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Abstract

The next development in building Bayesian net-
works will most likely entail constructing multi-
purpose models that can be employed for vary-
ing tasks and by different types of user. We ar-
gue that the development of an ontology to or-
ganize the knowledge needed for such a multi-
purpose model is crucial for the management of
the model’s content. This ontology should pre-
serve all elicited knowledge and be accessible to
both domain experts and knowledge engineers.
Based on the different ways in which people
learn and gain expertise, we further argue that
knowledge elicitation will result in task-specific
knowledge mostly, although some task-neutral
knowledge will emerge as well. To support vary-
ing model views, this combination of knowledge
is best stored in a library-style ontology of task-
specific and task-neutral modules.

1 Introduction

While in the early years of the field of Bayesian networks
attention focused primarily on algorithmic issues, the last
decade has seen an increasing interest in methods to sup-
port the construction of such networks. The field also has
become more and more experienced in building decision-
support systems that include a Bayesian network. Bayesian
networks by now have evolved beyond laboratory settings
and are being employed by non-academic users. In turn,
users of these network-based decision-support systems are
starting to see the possibilities that these systems offer, and
begin to ask for more. For example, for various of our
biomedical applications, we have been asked whether we
could perhaps adapt the model for teaching purposes. It
is therefore likely that the next development in the field of
Bayesian networks will entail building multi-purpose mod-
els which can be employed for varying tasks and, in all
likelihood, by varying types of user.

In this paper we argue that to support model views for
varying tasks, a suite of Bayesian networks should be built
rather than a single network. We further argue that in the
first step of developing such a suite, knowledge elicitation
will necessarily result in task-specific information mostly,
although also some task-neutral knowledge may emerge.
Structuring the elicited knowledge into a library-style on-
tology of task-specific and task-neutral modules then is best
suited to empower reuse of knowledge segments and to fa-
cilitate composition of model views. We reiterate our view
that this ontology should capture all elicited knowledge and
be accessible to domain experts and engineers alike.

We begin by defining different types of model view in Sec-
tion 2, and outline the task model view under discussion
in the current paper. We argue that a single multi-purpose
model would quickly become too large and unyieldy to af-
ford the knowledge engineers and the domain experts an
overview of its contents. We therefore advocate building a
suite of models to support multiple task model views, rather
than a single Bayesian network.

In Section 3 we outline our view of ontologies. We rational-
ize why an ontology should be constructed of the elicited
knowledge, before actually developing a suite of Bayesian
networks. This rationalization is much in line with our
earlier arguments for developing ontologies for single net-
works [9]. The ontology provides as a well-structured doc-
umentation of all elicited knowledge and includes also any
background information that is not captured explicitly in a
network. This background information supports, for exam-
ple, viewing the elicited knowledge from different perspec-
tives, as required for different tasks. The well-structured
documentation then scaffolds the building of different task
model views for a suite of Bayesian networks.

We are not the first to suggest the use of ontologies. Ontolo-
gies are being developed for a variety of purposes, ranging
from providing a portal for the semantic web to document-
ing elicited knowledge for the development of knowledge-
based models; see for example [4, 6, 8, 18]. For many
of these purposes, a rigorously formal logic-based or other
mathematical ontology language is used to allow for auto-



mated processing. For our purpose of supporting the devel-
opment of a suite of networks by well-structured documen-
tation, however, the ontology should provide as a medium
for communication between the engineers and the experts
involved in the suite’s construction. Based upon the obser-
vation that a rigorously formal language is not easily ac-
cessed by non-mathematical experts, we advocate, in Sec-
tion 3, the use a less formal language for our ontologies.

We address the knowledge content of our ontologies in Sec-
tion 4. In order to align the content of our ontologies with
elicited knowledge, we consider the processes by which
humans learn and structure their own knowledge. We ob-
serve that the elicited professional knowledge of practic-
ing experts is mostly both task- and domain-specific, al-
though also some task-neutral information may emerge
during knowledge elicitation.

