
A Prototype Tool for the Automatic Generation of
Adaptive Websites

Irene Garrigós1, Cristian Cruz1 and Jaime Gómez1

1 Universidad de Alicante, IWAD, Campus de San Vicente del Raspeig, Apartado 99
03080 Alicante, Spain

{igarrigos, ccruz, jgomez}@dlsi.ua.es

Abstract. This paper presents AWAC, a prototype CAWE tool for the
automatic generation of adaptive Web applications based on the A-OOH
methodology. A-OOH (Adaptive OO-H) is an extension of the OO-H
approach to support the modeling of personalized Websites. A-OOH allows
modeling the content, structure, presentation and personalization of a Web
Application. The AWAC tool takes the A-OOH design models of the
adaptive Website to generate as an input. Once generated, the adaptive
Website also contains two modules for managing the personalization which,
at runtime, analyze the user browsing events and adapt the Website according
to the personalization rule(s) triggered. These personalization rules are
specified in an independent file so they can be updated without modifying the
rest of the application logic.

1 Introduction

The continuous evolution of the WWW is reflected in the growing complexity of
the Web applications with rapidly changing information and functionality. This
evolution has lead to user disorientation and comprehension problems, as well as
development and maintenance problems for designers. The ad-hoc development of
Web-based systems lacks a systematic approach and quality control. Web
Engineering, an emerging new discipline, advocates a process and a systematic
approach to development of high quality Web-based systems. In this context Web
Design Methodologies appeared [3,4,11,12,14,16], giving solutions both for
designers and for users. However, new challenges appeared, like the need of
continuous evolution, or the different needs and goals of the users. Adapting the
structure and the information content and services for concrete users (or for
different user groups) tackles the aforementioned (navigation, comprehension and
usability) problems. In order to better tailor the site to one particular user, or a
group of users, several Web methodologies provide (to some extent)
personalization or adaptation support. Yet, few of these approaches provide an
underlying CAWE1 tool for Web Engineering and even less provide a tool to
support personalization modeling (see next section for an overview). The lack of

1 Computed Aided Web Engineering

such tools causes the personalization to be implemented in an ad-hoc manner.
Moreover, the different (adaptive) methodologies are not properly tested.

In this paper, we present the fundamentals of the AWAC (Adaptive Web
Applications Creator) prototype tool. This is a CAWE tool which automatically
generates adaptive Web applications based on the A-OOH methodology developed
at the University of Alicante (Spain). The input of the AWAC tool is the set of A-
OOH design models needed to model the adaptive Website to generate. The output
is the generated Website with its database. The output includes a Web engine and a
personalization module which allow the adaptivity at runtime of the final Web
pages. The paper is structured as follows. In the next section, a study of the
existing methodologies with a CAWE tool supporting adaptivity is presented. In
Section 3 a brief introduction to the A-OOH method is given. The paper continues
in Section 4 describing the AWAC architecture and some of the technologies used.
This section also describes the personalization support in AWAC. Along the
Sections 5, 6, and 7 the different steps for creating and running an adaptive Website
using the AWAC tool are explained. A running example (online library) is used to
describe the tool support. Finally, Section 8 sketches some conclusions and further
work.

2 Related Work

As aforementioned, few (adaptive) Web modeling approaches provide an
underlying CAWE tool to give support to their methodologies. We can mention the
Hera Presentation Generator (HPG) [9], which is the integrated development
environment that supports the Hera methodology developed at the Technical
University of Eindhoven (The Netherlands). There are two versions of HPG: HPG-
XSLT and HPG-Java. Compared with HPG-XSLT, HPG-Java extends the
functionality of a generated Website with user interaction support (form-based).
Moreover, instead of generating the full Web presentation like HPG-XSLT does,
HPG-Java generates one-page-at-a-time in order to better support the dynamic Web
applications. The designer can define adaptation by means of the inclusion of
appearance conditions over the elements of the Hera design models. These
conditions are expressed in SerQL[15] language and use data from the
user/platform profile or conceptual model. A drawback of this approach is the
difficult maintenance when the personalization policies change because the
conditions are integrated in the models.

