Storing Auxiliary Data for Efficient Maintenance
and Lineage Tracing of Complex Views

Yingwei Cui and Jennifer Widom
Computer Science Department, Stanford University
{cyw, widom} @db.stanford.edu

Abstract

As views in a data warehouse become more
complex, the view maintenance process can
become very complicated and potentially
very inefficient. Storingauxiliary viewsin

the warehouse can reduce the complexity and
improve the efficiency of view maintenance,
and the same auxiliary views can help in ef-
ficiently answeringlineage tracing queries
over the warehouse views. In this paper, we
study the problem of selecting auxiliary views
to materialize in order to minimize the total
view maintenance and lineage tracing cost.
We consider relational views with arbitrary
use of aggregation operators, and we define
an initial search space for our optimization
problem based on a normal form for such
view definitions. We present several auxiliary
view selection algorithms, and to study their
performance we conduct experiments using
the TPC-D benchmark in addition to synthetic
view definitions and statistics. The results of
our experiments show: (1) the exhaustive al-

gorithm that selects the optimal set of auxil-
iary views is far too expensive in many cases;
(2) two heuristic algorithms that we present
select good (often optimal) sets of auxiliary
views in a much shorter time; (3) even aux-
iliary views selected by a very simple al-
gorithm can significantly reduce the overall
view maintenance and lineage tracing cost.

1 Introduction

Data warehousing systems collect data from multiple,
distributed sources and integrate the information as
materialized viewsn local databases [CD97, IK93,
LW95, Wid95]. Users can then perform data analy-
sis and mining on the warehouse views. The mate-
rialized views in the warehouse need to be kept up-
to-date when data at the sources changes. As the
view definitions become more complex in order to
support sophisticated data analyses, the view mainte-
nance process can become very complicated and po-
tentially very inefficient. Most previous work on view
maintenance, e.g., [CW91, GMS93, LW95, LYI9,
Qua96], considers simple views containing at most
one level of aggregation. In order to efficiently main-
tain complex views which may contain multiple levels
of aggregation, it is clearly advantageous to stoug-

This work was supported by the National Science Foundatioriliary data in addition to the original view to reduce

under grant 11S-9811947, by Sagent Technology Inc., and by amyverall view maintenance cost.

equipment grant from IBM Corporation. From a different perspective, for in-depth analysis
The copyright of this paper belongs to the paper’s authors. Per-of warehouse data sometimes it is useful to be able
mission to copy without fee all or part of this material is granted “drill th h f | di . .
provided that the copies are not made or distributed for direct 10 “drlll througn™ from selected interesting (or possi-
commercial advantage. bly erroneous) view data to the original source data
Proceedings of the International Workshop on Design that derived the view data. We call this procéss-

and Management of Data Warehouses (DMDW’'2000) ing the lineageof the view data [CWW97]. To trace
Stockholm, Sweden, June 5-6, 2000 the lineage of a view data item efficiently, the ware-
(M. Jeusfeld, H. Shu, M. Staudt, G. Vossen, eds.) house also needs to store auxiliary data—to reduce the
http://sunsite.informatik.rwth-aachen.de/Publications/CEUR-WS/\ol-28/ cOmputation cost at the warehouse, and to reduce or

Y. Cui, J. Widom 11-1

entirely avoid expensive source accesses for lineage e Two heuristic algorithms that we present select
tracing. It turns out that the same auxiliary data that good (often optimal) sets of auxiliary views in a
can be used to improve the performance of view main- ~ much shorter time.
tenance as discussed in the first paragraph also can
improve the performance of lineage tracing queries. e Even auxiliary views selected by a very sim-
Therefore, the problems of selecting auxiliary data for ple algorithm can significantly reduce the overall
the two purposes are closely related, and we study the view maintenance and lineage tracing cost.
problems together.

The auxiliary data is stored as materialized views in1 1 Qutline of Paper
the warehouse, calleguxiliary views(as opposed to
the original warehouse views, which we catimary The remainder of the paper proceeds as follows. Sec-
viewd. Given a complex relational primary view, tion 2 covers related work. Section 3 presents pre-
there are numerous possible sets of auxiliary views t§minary material on materialized views, view main-
materialize for view maintenance and lineage tracingt€nance, and lineage tracing, including a running ex-
with significant performance tradeoffs. In general, thedMple. Section 4 introduces the auxiliary views we
more auxiliary views we materialize, the more effi- consider for efficient view maintenance and lineage
ciently we can maintain and trace the lineage of data iffacing, and defines the search space for selecting aux-
the primary view. However, the auxiliary views them- iliary views to materialize. Section 5 describes the
selves also need to be maintained, so materializing tog2St model and statistics we use for estimating view
many auxiliary views can increase overall cost. maintenance and lineage tracing costs, and for study-

Previous work has studied the selection of viewsnd the performance of our auxiliary view selection al-
to materialize for answering queries, e.g., [HRU%,gorithms. Section 6 presents several algorithms for se-
Gup97], and the selection of auxiliary views for ef- lecting auxiliary views within our search space. Sec-
ficient maintenance of given primary views, e.g_’tion 7 compares the performance of the algorithms us-
[LQA97, RSS96]. (Further discussion of this work ing experiments on the TPC-D benchmark, as well as
appears in Section 2.) In [CW00], we introduced using a variety of synthetic view definitions and statis-
the idea of materializing auxiliary views to minimize tics.
overall view maintenance and lineage tracing cost,
and we studied the problem in the context of select?2 Related Work
project-join (SPJ) primary views. This paper inves-)) i
tigates the more difficult and general problem of re_Prewou_s work rel_ated _to this paper f"’}”S _|nto three
lational views with arbitrary use of aggregation andcgtggques: selecting views to materialize in order to
SPJ operators. As we will see, it is an expensive comMiNIMIz€ query costs, e.g., [HRU%’ Gup97], sel_ect-
binatorial problem, and our overall approach differs'™Y auxiliary views to materialize in order to min-

from [CW0O] imize the cost of maintaining given primary views,
In this paper, we first define mormal form for

e.g., [LQA97, RSS96], and our own previous work
the primary view definition, which suggests an ini-

in lineage tracing and view maintenance [CWW297,
tial search space of possible auxiliary views. We thenCWOO]' _ _
propose a variety of algorithms for selecting auxiliary ~[HRU96] proposes a greedy algorithm for selecting
views within this search space. Finally, we compar

guxiliary views to materialize, with the goal of mini-
empirically the running time of our algorithms and the MiZiNg the cost of queries over aggregate views given
optimality of the auxiliary view sets they select, using

certain constraints such as the maximum number of
the TPC-D benchmark [TPC96] in addition to a suiteViews that can be materialized. The work considers

of synthetic view definitions and statistics. The resultgdata-cube views only, and can make certain simpli-
of our experiments show: fying assumptions based on this restriction. [Gup97]

extends the work in [HRU96] to general relational
e The exhaustive algorithm that selects the opti-views, and proves that the auxiliary view selection
mal set of auxiliary views is far too expensive problem under maintenance cost constraints is NP-
in many cases. hard.

Y. Cui, J. Widom 11-2

[RSS96] proposes an exhaustive algorithm for se- rithm, and we compare the performance of our
lecting auxiliary views to optimize view maintenance, algorithms (both running time and quality of so-
and suggests simple search space pruning strategies lution) through experiments.
when the view is too complex for exhaustive search.