In Section 5, we argue that knowledge is best stored in the
fashion in which it is obtained from the experts. We fur-
ther argue that the elicited knowledge is best organized into
modules. An organization of knowledge in modules is well
suited for storing task-specific knowledge to support mul-
tiple tasks. Organizing the modules in a library-style on-
tology further encourages reuse of the knowledge elicited
for one task model view for the construction of another
task model view. We would like to note that in our ear-
lier work we proposed the development of a meta-library
of generic knowledge structures complemented with ex-
ample network derivations [11]. To support the evolve-
ment of an ontology for a suite of Bayesian networks, such
generic knowledge structures can guide and speed up en-
tering knowledge into the various modules.

The paper ends with a discussion and some perspectives
for further elaboration of the presented ideas to a practica-
ble knowledge-engineering approach to developing multi-
purpose Bayesian networks.

2 Model views of Bayesian networks

We distinguish two types of model view, namely task model
views and interaction model views. To explain the differ-
ence between the two types, we distinguish three different
states in the development of a suite of models. The first
state consists of a stored pool of knowledge relevant to all
tasks to be carried out. The second state encompasses the
actual suite of models that allows computations to be car-
ried out for the various tasks. The third state comprises
concrete means that allow users to work with the suite of
models. In view of these three states, we also consider the
steps that need to be taken to proceed from one to the next
state. The first step reaches the first state and involves elic-
iting and structuring knowledge. The second step neces-
sitates first selecting, from the pool of all elicited knowl-
edge, the knowledge that determines the content and the

structure of the suite of models to be developed, and then
representing this knowledge in the mathematical formal-
ism of Bayesian networks. The final step is characterized
by designing interfaces to the suite of models, that is, the
different ways the models can be presented to someone in-
teracting with it, be this an engineer or an end-user.

We consider a task model view to be one view of a suite
of models. The task model view is the result of carry-
ing out the elicitation and structuring of task-neutral and
task-related domain knowledge and of making selections of
the elicited knowledge to support a single or a few closely
related tasks. In the medical field, for example, one task
model view might support diagnostic reasoning, while an-
other task model view could support teaching diagnostics,
which requires additional modeling of underlying mecha-
nisms so that deeper ‘why’ and ‘what if’ questions can be
posed and answered. Interaction model views, on the other
hand, comprise the interfaces of a model that are tailored to
task and user. For example, for a diagnostics model view,
one interaction model view could be optimized for data en-
try and another might support maintenance of the model by
the knowledge engineer.

In sum, for different tasks to be carried out by differ-
ent types of user, a suite of models can require several
task model views, each of which can need several inter-
action model views. In last year’s workshop, we laid
out some methods to construct effective interaction model
views [16]. In the current paper, we concentrate on the elic-
itation and structuring of knowledge, in order to support the
development of multiple task model views.

3 Ontologies for Bayesian networks

A suite of Bayesian networks that supports several tasks
with different task model views, is likely to be of a com-
plexity necessitating development over multiple years, in-
volving possibly different engineers and experts. Build-
ing and maintaining models of such complexity is a hard
and time-consuming process. The knowledge elicited from
domain experts constitutes a rich pool of knowledge, seg-
ments of which can play varying roles in the domain under
study. All this elicited knowledge has to be carefully re-
viewed and structured, and ultimately captured in the for-
malism of Bayesian networks. In this process, a multitude
of modeling decisions are taken as well as numerous deci-
sions to demarcate the scope of the model. Such decisions
tend to forestall an overview and thorough comprehension
of the model by anyone who has not been intimately in-
volved in its construction. We have experienced already for
single larger networks, that construction and maintenance
are seriously hampered if the elicited domain knowledge
and the decisions taken are not made explicit by proper doc-
umentation [9]. This problem is bound to grow worse if a
suite of networks is to be developed and maintained.



