
div2vec: Diversity-Emphasized Node Embedding
Jisu Jeong

Clova AI Research, NAVER Corp.
Seongnam, South Korea

jisu.jeong@navercorp.com

Jeong-Min Yun
WATCHA Inc.

Seoul, South Korea
matthew@watcha.com

Hongi Keam
WATCHA Inc.

Seoul, South Korea
paul@watcha.com

Young-Jin Park
Naver R&D Center, NAVER Corp.

Seoul, South Korea
young.j.park@navercorp.com

Zimin Park
WATCHA Inc.

Seoul, South Korea
holden@watcha.com

Junki Cho
WATCHA Inc.

Seoul, South Korea
leo@watcha.com

ABSTRACT

Recently, the interest of graph representation learning has been
rapidly increasing in recommender systems. However, most existing
studies have focused on improving accuracy, but in real-world
systems, the recommendation diversity should be considered as well
to improve user experiences. In this paper, we propose the diversity-
emphasized node embedding div2vec, which is a randomwalk-based
unsupervised learning method like DeepWalk and node2vec. When
generating random walks, DeepWalk and node2vec sample nodes
of higher degree more and nodes of lower degree less. On the
other hand, div2vec samples nodes with the probability inversely
proportional to its degree so that every node can evenly belong to
the collection of randomwalks. This strategy improves the diversity
of recommendation models. Offline experiments on the MovieLens
dataset showed that our newmethod improves the recommendation
performance in terms of both accuracy and diversity. Moreover, we
evaluated the proposedmodel on two real-world services,WATCHA
and LINE Wallet Coupon, and observed the div2vec improves the
recommendation quality by diversifying the system.

CCS CONCEPTS

• Computing methodologies → Learning latent representa-

tions;Machine learning algorithms; Knowledge representation
and reasoning; Neural networks.

KEYWORDS

graph representation learning, node embedding, diversity, recom-
mender system, link prediction, live test

1 INTRODUCTION

Most recommender system studies have focused on finding users’
immediate demands; they try to build models that maximize the
click-through rate (CTR). The learned system suggests high-ranked
items that users are likely to click in a myopic sense [6, 9, 30, 32].
Such recommendation strategies have successfully altered simple
popularity-based or handmade lists, thus being widely adopted on
many online platforms including Spotify [15], Netflix [18], and so
on.

Proceedings of the ImpactRS Workshop at ACM RecSys ’20, September 25, 2020, Virtual
Event, Brazil.
Copyright (c) 2020 for this paper by its authors. Use permitted under Creative Commons
License Attribution 4.0 International (CC BY 4.0).
.

However, the previous approaches have a potentially severe
drawback, a lack of diversity. For example, consider a user just
watched Iron Man. Since a majority of people tend to watch other
Marvel Cinematic Universe (MCU) films like Iron Man 2, Thor, and
Marvel’s The Avengers after watching Iron Man, the system would
recommend such MCU films based on historical log data. While
the approach may lead to CTR maximization, 1) can we say that
users are satisfied with these apparent results? Or, 2) would a wider
variety of recommendations achieve better user experience?

Recently, a method that addresses the first question is presented
on Spotify [2]. This work categorized those who listen to very sim-
ilar songs and different sets of entities as specialists and generalists,
respectively. This work observed that generalists are much more
satisfied than specialists based on long-term user metrics (i.e., the
conversion to subscriptions and retention on the platform). Thus,
even if some users are satisfied with the evident recommendations
(clicked or played), this satisfaction does not imply the users con-
tinue to use the platform.

To answer the second question, we propose the diversity-emphasized
node embedding div2vec. Recently, the number of studies on graph
structure [8, 10, 17, 24, 26, 28] is increasing. Unfortunately, most of
those studies have merely focused on the accuracy. DeepWalk and
node2vec are the first and the most famous node embedding meth-
ods [8, 24]. DeepWalk, node2vec, and our method div2vec generates
random walks first and then use the Skip-gram model [20] to com-
pute embedding vectors of all nodes. When generating random
walks, their methods choose nodes of high degree more. It makes
sense because if a node had many neighbors in the past, it will have
many neighbors in the future, too. However, it may be an obstacle
for personalizing. Using our new method, all nodes are evenly dis-
tributed in the collection of random walks. Roughly speaking, the
key idea is to choose a node with weight 1

𝑑
where 𝑑 is the degree

of the node. Also, we propose a variant of div2vec, which we call
rooted div2vec, obtained by changing the weight 1

𝑑
to 1√

𝑑
in order to

balance accuracy and diversity. To the best of our knowledge, our
approach is the first node embedding method focusing on diversity.
Details are in Section 3.

We evaluate our new methods on a benchmark and two real-
word datasets. As the benchmark, we verify the offline metrics on
the MovieLens dataset. As a result, div2vec got higher scores in the
diversity metrics, such as coverage, entropy-diversity, and average
intra-list similarity, and lower scores in the accuracy metrics, such

Figure 1: Screenshots of WATCHA and LINE Wallet Coupon.

as AUC score, than DeepWalk and node2vec. Furthermore, its vari-
ant rooted div2vec had the highest AUC score and also the diversity
scores of rooted div2vec are the best or the second-best.

We figure out that increasing diversity actually improves online
performance. We test on two different live services, WATCHA and
LINE Wallet Coupon. Screenshots of the services are in Figure 1.
WATCHA is one of the famous OTT streaming services in South
Korea. Like Netflix, users can watch movies and TV series using
WATCHA. LINE is the most popular messenger in Japan, and LINE
Wallet Coupon service provides various coupons, such as, pizza, cof-
fee, shampoo, etc. In the above two different kinds of recommender
systems, we used our diversity-emphasized node embedding and
succeeded to enhance online performances. It is the biggest contri-
bution of our work to prove that users in real world prefer a diverse
and personalized recommendation.