[LQA97] presents an A* algorithm for selecting aux- 3 Preliminaries

lliary views and indexes on different join combina- \ve o introduce the relational materialized views
tions for SPJ View mal_ntenance. _BOth [RSS%]_anqu consider, as well as the processes of view main-
[LQAS7] consider a single algorithm for selecting yo,406 and lineage tracing, using a running example.
auxiliary views (and indexes in the case of [LQA97]), Along the way, we illustrate why materializing auxil-

designed specifically for optimizing view mainte- iary views is important for view maintenance and lin-

nance. They consider as potential auxiliary views a”eage tracing, and why it is useful to consider the two
nodes in all possible relevant query plans, making th%roblems together.

search space doubly exponential in the view definition
size. 3.1 Materialized Views

We introduced lineage tracing for relational data)) o
warehouses in [CWW97], presenting a formal frame-10 answer a variety of user queries efficiently, a data

work and basic algorithms. In [CW00], we introduced Warehouse typically computes and stores a number of
the problem of selecting auxiliary views to simulta- Materialized viewgLW95]. - In this paper, we con-
neously reduce view maintenance and lineage trac3/der refational views with arbitrary use of aggrega-
ing costs, and we considered the restricted case g Selection, projection, and join operators, which
SPJ views. We suggested several alternative auxil¥® call ASPJ viewsWe use an algebraic representa-
iary view schemes and compared their performancd!on for the operatorsa for grouping and aggregation,
In this paper, we tackle the problem for complex rela-¢ for selection,r for (duplicate-eliminating) projec-
tional views with arbitrary use of aggregation and SpJion. andw< for join. A view definition is presented
operators. Arbitrarily complex primary views make YSINg & rooted operator DAG with source tables at the
the auxiliary view selection problem more compli- 1€aves. _ o

cated and expensive than for SPJ views, and we take a AnY ASPJ view definitiony can be transformed
different approach to solving it than for the restricted N @n equivalent formy’ composed ofa-m-o-><
case considered in [CW00]. We introduce a normaPPerator sequences, by commuting and combining
form for our view definitions that suggests an initial SOM€ Select-project-join operators in the view defini-
(still exponential) search space for useful auxiliaryion [CWW97]. We call the resulting form’s ASPJ

view sets, and then we consider heuristic algorithmd!rmal form and we call eachw-m-0->1 sequence a
that explore various view sets in this search space. S€gmentAn example will be given shortly. In ASPJ

Our work differs from the previous work discussed omal form, a segment may omit th¢ o, or-< op-
above in several ways: erator, but each segment except the topmost must in-

clude a non-trivial aggregation operator (or it would
e Unlike all previous work besides our own, we pe merged with an adjacent segment). Since our view
consider lineage tracing as well as view main-qgefinitions are DAGs, they may contain multiple ref-
tenance costs when selecting auxiliary views toerences to a source table or to a segment at any level.
materialize. We say that a view is am-level ASPJ view if
e Instead of considering a doubly exponentialtra\{e_rsing from the root to any leaf in its normalized
search space of auxiliary views (as in [HRU%’defmltlon crosses at mostsegments. Th&an-outof ,
Gup97, LQA97, RSS96]), or a very simple a segment is the number of operands of the segment’s

fixed set (as in [CWOQ]), we explore a “mid- join operator, or 1 if there is no join.
dle ground” based on our view definition normal

form Example 3.1 (Materialized View and Normal Form)

Consider a data warehouse for a department store
e We propose several different auxiliary view se-chain based on the following four tables, some or all
lection algorithms, as opposed to a single algo-of which may reside at remote source databases.

Y. Cui, J. Widom 11-3

e Store(store-id, city, expenses) sequence of queries and updates calledntizénte-
gives the city and monthly operating expenses ohance procedureFor 1-level ASPJ views we use the
each store. We assume that each city contains amhaintenance procedures from [GMS93, Qua96]. The
most one store, and that the operating expensdsllowing example shows a 1-level ASPJ view and its
do not include employee salaries. maintenance procedure.

e Product(product-id, price, cost) Example 3.2 (View Maintenance Procedure)
gives the retail price and wholesale cost of eachConsider the source tables from Example 3.1 and
product item. a 1-level ASPJ viewProfit corresponding to the

_ _ middle a->1 segment in Figure 2:
e Sales(store-id, product-id, num)

gives the expected monthly number of sales for
each product at each store.

CREATE VIEW Profit AS

SELECT store-id, SUM(num*(pricecost)) AS profit
FROM Sales, Product

WHERE Sales.product-id = Product.product-id

e Employee(emp-id, store-id, GROUP BY store-id
salary) gives the monthly salary of each

employee at each store. Suppose theSales table changes over time, and

a set of insertions and deletions to the table are
Consider a materialized viewighProfit ~ that stored in delta tableASales andVSales , respec-
keeps track of those cities whose stores are verjively. The resulting changes to the vieirofit
profitable, i.e., whose monthly income exceeds ex{AProfit andVProfit) can be computed by the
penses by at least $100,000. An SQL definition forfollowing maintenance procedure, which uses the
HighProfit is shown in Figure 1, and its normal- summary-deltapproach from [Qua96]:

ized view definition tree is shown in Figure 2. We
Useag 44¢r(4) 10 represent grouping and aggregation,
whereG is a list of grouping attributes, angjgr(A)

SELECT store-id, SUM(profit) AS profit INTO SummaryDelta
FROM (SELECT store-id, (hum*(pricecost)) as profit
FROM ASales, Product

WHERE ASales.product-id = Product.product-id)
UNION
(SELECT store-id, -1*(num*(price cost)) as profit
FROM VSales, Product
WHERE VSales.product-id = Product.product-id)
GROUP BY store-id

SELECT * INTO VProfit
FROM Profit
WHERE store-id IN
(SELECT store-id FROM SummaryDelta)

Materialized views must bmaintainedto keep their SELECT store-id, SUM(profit) INTQ\Profit

contents up-to-date as the source tables they are de- FROM VProfit UNION SummaryDelta

fined over change. We assume a standactemental GROUP BY store-id

view maintenancapproach, as in [GMS93, Qua96]. O

Insertions and deletions to each source table are mon-

itored and recorded idelta tables(A andV respec- For ann-level ASPJ view wherer > 1, to com-
tively) in the warehouse. Updates are modeled agute the changes to the entire view we can com-
deletions followed by insertions. During view mainte- pute the changes for one segment at a time using
nance, changes to the view (also expressed as deltd§jg maintenance procedure for 1-level views, prop-
are computed based on the source delta tables, ti&gating the deltas upward through the view defini-
view contents, and the source data, using a predefindin DAG. Just as we needed source tablied-

uct along withASales andVSales to compute

1This operator is similar to thegeneralized projectiorof . .
[GHQ95], but we distinguish between projection and aggregationthe deltas forProfit in Example 3.2, to compute

operators because of the way our segments and auxiliary viewd€ deltas for a higher-level segment we may need
are defined. deltas and/or full contents for each lower segment.

abbreviates a list of aggregate functions over attributes
in setA [CWW97].1 HighProfit is a 2-level ASPJ
view containing three segments: the topmmst-<
segment with fan-out 3, the leftmoatsegment with
fan-out 1, and the middle-c< segment with fan-out

