%

40%

60%

80%

100%

V8 V9
0%

20%

40%

60%

80%

100%

exhaustive

greedy

three-step

naive

none

Figure 16: Optimality forv8 andv9

8 Conclusion

We have examined the problem of selecting auxiliary
views to materialize in a data warehouse in order to
reduce the cost of view maintenance and lineage trac-
ing for complex primary views. We specify a normal
form for view definitions and use it to define an initial
search space of potentially beneficial auxiliary views.
We presented four algorithms for exploring the search
space and selecting a set of auxiliary views:exhaus-
tive, greedy, three-step, andnaive. We compared the
optimality and running time of the algorithms using
experiments based on the TPC-D benchmark, as well
as on a variety of synthetic views and statistics.

Our experiments indicate that in terms of running
time and optimality, the three-step algorithm appears
to be the best, although the running time of the greedy
algorithm probably also is fast enough in practice for
most complex warehouse views. (The exhaustive al-
gorithm, on the other hand, becomes intractable quite
quickly.) Both the greedy and three-step algorithms
find the optimal auxiliary view set in most cases, al-
though we have shown (complementary) situations
in which either one algorithm or the other performs

Y. Cui, J. Widom 11-14

poorly. Our experiments also illustrate that even a
naive selection of auxiliary views reduces overall cost
dramatically in most cases, underscoring the impor-
tance of materializing auxiliary views for the dual pur-
poses of view maintenance and lineage tracing in a
warehousing environment.

Although we have presented our work in the con-
text of selecting an auxiliary view set for a single pri-
mary warehouse view, our approach extends easily to
considering multiple primary views together. Then
the cost of an auxiliary view may be “shared” if the
auxiliary view is beneficial to view maintenance or
lineage tracing for more than one primary view. Fur-
thermore, although we have studied an environment in
which both view maintenance and lineage tracing are
important, if only one type of activity is present our
algorithms remain applicable.

References

[CD97] S. Chaudhuri and U. Dayal. An
overview of data warehousing and
OLAP technology. SIGMOD Record,
26(1):65–74, March 1997.

[CW91] S. Ceri and J. Widom. Deriv-
ing production rules for incremen-
tal view maintenance. InProc.
of the International Conference on
Very Large Databases, pages 577–589,
Barcelona, Spain, September 1991.

[CW00] Y. Cui and J. Widom. Practical lineage
tracing in data warehouses. To appear
in Proc. of the Sixteenth International
Conference on Data Engineering, San
Diego, California, February 2000.

[CWW97] Y. Cui, J. Widom, and J.L. Wiener.
Tracing the lineage of view data
in a warehousing environment.
Technical report, Stanford Univer-
sity Database Group, November
1997. Available at http://www-
db.stanford.edu/pub/papers/lineage-
full.ps.

[GHQ95] A. Gupta, V. Harinarayan, and
D. Quass. Aggregate-query process-
ing in data warehousing environments.

In Proc. of the Twenty-First Inter-
national Conference on Very Large
Data Bases, pages 358–369, Zurich,
Switzerland, September 1995.

[GMS93] A. Gupta, I. S. Mumick, and V. Sub-
rahmanian. Maintaining views in-
crementally. InProc. of the ACM
SIGMOD International Conference on
Management of Data, pages 157–166,
Washington, DC, May 1993.

[Gup97] H. Gupta. Selection of views to mate-
rialize in a data warehouse. InProc. of
the Sixth International Conference on
Database Theory, pages 98–112, Del-
phi, Greece, January 1997.

[HRU96] V. Harinarayan, A. Rajaraman, and
J. D. Ullman. Implementing data
cubes efficiently. InProc. of the ACM
SIGMOD International Conference on
Management of Data, pages 205–216,
Montreal, Canada, June 1996.

[IK93] W.H. Inmon and C. Kelley.Rdb/VMS:
Developing the Data Warehouse.
QED Publishing Group, Boston,
Massachussetts, 1993.

[LQA97] W.J. Labio, D. Quass, and B. Adel-
berg. Physical database design for
data warehousing. InProc. of the
Thirteenth International Conference
on Data Engineering, pages 277–288,
Birmingham, UK, April 1997.

[LW95] D. Lomet and J. Widom, editors.Spe-
cial Issue on Materialized Views and
Data Warehousing,IEEE Data Engi-
neering Bulletin 18(2), June 1995.

[LYC+99] W. Labio, J. Yang, Y. Cui, H. Garcia-
Molina, and J. Widom. Performance
issues in incremental warehouse main-
tenance. Technical report, Stanford
University Database Group, October
1999. Available at http://www-
db.stanford.edu/pub/papers/whips-
wm.ps.

Y. Cui, J. Widom 11-15

[Qua96] D. Quass. Maintenance expressions
for views with aggregation. InProc. of
the Workshop on Materialized Views:
Techniques and Applications, pages
110–118, Montreal, Canada, June
1996.

[RSS96] K.A. Ross, D. Srivastava, and S. Su-
darshan. Materialized view mainte-
nance and integrity constraint check-
ing: Trading space for time. InProc.
of the ACM SIGMOD International
Conference on Management of Data,
pages 447–458, Montreal, Canada,
June 1996.

[TPC96] Transaction Processing Performance
Council. TPC-D Benchmark Specifi-
cation, Version 1.2, 1996. Available at:
http://www.tpc.org/ .

[Ull89] J. D. Ullman. Database and
Knowledge-base Systems (Vol 2).
Computer Science Press, 1989.