Another tool for generating adaptive hypermedia applications on the WWW is
AHA! [7] (Adaptive Hypermedia Architecture), based on the AHAM model. It also
has been developed at the Eindhoven University of Technology (The Netherlands).
It is able to perform adaptation that is based on the user’s browsing actions. AHA!
provides adaptive content by conditionally including page fragments, and adaptive
navigation support by annotating (actually coloring) links. The updates to attributes
of concepts in the user model are done through event-condition-action rules. Every
rule is associated with an attribute of a concept, and is "triggered" whenever the

value of that attribute changes. Every page has an access attribute which is
(virtually) "changed" whenever the end-user visits that page. This triggers the rules
associated with this attribute. The AHA! tool claims to be general purpose but has
mainly been used to develop on-line courses.
We can also mention WebRatio [17] developed to support the WebML
methodology at the Politecnico di Milano (Italy). This tool still does not support
dynamic personalization features, but only adaptability (with respect to user
profile/preferences and device characteristics). To validate WSDM, at the
University of Brussels (Belgium), a prototype tool was created for the support of
the methodology [2]. It does not support personalization, but adaptivity for all the
users. ArgoUWE [13] is the tool developed to support the UWE approach at the
Luwdig Maximilians University of Munich (Germany). UWE supports
personalization however it is not yet incorporated on the ArgoUWE tool.

3 A-OOH Fundamentals

The Adaptive OO-H method (A-OOH) is an extension of the OO-H (Object
Oriented Hypermedia) approach [11] to support the modeling of adaptive (and
personalized) Web applications. It supports most of the OO-H basic features and
some updates and extensions for the support of adaptive Web sites modeling.
The same as OO-H, A-OOH is a user-driven methodology based on the object
oriented paradigm and partially based on standards (XML, UML, OCL...). The
approach provides the designer the semantics and notation needed for the
development of adaptive Web-based interfaces and their connection with pre-
existing application modules. The main differences with respect to OO-H are next:
o Adaptive hypermedia systems are complex systems which require an

appropriate software engineering process for their development. This is why
in A-OOH the design process is based on the Unified Process (UP) and not in
the spiral model as OO-H design process was based.

o The Navigational Model has been modified separating the presentation
features that were mixed in the Navigational Model of OO-H. Moreover a
UML profile has been defined for using UML notation for representing the
Navigational Model.

o A Presentation Model has been added. This model also uses UML notation.
o A User and Personalization Model have been added for being able of

modeling adaptive Web applications.

The set of A-OOH models are defined for the running example in Sections 5 and 6.
The personalization model allows the designer to define a collection of rules that
can be used to define a personalization strategy for a user or group of users. The
rules are Event-Condition-Action [5] rules: they are triggered by a certain event
(e.g. a browsing action, the start of a session) and if a certain condition is fulfilled

(for example “user.age=18”), the associated action is performed. The rules will be
defined using a simple and easy to learn language defined in A-OOH. One of the
purposes of this language is to help the Web designers2 to define all the rules
required to implement a personalization strategy. This language is called PRML
(Personalization Rules Modelling Language) and will be shortly explained in
Section 4.2. Next, the fundamentals of AWAC are explained.

4 AWAC: Adaptive Web Applications Creator

The AWAC tool main purpose is automatically generating an adaptive Web
application from the A-OOH models. The AWAC tool takes as input the A-OOH
design models: the Domain Model3(DM), in which the structure of the domain data
is defined, the Navigation Model (NM) which defines the structure and behaviour
of the navigation view over the domain data, and finally the Presentation Model
(PM) defines the layout of generated hypermedia presentation. To be able to model
adaptation/personalization at design time two new models are added (to the set of
models): The User Model (UM), in which the structure of information needed for
personalization is described. Typically, the information captures beliefs and
knowledge the system has about the user and it is a foundation for personalization
actions described in the Personalization Model. The Personalization Model (PeM),
in which personalization policies are specified. Next to the personalization of the
content, navigation structure and presentation, the personalization model also
defines updates of the user information specified in the User Model.
These models are represented by means of XML elements (in XMI [18] format).
The reason for choosing an XMI representation of the models is that this format
can be easily generated from UML models (most UML tools allow this
transformation). To read and process the A-OOH models for the generation of the
final Web pages we have used the .NET technology. This technology provides us
with the DOM class (XML Document Object Model), with which we can represent
in memory the XML documents. The output of the AWAC tool is:
� The generated adaptive Website (Web pages): the actual version of AWAC

generates ASP.net Web pages.

