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Abstract

Inspectable Bayesian student models have
been used to support student reflection,
knowledge awareness and communication
among teacher, students and parents. This
paper presents a new approach to interact-
ing with inspectable Bayesian student mod-
els called indirectly visible Bayesian student
models. In this approach, the student model
is seen through the eyes of a pedagogical
agent (e.g., a virtual student). This ap-
proach has been implemented in the context
of an Assessment-Based Learning Environ-
ment for English grammar (English ABLE),
where the student is asked to help a peda-
gogical agent find grammatical errors on var-
ious sentences. Since the pedagogical agent’s
knowledge levels, which are also the student’s
knowledge levels, are always visible, the stu-
dent can see how much the pedagogical agent
”knows” based on his/her actions. Initial
reactions to this approach have been posi-
tive. We are planning on integrating it into
assessment-based learning and gaming envi-
ronments as indicators of progress that con-
tinuously change in light of new evidence.

1 INTRODUCTION

Assessment information can be obtained from a variety
of sources including standardized assessments, class-
room quizzes, group activities, and self- or negotiated
assessment activities. Intelligent Tutoring Systems
(ITSs) continuously monitor student performance and
adapt their behavior to a changing view of the student
maintained by the system (i.e., a student model).

Student models generally maintain rich student as-
sessment information. Assessment information, when
shared with students, teachers and parents, can be

used to support formative dialogue in the classroom
that can promote student learning. Black and Wiliam
(1998a, 1998b), for example, established a clear link
between formative assessments (assessment for learn-
ing) and classroom learning.

Open student models (OSMs) consider teachers, stu-
dents, and sometimes parents to be more than just
consumers of assessment information. In OSM, these
participants play an active role by observing, updat-
ing, and acting based upon student model assessment
information. OSMs have been used to support student
reflection, knowledge awareness, group formation, stu-
dent model accuracy and learning (Brna et al., 1999;
Bull & Pain, 1995; Hartley & Mitrovic, 2002, Kay,
1998; Dimitrova, 2004; Zapata-Rivera & Greer, 2004).

Inspectable, interactive Bayesian student models have
been used to integrate various sources of evidence (e.g.,
the system’s and the student’s view of the student
model). Several visualization techniques including an-
imation have been used to show how evidence of stu-
dent performance is added to and propagated through-
out the Bayesian student model (Zapata-Rivera &
Greer, 2001, 2004).

Although various representational and interaction
techniques have been used to implement OSMs, stu-
dents always see the student model as the system’s
view of his/her knowledge, skills and abilities. This
direct approach to OSMs confronts the learner with a
view of the student model that could (or could not)
match that of his/her own requiring the student to re-
act to it. Students could react in a variety of ways de-
pending on many factors including student self-esteem,
personality traits, and personal beliefs regarding com-
puters in general. For example, while some students
could respond in a negatively way categorically re-
jecting the system’s claims leaving no room for ne-
gotiation, some could, instead, try to understand the
system’s claims in detail and perhaps even challenge
them, some would just accept them, and some would
completely ignore them without even looking at them.



What if the system refers to a third person instead, for
example, someone the student wants to help? Could
such an approach avoid or at least attenuate some of
these possible negative reactions? How would students
react to this approach? We have implemented an in-
direct approach to interacting with Bayesian student
models that capitalize on the idea of learning by teach-
ing. In this approach students ”teach” a pedagogi-
cal agent by providing help finding grammatical er-
rors. Students can see whether the pedagogical agent
is making progress (or not) by looking at how the in-
directly visible student model changes and how the
pedagogical agent reacts.

The indirectly visible Bayesian student modeling ap-
proach has been implemented in the context of an
Assessment Based Learning Environment for English
grammar called English ABLE. English ABLE makes
use of a Bayesian student model that is used by peda-
gogical agents to provide adaptive feedback and adap-
tive sequencing of tasks. A view of the Bayesian stu-
dent model is presented to the student through the
eyes of a pedagogical agent.

This paper describes the Bayesian student model used
in English ABLE, explains how the indirectly visible
student model was implemented, describes its poten-
tial to be integrated into existing games, reports on
initial student reactions, and concludes by discussing
some open research issues and plans for future work.

2 ENGLISH ABLE

English ABLE is an Assessment-Based Learning En-
vironment for English grammar. Assessment-based
learning environments make use of assessment infor-
mation to guide instruction.

English ABLE demonstrates the reuse of existing high-
stakes tasks in lower stakes learning contexts. English
ABLE currently draws upon a database of TOEFL R©
Computer-Based Testing (CBT) tasks to create new
packages of enhanced tasks targeted towards particular
component ELL skills.