2. |

3.2 View Maintenance Procedures

Y. Cui, J. Widom 11-4

CREATE VIEW HighProfit AS

SELECT city
FROM Store, Tty
(SELECT store-id, SUM(num*(pricecost)) AS profit

O-profit - expenses - saaries

FROM Sales, Product > 100000

>

WHERE Sales.product-id = Product.product-id
GROUP BY store-id) AS P,

a - a)
(SELECT store-id, SUM(salary) AS salaries) e « (price- cost)
FROM Employee assalaries as profit
GROUP BY store-id) AS E B
WHERE Store.store-id = E.store-id
AND E.store-id = P.store-id e — S — P —
AND P.profit—E.salaries-Store.expenses 100000 @
Figure 1: SQL definition foHighProfit Figure 2: Normal form foHighProfit
For example, suppose we want to compute the deltagiven tuplet € V, t's lineage inTy, ..., T,, accord-
for HighProfit given AProfit andVProfit , ingtowv can be computed with the following query:

where agairProfit corresponds to the middte

segment as in Example 3.2. We need to join the deltd Qt,v = Splitt, .. T (0crc=t.c(T1 > -+ =1 T}y,))
tables forProfit with source tablé&tore |, as well]

as with the leftmosty segment in Figure 2, then per- where Ty, den.ot_es the schema of tabl, i =
form the selection and projection in the topmost seg-""" and Split is an operator that breaks a ta-
ment. If we materialize an auxiliary viedalary cor- ble into multiple prolegtlor.\s:SplztAlwAm(T) =
responding to the leftmogt segment, we can signif- (mas (T)’_' -, TAR(T)).~ Given a tuple set g v,
icantly improve the performance of the maintenance’/€ ¢an simultaneously trace all the tupledTimvith:

procedure by avoiding recomputation of the aggre- . — Sl
. . . . = t Tio<---xT,) x T
gate values. In addition to materializing “intermedi- Qo = Splite,,..tm (00(Ty m) 1)

ate” views, if source tables are remote and expensivgxamme 3.3 (Lineage Tracing Query) Consider
(or impossible) to access, we may want to replicatgne view Profit in Example 3.2. The lineage
some or all of the source tables as auxiliary views aEracing query for a tuple ¢ Profit

the warehouse. ®

Note that our approach in this paper applies to all T Q¢ prosit = Splitr, 1, (0c(Ty > T3))
views, including those with non-incrementally main-
tainable aggregates (e.gnin, may. In the presence where Ty = Sales, T = Product, andC =

of such aggregates, the maintenance procedure musttore-id = t.store-id”. The SQL presentation of
involve some recomputation, but auxiliary views maythe query is as follows:

still be of benefit. SELECT Sales.* INTO LNSales

. . FROM Sales, Product

3.3 Lineage Tracing WHERE Sales.product-id = Product.product-id AND
Given a materialized view in a data warehouse, in ad- Sa/es-store-id #store-id
d_ition to issuing regular qugries or performing other sg| EcT Product.* INTO LNProduct
kinds of analysis over the view, we may wanttace FROM Sales, Product
the lineageof selected “interesting” tuples in the view. ~ WHERE Sales.product-id = Product.product-id AND
The lineage of a view tuple is defined as the set of Sales:store-id #store-id
original source tuples that derived the given view tu-where LN_Sales and LN_Product contain the
ple. To trace the lineage of a view tuple, we use dineage oft according to viewProfit in the source
predefined sequence of queries calleting queries tablesSales andProduct , respectively. |
(TQS) [CWW97]' . Lo i 2When we execute the tracing query, the selection condition

Given a 1-level ASPJ view whose definition is ., ._, . is pushed down to individuali's whenever possible
v = agagerB)(maloc(Ty > --- > Tp))), and toimprove tracing query performance.

Y. Cui, J. Widom 11-5

To trace the lineage of anlevel ASPJ view where lineage tracing queries take advantage of the auxiliary
n > 1, we logically define an intermediate view for views (Section 4.2). Finally, we formally define the
each segment, and then recursively trace through theuxiliary view selection problem and estimate the size
hierarchy of intermediate views top-down. At eachof our search space (Section 4.3).
level, we use the tracing query for a 1-level ASPJ view
to compute the lineage for the current traced tupleé-1 The Auxiliary Views We Consider

with reSpeCt to the intermediate views or source ta'Let us first define two Wpes of potentia”y useful aux-
bles at the next level below. The necessary intermeﬂiary views, based on asing|e segment. (S|m||a_r aux-
diate results can either be computed at tracing timgjiary views were introduced in the context of SPJ pri-
or we can materialize certain intermediate results agyary views in [CW00].) Any segment can be thought
auxiliary views for the purpose of lineage tracing. of as a view definitiory = G aggr(8)(Ta(oc(Th >

For example, to trace the lineage of a tuplen ... q 7)), where eachly,..., T}, is either a
view HighProfit , we logically define intermedi- source table or a lower-level segment (view). Lét
ate viewsSalary and Profit ~ corresponding to denote the materialization ofoverTy, . . ., T),.

the leftmosta segment and middla-< segment, re- ' _
spectively, in Figure 2. We trace the lineage of tu- 1. Lineage View (LVjor v: We can store the inter-

ple ¢ in Salary , Profit , andStore , producing mediate resulLV (v) = oc(T1 b --- > Tpp)
(LN_Salary,LN_Profit,LN_Store), using the fol- to help trace the lineage of tuples¥h We can
lowing tracing query: rewrite the lineage tracing queries in Section 3.3

usingLV (v) as:

TQ = SplitT, T,,Ts (oc(Th > Ty < T3)) '
TQtn = Splitr,... Tm(ce=t.c(LV (v)))

whereTl; = S'alary, T5 = Profit, Tg': Store, and TQr. = Splitr, ... 1., (LV(v) x T)

C = "profit — expenses — salaries > 100000

Acity = t.city”. Then, we further trace the lineage The maintenance procedure fbr also can be

of the tuples inLN_Salary andLN_Profit in the simplified. If LV (v) is materialized, then we
source tables to produtdN_Employee ,LN_Sales , computeALV (v) and VLV (v), and the query
andLN_Product . As with view maintenance, ma- for computing thesummary-deltatable in the
terializing rather than recomputing intermediate re- maintenance procedure (Section 3.2) can be
sults can significantly improve tracing performance. rewritten as:

Since lineage tracing queries always return data from
source tables by definition, replicating (portions of)
the source data at the warehouse may be advanta- Uag, —agerB) (VLV))
geous, for the same reasons outlined in Section 3.2.

SummaryDelta =ag,agqr(B)(G,aggr(B) (ALV)

4 Auxiliary Views for View Maintenance and 2. Split Lineage Tables (SLT$)r v: For a view

Lineage Tracing (segment) v’ whose joins is many-to-many,
LV (v") can be very large and inefficient to main-
tain. Thus, another possibility is to “split” the
Lineage View and store a set of smaller tables:
SLT;(v) = mp,(cc(Th > -+ > Tyy,)), @ =
1..m. The lineage tracing queries can then be
rewritten using the SLTs as:

As motivated in Section 3, it may be advantageous
to materialize certaimuxiliary viewsin a data ware-
house to improve the performance of view mainte-
nance and lineage tracing. View maintenance pro-
cedures and lineage tracing queries use the auxil-
iary views to avoid recomputations and expensive
source queries, thereby reducing maintenance and 1), . =Splity, 1 (casc(oc((SLTi(v)
query costs. There are many possible sets of auxiliary ’ % T) N s (SLT(v) % TY) x T))
views to materialize. In this section, we first specify "
a number of potentially useful auxiliary views for ar- TQr,, =Splitr,, . Tm(cc((SLTi(v) x T)
bitrary n-level ASPJ primary views (Section 4.1). We > - D (SLT(v) x T)) x T)
then discuss how view maintenance procedures and

Y. Cui, J. Widom 11-6

Although these tracing queries look much more

complex than with LV, performance can some- S0

times be much better due to the smaller size of ?*—
the SLTs. Furthermore, as with LV, the mainte- M

nance procedure fdr can use the deltas for the o Jo<—(Ag)

SLTs to be much more efficient. See [CWO0Q] for

details.

