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Abstract. This work studies limits on estimating the width of thin ves-
sels in 3D medical images. Based on nonlinear estimation theory we ana-
lyze the minimal stochastic error of the width estimate caused by image
noise. Given a 3D analytic model of the image intensities of a vessel, we
derive a closed-form expression for the Cramér-Rao bound of the vessel
width. We use the derived lower bound as a benchmark and compare it
with previously proposed accuracy limits of three different approaches
for vessel width estimation. Moreover, by experimental investigations we
demonstrate that the derived lower bound can be achieved by fitting a
3D parametric intensity model directly to the image data.

1 Introduction

Heart and vascular diseases are one of the main causes of death for women and
men in modern society. An abnormal narrowing of arteries (stenosis) is one of
the main reasons of these diseases as the essential blood flow is hindered. In clin-
ical practice, images of the human vascular system are acquired using different
imaging modalities, for example, 3D Magnetic Resonance Angiography (MRA)
or 3D Computed Tomography Angiography (CTA). Segmentation and quantifi-
cation of vessels from 3D medical images is crucial for diagnosis, treatment, and
surgical planning. An essential task is the accurate estimation of the width (di-
ameter) of vessels, for example, to identify and quantify stenoses, in particular
for thin vessels such as coronary arteries.

Concerning thin vessels, limits on the accuracy of estimating the vessel width
have been addressed by different groups using different approaches (e.g., [1, 2, 3],
see below for details). However, the results of these approaches have not yet been
compared with each other. For a quantitative comparison of the proposed limits
it would be preferable to have a benchmark. Analytic benchmarks for perfor-
mance evaluation have been introduced for a different task in medical image
analysis, namely, the localization of 3D landmarks [4]. However, an analytic
benchmark for vessel width estimation has not yet been derived.

Based on nonlinear estimation theory, we have analyzed the minimal sto-
chastic error of the width estimate caused by image noise. Given a 3D analytic
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model of the image intensities of a vessel, we have derived a closed-form expres-
sion for the Cramér-Rao bound (CRB) of the vessel width, which defines the
minimal uncertainty. Note that the derivation of the CRB of the vessel width
significantly differs from the derivation of the CRBs of the landmark models in
[4]. The reason is that the here used cylindrical parametric intensity model and
the required first order partial derivative are more complex (e.g., requiring a
Bessel function). We employ the derived CRB as a benchmark and compare it
with previously proposed accuracy limits of three different approaches for vessel
width estimation [1, 2, 3]. Moreover, by experimental investigations we demon-
strate that the derived lower bound can be achieved by fitting a 3D parametric
intensity model directly to the image data.

2 Cramér-Rao Lower Bound of Cylinder Model

To derive a benchmark for performance evaluation of 3D vessel segmentation
approaches, we use a 3D analytic model that represents the image intensities of
a vessel. We propose to use a 3D Gaussian smoothed cylinder, which is well suited
to model vessels of different widths (e.g., [2, 3]). The cylinder model comprises
parameters for the width of the vessel (radius R), the image blur o, and the
image contrast a between the intensity levels of the vessel and the surrounding
tissue. A 2D cross-section of this Gaussian smoothed 3D cylinder is defined as

9Disk (.77, yaR7 0) = Disk (x,y,R) * G?TD(‘Tay) (1)

where * denotes convolution, Disk (z,y, R) is a two-valued function with value
1if r < R and 0 otherwise (for r = /22 + y?), as well as the 2D Gaussian

function GZP(z,y) = G, (z) G, (y), where G, (z) = ( 27m)_1 e 5 Extending
the 2D disk in zdirection as well as including the image contrast a yields the
cylinder model gar,cytinder (%, Y, 2, R, 0,a) = agpisk(x,y, R,0). Note that here
we omit, without loss of generality, the 3D rigid transform used in [3].