In English ABLE, students try to help a virtual stu-
dent (Carmen or Jorge) learn English by correct-
ing this student’s writing from a notebook of facts
(sentences —enhanced TOEFL R© tasks). Supplemen-
tal educational materials about specific grammatical
structures are offered by a virtual tutor (Dr. Gram-
mar).

Figure 1 shows a screenshot of English ABLE. The stu-
dent is helping Jorge find grammatical errors within
several sentences. The student selects an option and
clicks on ”Check Answer.” Dr. Grammar offers ver-
ification feedback ”I see you have selected ’created’.

However, this part of the sentence is correct.,” and
additional adaptive instructional feedback (i.e., rules,
procedures, examples and definitions). Students can
ask Dr. Grammar for hints ”Ask for a hint” before
committing to a particular choice. In that case, Dr.
Grammar provides a general rule related to the cur-
rent grammatical structure. Students can also type a
possible correction ”Suggested word.” Both asking for
help and providing corrections are treated differently
when adding evidence of student performance to the
Bayesian model. Jorge’s knowledge levels, which are
also the student’s knowledge levels (indirectly visible
Bayesian student model), show a lack of knowledge for
agreement. Jorge seems confused and expresses it ”I
don’t understand how to make the verb agree with the
rest of the sentence.”

Knowledge levels representing the pedagogical stu-
dent’s knowledge of English grammar are taken di-
rectly from the Bayesian network that supports the
system (i.e., Bayesian student model). Although only
three knowledge bars are shown in Figure 1 (i.e., Agree-
ment, Wrong Form and Omission/Inclusion), a de-
tailed view of the Bayesian student model containing
information about low-level concepts is available upon
student request (Details button).

2.1 Bayesian Student Model

Several authors in different areas have explored the
use of Bayesian belief networks to represent student
models (Collins et al. 1996, Conati et al. 2002, Horvitz
et al. 1998; Mislevy & Gitomer, 1996; VanLehn &
Martin, 1997; Reye, 2004).

English grammar can be divided into three main cat-
egories: use, form, and meaning (Celce-Murcia &
Larsen-Freeman, 1999). We worked with experts to
elicit an initial Bayesian structure for a student model
(see Figure 2). The current structure of the Bayesian
student model deals with English grammar form, al-
though it could be extended to cover use and meaning.

Three sentence-level grammatical categories (i.e.,
Agreement, FormofWord or Wrong Form, and Omis-
sionInclusion) have been chosen based upon a diffi-
culty analysis that was performed using student data
from native Spanish speakers. These three sentence-
level grammatical categories are further divided into
low-level sub-categories (leaf nodes) according to parts
of speech (e.g., agreement has been divided into 3
leaf nodes: noun agreement, verb agreement, and pro-
noun agreement). Leaf-nodes are linked to 2 main
knowledge areas (i.e., individual parts of speech: noun,
verb and pronoun, and sentence-level grammatical cat-
egories).



Figure 1: English ABLE.

Figure 2: Bayesian student model.

Preliminary difficulty analysis plus data from experts
were used to generate prior and conditional probabili-
ties for the latent structure. Experts used a qualitative
inspired method to produce probability values based
on estimates of the strength of the relationship be-

tween any two variables in the model (Daniel, Zapata-
Rivera & McCalla, 2003).

Each task was attached to a single category using ex-
isting classification metadata and corresponding Item
Response Theory (IRT) discrimination and difficulty
parameters (Lord & Novick, 1968; Embretson & Reise,
2000). Tasks were recalibrated (i.e., new IRT param-
eters were computed) based on data from all native
Spanish speakers who took the test. The IRT-2PL
model is described by the following formula:
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where b is the difficulty parameter (−3 ≤ b ≤ +3,
typical values for b), a is the discrimination parameter
(−2.80 ≤ a ≤ +2.80, typical values for a), and Profj

represents an ability level (continuous proficiency vari-
ables were discretized using the following ability val-
ues: Advanced = 0.96, IntermediateAdvanced = 0, and
Intermediate = -0.96. These values come from quan-
tiles of a normal distribution (Almond, et al. 2001)).



Figure 3 shows how tasks are connected to leaf-nodes
using IRT parameters. Table 1 shows the resulting
conditional probability table of Task 2 (a=1.5, and b=
0.4).