The structure of the paper is as follows. In Section 2, we review
random walk-based node embedding methods and the study on
diversity problems. The proposed method will be described in Sec-
tion 3. Section 4 and Section 5 reports the results of our experiments
on offline tests and online tests, respectively. Section 6 concludes
our research.

2 RELATEDWORK

2.1 Random walk-based node embeddings

The famous word2vec method transforms words into embedding
vectors such that similar words have similar embeddings. It uses
a language model, called Skip-gram [20], that maximizes the co-
occurrence probability among the words near the target word.

Inspired byword2vec, Perozzi et al. [24] introducedDeepWalk that
transforms nodes in a graph into embedding vectors. A walk is a
sequence of nodes in a graph such that two consecutive nodes are
adjacent. A random walk is a walk such that the next node in the
walk is chosen randomly from the neighbors of the current node.
DeepWalk first samples a collection of random walks from the in-
put graph where each node in random walks are chosen uniformly
at random. Once a collection of random walks is generated, we
treat nodes and random walks as words and sentences, respectively.
Then by applying word2vec method, we can obtain an embedding
vector of each node.

node2vec [8] is a generalization of DeepWalk. When nodes in
random walks are chosen, node2vec uses two parameters 𝑝 and 𝑞.
Suppose we have an incomplete random walk 𝑣1, 𝑣2, . . . , 𝑣𝑖 and we
will choose one node in the neighborhood 𝑁 (𝑣𝑖) of 𝑣𝑖 to be 𝑣𝑖+1.

Here, for 𝑥 in 𝑁 (𝑣𝑖), we set the weight𝑤 (𝑣𝑖 , 𝑥) as follows:

𝑤 (𝑣𝑖 , 𝑥) =


1
𝑝 if 𝑥 = 𝑣𝑖−1,

1 if 𝑥 is adjacent to 𝑣𝑖−1,
1
𝑞 otherwise.

Note that if a graph is bipartite, the second case does not appear.
node2vec chooses 𝑣𝑖+1 at random with the weight𝑤 (𝑣𝑖 , 𝑥).

The most advantage of graph representation learning or graph
neural networks is that these models can access both local and
higher-order neighborhood information. However, as the number
of edges is usually too many, they may be inefficient. The random
walk-based method solves this problem. Instead of considering all
nodes and all edges, it only considers the nodes in the collection
of random walks. Therefore, the way to generate random walks is
important and it affects performance.

2.2 Diversity problems

The word “filter bubble” refers to a phenomenon in which the
recommender system blocks providing various information and
filters only information similar to the user’s taste. In [3, 21, 22],
they show the existence of the filter bubble in their recommender
system. Some research [1, 27] claim that diversity is one of the
essential components in the recommender system.

Some studies are proving that diversity increases the user’s satis-
faction. Spotify, one of the best music streaming services, observed
that diverse consumption behaviors are highly associated with
long-term metrics like conversion and retention [2, 13]. Also, Liu
et al. [14] improve the user’s preference by using neural graph
filtering which learns diverse fashion collocation.

One may think that if a recommender system gains diversity,
then it looses the accuracy. However, the following research suc-
ceeds in improving both. Adomavicius and Kwon [1] applied a
ranking technique to original collaborative filtering in order to in-
crease diversity without decreasing the accuracy. Zheng et al. [31]
proposed a Deep Q-Learning based reinforcement learning frame-
work for news recommendation. Their model improves both click-
through rate and intra-list similarity.

3 PROPOSED METHOD

3.1 Motivation

In the framework of DeepWalk and node2vec, the model first gen-
erates a collection of random walks, and then runs the famous
word2vec algorithm to obtain embedding vectors. In their way,

(a) DeepWalk, movieId (b) DeepWalk, userId

(c) rooted div2vec, movieId (d) rooted div2vec, userId

(e) div2vec, movieId (f) div2vec, userId

Figure 2: The 𝑥-axis are nodes and the blue line means the degree of nodes. The 𝑦-axis denotes the frequency of nodes in the

collection of random walks.

nodes of high degree should be contained more than nodes of low
degree in the collection of randomwalks because, roughly speaking,
if a node 𝑣 has 𝑑 neighbors, then there are 𝑑 chances that 𝑣 can
belongs to the collection of random walks. Figure 2a and Figure 2b
represent this phenomenon. The 𝑥-axis are the nodes sorted by the
degree and the blue line means the degree of nodes. So, the blue line
is always increasing and it means that nodes of higher degrees are
on the right side in each figure. Orange bars mean the frequencies
of nodes in the collection of random walks. It is easy to observe
that nodes of high degree appear extremely more than that of low
degree.

As the collection of randomwalks are the training set of the skim-
gram model, DeepWalk and node2vec might be trained with a bias
to nodes of high degree. It may not be a trouble for solving problems
focused on the accuracy. For example, in link prediction, high-
degree nodes in the original graph might have a higher probability
of being linked with other nodes than low-degree nodes. In terms
of movies, if the movie is popular, then many people will like this
movie. However, it must be a problem when we want to focus
on personalization and diversity. Unpopular movies might not be
trained enough so that they are not well-represented. So, even if
a person actually prefers some unpopular movie to some popular
movie, the recommender system tends to recommend the popular
movie for safe.

Motivated by Figure 3, which shows the difference between
reality and equity, we decided to consider the degree of the next
candidate nodes inversely. The main idea is ‘Low degree, choose
more.’. We propose a simple but creative method, which will be
formally described in the next subsection, which gives Figure 2e
and Figure 2f. Compare to Figure 2a and Figure 2b, the nodes in

Figure 2e and Figure 2f are evenly distributed regardless of their
degree.

3.2 div2vec

Now,we introduce the diversity-emphasized node embeddingmethod.
Similarly to DeepWalk and node2vec, we first produce a lot of ran-
dom walks and train skip-gram model. We apply an easy but bright
idea to generate random walks so that our model can capture the
diversity of the nodes in their embedding vectors.