Having observed the advantages of developing an ontol-
ogy before building a single Bayesian network in our ear-
lier work [9], we feel that the construction of a suite of
models will especially benefit from an explicit ontology,
which then serves not just as a documentation of all elicited
knowledge but also as a means of ensuring consistency over
the models within the suite and as a medium for communi-
cation between the experts and engineers involved.

3.1 The role of ontologies

Most generally applicable knowledge-engineering method-
ologies, among which is the well-known CommonKADS
methodology [13], strongly recommend the development
of a conceptual model before actually constructing a model
in the knowledge-representation formalism to be used. In
line with this recommendation, we recently proposed to de-
velop an ontology before constructing a Bayesian network
for a domain at hand [9].

There exist many views of the concept of ontology in gen-
eral; see for example [4, 7, 8, 18]. In this paper, we use
the term ontology to refer to an explicit specification of the
elicited domain knowledge that is to be shared by the ex-
perts and the knowledge engineers involved in a network’s
construction and maintenance. From this perspective, an
ontology plays two distinct roles. One of these is to make
all elicited domain knowledge explicit. To this end, the
ontology specifies not just the knowledge that is to be cap-
tured in a network, but also the relevant background knowl-
edge of the domain and the meta-level knowledge of its
regularities and organizational structure. Note that captur-
ing the elicited knowledge directly in a Bayesian network
would result in a representation from which not all types
of domain knowledge are easily recognizable as a result of
the modeling decisions taken. Also, some of the elicited
knowledge may not be captured at all in the network. The
other main role of an ontology is to provide as an explicit
medium for communication between experts and engineers
alike for further knowledge acquisition, network validation
and maintenance.

3.2 The ontology language and an example

To support the two roles mentioned above, the representa-
tion language to be used for an ontology should be chosen
with care. The issue of selecting an appropriate ontology
language has been addressed by many researchers. Some
suggest that domain knowledge should be represented by
a language that is highly informal, semi-informal, or semi-
formal [18]; others argue that ontologies should be speci-
fied in a rigorously formal language and, in fact, should be
machine readable [14].

An important argument for using a formal ontology lan-
guage is that it allows a highly structured and unambigu-
ous representation of the elicited knowledge. Such a for-

mal representation in addition may provide for (semi-)au-
tomated derivation of segments of the Bayesian networks
under construction. While rigorously formal languages
often have limited expressiveness, an ontology language
should come with a rich semantics to introduce as little bias
as possible in the represented contents. If the language in-
troduces biases, for example as a result of not allowing the
representation of specific knowledge constructs, then the
ontology may not properly reflect the intricacies of the do-
main. Since the ontology is to be used for the construction
of a network, the resulting model may then be biased as
well, maybe even in unforeseen ways. The development of
an independent knowledge model, recommended by most
knowledge-engineering methodologies, in fact has its ori-
gin in this observation.

The purpose of knowledge sharing provides a strong argu-
ment for using a less formal language. The ontology should
be represented in a language that is understandable for both
the knowledge engineers and the domain experts involved
in a network’s construction. We argued before that the
mathematical language of Bayesian networks, for example,
is very difficult to grasp by non-mathematical persons [16].
In our opinion in fact, many of the formal languages com-
monly used for ontologies are unsuitable for checking the
accumulated knowledge with non-mathematical experts. If
the use of a formal language is uncommon in a domain of
application, then a rigorously formal language is unsuited
for the purpose of knowledge sharing between the knowl-
edge engineers and the domain experts in the domain at
hand and a less formal language had best be used.

To support developing Bayesian networks in the biomedi-
cal domain, we use a semi-formal ontology language com-
posed of well-structured tables, depictions, graphs and hi-
erarchy representations combined with text [9], which can
be understood by both the domain experts and the knowl-
edge engineers. As an example, Figure 1(a) shows part of
an ontology for the medical domain of oesophageal can-
cer. The depicted graph captures the relationships between
the result of a gastroscopic examination of the circumfer-
ence of a patient’s tumour and the underlying true circum-
ference. It describes, for example, that a gastroscopic ex-
amination may not result in an image from which the cir-
cumference can be established, as a result of a patient’s
impaired swallowing capabilities.