� Modules for managing the personalization: these modules are explained in
the next section.

� Application database: The A-OOH models initially represented in XMI
models are mapped into an object oriented database. Depending on the
personalization actions performed every user has a different set of A-OOH
model instances. This database also contains the user information related to the
domain. The idea of using a relational database was rejected due to the
transitioning complexity from object-oriented thinking to relational
persistence. In this way the database can automatically be generated from the
set of A-OOH models. The database technology we chose is db4o [6], the most

2 Web designers are not necessarily experienced Web programmers.
3 Sometimes called Conceptual Model

popular database for objects of open code, native to Java and .NET. Db4o
eliminates the OO-versus-performance tradeoff: it allows you to store even the
most complex object structures with ease, while achieving highest level of
performance.

 Fig. 1. (a) Generated AWAC Application Architecture (b) Main Modules Actions

4.1 Generated AWAC Application Architecture

The generated Web Application has a three layered architecture as seen in fig. 1a.
� The first layer is the user interface, through which the user can generate http

requests and receive http responses.
� The second layer contains the main modules of the Web Application for

managing the personalization (i.e. Website Engine and PRML Evaluator, see
fig 1b). The Website Engine interacts with the user, gathering the requests and
giving back the response. As already mentioned, the A-OOH models are
modified for each particular user (i.e. each user will have a different set of
models depending on the adaptation actions performed on them). The Website
engine loads the models (from the Application Database) of the particular user
when s/he starts a new session. These models are modified along the different
sessions depending on the adaptation actions performed. This implies each
user will see a different adaptive view of the Website every session s/he
browses it. The Website engine captures the events the user performs with his
browsing actions and sends them to the PRML Evaluator module. This
module is responsible of evaluating and performing the personalization rules
attached to the events. When a rule is triggered, to evaluate the rule conditions
and perform the proper actions we have implemented a .NET component using
the ANTLR Parser generator [1]. From the PRML grammar we can generate
the syntactic trees which help us to evaluate the rule conditions and perform

PRML Evaluator WebSite Engine

them if necessary. Finally to execute the actions of the rules, we have
implemented in C# the different actions types that we can find in PRML.

� The third layer contains the Application database and a text file containing the
set of rules defining personalization policies on the Website. This set of rules
is defined using the PRML rule language. Next an overview of the PRML
language is given and the implementation of the actions supported by AWAC
is explained.

4.2 AWAC: PRML Support

PRML was born in the context of the OO-H [11] Web design method to extend it
with personalization support (A-OOH). PRML is an ECA rule based language.
These rules update the information needed for the adaptation in the User Model and
perform adaptation actions over the structure of the Website4.

The AWAC Tool does not implement all the adaptation events and actions of
PRML. AWAC only supports the detection of simple browsing events (i.e. not a
sequence of events). The events supported are: SessionStart (triggered with the start
of the browsing session by a user) SessionEnd (triggered when the browsing
session expires after certain inactivity of the user in the system or when the user
explicitly finishes the session), Navigation (i.e. click on a link) and LoadElement
(i..e. loading of a navigational node independently of the link that loads the node5).
In Table 1 the personalization actions supported by PRML and the ones
implemented in AWAC are shown. Next the actions supported by AWAC are
detailed.