Suppose a node 𝑣 is the last node in an incomplete random walk
and we are going to choose the next node among the neighbors
of 𝑣 .

• DeepWalk picks the next node in 𝑁 (𝑣) at random with the
same probability.

• In node2vec, if𝑤 is the node added to the random walk just
before 𝑣 , then there are three types of probability depend
on whether a node 𝑢 ∈ 𝑁 (𝑣) is adjacent with 𝑤 or not, or
𝑢 = 𝑤 .

• Our method will choose the next node according to the
degree of neighbors.

Formally, our method chooses the next node 𝑢 ∈ 𝑁 (𝑣) with the
probability

𝑓 (deg(𝑢))∑
𝑤∈𝑁 (𝑣) 𝑓 (deg(𝑤))

for some function 𝑓 . For example, when 𝑓 (𝑥) = 1/𝑥 , if 𝑥 has two
neighbors 𝑦 and 𝑧 whose degree is 10 and 90 respectively, then 𝑦 is
chosen with probability (1/10)/(1/10 + 1/90) = 0.9 and 𝑧 is chosen
with probability 0.1. That is, since the degree of 𝑦 is smaller than
the degree of 𝑧, the probability that 𝑦 is chosen is larger than the

Figure 3: There are three people of different heights. The concept of equality is to give the same number of boxes to all.

However, in reality, the rich get richer and the poor get poorer. As a perspective of equity, the small person get more boxes

than the tall person.
1

probability that 𝑧 is chosen. In Section 4, we set 𝑓 to the inverse
of the identity function 𝑓 (𝑥) = 1/𝑥 and the inverse of the square
root function 𝑓 (𝑥) = 1/

√
𝑥 . We call this method div2vec when

𝑓 (𝑥) = 1/𝑥 and rooted div2vec when 𝑓 (𝑥) = 1/
√
𝑥 .

Intuitively, DeepWalk chooses the next node without consider-
ing the past or the future nodes, node2vec chooses the next node
according to the past node, and div2vec chooses the next node
with respect to the future node. Note that it is possible to com-
bine node2vec and div2vec by first dividing into three types and
then consider the degree of neighbors. Since there are too many
hyperparameters to control, we remain it to the next work.

Figure 2 is the result for generating random walks with several
methods. The detail for the dataset is in Subsection 4.1. If we use
DeepWalk, then Figure 2a and Figure 2b show that high-degree
nodes appears extremely much more than low-degree nodes. The
problem is that, if the result is too skew, then the skip-gram model
might not train some part of data well. For example, a popular
movie will appear many times in the collection of random walks
and then the model should overfit to the popular movie. On the
other hands, an unpopular movie will appears only few times in
the collection of random walks and then the model should underfit
to the unpopular movie.

This problem is solvable by using our method. Using div2vec,
we can have the nodes evenly in the collection of random walks.
Figure 2e and Figure 2f show that our method solves this problem.
The nodes are chosen equally regardless of the degree of nodes. Nor-
mally, popular movies are consumed more than unpopular movies.
So div2vec may decrease the accuracy. Our experiments prove that
even if we emphasize the diversity, the accuracy decrease very little.
Furthermore, we suggest the variant rooted div2vec. Figure 2c and
Figure 2d can be treated as the combination of DeepWalk and
div2vec. In Subsection 4.4, our experiments show that compare to
DeepWalk and node2vec, rooted div2vec records better scores for
every metric.

4 OFFLINE EXPERIMENTS

4.1 DataSets

We used the famous MovieLens dataset [11] for an offline test. We
used MovieLens-25M because it is the newest data and we only
used the recent 5 years in the dataset. Rating data is made on

1This figure is from http://www.brainkart.com/article/Equality_34271/.

10 steps, but we need binary data, which means watched/not or
satisfied/unsatisfied, in order to train a model and compute AUC
score. We set more than 4 stars to be positive and less than 3 stars to
be negative. To prevent noises, we remove both the movies having
less than 10 records and the users having less than 10 or more than
1000 records. At last, there are 2,009,593 records with 16,002 users
and 5,298 movies. For the test set, 20% of the data are used.

To compute intra-list similarity, which will be described in Sub-
section 4.3, we use ‘Tag Genome’ [29] from MovieLens-25M. It
contains data in ‘movieId, tagId, relevance’ format for every pair
of movies and tags. Relevance values are real numbers between
0 and 1. So, it can be treated as a dense matrix and one row that
represents one movie means a vector containing tag information.

4.2 Experiment settings

In movie recommender systems, a model recommends a list of
movies to each user. In other words, a model needs to find out which
movies will be connected with an individual user. It means that
our task is a link prediction. However, the methods we discussed
so far are only compute node embeddings. That is, we have an
embedding vector for movies and users but not for their interactions.
Grover and Leskovec [8] introduced four operators to obtain edge
embeddings from node embeddings as follows. Let 𝑢 and 𝑣 be two
nodes and 𝑒𝑚𝑏 (𝑢) and 𝑒𝑚𝑏 (𝑣) be their embedding vectors.

(1) Average: 𝑒𝑚𝑏 (𝑢)+𝑒𝑚𝑏 (𝑣)
2

(2) Hadamard: 𝑒𝑚𝑏 (𝑢) ∗ 𝑒𝑚𝑏 (𝑣) (element-wise product)
(3) Weighted-L1: |𝑒𝑚𝑏 (𝑢) − 𝑒𝑚𝑏 (𝑣) |
(4) Weighted-L2: |𝑒𝑚𝑏 (𝑢) − 𝑒𝑚𝑏 (𝑣) |2

For each edge, we obtain 64-dim vector from the graph induced
by positive edges and 64-dim vector from the graph induced by
negative edges. And then we concatenate the positive edge embed-
ding vector and the negative edge embedding vector to represent
the edge embedding vector.