Given a general ASPJ view definition in normal \
form, in addition to considering Lineage Views and

Split Lineage Tables for each segment, we also may

consider storing copies of some or all of the source taFigure 3: Possible auxiliary views fétighProfit
bles, to avoid expensive (remote) source queries dur-

ing view maintenance and lineage tracing. We refer the source tables. For each source tableve

>l

to these source table copies in the warehoudgase decide whether to store a Base Table (BT) copy
Tables(BTs). Finally, maintaining the results of in- of R. If BT is not materialized, we may need to
termediate aggregations in the view (AGs) also can be issue queries directly to source talitefor view
very helpful in view maintenance and lineage tracing, maintenance and lineage tracihg.

as motivated in Section 3.

To summarize, we divide the normalized view def-Example 4.1 (Auxiliary Views) Recall our example
inition into three types of components, and for eachview HighProfit ~ from Figure 2. Figure 3 shows
type of component we have certain choices of possithe three ASPJ segments in the view definition and all
ble auxiliary views to materialize: of the possible auxiliary views we consider material-

izing for HighProfit . O
1. Topmost Segment the segment at the root of
the view definition DAG. Note that the, m, o, Notice that because of our search space reduction,
and_/ orm_ope_rators (but not all of them) may be y possible that there are useful auxiliary views we
omitted in this segment. Also npte that. thg ©P-4re not considering, notably different join combina-
most node corresponds to the primary view |tself,tions in the case of a many-way join. This special

fso ':]S cor;]tents are alwa)_/sl'mat(:]nall_zed. we MAtase is considered in detail in [LQA97], and we could
urther choose to materialize the Lineage V'eWextend our search space accordingly.

(LV) or the Split Lineage Tables (SLTs) for this
segment, but not both. (If we store one, thenstory 5 ysing Auxiliary Views for View Maintenance
ing the other will not further reduce the lineage and Lineage Tracing

tracing or overall maintenance cost.) _ _
In Section 4.1 we gave examples of how to rewrite

2. Intermediate Segment a non-root segment that queries for view maintenance and lineage tracing us-
is defined over the source tables and/or other segng auxiliary views. In general, when we have a set
ments. Note that the, o, and/orea operators — of guxiliary views available, there may be more than
may be omitted in this segment, but th@pera- gne way to rewrite a query to take advantage of aux-
tor is always present. For an intermediate segjjiary views. We assume that the “best’ rewriting is
ment, we consider materializing the following selected, and this assumption is reflected in the cost
auxiliary views: model we present in Section 5.

(a) The contents of the node (AG) As an example, Figure 4 shows the rewritings of the
lineage tracing query TQ for a tupteaccording to the
topmost segment in the definition efighProfit
using the auxiliary views in Figure 3:

(b) The Lineage View (LV) or the Split Lineage
Tables (SLTs), but not both

3. Source Table We assume that all local selec- = — . .
Most existing data warehousing systems automatically store

tion conditions in the view—predicates that in- 5 copy of each source table in the warehouse. However, as we will
volve a single source table—are pushed down taee in Section 6, sometimes it is not beneficial to store a copy.

Y. Cui, J. Widom 11-7

TQl :SplitSalary,Profit,Store(Uprofit—expenses—salaries>100000/\city:t.city(AGl > AGQ > BT4))
TQ2 :SplitSalary,Profit,Store(Ucity:t.city(L‘/Z))

. Salary Profit St
TQ3 :SpthSalary,Profit,Store(Ucity:t.city(SLTQ > SLTzro * > SLTQ ore))

Figure 4: Tracing query rewritings

Suppose thatV,, AG1, and BT}, are materialized.

Table 1: Statistics for cost estimation
Then we could use queryQ2, or (among other op-

tions) we could use a tracing query similar @), | Parameter | Description |
that recomputes the contents Af7,. In this case it | usage statistics (for each primary view) |
is likely thatT'Q> would be chosen as the best query| queryrate | # of tracing queries per unit time period
rewriting based on the available auxiliary views. querysize | # of tuples traced per query

| usage statistics (for each source table) |

4.3 The View Selection Problem and the Search | updaterate | # of source table updates per unit time period
Space Size updatesize | # of changed tuples per source table update

| data statistics (for each source table) |

We have shown that various auxiliary views can bd tuple.num # of tuples in a source table

used in the view maintenance and lineage tracing prg-tuplesize | size of tuples in a source table (in bytes)

cesses. Our goal is to select among the choices of aui- data statistics (for each view segment) |

iliary views described in Section 4.1 a set that mini-| fan-out # of joined tables

mizes overall cost; the cost of lineage tracing plus the Join-ratio | # of joining tuples /# of tuples in cross-producf
C . . . selectratio | # of selected tuples / # of tuples before selection

cost of maintaining the primary and auxiliary views. proj_ratio # of bytes projected / tuple size before projectipn

Our cost model is described in Section 5. Here lef aggrratio | # of aggr tuples / # of tuples before aggregatioh

us consider the size of our search space. Suppose \ve system statistics (for each source or warehouse)]

have am-level ASPJ view in normal form, and con- [blocksize | # of bytes in a block

sider a balanced view definition tfewith a fan-out disk cost cost to read/write a disk block (in ms/block)

of m in each segment. There is one topmost segmenit,'€Lcost | network transmission cost (in ms/byte)

and for that segment we haSewuxiliary view options:

LV, SLTs, or nothing (case 1 in Section 4.1). ThereOf possible auxiliary view sets fadighProfit is

arem! +m?+ - +m"! = O(m™ 1) intermediate 2° - 3* = 384. 0

segments, each having 2 options for case 2(a) in Sec-

tion 4.1 (AG or nothing) and 3 options for case 2(b) The number of choices foHighProfit is quite

(LV, SLTs, or nothing). Finally, there ar@™ source manageable. However, real warehouse views tend to

tables, each having 2 options: BT or nothing. Therehave much higher fan-outs, as well as possibly more

fore, the size of the entire search space is levels. As we will see in Section 7, even for a view
. — . . with only 2 levels and average fan-out of 5, we can-
31 (2-3)°0m)2 = o(2m") not consider all possible auxiliary view sets due to the

.)) large search space.
If k& is the total number of components in the view def-

inition, where a component is a segment or a sourc% Cost Model

table, thenk = O(m™) and the search space size is

o(2%). In this section we present the model that we use to es-

timate view maintenance and lineage tracing costs for

Example 4.2 (Search Space Sizeonsider our ex- a given primary view and set of auxiliary views. The

ample viewHighProfit (Figure 3). The number statistics our cost model relies on are listed in Table 1.
“A tree is balanced if each leaf node in the tree has the samg/alueS f‘?r the_se Stati_StiCS are Set,for eaCh, eXperimem’

depth. We consider this view definition shape since it represent@S described in Section 7. We briefly outline our cost

the largest search space size foratevel view. estimation procedure as follows.