Table 1: PRML Support in the AWAC tool

The AWAC tool implements the following actions over the different elements of
the A-OOH models:

• Actions over attributes (User and Navigation Models):

4 Personalization of the presentation is not yet considered.
5 Note that PRML rules can be attached to nodes or to links of the Navigation Model

Action PRML Implemented in AWAC
Updating User Model Content Yes Yes
Filtering content (concept instances) Yes Yes
Filtering content (concept attributes) Yes Yes
Link hiding Yes Yes
Sorting content (node instances) Yes Yes
Adding / deleting links Yes No
Adding filters to links Yes No
Dynamically grouping users Yes No

� Updating an attribute value from the User Model (setContent): This action
allows modifying/setting the value of an attribute (of a concept) of the User
Model. To perform a setContent action the PRML Evaluator updates the
corresponding attribute value in corresponding model of the Application
database.

� Filtering attributes in the Navigation Model nodes (selectAttribute):.By means
of this action a node can be restricted by hiding or showing some of the
attributes of the Domain Model/User Model related concept. The PRML
Evaluator updates the visibility of the corresponding attribute in the proper
model of the Application database.

• Actions over links (Navigation Model):
� Hiding links and their target nodes (hideLink): Analogous to filtering data

content, PRML also supports filtering links. This action affects to the
visibility of a link so in the same way as attributes, each link and node in A-
OOH contains a visibility property. The PRML Evaluator updates the visibility
of the corresponding link (and its target node) in the proper model of the
Application database.

• Actions over nodes (Navigation Model):
� Filtering node instances (selectInstance): This action shows only the selected

instances of a Domain Model/User Model concept for a user depending on the
personalization requirements we want to support. The PRML Evaluator
module selects the instances to be shown in the current session from the
Application database.

� Sorting node instances (sort): In PRML node instances can be sorted by a
certain value to satisfy a personalization requirement. The PRML Evaluator
module selects and sorts the instances to be shown in the current session from
the Application database.

The adaptive actions are only performed once during a session not to overwhelm
the user, this means the filtered attributes, links, instances and sorted instances will
be the same during the present session. However, the desirable option (future work)
is that the designer decides when adaptation should take place to fulfil each
personalization requirement. Next, by means of a running example, the steps
needed for creating and running a Website using AWAC are described.

5 Step 1: Creating the A-OOH Models

To better understand how to generate adaptive Websites with AWAC using A-
OOH and PRML, a case study is presented which describes an online library. In
this library information about the books is shown, as well as reviews done by
readers visiting our Website. Users can consult the books and buy them, adding
them first to the shopping basket. In Figure 2 the Domain and User Model are
shown. In the User Model we store different information needed to fulfill the
personalization requirements initially specified for the Website:

1. Users will see fifteen (maximum) recommendations of books in which authors
they are most interested in (sorted by interest).

2. If the user does not have enough interest in any book author to get
personalized recommendations, the recommendations link is not shown: In
order to fulfil the 1st and 2nd requirements we need to acquire and update the
user interest in the different authors

3. Users that have bought at least 10 books will be offered a discount in the book
price: In this case, to fulfil this requirement (and offer the price discount to the
user) the number of books bought (in all the sessions) should be stored in the
UM.

Store

- IdStore: int
- name: string
- address: string
- phone: int
- fax: int
- image: string
- email: string

Author

- IDauthor: int
- name: string

Order

- amount: int

Book

- IdBook: int
- name: string
- summary: string
- price: float
- secondhand: boolean
- daysSinceDelivery: int
- image: string
- discount: float