As the student makes progress (i.e., answers additional
tasks), more tasks are dynamically added to the model.
Observed values per task (i.e., correct or incorrect)
provide evidence (as defined by its conditional prob-
ability table) to update the student model. Asking
for help (”Ask for a hint”) and providing corrections
(”Suggested word”) are handled by slightly adjusting
the difficulty level of the task.

Figure 3: Three tasks connected to a leaf-node.

Table 1: Conditional probability table for Task 2
(a=1.5, b= 0.4)

Pr(Task2|VerbAgreem)
VerbAgreement Correct Incorrect

Advanced 0.807 0.193
IntermediateAdvanced 0.265 0.735
Intermediate 0.030 0.970

This underlying Bayesian network supports the knowl-
edge levels and the pedagogical agents’ behavior. That
is, indirect knowledge levels are computed based on the
corresponding probability distribution of a particular
node. Pedagogical agents query the Bayesian student
model to implement adaptive algorithms (i.e., adaptive
feedback, adaptive sequencing of items, and adaptive
behavior).

This Bayesian student model can be made available
to students using a variety of approaches. For ex-
ample, we could have used ViSMod (Zapata-Rivera
& Greer, 2003) to show students a complete view of
the graphical structure using visualization techniques
such as node color, link size and animation to repre-
sent marginal and conditional probabilities. Although
presenting the whole the Bayesian network can help
students understand how the Bayesian student model
works (e.g., understanding integration and propaga-
tion of evidence), it requires students to spend some
time understanding and interacting with the student
model. Interactive, collaborative and negotiated ap-

proaches to open student model use the student model
as a communication tool engaging students in a forma-
tive dialogue aimed at supporting metacongition.

We do not have to show the whole Bayesian network
to provide students with a sense of progress (e.g.,
weak and strong areas). We can just show an overall
view covering main concepts/nodes or relevant ones
depending on the tasks that the student is currently
working on. Although, in this approach just a piece
of the Bayesian student model would be open to stu-
dents at a particular time, the whole internal Bayesian
network is available to other components in the sys-
tem (e.g., pedagogical agents). Different views of the
Bayesian structure can be created to support the goals
of the learning environment. These views can range
from static student or teacher reports to interactive
adaptive applications.

2.2 Pedagogical Agents

Pedagogical agents (e.g., Chan & Baskin, 1990;
Graesser, Person, Harter, & TRG, 2001; Johnson,
Rickel, & Lester, 2000) have been used to facilitate
learning by supporting human-like interaction with
computer-based systems. Pedagogical agents can act
as virtual peers or virtual tutors. Pedagogical agents
can model human emotions and use this information
to facilitate learning (e.g., Picard, 1997; Nkambou et
al., 2003).

An interesting variant of pedagogical agents are teach-
able agents (Biswas et al., 2001), which have been used
to facilitate student learning. The student’s role in
these environments is to teach an artificial student
how to act in a simulated environment. Students in
English ABLE are asked to help a pedagogical agent
(i.e., Carmen and Jorge) find grammar errors. Car-
men and Jorge ”learn” based on the student’s perfor-
mance. Students can see how much the pedagogical
agent knows about a particular concept by looking at
the indirectly visible Bayesian student model and by
observing Carmen’s and Jorge’s changes in emotional
states and associated utterances (Zapata-Rivera et al.,
2007). Figure 4 depicts Jorge, Carmen and Dr. Gram-
mar.

2.3 Indirectly Visible Bayesian Student
Model

Bull et al. (2005) reported that children, university
students and instructors understood and used a variety
of student model external representations. However,
they also warn of possible negative effects when low-
performance students explore student models of more
capable students (i.e., some of these students reported
a negative effect on their motivation level and esteem).



Figure 4: Jorge, Carmen and Dr. Grammar.

Figure 5: Jorge’s knowledge levels.

English ABLE supports indirect inspection of
Bayesian student models. We believe that exploring
one’s student model via a pedagogical agent is less
intimidating and has the potential to foster student
learning without the possible negative effects on self-
esteem and motivation, especially for those students
who are having a hard time with the system.

Previous research on inspecting Bayesian student mod-
els through the use of guiding artificial agents showed
that agents can facilitate student interaction with the
model by helping students navigate and find conflict-
ing nodes. Guided agent interaction was linked to
higher levels of student reflection (Zapata-Rivera &
Greer, 2004).