Upon establishing the stage of a patient’s cancer, not only
the circumference of the primary tumour is investigated.
Other diagnostic tests are performed as well. In addition
to the knowledge pertaining to these tests separately, the
domain’s ontology specifies the high-level regularities of
the knowledge involved. The graph capturing these regu-
larities for the various diagnostic tests is depicted in Figure
1(b). Note that this graph can be exploited upon extending
the network with the results of a new test, as it provides
for guiding the elicitation of the knowledge pertaining to
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Figure 1: Relations between test results and the underlying true values, (a) for a gastroscopic examination of the circum-
ference of an oesophageal tumour, and (b) for a diagnostic test in oncology in general

the new test. For further details of the oesophageal cancer
ontology, we refer to [9].

3.3 Ontology-supported construction of networks

Of course it is a daunting prospect to have to capture all
elicited knowledge in two ways, that is, first in an ontol-
ogy and then in a suite of Bayesian networks. A carefully
structured ontology, however, can be used to derive the
graphical structure of the suite in a semi-automated fash-
ion. First, the knowledge that is to be captured in the suite is
selected from the ontology; the remainder of the ontology
then serves as background knowledge to the suite. Note
that this step involves a reflection on the elicited knowledge
which must be performed and documented by the knowl-
edge engineer. In the next step, the central concepts and
relations from the selected parts of the ontology are com-
bined into a single depiction for each envisioned network.
From this depiction, an initial graphical structure is derived

Gastro-image-

Test-skills

circumf Gastro-circumf

Interpretation-skillsPassage

Circumference

Figure 2: The initial segment of the graphical structure

that adheres to the syntax of Bayesian networks. To this
end, the domain concepts from the depiction are translated
into stochastic variables, which may involve for example
re-defining multi-valued variables. The relations from the
depiction are translated into arcs between variables in the
initial graphical structure. Note that many of these steps
can be performed in an automated way. Figure 2 shows,
as an example, part of the initial graphical structure that is
derived from the graph of Figure 1(a). In the final step, the
engineer has to verify that the resulting structure correctly
captures probabilistic independence. Also, the initial struc-
ture may need further optimization [10].

4 Eliciting ontology knowledge

Given the prospective advantages of constructing a domain
ontology before building a suite of Bayesian networks, we
now turn to the question of how to organize the elicited
knowledge in the ontology so that it most usefully supports
different task model views for the suite.

Many researchers recommend that ontologies be con-
structed independently of the projected use of the ontology
and its contents; see for example [3]. Underlying this rec-
ommendation is the argument that any commitment to the
problem-solving method that will be applied to the domain
knowledge for example, will influence and thereby bias the
contents of the ontology. Such commitments thus hamper



the extendibility and reuse of the ontology. However, con-
structing an ontology without any commitments to a par-
ticular task requires either eliciting task-neutral knowledge
from domain experts, or stripping the task-specific aspects
from the elicited knowledge. In this section, we address the
feasibility of the first option; the second option is briefly
addressed in Section 5.

We consider eliciting task-neutral information, that is, elic-
iting knowledge from experts without them having a par-
ticular task in mind. To provide task-neutral information,
experts should be able to gather such information from
their minds, which implies that the knowledge should be
stored in their brains in such a way that task-neutral as-
pects are readily separated from task-specific aspects. We
now briefly lay out the different ways in which people learn
information and argue that these learning processes imply
that the knowledge stored in the human brain is largely
both domain- and task-specific. We then conclude that,
given how knowledge is learned and stored, it would be
extremely difficult to elicit task-neutral knowledge from an
experienced professional.