+ Buy() : void

Rev iew

- Idreview: int
- text: string
- reviewer: string

Basket

- IdBasket: int

User

- login: string
- password: string
- numberOfSessions: int

«DomainDependent»
Interest

- degree: int

«Navigation»
Buy

- clicks: int

Category

- id: int
- name: string

*

+categoryToBuy

*
+buyToCategory

*
+userToBuy

*

+buyToUser

*

+userToInterest

1

+interestToUser

1

+interestToAuthor

*

+authorToInterest

1+userToBasket1

+basketToUser

*

+basketToOrder

1

+orderToBasket

*

+categoryToBook

1+bookToCategory
*

+reviewToBook 1

+bookToReview

1..*
+authorToBook

1..*
+bookToAuthor

*

+orderToBook

*

+bookToOrder

*+storeToBook

*+bookToStore

Fig. 2. Domain and User Model for the Online Library

In the updatable data space defined by UM the information describing the user’s
interests on the authors is stored as DomainDependent information, according to
the defined personalization requirements. In the UM we also have the Buy class.
This class represents a navigation event triggered by the user behaviour and stores
the number of clicks done in the link Buy in the attribute clicks (we will use this
information to fulfil the 3rd personalization requirement of the running example).
This value is stored as long-term data (i.e. independent of the session), because the
designer wants to personalize on basis of the number of books bought in total by
the user. Note that to store the number of clicks on any other link we would just
have to add a new Navigation element to the UM.
Figure 3 shows the Navigational Model of the online library. When the user enters
the Website (login) he finds a collection of links (i.e. menu) with the links
ConsultBooks, Recommendations, ViewCategories and SecondHandBooks as a

Domain Model User Model

starting point. If the user navigates through the first link (ConsultBooks) he will
find an indexed list of all the books (indexed by the book’s name). The user can
click in any of the book names to view the details of the chosen book (see in Figure
3 the navigational class BookDetails). Moreover the user can see reviews done by
other users of the different books. When the user clicks on ViewCategories, an
indexed list of the categories is shown (indexed by the category’s name). When the
user clicks in one of the categories he will see the books associated to that category.
If the user navigates through the SecondHandBooks link he can see all the books
used that are on sale.

«Index»
Categories:DM.Category

- name: string

«Index»
Book:DM.Book

- name: string

«NavigationalClass»
SecondHandBooks:DM.

Book

- name: string
- price: float
- summary: string
- image: string

+ Buy() : void

«NavigationalClass»
BookDetails:DM.Book

- name: string
- price: float
- summary: string
- image: string
- discount: float

+ Buy() : void

«Index»
Rev iew :DM.Rev iew

- reviewer: string

«NavigationalClass»
Rev iewDetails:DM.Review

- review: string
- reviewer: string

«NavigationalTarget»
Buy

«Index»
Recommendations:DM.Book

- name: string

«NavigationalMenu»
Menu

«TransversalLink»

Details

«TransversalLink»

ConsultBooks
«TransversalLink»

SecondHandBooks

«TransversalLink»

CheckBooks

«TransversalLink»

CheckReviews

«TransversalLink»

ReviewDetails

«TransversalLink»

View detai ls

«ServiceLink»

BuySecondHandBook

«TransversalLink»

ViewCategories

«TransversalLink»

Recommendations

«ServiceLink»
loginOk

«ServiceLink»

BuyBook

Fig. 3. Excerpt of the Navigational Model
Once the NM is specified the Presentation Model has to be defined. It is captured
by one or more Design Presentation Diagrams (i.e. DPDs). There should be one
DPD for each NM defined in the system. This diagram enriches the Navigation
Diagram described in previously. The DPD describes how the navigation elements
are presented to the user. The DPD main objectives are to provide the page
structure of the Website, grouping the NM Navigational Nodes into Presentation
Pages. These Presentation Pages are abstract pages, which in the final
implementation can be represented by one or more concrete pages. The designer
can add static pages also directly on the DPD. This is represented in the level 0 of
the DPD.
The second goal is to describe the layout and style of each page of the interface.
The designer should decide which interface components are going to be in the page
and where are they going to be positioned. Moreover, he can modify the individual
structure of the pages and add static elements directly on the DPD. This is

represented in the level 1 of the DPD, exploding each of the abstract pages
previously defined in the level 0.
In Figure 4 the DPD (level 1) for the page that shows the recommendations to the
user. This page is defined as a set of layouts and cells. The layouts are also
composed of cells. Cells contain interface components that represent the elements
of the Web page. The Page Chunk element represents a fragment of an abstract
page which has associated a Presentation model where the components shown in
this fragment are defined. This fragment can be reused in the different pages that
compose the Web application. In this way we avoid to make several diagrams of
common parts to all (or many of) the pages. Inside this package the Presentation
Model attached to the Page Chunk is shown. In this case, the Menu is defined as a
page chunk. The final Web page for recommendations generated on basis of these
models is in Figure 8.