To avoid disrupting the performance of a prediction model, we
use simple deep neural network with one hidden layer of size 128.

4.3 Evaluation metrics

For each embedding and each operator, we compute four metrics,
one for accuracy and the others for diversity. The larger scoremeans
the better performance.

http://www.brainkart.com/article/Equality_34271/

Method AUC CO(1) ED(1) CO(10) ED(10) ILS(10) CO(50) ED(50) ILS(50)
DeepWalk 0.874204 1035 4.882882 2944 6.051621 0.673236 4510 6.865239 0.670873
n2v-(1,2) 0.868537 1125 5.387989 2998 6.223997 0.685589 4483 6.877584 0.680990
n2v-(2,1) 0.864024 958 5.064918 2577 6.034628 0.682573 4081 6.773981 0.674534
div2vec 0.851322 2793 6.859013 4717 7.308675 0.706817 5243 7.614828 0.700030

rooted div2vec 0.888123 2332 6.713877 4500 7.275315 0.705358 5207 7.614992 0.700071

(a) The results with the operator Weighted-L1.

Method AUC CO(1) ED(1) CO(10) ED(10) ILS(10) CO(50) ED(50) ILS(50)
DeepWalk 0.878293 1131 5.231090 3016 6.170295 0.665313 4453 6.837852 0.666019
n2v-(1,2) 0.871771 1302 5.504011 3261 6.323582 0.672085 4598 6.908540 0.671838
n2v-(2,1) 0.867549 973 4.865928 2725 5.942549 0.669559 4135 6.731078 0.667980
div2vec 0.853404 2435 6.544910 4608 7.196730 0.704196 5213 7.555974 0.700267

rooted div2vec 0.889674 2168 6.457435 4597 7.236516 0.700865 5233 7.612159 0.698983
(b) The results with the operator Weighted-L2.

Method AUC CO(1) ED(1) CO(10) ED(10) ILS(10) CO(50) ED(50) ILS(50)
DeepWalk 0.862314 1331 6.088063 3156 6.856834 0.671195 4642 7.420330 0.667491
n2v-(1,2) 0.866459 1593 6.217412 3570 6.988375 0.684405 4740 7.478146 0.680929

n2v-(2,1) 0.863299 1587 6.315792 3371 7.053128 0.670602 4645 7.516015 0.669998
div2vec 0.837683 2605 7.092134 4623 7.711741 0.679191 5200 8.033483 0.673614

rooted div2vec 0.870787 2565 7.177497 4573 7.775564 0.670754 5254 8.103879 0.666571
(c) The results with the operator Hadamard.

Method AUC CO(1) ED(1) CO(10) ED(10) ILS(10) CO(50) ED(50) ILS(50)
DeepWalk 0.903541 440 3.419942 1442 4.940299 0.709170 2872 5.988137 0.706576
n2v-(1,2) 0.907638 617 4.031595 1957 5.464436 0.730591 3481 6.403608 0.717133
n2v-(2,1) 0.909999 686 4.259565 2083 5.700572 0.745205 3540 6.471546 0.724843
div2vec 0.894085 882 4.730973 2575 6.130730 0.725977 4039 6.972115 0.715884

rooted div2vec 0.913342 831 4.695825 2481 6.083932 0.742770 4121 6.929550 0.727009

(d) The results with the operator Average.

Table 1: The results on an offline test.

AUC SCORE AUC score is area under the Receiver Operating
Characteristic curve, which is plotting True Positive Rate (TPR)
against False Positive Rate (FPR) at various thresholds. TPR and
FPR are defined as follow:

TPR =
(𝑡ℎ𝑒 𝑛𝑢𝑚𝑏𝑒𝑟 𝑜 𝑓 𝑡𝑟𝑢𝑒 𝑝𝑜𝑠𝑖𝑡𝑖𝑣𝑒)

(𝑡ℎ𝑒 𝑛𝑢𝑚𝑏𝑒𝑟 𝑜 𝑓 𝑡𝑟𝑢𝑒 𝑝𝑜𝑠𝑖𝑡𝑖𝑣𝑒) + (𝑡ℎ𝑒 𝑛𝑢𝑚𝑏𝑒𝑟 𝑜 𝑓 𝑓 𝑎𝑙𝑠𝑒 𝑛𝑒𝑔𝑎𝑡𝑖𝑣𝑒) ,

FPR =
(𝑡ℎ𝑒 𝑛𝑢𝑚𝑏𝑒𝑟 𝑜 𝑓 𝑓 𝑎𝑙𝑠𝑒 𝑝𝑜𝑠𝑖𝑡𝑖𝑣𝑒)

(𝑡ℎ𝑒 𝑛𝑢𝑚𝑏𝑒𝑟 𝑜 𝑓 𝑓 𝑎𝑙𝑠𝑒 𝑝𝑜𝑠𝑖𝑡𝑖𝑣𝑒) + (𝑡ℎ𝑒 𝑛𝑢𝑚𝑏𝑒𝑟 𝑜 𝑓 𝑡𝑟𝑢𝑒 𝑛𝑒𝑔𝑎𝑡𝑖𝑣𝑒) .

AUC score is in range 0 to 1. As close to 1, it gives better evaluation
and is close to perfect prediction. AUC score is useful evaluation
metric because of scale invariant and classification threshold in-
variant to compare multiple prediction model.

COVERAGE Coverage is how many items appear in the recom-
mended result. Formally, we can define as

coverage(𝑀) =
�����⋃
𝑢

𝑅𝑀,𝑘 (𝑢)
�����

where 𝑀 is a model, 𝑅𝑀,𝑘 is a set of top-𝑘 recommended items
for a user 𝑢 by 𝑀 . Many papers [1, 7, 12, 16] discuss the impor-
tance of the coverage. If the coverage of the model is large, then
the model recommends a broad range of items, and it implicitly

means that users can have difference items. Furthermore, if the
accuracy is competitive, then we may say that the model is good at
personalization.