Y. Cui, J. Widom 11-8

Letcost(Q, s) denote the estimated cost of evaluat- ~ Finally, the total cost is the combination of lineage
ing a query at the warehouse given a set of statisticstracing cost and view maintenance cost:
s. @ could be a lineage tracing query, or a query or
update in a view maintenance procedure. To compute totalcost(v, A,s) = q(v, A, s) + m(v, A, s)
cost(@, s) we use a fairly conventional cost model
for relational queries in a distributed database settin
similar to, e.g., [LQA97, UlI89, ZGMHW295]. Details
are omitted, but the cost formulas rely on all of the
statistics from Table 1, and assume no indexes.
Suppose we have a primary vievand a set of aux-
iliary views A = {vy, ..., v, }. To trace the lineage of
tuples in the primary view given the materialized aux-
iliary views in A, there are various possible rewrit-
ings of the lineage tracing queries using the auxiliary ‘) total_cost(v, Aopt, 5)
views (recall Section 4.2). Our cost model selects the ~ oPtimality(A) = total_cost(v, A, 5)
sequence of lineage tracing queries with the lowest es-
timated cost. Let;(v, A, s) denote the estimated lin- 6 Algorithms for Selecting Auxiliary Views

eage tracing cost for a given primary view set of aying defined the search space for the optimization

In our experiments, we measure tbetimality of
ggiven sets of auxiliary views, by which we mean how
close the sets of views come to the set that yields the
lowest estimated cost. For a given primary vieand
statisticss, let A,,; denote the set of auxiliary views
within our search space (Section 4) with the lowest
total costtotal_cost(v, Aopt, s). For a set of auxiliary
views A, we define the optimality ofl as:

auxiliary views.A, and statistics: problem and the cost model that we use, we now in-
(v, A, 5) = Z cost(Q;, s) troduc_e' four _dlfferer_lt glgorlthms for selecting a §et
— of auxiliary views within the search space. The in-
: . . ut to each algorithm is the primary view definition
where @1, ...,Q,, is the set of tracing queries se- P g P y

in ASPJ normal form, and a set of statisticas speci-

I_ected forv given auxiliary view setd. Note that the fied in Section 5. The output is a set of auxiliary views
lineage query rate and the average number of tuple

traced in a lineage query (part of our usage statisticS
in Table 1) are included in the input statistiesand 6.1 Exhaustive Algorithm

thus are incorporated into the lineage cost estimated)))]
by q(v, A, 5). The exhaustive algorithm enumerates all choices in

Maintenance costs are incurred both for the pri-the search space, estimates the cost of each choice,

mary view v and for the auxiliary views ind — and picks the cheapest one. For our example view
{01, ., v,). As with lineage tracing, when there are HighProfit , the exhaustive algorithm considers

multiple possible rewritings for the view maintenanceaII 38‘_1 possible combinations of auxiliary wevys'(re-
queries and updates using the auxiliary views4n call F|gure_3). we set.a sample Sef(Qf staﬂstu_:s
our cost model selects the ones with the lowest es2S Shown in Table 2, including statistics for view
timated cost. Letn(v,A,s) denote the estimated HighProfit , source tablesmployee , Sales

maintenance cost for a given primary view set of Produ_ct ' an_d Store_ , 8s we_II as each ASP‘J_ S€9-
auxiliary views.A, and statistics: ment in the view definition (Figure 3). Over this set

of statistics, the exhaustive algorithm selegts =

m(v, A, s) = Z cost(M, s) {BTy, AG1, AGo, SLT}, LV,}. The exhaustive algo-
1.n rithm always finds the optimal auxiliary view set ac-
whereM;, ..., M, is the set of maintenance queries cording to our cost model. However, the complexity

and updates selected to maintain primary vieand of the algorithm is the same as the search space size:
the auxiliary views inA. Note that the source ta- O(2%) wherek is the number of components in the
ble update rate and average number of source tuplédew definition (recall Section 4.3).

changed in each update (part of our usage statistics in) i

Table 1) are included in the input statistigsand thus 6.2 Naive Algorithm

are incorporated into the maintenance cost estimatedt the other end of the spectrum, we con-
by m(v, A, s). sider a naive algorithm that selects a fixed set

Y. Cui, J. Widom 11-9

Table 2: Statistics for view HighProfit

Parameter name Values

HighProfit | Employee| Sales | Product| Store | segment 1] segment 2] segment 3
queryrate (#/unit time) 100
querysize (tuples) 1
updaterate (#/unit time) 10 10 10 0
updatesize (tuples) 1 100 1 0
tuple.num 10000 1000000| 100000 | 100
tuple_size (bytes) 1000 500 500 400
fan-out 1 2 3
join_ratio 0.0002 0.0001
selectratio 0.1
proj_ratio 0.1 0.1 0.1
aggcratio 0.01 0.001 0.2
block size (bytes) 8K 8K 8K 8K 8K
disk_cost (ms/block) 1 1 1 1 1
netcost (ms/byte) 0 0.00001 | 0.0001 | 0.0001 | 0.0001

of auxiliary views: Lineage Views (LVs) for the not guarantee an optimal answer, nor even an answer
topmost and all intermediate segments, aggregawithin some percentage of optimal. In Section 7.3, we
tion results (AGs) for all intermediate segments,will see a scenario where the greedy algorithm per-
and all Base Tables (BTs). For example viewforms very poorly.

HighProfit , the naive algorithm selectsl =
{BTl, B1T,, B3, BTy, AGl, AGQ, LV, LVQ} Even
though this naive fixed set of auxiliary views may not) . -)
be optimal—in fact it can be arbitrarily bad comparedour last algorithm divides the auxiliary view selec-

to the optimal set—our experimental results in Seclion Process into three phases. See Figure 5. In the

tion 7 show that the naive algorithm selects reasonabljifSt Phase, we use a greedy approach to add auxiliary

good view sets in many cases, especially considerinyi€"s Of the AG and BT types only. In the second
its simplicity. The complexity of the naive algorithm phase, we decide for the topmost and each ”_“er”?ed"
is O(1). ate segment whether to add LV or SLTs. At this point,

it may turn out that some of the AG or BT views se-
lected in the first phase are no longer beneficial given
the LV or SLT views selected in the second phase, and
We also consider a conventional greedy algorithmthey incur maintenance cost. Thus, in third phase we
This algorithm initializes the auxiliary view set to ~ remove AG and BT views that are not beneficial, and
be empty. In each iteration, it adds intothe auxiliary ~ we do so in a greedy manner.

view (not yet in.A) that brings the most benefit, i.e., For example viewHighProfit and the same
reduces the total cost the most given the current set aftatistics used in Sections 6.1 and 6.3, the three-step
views inA. Iteration continues until there are no more algorithm also selects the optimal set of auxiliary
auxiliary views outsided that can further reduce the views. In phase 1, it selects AG and BT views in
total cost. For our example vieWighProfit and the following order:AGs, AGy, BTs, BT3, BT}. In

the same sample statistics used in the exhaustive algphase 2, it select§ LT, and LV5. In phase 3, it re-
rithm (Section 6.1), the greedy algorithm selects themovesBT, and BT3 (in that order) because they are
optimal set of auxiliary views in the following order: no longer beneficial given the views selected in phase
AGs, SLTy, AG1, LV;, BTy. 2.