«BoxLayout»
RecommendationsLayout

«PageChunk»
Menu

(from Presentation Model)

«BoxLayout»
Books

«Cell»
TitleCell

+ «Text» title: string = Recommendations

«Cell»
iconCell

+ «Image» icon: string

«Cell»
Book:NM.Recommendations

«Anchor»
Book:NM.Recommendations::Details

+ «Text» name: string

«Cell»
FooterLine

+ «Image» footerLine: string

«IncludeCell»«IncludeCell»

«IncludeCell»«IncludeCell»

«IncludeCell» «IncludeCell»

«BoxLayout»
MenuLayout

«Cell»
LogoCell:NM.InfoStore

+ «Image» image: string

«BoxLayout»
HeaderLayout

«Cell»
InfoCell:NM.InfoStore

+ «Text» name: string
+ «Text» Telephone: string = Telephone:
+ «Text» phone: string
+ «Text» Fax: string = Fax:
+ «Text» fax: string
+ «Text» address: string
+ «Text» Email : string = email:
+ «Text» email : string

«Cell»
Item1:NM.Menu

+ «Text» bar: string = |

«BoxLayout»
ItemsLayout

«Anchor»
Item1:NM.Menu::Link1

+ «Text» l ink: string = View categories

«Cell»
Item2:NM.Menu

+ «Text» bar: string = |

«Cell»
Item3:NM.Menu

+ «Text» bar: string = |

«Cel l»
Item4:NM.Menu

«Anchor»
Item2:NM.Menu::Link2

+ «Text» l ink: string = Consult books

«Anchor»
Item3:NM.Menu::Link3

+ «Text» link: string = Second hand books

«Anchor»
Link4

+ «Text» l ink: string = Recommendations

«IncludeCell»

«IncludeCell»

«IncludeCell»

«IncludeCell»

«IncludeCell»

«IncludeCell»

«IncludeCell»

«IncludeCell»

Fig. 4. (a) PM for the Recommendations Page (b) PM for the Menu page chunk

Note that it is not the objective of the paper to explain the A-OOH design models in
depth, but to give an overview so the reader can better understand the proposal.

6 Step 2: Adding Personalization using a PRML file

What is left now is defining the Personalization Model in which the adaptive
actions to perform over the previously defined set of models are specified. For this
purpose we use the PRML language. The basic structure of a rule defined with
PRML is the following:
When event do

[Foreach expression]
[If condition then] action
[endIf]

[endForeach]
endWhen

A PRML rule is formed by an event and the body, which contains a condition
(optional) and an action to be performed. The event part of the rule states when the

rule should be triggered. Once triggered the rule condition is evaluated (if any) and
in the case the condition is evaluated positively the action is performed. A Foreach
expression can be also present in the rule when the action and the condition act
over a set of instances.
Please note that the purpose of this paper is not to explain the PRML language, for
a better understanding of the rules the reader can consult [10].
Now we define the PRML configuration file for our running example6. For a better
comprehension we can divide this file in two sections:
The acquisition rule section defines the rules needed to gather the required
information to personalize. In our example we have two acquisition rules:
� The first rule is triggered by the activation of the link ViewDetails. The rule

updates the proper instance of the interest class on the author the user consults
the details of. This is done using the SetContent action.

� The second rule is triggered by the activation of the link Buy. The number of
books bought along all the sessions is stored in the buy class of the User Model
by increasing the attribute clicks every time the user buys a book.

ACQUISITION SECTION
#RULE:“AcquireInterest”
When Navigation.ViewDetails (NM.Book book) do
Foreach a, b in (UM.User.userToInterest, book.bookToAuthor)do
 If(b.ID = a.interestToAuthor.ID) then
 setContent(a.degree,a.degree+10)
 endIf
endForeach
endWhen
#RULE:“AcquireBuyclicks”
When Navigation.Buy (NM.Book b) do
setContent(UM.User.userToBuy.clicks, UM.User.userToBuy.clicks + 1)
endWhen

The personalization rule section contains the personalization rules which describe
the effect of personalization in the Website. In our example, we have three
personalization rules:
� The first rule is triggered by the activation of the Recommendations link. To

fulfil the 1st personalization requirement we need to define a Sort action. It
operates over a set of instances (i.e. the set of books to sort). The syntax of this
action is very similar to SQL. This rule properly sorts the book instances by
the user interest degree on the different authors returning the fifteen
(maximum) with highest interest (and greater than 100) to be recommended to
the user.