ENTROPY-DIVERSITYAdomavicius andKwon [1] introduced
the entropy-based diversity measure Entropy-Diversity. Let 𝑈 be
the set of all users, and 𝑟𝑒𝑐𝑀,𝑘 (𝑖) be the number of users 𝑢 such
that 𝑖 ∈ 𝑅𝑀,𝑘 (𝑢) for a model𝑀 , an integer 𝑘 , and an item 𝑖 . Then

ENTROPY-DIVERSITY(𝑀) = −
∑
𝑖

(
𝑟𝑒𝑐 (𝑖)
𝑘 × |𝑈 |

)
ln

(
𝑟𝑒𝑐 (𝑖)
𝑘 × |𝑈 |

)
.

Note thatwe can say that if ENTROPY-DIVERSITY(𝑀1) < ENTROPY-
DIVERSITY(𝑀2), then𝑀2 recommendsmore diverse items than𝑀1.
Here is an example. For an item set 𝐼 = {𝑖𝑡𝑒𝑚1, 𝑖𝑡𝑒𝑚2, . . . , 𝑖𝑡𝑒𝑚9}
and a user set𝑈 = {𝑢𝑠𝑒𝑟1, 𝑢𝑠𝑒𝑟2, 𝑢𝑠𝑒𝑟3}, suppose a model𝑀1 gives
𝑅𝑀1,3 (𝑢) = {𝑖𝑡𝑒𝑚1, 𝑖𝑡𝑒𝑚2, 𝑖𝑡𝑒𝑚3} for every user 𝑢, and a model
𝑀2 gives 𝑅𝑀2,3 (𝑢𝑠𝑒𝑟1) = {𝑖𝑡𝑒𝑚1, 𝑖𝑡𝑒𝑚2, 𝑖𝑡𝑒𝑚3}, 𝑅𝑀2,3 (𝑢𝑠𝑒𝑟2) =

{𝑖𝑡𝑒𝑚4, 𝑖𝑡𝑒𝑚5, 𝑖𝑡𝑒𝑚6}, 𝑅𝑀2,3 (𝑢𝑠𝑒𝑟3) = {𝑖𝑡𝑒𝑚7, 𝑖𝑡𝑒𝑚8, 𝑖𝑡𝑒𝑚9}. Then
ENTROPY-DIVERSITY(𝑀1) = −(3/9) ln(3/9) × 3+ 0× 6 = ln 3 and
ENTROPY-DIVERSITY(𝑀2) = −(1/9) ln(1/9) × 9 = ln 9.

AVERAGE INTRA-LIST SIMILARITY From the recommen-
dation model, every user will receive a list of items. Intra-List Simi-
larity (ILS) measures how dissimilar or similar items in the list are.

Week clicks plays watch time
the first week 66.19 62.07 3.58

the second week 39.69 28.52 4.19
Table 2: Percentage of improvements (%) of div2vec over node2vec.

Formally,

ILS(𝐿) =
∑
𝑖∈𝐿

∑
𝑗 ∈𝐿,𝑖≠𝑗 sim(𝑖, 𝑗)

|𝐿 | (|𝐿 | − 1)/2
where 𝐿 is the recommended item list and sim(𝑖, 𝑗) is the similarity
measure between the tag-genome vectors of 𝑖 and 𝑗 , which are
given from the MovieLens dataset [11, 29]. We set sim(𝑖, 𝑗) = 1 −

𝑣𝑖 ·𝑣𝑗
| |𝑣𝑖 | | · | |𝑣𝑗 | | where 𝑣𝑖 and 𝑣 𝑗 are corresponding tag-genome vectors
of 𝑖 and 𝑗 . By definition, if the value is small, then items in the
list are similar. Otherwise, they are dissimilar. Note that Bradly
and Smyth [4], and Meymandpour and Davis [19] use the same
definition in terms of ‘diversity’. For every user 𝑢, we compute
𝐼𝐿𝑆 (𝑅𝑀,𝑘 (𝑢)) and their average, which we call Average Intra-List
Similarity in order to measure how diverse a model is.

4.4 Results on an offline test

Table 1 summarizes the results of our offline experiments on the
MovieLens dataset. We did many experiments under various condi-
tions.

• five methods: DeepWalk [24], node2vec [8] with different
hyperparameters, div2vec and its variant rooted div2vec

• four operators: Weighted-L1, Weighted-L2, Hadamard, Aver-
age

• four metrics: AUC score, coverage, entropy-diversity, and
average intra-list similarity

• three sizes of recommendation lists: 1, 10, 50
AUCmeansAUC score. CO(𝑘), ED(𝑘), ILS(𝑘) means coverage, entropy-
diversity, average intra-list similarity of top 𝑘 recommended items,
respectively. n2v-(p,q) is node2vec with hyperparameter 𝑝, 𝑞.

Our proposed methods div2vec and rooted div2vec record the
highest scores on all metrics in Table 1a and Table 1b In Table 1c
and Table 1d, the average intra-list similarity is not the best but the
second with tiny gaps. Overall, it is easy to see that div2vec and
rooted div2vec got better scores than DeepWalk and node2vec in
diversity metrics. Furthermore, rooted div2vec got the best scores
in the accuracy metric. Thus, we can conclude that our proposed
methods increase the diversity of recommender systems.

5 LIVE EXPERIMENTS

5.1 Video Recommendation

In the previous experiments, we verified that ourmethods, div2vec and
rooted div2vec, clearly increase the diversity of recommended re-
sults. The remaining job is to prove that div2vec actually increases
user satisfaction in real-world recommender systems. To show this,
we conduct an A/B test in the commercial video streaming service,
WATCHA, and measure and compare various user activity statistics
that are related to user satisfaction.

We collected four months watch-complete logs starting from
January 2020, here watch-complete means user completing a video.