The greedy algorithm has complexity(k?) in- The three-step algorithm has complexity(k?),
stead ofO(2%) as in the exhaustive algorithm, and it which is the same as the greedy algorithm, but its ac-
selects the optimal auxiliary view set in most casegual running time is less than the greedy algorithm by
(see Section 7). However, the greedy algorithm cana linear factor. The first phase of the three-step algo-

6.4 Three-Step Algorithm

6.3 Greedy Algorithm

Y. Cui, J. Widom 11-10

input: primary vieww, statisticss
output: auxiliary view setd
begin

A+ &;

/I phase 1: use greedy algorithm on AG and BT nodes

A < all possible auxiliary views fov;

while truedo
for eachv; € A,y of type AG or BT such that; ¢ A do

benefit < total_cost(v, A, s) — total _cost(v, AU {v;}, s);

pick v; with the highesbenefit;
if benefif < 0 then breakelseA + AU {v;};

endwhile;

I/l phase 2: decide LV and SLTs
for the topmost and each intermediate segndent
/I Let LV andSLT be the Lineage View and Split Lineage Tables for the segment
costy < cost(v, AU{LV},s);
costy < cost(v, AU{SLT},s);
if cost; > costy > cost(v, A, s) then A +— AU{LV}
else ifcosty > costy > cost(v, A, s) then A« AU {SLT};
endfor;

Il phase 3: remove useless AGs and BTs
while truedo
for eachv; € A of type AG or BTdo
benefit < total_cost(v, A — {v;},s) — total _cost(v, A, s);
pick v; with the lowestbenefi;
if benefit > 0 then breakelse A + A — {v;};
endwhile;

return A;
end

Figure 5: The three-step algorithm

rithm is faster than the greedy algorithm since it onlypractical option is to combine the two algorithms:
selects from the AG and BT views, instead of fromrun both algorithms and select whichever answer has
all auxiliary views. The second phase is linear in thelower estimated cost. The running time of the com-
number of segments. The third phase only examinebined algorithm remain® (k?).

the AG and BT views selected in the first phase, which

is a small number in most cases. 7 Performance Study

Like the greedy algorithm, the three-step algorithmin this section, we study the performance of the four
usually selects the optimal set of auxiliary views (seealgorithms specified in Section 6, comparing their
Section 7). However, also like the greedy algorithm,running times and the optimality of the answers they
the three-step algorithm cannot make any guaranteggoduce. We also compare the cost of the answers pro-
about the optimality of its answers. In Section 7.3 weduced by these algorithms against the cost of storing
will see a scenario where the three-step algorithm pemo auxiliary views. In Section 7.1, we present results
forms poorly. Interestingly, in the case we show whereof experiments using the schema, statistics, and some
the three-step algorithm performs poorly, the greedywiews from the TPC-D benchmark. In Section 7.2,
algorithm performs well, and vice-versa. Thus, onewe present results of experiments using more complex

Y. Cui, J. Widom 11-11

Qu Qw7
(‘1 1"[(‘} 9 levels=2
T[? T 7"[fan-out =3
| | o]
o o= o ok
o ¢ ¢ | &
L T b |
Customer Region o Part ‘(1 Tt Tt Tt
Ordgr . gtlon >\< T \0_ \0_ 6_
Lineitem Supplier \ | \
PartSumalion Lineitem = = =

. T R
Supplier RiR RsRy Ry Re Ry Rg Ry

Figure 6: Materialized views for TPC-D experiments Figure 9: Structure of view,

O exhaustive |][levels | fan-out | query/update ratid
100% | - — — Ogreedy U1 2 3 100
B three-step Vo 2 3 10
80% | H naive V3 2 3 1
. none V4 2 3 Ol
60% 7 Us 2 3 0
Ve 6 1 10
% v |2 5 10
7 Figure 10: Synthetic configurations

0%
® Qi Q7 der are thefact tablesaccording to the benchmark
Figure 7: Optimality for TPC-D views specification. For views, we select queri@s, Q11,
and(@.7 from the benchmark, since they are relatively
complex and differ somewhat from each other. In each
case, we treat the benchmark query as the definition
3151 ﬂé? g'gj é':g 8'82 8'82 of our primary materialized view to be stored at the
Orr 0.62 029 010 1 0.02 [003 warehouse. The general structure of each of the three
views is shown in Figure 6. The complete list of sta-
Figure 8: Running time in seconds for TPC-D tistical settings (recall Table 1) for our three TPC-D

o o _ experiments is shown in Appendix A, Tables 3-5.
synthetic view definitions. Since the greedy and three- Reacall that we are comparing five algorithms—the

step algorithms perform quite well in all of the experi- ¢4, algorithms from Section 6, as well as the “algo-
ments in Sections 7.1 and 7.2, in Section 7.3 we showithm that selects no auxiliary views (which we call
experiments illustrating that greedy and three-step cag|gorithmnong. Figure 7 plots the optimality of the
perform poorly. five algorithms for each of the TPC-D views we con-
sider. Recall from Section 5 that optimality is defined
as the cost of the optimal auxiliary view set divided
Our first set of experiments is based on the TPC-Dby the cost of the chosen view set. Figure 8 plots the
benchmark [TPC96]. We use the schema of tablesunning time of the algorithms. Note that algorithms
Customer , Order , Lineitem , Supplier ,Na- naiveandnonedo incur a small running time, which
tion , Region , PartSupp , and Part from the is the time required to compute the cost of their one
benchmark for our experiments. The table statisticsolution.

we use correspond to a scaling factor of 1. The re- We can see from Figure 7 that storing no auxiliary
maining statistics from Table 1 are set according toviews can be dramatically worse than storing some,
the benchmark and commonly used database and netven those selected by the naive algorithm. We also
work system settings. For example, we set the updatsee from Figure 7 that the greedy and three-step al-
rate for theLineitem andOrder tables to be much gorithms select the optimal auxiliary view set for all
higher than other tables, sinténeitem andOr- three views, and from Figure 8 we see that they do so

| | exhaustive| greedy| three-step| naive | none |

7.1 TPC-D Experiments

Y. Cui, J. Widom 11-12

[exhaustive
100% — - o o - o o o [0 greedy
M th ree-step
8096 —| M naive
- none
60206 —|
4026 —|
20206 —
O2%6
AV B 2 Vv3 4 Vv5 V6 N7
Figure 11: Optimality for synthetic views
[exhaustive| greedy]| three-step| naive [none | for view v; the exhaustive algorithm never finished,
v || 241168 | 3.18 0.67 | 0.05] 0.07 so optimality is measured against the auxiliary view
ve || 241486 | 3.18 0.99 0.03 | 0.03 set selected by the greedy algorithm.) The greedy and
vs | 2455.74 | 3.28 0.71 0.08 | 0.03 h lorithms find thei . i
v | 2493.06 | 3.7 063 003 1 005 t. ree-step agorllt ms fin t eir answer in a small frac-
v || 237653 | 3.93 0.64 003 | 0.03 tion of the running time required by the exhaustive
ve 757.49 0.99 0.17 0.02 | 0.02 algorithm, and three-step is much faster than greedy.
v7 156.36| 3529 | 0.33 | 0.21 Another interesting result is that algorithnoneper-

forms better when the query/update ratio is lower (ex-
perimentsvs—vs). However, we should not infer that

in a small fraction of the running time required by the the benefit of auxiliary views is primarily for lineage
exhaustive algorithm. We also note that the three-steffacing. In fact, in experiment; the query/update ra-

algorithm runs considerably faster than the greedy altiC IS Set o O (indicating view maintenance only), and
gorithm. we still see significant benefit to using auxiliary views.