� The second rule hides the Recommendations link if there is no
recommendation to show to the user. It is triggered by the SessionStart event
(i.e. when the user enters the Website).

� The third rule is triggered by the activation of the ViewDetails link. This rule
checks the number of books bought by the user and if this number is greater
than 10 it shows the attribute discount of the book to be shown.

6 Some attributes of the rules have been omitted for simplicity reasons.

PERSONALIZATION SECTION
RULE:“ShowRecommendations”
When Navigation.Recommendations(NM.Book* books) do
Sort books orderBy UM.User.userToInterest.degree ASC LIMIT 15 Where
UM.User.userToInterest.interestToAuthor.ID= books.bookToAuthor.ID
and UM.User.userToInterest.degree>100

endWhen
RULE:“HideLink”
When SessionStart do

If ForAll(UM.User.usertoInterest)
(UM.User.usertoInterest.degree=null or
UM.User.usertoInterest.degree<100) then

hideLink(NM.Recommendations)
endIf

endWhen
RULE:“ShowDiscount”
When Navigation.ViewDetails(NM.Book book) do

If UM.User.userToBuy.clicks >10 then
book.Attributes.selectAttribute(discount)

endIf
endWhen

7 Step 3: Generating the Web Application with AWAC

Once modelled, the Web Application has to be generated using the AWAC tool.
The AWAC interface is a Web page in ASP.Net. To generate a Web application
using AWAC the following steps are to be taken:
1. Save the UML A-OOH models in XMI format.
2. Create a new project in the AWAC environment and load the XMI files

containing the A-OOH models.
This is done in the main view of the AWAC tool, shown in Figure 5(a).
The loaded models can be viewed selecting the corresponding option in the
Adaptive OO-H models section, as it can be seen in Figure 5(b).
3. Save the PRML file as a text file and upload the file.
In the menu, the option PRMLTools� Edit Rules shows a new view of the AWAC
tool in which we can load the file containing the PRML rules for our Web
application (see Figure 6). It is desirable that the extension of the file is“.p” for
clarity purposes, but this is not mandatory.
In further versions it will be possible to edit the rules loaded and check if they are
syntactically and semantically correct.
4. Generate the Web application
Once the A-OOH models and the PRML file are uploaded, the Web application can
be created and downloaded as a compressed rar file (see Figure 7).
As explained in Section 4, the output of the AWAC tool contains the generated
adaptive Website (Web pages in ASP.net), the modules for managing the
personalization (the Website Engine and the PRML Evaluator) and the application
database.

Fig. 5. (a) AWAC tool: loading the A-OOH models (b) View of the models in XMI

Fig. 6. Loading the PRML file

5. Deploying and running the Website
Once generated, the adaptive Web application can be run in a Web server. The
adaptive Web pages shown to the users will differ depending on their browsing
actions. In Figure 8 the recommendations page is shown for two different users.
Depending on the user interest (stored in the UM) the books to recommend vary.
To properly show the recommendations to the user the AWAC modules generated
for managing the personalization (explained in Section 4.1) follow the next steps
(see Figure 1b): The Website Engine gathers the request of the user for the
recommendations page and triggers the user browsing event (i.e. click on
recommendations) sending it to the PRML Evaluator module. This module checks
if there is any rule triggered, and finds the “ShowRecommendations” rule which
executes. This rule selects and sorts the corresponding book instances to be shown
from the Navigational Model. These recommendations won’t change until the next
time the user starts a session. This decision has been taken not to overwhelm the
user with constant updates.