We filter-out users who do not have watch-complete logs last few
days, also filter-out extreme case users (too many or too few logs);
results in 21,620 users. Two methods, node2vec and div2vec, were
trained with these filtered logs. For node2vec, we set the parameters
𝑝 = 𝑞 = 1.

An A/B test had been conducted two weeks, where 21,620 users
were randomly and evenly partitioned into two groups and each
group received either node2vec or div2vec recommending results. In
more detail, WATCHA has list-wise recommendation home whose
list consists of several videos, and our list inserted into the fifth
row. To make the list, we sorted all available videos by the final
scores and pick top 𝑘 of them (𝑘 varies with devices), and also
apply random shuffling of top 3𝑘 videos to avoid always the same
recommendation.

We compare clicks and plays of node2vec and div2vec list by the
week. (The first two columns in Table 2) In the first week, div2vec list
received more than 60% more actions than node2vec list in both
clicks and plays; 39.69% more clicks and 28.52% more plays at the
second week. As we can see that div2vec beats node2vec with clicks
and plays by a significant margin.

Someone may argue that the above improvement does not im-
prove actual user satisfaction; if users who received the node2vec list
are satisfied with other recommended list. To see this actually hap-
pens, we compare total watch time of each group during the test.
(The last column in Table 2) In the first week, div2vec achieved 3.58%
more watch time than node2vec, and 4.19% in the second week. Let
me note that in watch time comparison, even 1% improvement
is hard to achieve [5], thus our improvement is quite impressive
results.

5.2 Coupon Recommendation

To further demonstrate the effectiveness of using the div2vec em-
bedding in other real-world recommender systems, we run an A/B
test in the LINE Wallet Coupon service and evaluate the online per-
formance for two weeks in the spring of 2020. The system consists
of over six million users and over five hundred unique items. We
constructed the user-item bipartite graph by defining each user and
item as an individual node and connecting nodes that are interacted
each other. Using the graph, we obtained div2vec embedding vec-
tors for each nodes. In this experiment, we compared the number
of unique users clicked (Click UU) and click-through rate (CTR)
of the neural-network based recommendation model2 using the
precomputed div2vec embedding vectors as additional features to
the model that did not. As side information, the paper utilized gen-
der, age, mobile OS type, and interest information for users, while
brand, discount information, text, and image features for items. The
online experiment results show that the overall Click UU and CTR
have been improved by 6.55% and 2.90%, respectively. The relative
2The details in model architecture for the LINE Wallet Coupon recommender system
are presented in [23, 25].

1 3 5 7 9 11 13
Day

1.0

1.1

R
el

at
iv

e
C

lic
k

U
U

w/ div2vec w/ div2vec (avg) w/o div2vec

(a) Relative Click UU

1 3 5 7 9 11 13
Day

0.95

1.00

1.05

1.10

1.15

R
el

at
iv

e
C

TR

w/ div2vec w/ div2vec (avg) w/o div2vec

(b) Relative CTR

Figure 4: Relative performance of the model applying div2vec feature to the existing model in LINEWallet Coupon service by

date.

performance for two weeks is illustrated in Figure 4 by date. By
applying the div2vec feature, a larger number of users get interested
in the recommended coupon list and the ratio that the user reacts
to the exposed item increases, significantly. Considering that the
online tests were conducted for a relatively long period, we con-
clude that the diversified recommendation based on the proposed
method has led to positive consequences in user experience rather
than to attract curiosity from users temporarily.

6 CONCLUSION

We have introduced the diversity-emphasized node embedding
div2vec. Several experiments showed the importance of our method.
Compared to DeepWalk and node2vec, the recommendation model
based on div2vec increased the diversity metrics like coverage,
entropy-diversity, average intra-list similarity in the MovieLens
dataset. The main contribution of this paper is that we verified that
users satisfy with the recommendation model using div2vec in two
different live services.

We remark that as div2vec is an unsupervised learning method
like word2vec, it can be easily combined with other studies and
services, and it is possible to improve their performance. Also, by
changing the function 𝑓 , the distribution of nodes in the collection
of random walks can be adjusted to each domain.

ACKNOWLEDGMENTS

Special thanks to those who lent their insight and technical support
for this work, including Jaehun Kim, Taehyun Lee, Kyung-Min Kim,
and Jung-Woo Ha.

REFERENCES

[1] Gediminas Adomavicius and YoungOk Kwon. 2012. Improving Aggregate Rec-
ommendation Diversity Using Ranking-Based Techniques. IEEE Trans. on Knowl.
and Data Eng. 24, 5 (May 2012), 896–911. https://doi.org/10.1109/TKDE.2011.15

[2] Ashton Anderson, Lucas Maystre, Ian Anderson, Rishabh Mehrotra, and Mounia
Lalmas. 2020. Algorithmic effects on the diversity of consumption on spotify. In
Proceedings of The Web Conference 2020. 2155–2165.

[3] Eytan Bakshy, Solomon Messing, and Lada A. Adamic. 2015. Expo-
sure to ideologically diverse news and opinion on Facebook. Sci-
ence 348, 6239 (2015), 1130–1132. https://doi.org/10.1126/science.aaa1160
arXiv:https://science.sciencemag.org/content/348/6239/1130.full.pdf

[4] Keith Bradley and Barry Smyth. 2001. Improving Recommendation Diversity.
[5] Minmin Chen, Alex Beutel, Paul Covington, Sagar Jain, Francois Belletti, and

Ed H Chi. 2019. Top-k off-policy correction for a REINFORCE recommender

system. In Proceedings of the Twelfth ACM International Conference on Web Search
and Data Mining. 456–464.