4.1 Human knowledge acquisition processes

Humans acquire knowledge in four different ways: trans-
mission, acquisition, accretion, and emergence [19]. Usu-
ally people start gathering professional knowledge from
books and teachers: the knowledge is explicitly transmit-
ted to them. Except in vocational training, such trans-
mitted knowledge is mostly task-neutral. Over the course
of a lifetime, transmission accounts for some 10% of our
knowledge. Further learning done by conscious choice
is termed acquisition learning, which is good for about
20% of our knowledge. Acquired knowledge is gathered
by our own initiative: by exploring, experimenting, self-
instruction, inquiry and the like. Emergence is the result of
self-constructing new ideas and meanings that did not ex-
ist before, which in current educational practices is said to
account for just 1-2% of our knowledge.

When people are asked to describe learning processes, they
generally mention explicit processes akin to transmission
and acquisition, and perhaps emergence. Accretion, which
accounts for about 70% of what we know, however, does
not commonly come to mind. Accretion is the gradual, un-
conscious and implicit process by which we learn for exam-
ple language, culture, social behavior, and whatever other
knowledge comes on our path. Accretion knowledge is
picked up simply by living and interacting with the world.
Within limits, we process and react to all we see, hear,
smell, taste and experience. By processing the information
and reacting to it, it is stored in the brain without our be-
ing conscious of the learning process. People consequently
often are not even aware they possess this type of knowl-
edge. Because it is unconsciously experienced and learned

Figure 3: Knowledge acquired by different processes

in particular situations, accreted knowledge is largely both
task- and domain-specific. Figure 3 summarizes the four
processes by which humans acquire knowledge.

4.2 Example: the acquisition of medical knowledge

While the four learning processes reviewed above relate
to general educational practices, they are easily mapped
onto what happens in the course of gathering professional
knowledge. Although the exact percentages may vary a
little, the different processes will create roughly the same
proportions of the knowledge that our domain experts pos-
sess. We illustrate this observation with an example from
medicine [2], and also argue that transmission and acquisi-
tion learning in college does not prepare a student for med-
ical practice, because of the task-neutral nature of the ma-
terial learned in medical school.

The basics for medical knowledge are taught by transmis-
sion in universities. This type of knowledge is explicitly
task-neutral and consists of biomedical knowledge, which
is mostly causal and definitional in nature and describes
the functioning and possible dysfunctioning of the human
body. It is this transmitted knowledge that upon elicitation
would result in task-neutral knowledge segments.

Next, students are confronted with patients in internships,
where they have to link the transmitted task-neutral infor-
mation to clinical knowledge. In contrast to biomedical
knowledge, clinical knowledge is task-specific in nature.
It consists of knowledge of symptoms, classification and
treatment of diseases, all embedded in medical situations.
In internships, some transmitted information is still offered,
but students are also acquiring knowledge by trying to fig-
ure out diagnoses and treatment plans themselves. Accre-



tion then is also at work, continually recording knowledge
from all perception instruments. Examples of accreted
knowledge are how to read symptoms from patients’ look,
smell, utterances and behavior, and how to communicate
with colleagues, patients and their next of kin, yet also how
to get around in the hospital and many other aspects of
work. All that is learned is now embedded in the task at
hand and in the medical culture and practices. In cognitive-
science terms, the knowledge is situated.

It is taking the step from employing task-neutral knowledge
in college to having to apply task-specific knowledge in a
hospital setting that makes the transition from the univer-
sity classrooms to practice so problematic for many medi-
cal students [2]. Students may have learned which disease
causes which symptoms, and maybe even have seen pic-
tures of such symptoms. However, recognizing the symp-
toms when exhibited by a patient is a very different matter.
Each patient is unique, and may or may not exhibit all of the
symptoms. Patients also may exhibit symptoms differently.
Patients may further have more than one disease, which
may result in an indistinct mixture of symptoms. Last but
not least, the reasoning required now goes diagnostically
from symptoms to disease, not causally from disease to
symptoms. The difficulty of this re-representation is sup-
ported by research in various other contexts, from which
it is also clear that switching information from one repre-
sentation to another is very difficult. Switching represen-
tations, in fact, does not occur spontaneously and must be
explicitly and extensively taught [1, 17].