Next, we consider in more detail how the running
7.2 Synthetic Experiments times of the exhaustive, greedy, and three-step algo-

) _ _ rithms are affected by view complexity. In Figure 13,
Our next set of experiments is conducted using Synye consider views where we fix the number of levels
thetic views and data statistics. The views we consideét 2 and increase the fan-out from 1 to 9. The exhaus-

all have aregular tree definition, as illustrated by view;, o greedy, and three-step algorithms become pro-

v in Figure 9. We consid“er seven different views. pihitive when the fan-out exceeds 3, 7, and 8, respec-
Figure 10 summarizes the “shape” of each view defiyyely we see similar behavior in Figure 14, where we

nition tree (number of levels and fan-out of each segsjy the fan-out at 2 and increase the number of levels
ment), along with the query/update ratio, which repre+,q 1 1 10 8.

sents the ratio of the average number of tracing queries
per unit time to the average number of source update;_3 When Greedy and Three-Step Fail
(recall Table 1). The complete set of statistical set-
tings for the seven experiments is summarized in ApThe greedy and three-step algorithms select the op-
pendix A, Tables 6-8. timal (or in one case very near to optimal) auxiliary
Figure 11 plots the optimality of our five algorithms view set in all of the experiments reported in Sec-
for each of the seven synthetic views we consider. Figtions 7.1 and 7.2. However, there are cases in which
ure 12 plots the running time of the algorithms. Thethese algorithms fail to pick an optimal or even near-
greedy and three-step algorithms always select the optimal answer.
timal auxiliary view set or, in the one case of the three- Consider a simple view definition and the auxil-
step algorithm onv;, very near to optimal. (Actually, iary views that are considered forin Figure 15. By

Figure 12: Running time for synthetic views (sec)

Y. Cui, J. Widom 11-13

10000 — T T T
o exhaustive-<o—
% 8000 |- greedy - ," S a
P three-step&-- 1 |
£ 6000 - P WorsTs i
— / K
24000 | - - G\
£ S |
S 2000 |- +/ . ,><,
0 T 1 \l
1 2 3 4 5 6 7 8 9
fan-out
Figure 13: Running time vs. fan-out Figure 15: View structure used fog andwg
10000 1 1 I I I ’I I : [J exhaustive
o exhaustiveo— ! ! o B B H greed
@ 8000 " greetdy_|_ I,’ ’ - 100% ltghree-itep
ree S ep B ! o W haive
£ 6000 O mron
£=] P |
24000 f - o
E -’,- 40% |
S 2000 7, -
0 b hosti= T
1 2 3 4 5 6 7 8 0%
levels ve Ve
Figure 14: Running time vs. # levels Figure 16: Optimality fors andvg

8 Conclusion

setting the data statistics (Table 1) to different valuesWe have examined the problem of selecting auxiliary
we can vary the costs and benefits of the four differ, views to materialize in a data warehouse in order to
ent auxiliary views. We have set two different con- gy .o the cost of view maintenance and lineage trac-
figurations, which we calbg and vy, both based on
the view in Figure 15. The complete set of statisticalIng for complex primary views. We specify a normal
form for view definitions and use it to define an initial
settings for these two experiments is summarized in h f potentially beneficial auxiliary views.
Appendix A, Tables 9 and 10. In particular, we set the\s/\?arc space ot p y y
. e presented four algorithms for exploring the search
source table network costs fog to be much higher d selecting a set of auxiliary vievweshaus-
than forvg, and we set the join ratio afy higher (less Space and se g : y
. . >z) tive, greedy three-stepandnaive We compared the
selectlye) thamy. The optimal set Qf auxiliary vIews optimality and running time of the algorithms using
for vs is {BTr, BTs}, and the optimal set fop is experiments based on the TPC-D benchmark, as well
LV} as on a variety of synthetic views and statistics.

Figure 16 plots the optimality of all five algorithms ~ Our experiments indicate that in terms of running
on viewswvg and vg. In particular, the greedy al- time and optimality, the three-step algorithm appears
gorithm performs extremely poorly org (selecting to be the best, although the running time of the greedy
{LV} instead of{ BTr, BTs}), while the three-step algorithm probably also is fast enough in practice for
algorithm misses the optimal solution fog (select- most complex warehouse views. (The exhaustive al-
ing {BTr, BTs} instead of LV'}). However, as sug- gorithm, on the other hand, becomes intractable quite
gested in Section 6, if we use a combined algorithmguickly.) Both the greedy and three-step algorithms
that runs both greedy and three-step and then seledisd the optimal auxiliary view set in most cases, al-
the lower-cost solution, we will select the optimal though we have shown (complementary) situations
view set for bothug anduvg. in which either one algorithm or the other performs

Y. Cui, J. Widom 11-14

poorly. Our experiments also illustrate that even a

naive selection of auxiliary views reduces overall cost

dramatically in most cases, underscoring the impor-

tance of materializing auxiliary views for the dual pur-

poses of view maintenance and lineage tracing in a

warehousing environment. [GMS93]
Although we have presented our work in the con-

text of selecting an auxiliary view set for a single pri-

mary warehouse view, our approach extends easily to

considering multiple primary views together. Then

the cost of an auxiliary view may be “shared” if the

auxiliary view is beneficial to view maintenance or

lineage tracing for more than one primary view. Fur-[GUp97]

thermore, although we have studied an environment in

which both view maintenance and lineage tracing are

important, if only one type of activity is present our

algorithms remain applicable.

HRU96
References []

[CD97] S. Chaudhuri and U. Dayal. An
overview of data warehousing and
OLAP technology. SIGMOD Record

26(1):65-74, March 1997.

[CW91] S. Ceri and J. Widom. Deriv- [IK93]
ing production rules for incremen-

tal view maintenance. InProc.

of the International Conference on

Very Large Databasepages 577-589,

Barcelona, Spain, September 1991. [LQA97]

[CWO00] Y. Cui and J. Widom. Practical lineage
tracing in data warehouses. To appear
in Proc. of the Sixteenth International
Conference on Data Engineerin§an

Diego, California, February 2000.
[LW95]

[CWW97] Y. Cui, J. Widom, and J.L. Wiener.

Tracing the lineage of view data

in a warehousing environment.
Technical report, Stanford Univer-

sity Database Group, November [LYC99]
1997. Available at http://www-
db.stanford.edu/pub/papers/lineage-

full.ps.

[GHQ95] A. Gupta, V. Harinarayan, and
D. Quass. Aggregate-query process-
ing in data warehousing environments.

Y. Cui, J. Widom

In Proc. of the Twenty-First Inter-
national Conference on Very Large
Data Bases pages 358-369, Zurich,
Switzerland, September 1995.

A. Gupta, I. S. Mumick, and V. Sub-
rahmanian. Maintaining views in-
crementally. InProc. of the ACM
SIGMOD International Conference on
Management of Datgpages 157-166,
Washington, DC, May 1993.

H. Gupta. Selection of views to mate-
rialize in a data warehouse. Rroc. of
the Sixth International Conference on
Database Theorypages 98-112, Del-
phi, Greece, January 1997.

V. Harinarayan, A. Rajaraman, and
J. D. Ullman. Implementing data
cubes efficiently. IrProc. of the ACM
SIGMOD International Conference on
Management of Datgpages 205-216,
Montreal, Canada, June 1996.