[6] Heng-Tze Cheng, Levent Koc, Jeremiah Harmsen, Tal Shaked, Tushar Chandra,
Hrishi Aradhye, Glen Anderson, Greg Corrado, Wei Chai, Mustafa Ispir, Rohan
Anil, Zakaria Haque, Lichan Hong, Vihan Jain, Xiaobing Liu, and Hemal Shah.
2016. Wide Deep Learning for Recommender Systems. In Proceedings of the
1st Workshop on Deep Learning for Recommender Systems (Boston, MA, USA)
(DLRS 2016). Association for Computing Machinery, New York, NY, USA, 7–10.
https://doi.org/10.1145/2988450.2988454

[7] Mouzhi Ge, Carla Delgado-Battenfeld, and Dietmar Jannach. 2010. Beyond
Accuracy: Evaluating Recommender Systems by Coverage and Serendipity. In
Proceedings of the Fourth ACM Conference on Recommender Systems (Barcelona,
Spain) (RecSys ’10). Association for Computing Machinery, New York, NY, USA,
257–260. https://doi.org/10.1145/1864708.1864761

[8] Aditya Grover and Jure Leskovec. 2016. Node2vec: Scalable Feature Learning
for Networks. In Proceedings of the 22nd ACM SIGKDD International Conference
on Knowledge Discovery and Data Mining (San Francisco, California, USA) (KDD
’16). Association for Computing Machinery, New York, NY, USA, 855–864. https:
//doi.org/10.1145/2939672.2939754

[9] Huifeng Guo, Ruiming Tang, Yunming Ye, Zhenguo Li, and Xiuqiang He. 2017.
DeepFM: A Factorization-Machine Based Neural Network for CTR Prediction.
In Proceedings of the 26th International Joint Conference on Artificial Intelligence
(Melbourne, Australia) (IJCAI’17). AAAI Press, 1725–1731.

[10] William L. Hamilton, Rex Ying, and Jure Leskovec. 2017. Inductive Representation
Learning on Large Graphs. In Proceedings of the 31st International Conference on
Neural Information Processing Systems (Long Beach, California, USA) (NIPS’17).
Curran Associates Inc., Red Hook, NY, USA, 1025–1035.

[11] F. Maxwell Harper and Joseph A. Konstan. 2015. TheMovieLens Datasets: History
and Context. ACM Trans. Interact. Intell. Syst. 5, 4, Article 19 (Dec. 2015), 19 pages.
https://doi.org/10.1145/2827872

[12] Jonathan L. Herlocker, Joseph A. Konstan, Loren G. Terveen, and John T. Riedl.
2004. Evaluating Collaborative Filtering Recommender Systems. ACM Trans. Inf.
Syst. 22, 1 (Jan. 2004), 5–53. https://doi.org/10.1145/963770.963772

[13] David Holtz, Ben Carterette, Praveen Chandar, Zahra Nazari, Henriette Cramer,
and Sinan Aral. 2020. The Engagement-Diversity Connection: Evidence from
a Field Experiment on Spotify. In Proceedings of the 21st ACM Conference on
Economics and Computation (Virtual Event, Hungary) (EC ’20). Association for
Computing Machinery, New York, NY, USA, 75–76. https://doi.org/10.1145/
3391403.3399532

[14] Xiao hua Liu, Yongbin Sun, Ziwei Liu, and Dahua Lin. 2020. Learning Diverse
Fashion Collocation by Neural Graph Filtering. ArXiv abs/2003.04888 (2020).

[15] Kurt Jacobson, Vidhya Murali, Edward Newett, Brian Whitman, and Romain Yon.
2016. Music Personalization at Spotify. In Proceedings of the 10th ACM Conference
on Recommender Systems (Boston, Massachusetts, USA) (RecSys ’16). Association
for Computing Machinery, New York, NY, USA, 373. https://doi.org/10.1145/
2959100.2959120

[16] Marius Kaminskas and Derek Bridge. 2016. Diversity, Serendipity, Novelty, and
Coverage: A Survey and Empirical Analysis of Beyond-Accuracy Objectives in
Recommender Systems. ACM Trans. Interact. Intell. Syst. 7, 1, Article 2 (Dec. 2016),
42 pages. https://doi.org/10.1145/2926720

[17] Kyung-Min Kim, Donghyun Kwak, Hanock Kwak, Young-Jin Park, Sangkwon
Sim, Jae-Han Cho, Minkyu Kim, Jihun Kwon, Nako Sung, and Jung-Woo Ha. 2019.
Tripartite Heterogeneous Graph Propagation for Large-scale Social Recommen-
dation. arXiv preprint arXiv:1908.02569 (2019).

https://doi.org/10.1109/TKDE.2011.15
https://doi.org/10.1126/science.aaa1160
https://arxiv.org/abs/https://science.sciencemag.org/content/348/6239/1130.full.pdf
https://doi.org/10.1145/2988450.2988454
https://doi.org/10.1145/1864708.1864761
https://doi.org/10.1145/2939672.2939754
https://doi.org/10.1145/2939672.2939754
https://doi.org/10.1145/2827872
https://doi.org/10.1145/963770.963772
https://doi.org/10.1145/3391403.3399532
https://doi.org/10.1145/3391403.3399532
https://doi.org/10.1145/2959100.2959120
https://doi.org/10.1145/2959100.2959120
https://doi.org/10.1145/2926720

[18] Dawen Liang, Rahul G. Krishnan, Matthew D. Hoffman, and Tony Jebara. 2018.
Variational Autoencoders for Collaborative Filtering. In Proceedings of the 2018
World Wide Web Conference (Lyon, France) (WWW ’18). International World
Wide Web Conferences Steering Committee, Republic and Canton of Geneva,
CHE, 689–698. https://doi.org/10.1145/3178876.3186150

[19] Rouzbeh Meymandpour and Joseph G. Davis. 2020. Measuring the diversity of
recommendations: a preference-aware approach for evaluating and adjusting
diversity. Knowledge and Information Systems 62, 2 (01 Feb 2020), 787–811.
https://doi.org/10.1007/s10115-019-01371-0