Professional learning in medicine does not stop with the
internship phase. It continues by a mixture of accretion
and acquisition during the entire professional career. All
knowledge picked up in this phase is in a task-specific for-
mat, because it is learned while carrying out specific tasks.
The theory of situated learning describes this phenomenon
and argues that learning as it normally occurs is a func-
tion of the activity, context and culture in which it occurs
[12, 15]. In fact, the theory argues specifically that learning
never occurs in a task-, context-, and culture-neutral man-
ner.1 In a physician, for example, interaction with patients
is typically stored as examplars of sick people complete
with diagnosis, treatment plan, and outcomes.

From the above observations, we conclude that the bulk
of the professional knowledge of an expert is stored in the
mind in a task-specific format.

4.3 Eliciting task-specific knowledge

Since professional knowledge is largely task-specific, it
is reasonable to assume that most of the knowledge that

1According to this theory, the knowledge transmitted in med-
ical school is also not task-neutral: the task is passing the exam.
For our purpose, however, the issue is that the knowledge is inde-
pendent of specific medical tasks.

comes to the fore upon elicitation is task- and domain-
specific. Of course an engineer can explicitly ask a do-
main expert to provide task-neutral knowledge. If experi-
ence from practice is requested, however, the engineer is
asking for extra information processing from the expert:
the expert has to relate his or her knowledge in a differ-
ent way than is stored in the brain. This, as argued in
the example above of the medical students’ transition from
book knowledge to diagnostic and treatment knowledge,
requires non-trivial effort, which, as it is to be done real-
time, will at least considerably slow down the elicitation.
More potentially damaging, however, asking people to re-
lay knowledge in a way that requires them to reason about
their stored knowledge, as is done when asking an expert
for task-neutral information, always increases the risk of
introducing errors [5]. We conclude that, except for infor-
mation that was transmitted in a task-neutral fashion, it will
be difficult, time-consuming and error-prone to try to elicit
task-neutral knowledge from domain experts.

Two examples from our own research will serve as illus-
trations. As a first example, when we asked veterinarians
to supply us with average disease symptoms for pigs that
were sick, most of them provided us with symptoms be-
longing to one particular illness rather than a context-free
average; some gave symptoms associated with a particu-
lar group of closely related diseases such as infections of
the respiratory tract. What happened is that the veterinar-
ians called a pig having a particular disease to mind, of
which they provided the symptoms. The veterinarians pro-
viding a few more symptoms ostensibly generalized but ac-
tually were doing exactly what their colleagues did: they
provided the symptoms of diseases encountered within the
same differential diagnosis. The veterinarians unwittingly
rendered their knowledge in the same situated way it was
stored, rather than following our instructions.

As a second example, we relate a knowledge-elicitation
session where we asked a group of veterinary experts to
reason out loud about particular pig cases of which the clin-
ical symptoms were described in terms of variables and
values. When asked what would happen to their assess-
ment of the case when a particular symptom was changed
from present to absent, one of the participants asked, in
earnest, how he could possibly change the symptoms of a
pig. Clearly, the veterinary expert had called the case to
mind as a concrete pig for which he had to come to a di-
agnosis. Thinking in this task-related setting, he could not
imagine physically changing a pig’s symptoms.

5 Storing the elicited knowledge

Having established that it will be rather unlikely that an
engineer will elicit knowledge from a domain expert that
is altogether task-neutral, we now address how the elicited



knowledge is best stored in an ontology. More specifically,
we compare constructing a single task-neutral ontology
that is free of task biases, with constructing multiple task-
specific ontologies. We then argue that a library-style on-
tology best supports the development of a suite of Bayesian
networks for multiple tasks. This library-style ontology is
composed of various modules that are task-specific as well
as domain-specific, supplemented with modules that are ei-
ther task-neutral or domain-neutral.