W.H. Inmon and C. KelleyRdb/VMS:
Developing the Data Warehouse
QED Publishing Group, Boston,
Massachussetts, 1993.

W.J. Labio, D. Quass, and B. Adel-
berg. Physical database design for
data warehousing. IProc. of the
Thirteenth International Conference
on Data Engineeringpages 277-288,
Birmingham, UK, April 1997.

D. Lomet and J. Widom, editorsSpe-
cial Issue on Materialized Views and
Data WarehousingJEEE Data Engi-
neering Bulletin 18(2), June 1995.

W. Labio, J. Yang, Y. Cui, H. Garcia-
Molina, and J. Widom. Performance
issues in incremental warehouse main-
tenance. Technical report, Stanford
University Database Group, October
1999. Available at http://www-
db.stanford.edu/pub/papers/whips-
wm.ps.

11-15

[Quags]

[RSS96]

[TPC96]

[UlI89]

[Wid95]

[ZGMHW95]

D. Quass. Maintenance expressionsA
for views with aggregation. IRroc. of

the Workshop on Materialized Views:
Techniques and Applicationspages
110-118, Montreal, Canada, June
1996.

K.A. Ross, D. Srivastava, and S. Su-
darshan. Materialized view mainte-
nance and integrity constraint check-
ing: Trading space for time. IRroc.

of the ACM SIGMOD International
Conference on Management of Data
pages 447-458, Montreal, Canada,
June 1996.

Transaction Processing Performance
Council. TPC-D Benchmark Specifi-
cation, Version 1.21996. Available at:
http://www.tpc.org/

J. D. Uliman. Database and
Knowledge-base Systems (Vol. 2)
Computer Science Press, 1989.

J. Widom. Research problems in data
warehousing. IfProc. of the Fourth In-
ternational Conference on Information
and Knowledge Managemenpages
25-30, Baltimore, Maryland, Novem-
ber 1995.

Y. Zhuge, H. Garcia-Molina, J. Ham-
mer, and J. Widom. View mainte-
nance in a warehousing environment.
In Proc. of the ACM SIGMOD Interna-
tional Conference on Management of
Data, pages 316-327, San Jose, Cali-
fornia, May 1995.

Y. Cui, J. Widom

Statistical Settings for Experiments

11-16

Table 3: Statistics fo€)5

Parameter name Values

Qs | Customer| Order | Lineltem | Supplier| Nation | Region| segment 1
queryrate (#/unittime) | 100
query.size (tuples) 1
updaterate (#/unit time) 1 10 40 1 0 0
updatesize (tuples) 1 10 10 1 0 0
tuple.-num 150000 | 1500000(6000000 | 10000 25 5
tuple_size (bytes) 300 100 300 200 100 100
fan-out 6
join_ratio 0.00001
selectratio 0.01
proj_ratio 0.1
aggrratio 0.001
block size (bytes) 8K 8K 8K 8K 8K 8K 8K
disk_cost (ms/block) 1 1 1 1 1 1 1
net.cost (ms/byte) 0 0.0001 | 0.00001 | 0.00001 | 0.0001 | 0.0001 | 0.0001

Table 4: Statistics fo€)11

Parameter name

Values

Qu | PartSupp| Supplier | Nation [segment 1] segment 2| segment 3

queryrate (#/unittime) | 100

querysize (tuples) 1

updaterate (#/unit time) 10 1 0

updatesize (tuples) 1 1 0

tuple_.num 800000 10000 25

tuple_size (bytes) 100 200 100

fan-out 1 3 3
join_ratio 0.0006 0.0006
selectratio 0.1 0.04 0.04
proj_ratio 0.6 0.1 0.1
aggcratio 0.005 0.005
block size (bytes) 8K 8K 8K 8K

disk_cost (ms/block) 1 1 1 1

netcost (ms/byte) 0 0.0001 0.0001 | 0.0001

Y. Cui, J. Widom

11-17

Table 5: Statistics fo€)17

Parameter name Values

Q17 | Part | Lineitem [segment 1] segment 2
queryrate (#/unittime) | 100
query.size (tuples) 1
updaterate (#/unit time) 10 10
updatesize (tuples) 1 10
tuple.num 200000 | 6000000
tuple_size (bytes) 200 300
fan-out 3 1
join_ratio 0.0002
selectratio 0.002
proj_ratio 0.1 0.2
aggcratio 0.001 0.03
block size (bytes) 8K 8K 8K
disk_cost (ms/block) 1 1 1
netcost (ms/byte) 0 0.0001 | 0.00001

Table 6: Statistics for synthetic views—uvs

Parameter name Values

vi | w2 | w3 [va | vs | eachsource tabl¢ each segmen
queryrate (#/unittime) | 1000 | 100 | 10 | 1 0
querysize (tuples) 1 1 1 1 1
updaterate (#/unit time) 10
updatesize (tuples) 1
tuple.num 10000
tuple_size (bytes) 100
levels 2 2 2 2 2
fan-out 3
join_ratio 0.001
selectratio 0.2
proj_ratio 0.4
aggcratio 0.1
block size (bytes) 8K 8K | 8K | 8K | 8K 8K
disk cost (ms/block) 1 1 1 1 1 1
netcost (ms/byte) 0 0 0 0 0 0.0001

Y. Cui, J. Widom 11-18

Table 7: Statistics fovg

Table 8: Statistics fov;

Parameter name

Values

vs | each source tabl¢ each segmen

Parameter name

Values

v7 | each source tabl¢ each segmen

query.rate (#/unittime) | 100 query.rate (#/unittime) | 100
query.size (tuples) 1 query.size (tuples) 1
updaterate (#/unit time) 10 updaterate (#/unit time) 10
updatesize (tuples) 1 updatesize (tuples) 1
tuple.num 1000000 tuple.num 10000
tuple_size (bytes) 1000 tuple_size (bytes) 100
levels 6 levels 2
fan-out 1 fan-out 5
join_ratio join_ratio 0.001
selectratio 0.5 selectratio 0.2
proj_ratio 0.8 proj_ratio 0.4
aggrratio 0.2 aggrratio 0.1
block size (bytes) 8K 8K block size (bytes) 8K 8K
disk_cost (ms/block) 1 1 disk_cost (ms/block) 1 1
netcost (ms/byte) 0 0.0001 netcost (ms/byte) 0 0.0001

Table 9: Statistics fovg Table 10: Statistics forg
Parameter name Values Parameter name Values

vs | R | Ry | segmentl vo | R | Ry [segmentl
query.rate (#/unittime) | 100 query.rate (#/unittime) | 100
query.size (tuples) 1 query.size (tuples) 1
updaterate (#/unit time) 0 0 updaterate (#/unit time) 0 10
updatesize (tuples) 0 0 updatesize (tuples) 0 20
tuple.num 100000 | 100000 tuple.num 10000 | 1000000
tuple_size (bytes) 1000 1000 tuple_size (bytes) 1000 1000
fan-out 2 fan-out 2
join_ratio 0.001 join_ratio 0.00003
selectratio 0.2 selectratio 0.2
proj_ratio 0.6 proj_ratio 0.6
aggrratio 0.2 aggcratio 0.2
block_size (bytes) 8K 8K 8K block_size (bytes) 8K 8K 8K
disk_cost (ms/block) 1 1 1 disk_cost (ms/block) 1 1 1
netcost (ms/byte) 0 0.01 0.01 netcost (ms/byte) 0 | 0.0001| 0.001
Y. Cui, J. Widom 11-19