[20] Tomas Mikolov, Kai Chen, Greg Corrado, and Jeffrey Dean. 2013. Efficient
Estimation of Word Representations in Vector Space. In 1st International Con-
ference on Learning Representations, ICLR 2013, Scottsdale, Arizona, USA, May
2-4, 2013, Workshop Track Proceedings, Yoshua Bengio and Yann LeCun (Eds.).
http://arxiv.org/abs/1301.3781

[21] Tien T. Nguyen, Pik-Mai Hui, F. Maxwell Harper, Loren Terveen, and Joseph A.
Konstan. 2014. Exploring the Filter Bubble: The Effect of Using Recommender
Systems on Content Diversity. In Proceedings of the 23rd International Conference
on World Wide Web (Seoul, Korea) (WWW ’14). Association for Computing Ma-
chinery, New York, NY, USA, 677–686. https://doi.org/10.1145/2566486.2568012

[22] Eli Pariser. 2011. The Filter Bubble: What the Internet Is Hiding from You. Penguin
Group , The.

[23] Young-Jin Park, Kyuyong Shin, and Kyung-Min Kim. 2020. Hop Sampling: A
Simple Regularized Graph Learning for Non-Stationary Environments. arXiv
preprint arXiv:2006.14897 (2020).

[24] Bryan Perozzi, Rami Al-Rfou, and Steven Skiena. 2014. DeepWalk: Online Learn-
ing of Social Representations. In Proceedings of the 20th ACM SIGKDD Interna-
tional Conference on Knowledge Discovery and Data Mining (New York, New York,
USA) (KDD ’14). Association for Computing Machinery, New York, NY, USA,
701–710. https://doi.org/10.1145/2623330.2623732

[25] Kyuyong Shin, Young-Jin Park, Kyung-Min Kim, and Sunyoung Kwon. 2020.
Multi-Manifold Learning for Large-Scale Targeted Advertising System. arXiv
preprint arXiv:2007.02334 (2020).

[26] Rianne van den Berg, Thomas N Kipf, and Max Welling. 2017. Graph Convolu-
tional Matrix Completion. arXiv preprint arXiv:1706.02263 (2017).

[27] Saúl Vargas. 2014. Novelty and Diversity Enhancement and Evaluation in Recom-
mender Systems and Information Retrieval. In Proceedings of the 37th International
ACM SIGIR Conference on Research Development in Information Retrieval (Gold
Coast, Queensland, Australia) (SIGIR ’14). Association for Computing Machinery,
New York, NY, USA, 1281. https://doi.org/10.1145/2600428.2610382

[28] Petar Veličković, Guillem Cucurull, Arantxa Casanova, Adriana Romero, Pietro
Liò, and Yoshua Bengio. 2018. Graph Attention Networks. International Con-
ference on Learning Representations (2018). https://openreview.net/forum?id=
rJXMpikCZ

[29] Jesse Vig, Shilad Sen, and John Riedl. 2012. The Tag Genome: Encoding Commu-
nity Knowledge to Support Novel Interaction. ACM Trans. Interact. Intell. Syst. 2,
3, Article 13 (Sept. 2012), 44 pages. https://doi.org/10.1145/2362394.2362395

[30] HongweiWang,Miao Zhao, Xing Xie,Wenjie Li, andMinyi Guo. 2019. Knowledge
Graph Convolutional Networks for Recommender Systems. In The World Wide
Web Conference (San Francisco, CA, USA) (WWW ’19). Association for Computing
Machinery, New York, NY, USA, 3307–3313. https://doi.org/10.1145/3308558.
3313417

[31] Guanjie Zheng, Fuzheng Zhang, Zihan Zheng, Yang Xiang, Nicholas Jing Yuan,
Xing Xie, and Zhenhui Li. 2018. DRN: ADeep Reinforcement Learning Framework
for News Recommendation. In Proceedings of the 2018 World Wide Web Conference
(Lyon, France) (WWW ’18). International World Wide Web Conferences Steering
Committee, Republic and Canton of Geneva, CHE, 167–176. https://doi.org/10.
1145/3178876.3185994

[32] Guorui Zhou, Xiaoqiang Zhu, Chenru Song, Ying Fan, Han Zhu, XiaoMa, Yanghui
Yan, Junqi Jin, Han Li, and Kun Gai. 2018. Deep Interest Network for Click-
Through Rate Prediction. In Proceedings of the 24th ACM SIGKDD International
Conference on Knowledge Discovery Data Mining (London, United Kingdom)
(KDD ’18). Association for Computing Machinery, New York, NY, USA, 1059–1068.
https://doi.org/10.1145/3219819.3219823

https://doi.org/10.1145/3178876.3186150
https://doi.org/10.1007/s10115-019-01371-0
http://arxiv.org/abs/1301.3781
https://doi.org/10.1145/2566486.2568012
https://doi.org/10.1145/2623330.2623732
https://doi.org/10.1145/2600428.2610382
https://openreview.net/forum?id=rJXMpikCZ
https://openreview.net/forum?id=rJXMpikCZ
https://doi.org/10.1145/2362394.2362395
https://doi.org/10.1145/3308558.3313417
https://doi.org/10.1145/3308558.3313417
https://doi.org/10.1145/3178876.3185994
https://doi.org/10.1145/3178876.3185994
https://doi.org/10.1145/3219819.3219823

	Abstract
	1 Introduction
	2 Related Work
	2.1 Random walk-based node embeddings
	2.2 Diversity problems

	3 Proposed Method
	3.1 Motivation
	3.2 div2vec

	4 Offline Experiments
	4.1 DataSets
	4.2 Experiment settings
	4.3 Evaluation metrics
	4.4 Results on an offline test

	5 Live Experiments
	5.1 Video Recommendation
	5.2 Coupon Recommendation

	6 Conclusion
	Acknowledgments
	References