To determine a lower bound for estimating the vessel radius, we utilize the
Fisher information matrix F. We consider a cylindrical region-of-interest (ROI)
of half-width (radius) w within the zy-plane and half-width w, in zdirection
(along the cylinder) around a position on the centerline of the cylinder. A cylin-
drical ROI as compared to a cubic (or cuboidal) ROI is a more natural choice
for tubular structures and also reduces the complexity in the calculation of the
involved integrals. Since here we are only interested in estimating the vessel ra-
dius R (assuming that the values of the remaining parameters are known), the
information matrix F consists of one element. The Cramér-Rao lower bound
(CRB) of the uncertainty is then given by (e.g., [4])

(A%

o =F1 (2)
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? = 9%CRB. R
The bound determines the minimal possible uncertainty of the estimated para-
meter R for a given level of image noise. For calculating the CRB in (2), the first
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order partial derivative of the cylinder model w.r.t. the radius R is required. For-
tunately, whereas a closed-form solution of a Gaussian smoothed cylinder is not
known, a closed-form solution of the required partial derivative can be derived:
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with Iy being the modified Bessel function of the first kind (order 0). Assuming
that the half-width w of the ROT (within the zy-plane) is much larger than the

radius R and the standard deviation o, i.e. w — oo, the closed-form expression
of the CRB in (2) using (3) can be stated as

2.2
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where o, denotes the standard deviation of the Gaussian image noise and voz
denotes the spatial unit in 3D (i.e. one voxel is a cube with a size of one voz
in each dimension). It can be seen that the precision increases (i.e. the bound
decreases) with decreasing image noise o, as well as increasing image contrast a
and size w, of the 3D ROT along the cylinder, and depends in a more complicated
way on the radius R and the image blur ¢ (compared to ¢, a, and w, ). The limits
of the CRB for R — 0 and R — oc are oc and 0, respectively. For example, Fig.
1 (left, black curve) visualizes the CRB given in terms of the standard deviation
(square root of the variance) as a function of the radius R. Tn general, it turns
out that the bound is monotonically decreasing as a function of the vessel radius.
To give an impression of the achievable accuracy, we state numerical examples
of the CRB for thin vessels. For example, using a = 100gr, ¢ = 1vox, g, =
Sgr, and w, = 12vox, for vessel radii R of 0.5, 1, 2, and 3 vox the minimal
uncertainties o, pp 5 compute to 0.012, 0.007, 0.005, and 0.004 vox, respectively
(gr denotes the unit of the intensities in grey levels). Thus, for thin vessels the
precision is well in the subvoxel range. However, for very thin vessels (e.g., a
width of 1vox) in combination with extremely poor imaging conditions (i.e. a
very poor signal-to-noise ratio), the uncertainty of the vessel radius can excess
the radius of the vessel itself. For example, for an extremely low image contrast
of a = 5 gr, a vessel radius of R = 0.5 vox, and a small size of the ROI along the
cylinder of w, = 5vox, the CRB computes to 0.76 vox, which is about 50% larger
in comparison to the radius. Note that the derived CRB in (4) does not impose
a fized limit for a minimal value of the vessel radius. A limit on the minimal
radius can be derived based on the desired maximal uncertainty of the vessel
radius (e.g., 5% or 0.1 vox). For example, for a maximal uncertainty of 5%, the
limit of the minimal radius computes to R = (.34 vox (using the same settings
as above), i.e. the minimal width of 2R = 0.68 vox is below image resolution.

R
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3 Vessel Width Estimation by Model Fitting

We have carried out an experimental investigation to analyze how the theoretical
bound relates to practice. To this end we have generated 3D images based on
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Fig. 1. Theoretical and experimental precision for estimating the radius R as a function
of the radius R (left) as well as 2D axial sections of 3D synthetic cylinders of radii R = 1
(middle) and R = 3 (right), using a = 100gr, 0 = 1 vox, o, = 5gr, and w. = 12 vox.