5.1 Single or multiple ontologies

We begin by comparing capturing all elicited knowledge in
a single task-neutral ontology or in multiple task-specific
ontologies. For the construction of a single ontology, be it
composed of task-neutral or task-specific knowledge, plead
that no duplication is needed and that it will be easier to en-
sure internal consistency upon maintenance and extension.
In spite of these advantages, however, we reject building a
single ontology. A single ontology is likely to become quite
large in size for a suite of Bayesian networks supporting
multiple task model views. Even if it is well organized and
highly structured, its mere size will cause the knowledge
engineers and the domain experts to quickly lose track of
its contents. Another argument against the construction of
a single ontology is that it may be much more difficult to
build multiple task model views from a single entity than
from a collection of task-focused entities.

Having rejected developing a single ontology, we now ad-
dress the format of the ontology’s content. There are quite
strong arguments for storing knowledge in a task-neutral
fashion. Task-neutral knowledge need not be captured mul-
tiple times for use for varying tasks, as would be required
if the knowledge were captured in a task-specific fashion.
Also, when new task model views need be developed, it is
likely that these can already be supported using the avail-
able task-neutral knowledge. If the knowledge would have
been stored in a task-specific fashion, developing a new
task-specific ontology would be required.

Although there are strong arguments for storing the elicited
knowledge in a task-neutral fashion, it generally will be
highly infeasible to do so. In Section 4, we argued that the
bulk of the elicited knowledge will be available in a format
that is both task- and domain-specific. Constructing a task-
neutral ontology would thus require stripping the elicited
knowledge from its task biases and integrating the result-
ing segments of neutral knowledge. The task of stripping
the elicited knowledge from its task-related context is non-
trivial, however. Our opinion in fact is that it is infeasible
since not just the experts but also the engineers will have
particular tasks in mind when surveying the various seg-
ments of knowledge. The engineers moreover are likely to
be insufficiently knowledgeable in the domain of applica-
tion to recognize the various task biases included.

From the above observations, we conclude that although
storing knowledge in a task-neutral fashion is prefered,
it is infeasible to do so for the bulk of elicited informa-
tion. Some of the elicited knowledge may be available as
task-neutral information, however, for example if originat-
ing from the transmission phase of learning professional
knowledge. Also, some of the elicited information can
be abstracted to segments of task-neutral knowledge. An
example from our veterinary applications pertains to the
stress effects of handling a pig. Catching a pig will cause
stress to the animal, regardless of the task for which it is
being caught. The knowledge elicited in the contexts of the
various tasks thus is explicitly reusable and can be stored
in a task-neutral fashion.

5.2 A library of ontology modules

Alternative to either a single task-neutral ontology or a
collection of multiple task-specific ontologies as discussed
above, is a library consisting of multiple ontology modules.
Some of the library’s modules contain background knowl-
edge that is common to all tasks in the domain under study
yet independent of a specific task. Other modules contain
knowledge that is common to one task but holds across do-
mains; the graph from Figure 1(b), in fact, showed a seg-
ment of such knowledge, pertaining to the interpretation of
the results of diagnostic tests in biomedicine. The majority
of the modules, however, capture knowledge that is both
task- and domain-specific. A segment of knowledge may
thus be captured in more than one module, described from
the varied perspectives of different tasks. A task-specific
ontology aimed at supporting a particular task model view,
then is constructed by combining various modules.

We illustrate the concept of a library-style ontology using
our earlier example in medicine. A library of modules for
medical applications would include, for example, anatom-
ical knowledge. Anatomical knowledge is descriptive and
definitional in nature and summarizes the elements of the
human body. Anatomical knowledge is common to most
medical tasks yet is independent of any specific task. In
the library, it would therefore be included in one or more
task-neutral ontology modules. Knowledge of which dis-
eases typically occur in the differential diagnoses of which
other diseases is closely linked to the task of diagnosis, and
would be included in a task-specific ontology module for
diagnostic tasks. Note that gradations of task specificity
may be supported. Knowledge of the relationships between
diseases and symptoms, for example, is common to both
diagnosis and prognostication, and could be included in a
single ontology module subserving both tasks.