Changes in marginal probability distributions can be
depicted by showing a graphical indicator per each
state of the node (e.g., three bars, one per each state of

a proficiency node). This approach uses a great deal
of screen space and requires users to have some fa-
miliarity with probability distributions to make sense
of multiple changes occurring as more evidence be-
comes available and added to the Bayesian student
model. Alternatively, we could choose one state (e.g.,
Pr(Proficiencyj = Advanced | evidence) and show just
one bar. However, this approach, would not necessar-
ily be sensitive to variations on marginal probability
values occurring on the neglected states of the node.

In English ABLE, the length of each bar is calculated
based on an Expected A Posteriori (EAP) score that
takes into account the whole marginal probability dis-
tribution of a particular node, producing a value that
ranges from zero to 1. This EAP-length score is com-
puted using the following formula:
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where Cj is a constant numerical value assigned to
each state of a node based on its proficiency level (i.e.,
Intermediate = 0, IntermediateAdvanced = 1, and Ad-
vanced = 2) and n is the index of the highest profi-
ciency state (e.g., n = 2, in this case).

Figure 5 shows a detailed view of Jorge’s knowledge
levels. This view of the student model appears when
the student clicks on (”Details”) (see Figure 1).

Tables 2 and 3 show how marginal probability and
EAP values change based on the student’s responses to
a series of tasks. EAP values capture slight variations
of marginal probabilities. The final effect is an indi-
cator bar that continuously adjusts as new evidence is
added to the model.

Table 2: Sequence of Probability and EAP-length
values for a student solving NounAgreement tasks.
Marginal probability values converge to the Interme-
diate state as EAP-length values get closer to zero
P(Int) P(IntAdv) P(Adv) EAP Resp

0.647 0.280 0.073 0.21 Cor
0.429 0.423 0.147 0.36 Inc
0.676 0.297 0.027 0.18 Inc
0.833 0.164 0.004 0.09 Cor
0.684 0.306 0.010 0.16 Inc
0.832 0.167 0.001 0.08 Cor
0.686 0.311 0.003 0.16 Inc
0.831 0.169 0.000 0.08 Inc
0.918 0.082 0.000 0.04



Table 3: Sequence of Probability and EAP-length
values for a student solving NounWordForm tasks.
Marginal probability values converge to the Intermedi-
ateAdvanced state as EAP-length values get closer to
0.5
P(Int) P(IntAdv) P(Adv) EAP Resp

0.156 0.368 0.476 0.66 Cor
0.064 0.343 0.593 0.76 Cor
0.024 0.295 0.681 0.83 Inc
0.102 0.560 0.338 0.62 Cor
0.004 0.593 0.403 0.70 Cor
0.001 0.521 0.478 0.74 Inc
0.005 0.801 0.194 0.59 Cor
0.002 0.754 0.244 0.62 Inc
0.005 0.916 0.078 0.54

We are currently experimenting with fading as a mech-
anism for forgetting about old pieces of evidence and
assigning more weight to more recent evidence. Views
of past data can be handled by using windows of vari-
ous sizes that implement various fading policies. These
views of the student model can be maintained and
dynamically adjusted based on student performance.
For example, pedagogical agents and other consumers
of student model information can maintain their own
view into the past based on how important evidence of
past performance is to accomplish their student learn-
ing goals.

Pedagogical agents (e.g., virtual tutors) implementing
various forms of adaptive instruction use their own
view of the student model to keep track of students
progress. Some of these pedagogical agents can im-
plement some form of collaborative or negotiated as-
sessment using a view of the student model to sup-
port formative dialogue between students and teach-
ers. Evidence gathered from these educational stake-
holders can then be integrated with existing evidence
of student performance into an aggregate view of the
student model that implements a particular policy for
integration of evidence. This framework can be used
as a research testbed for studying the effects of sev-
eral adaptive instructional and assessment strategies
on student learning.

2.4 Indirectly Visible Bayesian Student
Models and Games

Indirectly visible Bayesian student models can be in-
tegrated as part of first person role-playing games.
In these games, each player chooses a character that
identifies him/herself in the game. Each charac-
ter has a particular personality, skills, and abili-
ties. Some of these traits change during the game

as the player makes progress in the game. Up-to-
date estimates of players’ competencies based on a
Bayesian student model can be integrated into the
game as progress/state indicators. Using these indica-
tors, players see how their competencies are changing
based on their performance in the game. This level
of self-awareness can be linked to the development of
meta-cognitive abilities.

We are planning to use embedded assessments to cap-
ture valued information without disrupting the flow
and engagement of the game. We have started ap-
plying some of these ideas in the context of a pop-
ular first person role-playing game called The El-
der Scrolls R© IV:OblivionTM C© (Bethesda Softworks,
2006). For more information about how indirectly vis-
ible Bayesian student models can potentially be inte-
grated into existing games, see Shute, Ventura, Bauer
& Zapata-Rivera (in press).