the 3D cylinder model with additive Gaussian noise for different radii R =
0.5,1,2,3,4,5,6 vox and using the same parameter settings as above (i.e. a =
100 gr, o = 1vox, o, = 5gr). For example, Fig. 1 shows 2D axial sections of 3D
synthetic cylinders of radii R = 1 vox (middle) and R = 3 vox (right). To estimate
the radius of the vessel we apply a model fitting approach [3] using a cylindrical
ROI with a size of w = w, = 12 vox. Since a closed-form solution of the Gaussian
smoothed cylinder gar,cyiinder is not known, we here numerically integrate the
cylinder model to utilize the same model for the theoretical analysis and the
experiments (instead of using an analytic approximation as in [3]). Tn total, for
each value of the radius we carried out 1000 experiments (randomly varying the
initial parameters and the added Gaussian noise) and determined the precision
o, of the radius as the standard deviation of the estimated radii. The results are
represented by the dots in Fig. 1 (left). In addition, the black curve indicates the
theoretical precision according to the derived CRB o5 B, k- 1t turns out that
the agreement between the theoretical and the experimental values is very good,
in particular, for thin vessels (e.g., B = 0.5 vox), i.e. the derived lower bound can
indeed be achieved experimentally. The agreement is even more remarkable since
the analytic derivation does not consider discretization effects due to sampling
and quantization, while in the experiments discrete images have been used.

4 Comparison of Different Limits

We have also compared the accuracy limits of three different vessel segmentation
approaches with the CRB from above. Hoogeveen et al. [1] studied accuracy lim-
its in determining the vessel width from time-of-flight (TOF) and phase-contrast
(PC) 3D MRA images. Experiments were based on 3D synthetic TOF and PC
MRA images as well as on real images, which were generated by using phan-
tom tubes with known diameters. For measuring the vessel width, the criteria
full-width-half-maximum and full-width-at-10% were applied for TOF and PC
images, respectively. The authors state that for both TOF and PC MRA images
a minimal radius of about 1.5 vox is required for accurate estimation of the vessel
width (allowing a maximal error of the estimated vessel width of 5%).

Sato et al. [2] developed a differential vessel segmentation approach based
on a multi-scale line filter. A Hessian-based line filter is applied to different
scales of a 3D image and vessels are extracted based on these filter responses.
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To determine the width of a vessel, the filter responses are compared to filter
responses of an ideal vessel model. It turns out that a maximum response of the
multi-scale filter, which is required to estimate the vessel width, is inherently
not obtainable for thin vessels with a radius below 1.39 vox.

In [3], we developed a model fitting approach for vessel segmentation based
on an analytic 3D parametric intensity model. We use a 3D Gaussian smoothed
cylinder to model the image intensities of a vessel and the surrounding tissue
within a ROL Since a closed-form solution of a GGaussian smoothed cylinder is
not known, we have developed an accurate approximation based on the Gaussian
function and the Gaussian error function. To segment a vessel we utilize an
incremental process based on least-squares model fitting as well as linear Kalman
filtering. We have applied the cylinder model to segment vessels in 3D MRA and
3D CTA images of the human. However, we obtain ambiguous estimates of the
vessel width for a radius below about 1.72 vox. The reason is that for this value
we automatically switch the used approximation in our approach.

Note that, in contrast to Hoogeveen et al. [1], in the approach of Sato et
al. [2] as well as in our model fitting approach [3], an accuracy limit is given
by the approach itself (note also that in both approaches the limits are stated
assuming a standard deviation of the Gaussian image smoothing of 1vox). Tn
comparison, as discussed above, the derived CRB in (4) does not impose a fixed
limit for a minimal value of the vessel radius such as in [2, 3]. Moreover, since
the theoretically derived CRB has been experimentally achieved for thin vessels,
in particular, for a radius of 0.5 vox, we conclude that the limit of R ~ 1.5 vox
proposed by all three approaches [1, 2, 3] is not a fundamental limit.

5 Conclusion

We have analyzed limits for estimating the vessel width of thin vessels. Given a
3D analytic model of the image intensities of a vessel, we have derived a closed-
form expression for the Cramér-Rao bound of the vessel radius. Tn addition, we
have compared the derived Cramér-Rao bound with previously proposed limits
of three different approaches. Moreover, by experimental investigations, we have
demonstrated that the derived lower bound can indeed be achieved by model
fitting of a 3D parametric intensity model.
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