To construct a concrete task-specific ontology for support-
ing a model view of teaching diagnostics, information from
the task-neutral modules of anatomical knowledge would
be pulled in as well as information from modules related to



Figure 4: A library-style ontology for developing task model views: the library of ontology modules is supplemented
with a library of generic knowledge structures and a document of modeling decisions; drawn arcs indicate instantiation of
modules, dashed arcs indicate selection

the tasks of diagnosis and prognostication. The modules of
anatomy and prognostication would then subserve simula-
tion purposes and answering in-depth ‘what-if’ questions.
Note that the other, unrelated modules of the library need
not be considered upon constructing the task-specific on-
tology. For supporting a model view of diagnosis, on the
other hand, the knowledge from the task-neutral modules of
anatomy would most likely not be included explicitly in the
task-specific ontology, as the model to be developed could
leave this knowledge implicit. Now suppose that an ontol-
ogy for the new task model view of predicting the effects of
treatment is to be developed. Any task-neutral knowledge
required for the new model view ideally is already present
in the library and can be readily pulled in. Also the on-
tology module of prognostication, which is already present
in the library, captures some of the knowledge for the new
task and can be used. In addition, however, a new task-
specific module needs to be developed and included in the
library. The knowledge for this new module, describing the
physiological effects of treatment, is elicited from domain
experts, focusing on just the task at hand.

6 Concluding observations

In this paper, we argued that multiple task model views for
Bayesian networks are best supported by a library-style on-
tology composed mainly of task-specific knowledge mod-
ules, but also including task-neutral modules.

In summary, this paper addressed several issues. We began
by reiterating the need for documenting all elicited knowl-
edge. If this knowledge is not properly documented, con-
struction and maintenance of large suites of networks in-
evitably becomes problematic. We recommended building
an ontology to provide a well-structured explicit specifi-
cation of the elicited knowledge and a medium for com-
munication for the knowledge engineers and the experts
involved in the networks’ development. We argued that
the ontology should not only store the knowledge needed
for the different model views, but also any relevant back-
ground knowledge; in addition, a modeling-decisions doc-
ument should be maintained. Documentation of the infor-
mation that cannot be read off the suite of networks directly



is especially important when the development of the suite
extends over several years of research and the suite ulti-
mately is handed off to industry.

The paper also attended to the language to be used for
our ontologies. The necessity of including all types of
relevant knowledge demands a language that allows for a
rich semantics and permits semi-automated model build-
ing. We stressed that the language used should be accessi-
ble for non-mathematical domain experts. Earlier research
had shown that rigorously formal representations, be they
logic-based or stated in another mathematical language,
cannot readily be understood by domain experts who are
not trained in such representations. When stated in a semi-
formal language that is accessible for the experts, the on-
tology can provide as a means of communication between
the knowledge engineers and the experts, which serves to
minimize the risk of omitting important information and of
including erroneous information.

Next, we pled for aligning the content of the ontology with
how practicing experts learn and store knowledge in their
minds. Some knowledge, we argued, is stored in a task-
neutral fashion, and should also be stored in this way in
the ontology. However, we contended that most knowledge
of domain experts is inherently related to specific tasks
and is stored in that way in their brains. Constructing a
task-neutral ontology would thus require stripping the task-
specific professional knowledge from its task biases. This,
however, is highly demanding, either on the part of the ex-
pert or on the part of the knowledge engineer, and error-
prone. We therefore proposed storing task-specific knowl-
edge in a task-specific fashion.

Lastly, we proposed to develop a library-style ontology,
composed of the aforementioned task-neutral and task-
specific knowledge modules which subsequently are com-
bined into task-specific ontologies to support concrete task
model views for a suite of Bayesian networks. We il-
lustrated the ease of development of multiple views and
demonstrated that reuse of information is encouraged by
organizing the domain knowledge in modules.

In the near future, we intend to further develop our con-
cept of ontology library by using it in the development of
a suite of Bayesian networks in the field of veterinary sci-
ence. By doing so, we hope to initiate a publicly available
collection of ontology modules and inspire the uncertainty
community to contribute.
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