3 INITIAL STUDENT REACTIONS

We recently conducted a study focusing on usability
issues and learning effects in relation to English ABLE
tools and interface. We report on the results from our
usability study. Information regarding learning effects
can be found in Zapata-Rivera et al. (2007).

Participants included 149 native Spanish speakers
(ESL students) who were assigned to 3 different con-
ditions (i.e., test preparation, English ABLE simple
and English ABLE enhanced). Forty six of the partic-
ipants were assigned to the enhanced version of English
ABLE that included: a Bayesian student model, an in-
directly visible student model and pedagogical agents.

In general, we were interested in knowing how students
reacted to the indirectly visible Bayesian student mod-
eling approach. In particular, we wanted to know how
students reacted to the pedagogical agents and their
knowledge levels. Students were asked to respond to
a series of questions using a likert scale with the fol-
lowing choices: strongly agree, agree, disagree, and
strongly disagree.

Results from the usability study showed that 88% of
the participants assigned to English ABLE enhanced,
understood the knowledge levels presented in the in-
directly visible student model, 86% thought that the
knowledge levels were useful, and 86% agreed that
the knowledge levels helped them understand what
Jorge/Carmen knew.

Participants agreed with the following statements: (a)
”I liked helping Carmen/Jorge find grammar errors”
(90%), (b) ”Carmen’s/Jorge’s comments were useful”
(78%) , (c) ”Helping Carmen/Jorge motivated me to
keep going” (90%), (d) ”I have helped Carmen/Jorge a



lot by finding the grammar errors” (73%), (e) ”I have
learned by helping the Carmen/Jorge with his/her
sentences” (90%), (f) ”The feedback provided by Dr.
Grammar helped me learn” (87%), and (g) ”I think
Carmen and Jorge liked my help” (81%).

In addition, some of the students’ comments seemed
to indicate that they understood their role as teach-
ers and used student model information to continu-
ously assess learning progress. For example, a moti-
vated student mentioned that ”My Carmen is happy.
Her knowledge levels are increasing,” while a strug-
gling student exclaimed: ”Poor Carmen, she is not
learning a lot from me.”

Initial results show that students enjoyed the current
implementation of the indirectly visible Bayesian mod-
eling approach. We believe that teaching someone else
and seeing how he/she makes progress (or not) can be a
strong motivational factor that can help maintain stu-
dents engaged in the learning process. Although initial
results are encouraging more studies are needed.

4 DISCUSSION & FUTURE WORK

Different external representations can be used to offer
views of the student model and interaction techniques
can be implemented to help students and teachers to
interact with the student model. It is important to
take into account the goals of the learning session and
the need of having an accurate student model in order
to decide which kind of support is more appropriate for
a particular situation (Zapata-Rivera & Greer, 2004).

Although students seemed to enjoy helping pedagogi-
cal agents find grammatical errors, current implemen-
tation of the agents was limited to providing addi-
tional scaffolding in a language accessible to students
and showing various emotional states based on the
current state of Bayesian student model. Interaction
with these pedagogical agents could be enhanced by
supporting dialogue based interaction. For example,
pedagogical agents could ask students to explain par-
ticular actions or elicit additional information from
students aiming at mapping the limits of their under-
standing regarding a particular topic.

Students could also question the estimates of knowl-
edge assigned to the pedagogical agent. Does the agent
really know about a particular grammatical structure?
A student could think: ”Let’s ask the agent some ques-
tions to see how he/she answer.” Testing the peda-
gogical agent on particular topics will also provide in-
teresting evidence of student knowledge that can be
added to the model. Should the pedagogical agent an-
swer the questions at the level of the student or act
as a weaker student? Should Dr. Grammar intervene

if/when the student is teaching a wrong concept to
the pedagogical agent or trying to game the system?
How should agents respond to the questions raised by
students? How do we convince students that their
help is really helping the pedagogical agent ”learn”
the concepts? Although highly motivated students
can engage in this kind of interaction with pedagog-
ical agents, what kinds of mechanisms should be in
place to maintain and encourage such high levels of
motivation? How do we implement this level of inter-
action without negatively affecting the flow of a game?
These are all interesting open research questions that
motivate and inform our plans for future work.

Future work includes using assessment information to
support learning in various contexts, harnessing the
power of games and technology to provide highly inter-
active adaptive learning environments that seamlessly
use assessment information to improve student learn-
ing, skills and performance in valued domain areas.
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