[Wid95] J. Widom. Research problems in data
warehousing. InProc. of the Fourth In-
ternational Conference on Information
and Knowledge Management, pages
25–30, Baltimore, Maryland, Novem-
ber 1995.

[ZGMHW95] Y. Zhuge, H. Garcia-Molina, J. Ham-
mer, and J. Widom. View mainte-
nance in a warehousing environment.
In Proc. of the ACM SIGMOD Interna-
tional Conference on Management of
Data, pages 316–327, San Jose, Cali-
fornia, May 1995.

A Statistical Settings for Experiments

Y. Cui, J. Widom 11-16

Table 3: Statistics forQ5

Parameter name Values
Q5 Customer Order LineItem Supplier Nation Region segment 1

query rate (#/unit time) 100
query size (tuples) 1
updaterate (#/unit time) 1 10 40 1 0 0
updatesize (tuples) 1 10 10 1 0 0
tuple num 150000 1500000 6000000 10000 25 5
tuple size (bytes) 300 100 300 200 100 100
fan-out 6
join ratio 0.00001
selectratio 0.01
proj ratio 0.1
aggr ratio 0.001
block size (bytes) 8K 8K 8K 8K 8K 8K 8K
disk cost (ms/block) 1 1 1 1 1 1 1
net cost (ms/byte) 0 0.0001 0.00001 0.00001 0.0001 0.0001 0.0001

Table 4: Statistics forQ11

Parameter name Values
Q11 PartSupp Supplier Nation segment 1 segment 2 segment 3

query rate (#/unit time) 100
query size (tuples) 1
updaterate (#/unit time) 10 1 0
updatesize (tuples) 1 1 0
tuple num 800000 10000 25
tuple size (bytes) 100 200 100
fan-out 1 3 3
join ratio 0.0006 0.0006
selectratio 0.1 0.04 0.04
proj ratio 0.6 0.1 0.1
aggr ratio 0.005 0.005
block size (bytes) 8K 8K 8K 8K
disk cost (ms/block) 1 1 1 1
net cost (ms/byte) 0 0.0001 0.0001 0.0001

Y. Cui, J. Widom 11-17

Table 5: Statistics forQ17

Parameter name Values
Q17 Part Lineitem segment 1 segment 2

query rate (#/unit time) 100
query size (tuples) 1
updaterate (#/unit time) 10 10
updatesize (tuples) 1 10
tuple num 200000 6000000
tuple size (bytes) 200 300
fan-out 3 1
join ratio 0.0002
selectratio 0.002
proj ratio 0.1 0.2
aggr ratio 0.001 0.03
block size (bytes) 8K 8K 8K
disk cost (ms/block) 1 1 1
net cost (ms/byte) 0 0.0001 0.00001

Table 6: Statistics for synthetic viewsv1–v5

Parameter name Values
v1 v2 v3 v4 v5 each source table each segment

query rate (#/unit time) 1000 100 10 1 0
query size (tuples) 1 1 1 1 1
updaterate (#/unit time) 10
updatesize (tuples) 1
tuple num 10000
tuple size (bytes) 100
levels 2 2 2 2 2
fan-out 3
join ratio 0.001
selectratio 0.2
proj ratio 0.4
aggr ratio 0.1
block size (bytes) 8K 8K 8K 8K 8K 8K
disk cost (ms/block) 1 1 1 1 1 1
net cost (ms/byte) 0 0 0 0 0 0.0001

Y. Cui, J. Widom 11-18

Table 7: Statistics forv6

Parameter name Values
v6 each source table each segment

query rate (#/unit time) 100
query size (tuples) 1
updaterate (#/unit time) 10
updatesize (tuples) 1
tuple num 1000000
tuple size (bytes) 1000
levels 6
fan-out 1
join ratio
selectratio 0.5
proj ratio 0.8
aggr ratio 0.2
block size (bytes) 8K 8K
disk cost (ms/block) 1 1
net cost (ms/byte) 0 0.0001

Table 8: Statistics forv7

Parameter name Values
v7 each source table each segment

query rate (#/unit time) 100
query size (tuples) 1
updaterate (#/unit time) 10
updatesize (tuples) 1
tuple num 10000
tuple size (bytes) 100
levels 2
fan-out 5
join ratio 0.001
selectratio 0.2
proj ratio 0.4
aggr ratio 0.1
block size (bytes) 8K 8K
disk cost (ms/block) 1 1
net cost (ms/byte) 0 0.0001

Table 9: Statistics forv8

Parameter name Values
v8 R1 R2 segment 1

query rate (#/unit time) 100
query size (tuples) 1
updaterate (#/unit time) 0 0
updatesize (tuples) 0 0
tuple num 100000 100000
tuple size (bytes) 1000 1000
fan-out 2
join ratio 0.001
selectratio 0.2
proj ratio 0.6
aggr ratio 0.2
block size (bytes) 8K 8K 8K
disk cost (ms/block) 1 1 1
net cost (ms/byte) 0 0.01 0.01

Table 10: Statistics forv9

Parameter name Values
v9 R1 R2 segment 1

query rate (#/unit time) 100
query size (tuples) 1
updaterate (#/unit time) 0 10
updatesize (tuples) 0 20
tuple num 10000 1000000
tuple size (bytes) 1000 1000
fan-out 2
join ratio 0.00003
selectratio 0.2
proj ratio 0.6
aggr ratio 0.2
block size (bytes) 8K 8K 8K
disk cost (ms/block) 1 1 1
net cost (ms/byte) 0 0.0001 0.001

Y. Cui, J. Widom 11-19