Fig. 7. Generate and download the Web application

Fig. 8. Running the Website: Recommendations page for two different users

8 Conclusions and Future Work

This paper presents AWAC, a prototype CAWE tool for the automatic generation
of personalized Web applications. This tool implements the A-OOH (Adaptive
Object Oriented Hypermedia) methodology, which is an extension of the OO-H
method for supporting the modelling of personalized Websites. The input of the
AWAC tool is the set of A-OOH design models needed to model the adaptive
Website to generate. The output is the generated Website with its database. The
output includes a Web engine and a personalization module which allow to manage
the personalization at runtime of the final Web pages. The personalization rules can
be edited in an independent way of the rest of the application, which improves the
personalization maintenance.

Some experiments are being done with AWAC. One is the generation and running
of the (adaptive) Intranet of the university lab of the authors. This Intranet is now
online and the users accesses are being studied. The purpose of this experiment is
twofold: to study the satisfaction of the users (in terms of personalization
performed, fast response…) and the improvement of the personalization techniques
applied. As future work, besides implementing all the PRML functionality,we
would like to add a graphical user interface in order to define the A-OOH models
using AWAC. Now, to define the A-OOH models and generate the XMI files we
use the Enterprise Architect Design tool [8] in which we have defined the UML
profiles needed for the modelling of the A-OOH diagrams.

References
1. ANTLR, ANother Tool for Language Recognition, http://www.antlr.org/
2. Casteleyn, S.: "Designer Specified Self Re-organizing Websites", Phd thesis, Vrije

Universiteit Brussel (2005)
3. Casteleyn, S., De Troyer, O., Brockmans, S.: Design Time Support for Adaptive

Behaviour in Web Sites, In Proc. of the 18th ACM Symposium on Applied Computing,
Melbourne, USA (2003), pp. 1222 – 1228.

4. Ceri S., Fraternali P., and Bongio A: “Web Modeling Language (WebML): a modeling
language for designing Web sites”, WWW9 Conf, 2000.

5. Dayal U.: “Active Database Management Systems”, In Proc. 3rd Int. Conf on Data and
Knowledge Bases, pp 150–169, 1988.

6. Db4o Database For Objects www.db4o.com
7. De Bra, P., Stash, N., De Lange, B., AHA! Adding Adaptive Behavior to Websites.

Proceedings of the NLUUG Conference, pp. n-n+10, Ede, The Netherlands, May 2003
8. Enterprise Architect - UML Design Tool, http://www.sparxsystems.com
9. Franciscar, F., Houben G.J., Barna P.:”HPG: The Hera Presentation Generator”.

Journal of Web Engineering, Vol. 5, No. 2, p. 175-200, 2006, Rinton Press
10. Garrigós I., Gómez J., Barna P., Houben G.J.: A Reusable Personalization Model in

Web Application Design. International Workshop on Web Information Systems
Modeling (WISM 2005) July 2005 Sydney, Australia.

11. Gómez, J., Cachero, C., and Pastor, O.: “Conceptual Modelling of Device-Independent
Web Applications”, IEEE Multimedia Special Issue on Web Engineering, pp 26–39,
2001.

12. Houben, G.J., Frasincar, F., Barna, P, and Vdovjak, R.: Modeling User Input and
Hypermedia Dynamics in Hera International Conference on Web Engineering (ICWE
2004), LNCS 3140, Springer-Verlag, Munich(2004) pp 60-73.

13. Knapp A., Koch N., Moser F., Zhang, G.: ArgoUWE: A CASE Tool for Web
Applications. EMSISE03, 14 pages, online publication at
http://www.pst.informatik.unimuenchen.de/~kochn

14. Koch, N. and Kraus, A. “The Expressive Power of UML-based Web Engineering,” In
Proc. of the 2nd. Int. Workshop on Web-Oriented Software Technology, CYTED,
Málaga, Spain, 105-119, June 2002

15. OpenRDF, The SeRQL query language, rev. 1.1, url:
http://www.openrdf.org/doc/users/ch06.html.

16. Schwabe, D. and Rossi, G. A Conference Review System with OOHDM. In First
Internacional Workshop on Web-Oriented Software Technology, 2001.

17. WebRatio Web Site http://www.webratio.com.
18. XML Metadata Interchange www.omg.org/technology/documents/formal/xmi.htm

