
A Methodological Approach to Developing
Model Transformations

Andrés Vignaga

Universidad de Chile, FCFM, Departamento de Ciencias de la Computación
avignaga@dcc.uchile.cl

1 Introduction

In Model Driven Engineering (MDE) model-to-model transformations are a key
means for developing software systems. Manual manipulation of models can be-
come unmanageable and expertise in model manipulation would need to be put
in practice again and again. This technique has the potential to save a consider-
able amount of work from developers, as well as to avoid errors associated with
manual processes. The research to be carried out in the PhD thesis here described
focuses on the definition of a methodology for developing model transformations.

2 Problem Definition

Model transformations are increasingly seen as key assets in software develop-
ment, as they encode, ultimately formalize and automate, model manipulation
expertise of an organization within its own development process, e.g. specific
mechanizable refinement steps and the chain of successive refinements needed
to obtain a concrete product. Model transformations become complex software
products and they need to be developed and managed with sound software en-
gineering principles: they must be analyzed, designed, implemented, tested and
maintained [3, 8]. Current research deals with partial aspects of model transfor-
mation development, most notably implementation technology, testing, and in
a less degree, design. However, results on research towards a systematic devel-
opment of model transformations have not been published yet [6]. The problem
is that transformation development is currently tackled ad-hoc and integrated
methodological support for it is still limited. The purpose of this thesis is there-
fore to investigate how transformation development relate to application devel-
opment, and to identify specific techniques and methods enabling transformation
development and evolution.

Additionally, two particular issues were identified as closely related to the
stated problem. First, there is no dominant programming paradigm; [4] identi-
fied different approaches, where the underlying philosophy differs substantially
from one to the other, thus affecting how model transformations are conceived.
Second, categories of model transformations were reported in [9] exhibiting dis-
tinctive characteristics; however, implications on model transformation develop-
ment of such characteristics were not discussed.

2

3 Related Work

Only a few results on a life-cycle for model transformations were found in the
bibliography. In [3], the problem of identifying techniques enabling model trans-
formation development and evolution was introduced. It also presents the basic
ideas of a MDA-like development life-cycle, where transformations should be
modeled in a technology-independent fashion and then realized within partic-
ular environments. Finally, the notion of models of model transformations is
further treated in [2], where a possible realization of such idea is presented and
its benefits discussed. In turn, [11] presents a simple method for model trans-
formations development. The method is intentionally presented at a high level
of abstraction and its scope includes the stages of execution of a typical model
transformation only, and it is not a sketch of a complete life-cycle. Such method
is used as a basis for discussing what technology supports each of the presented
stages of execution. Finally, an associate team [10] is conducting research on var-
ious aspects of MDE. The team’s schedule for 2007 includes research on model
transformation development, however no results have been published yet.

Model transformation analysis is probably the part of the construction life-
cycle that has gained less attention. A particular use of model transformations
motivated that the definition of guidelines for model transformation analysis
was identified as a challenge. On the contrary, [7] suggests that requirements for
model transformations should be captured informally, and claims that require-
ment analysis seems to be considerably simpler than for traditional systems.

In [7], a method for model transformation construction is proposed, focus-
ing on design. Such method is incremental and assumes model transformation
design as equivalent to transformation rule definition. It is not detailed and
supporting tools are still not available. In turn, another work introduces model
transformation design patterns, however they all respond to limitations in ATL.

Research on transformation implementation mainly addresses the proposal of
model transformation languages, rather than implementation techniques. Imple-
mentation approaches such as imperative, declarative, or hybrid were identified
in [4]. In turn, [3] proposes to realize technology-independent transformation
designs into technology-specific versions, via higher order transformations. This
can be regarded as in the context of an implementation stage.

Approaches to model transformation verification and validation include model
checking, formal proof and testing. In [8], a framework for an automatic approach
of execution of test cases is presented, based on model comparison. Test cases,
however, need to be manually specified by the developer and elsewhere a criterion
for selecting test data (i.e. models) is proposed. Other works addresses syntactic
correctness, and termination and confluence of model transformations. Finally,
in [7], a technique for testing a design of a model transformation is proposed.

Only few works deal with model transformation evolution. [5] presents a
strategy for the incremental maintenance of rule-based transformations to ad-
dress the problem introduced by incremental updates on models during their
life-cycle. However, other scenarios of evolution, such as a refinement in the
model manipulation expertise, is not addressed.

3

4 Goal and Research Hypotheses

The main goal of the thesis is to define a methodology specifically aimed at
developing and evolving model transformations. Next are stated the working
hypotheses which will be addressed.

H1: A method applying MDE techniques can be defined for developing and
evolving model transformations.

H2: Applying such method to model transformation development enhances the
quality of transformations and the productivity of the development team.

5 Proposed Solution

We propose to solve the stated problem by defining a methodology for devel-
oping and evolving model transformations. The focus will be set on design and
implementation activities, however the scope shall include the entire life-cycle.

A development process is built on best practices collected throughout the
experience of the community. For model transformations, a collection of best
practices is still to be completed. To that end, general Software Engineering
best practices may serve, at least, as an inspiration. This claim demonstrated
to be particularly valid, for example, in model transformation testing. However,
adapting existing application development methodologies to the model transfor-
mation domain would result unnecessary restrictive. We consider more appro-
priate to come up with a solution that freely combines established knowledge of
traditional development with research in the model transformation area, from
an MDE-minded point of view.

The solution will be a full-fledged process expressed as a SPEM model. We
propose a lifecycle based on an iterative and incremental model, and structured
in phases; at least one for construction and one for evolution. The scope of
the proposed activities includes requirements, analysis, design, implementation,
testing and management. Activities will be associated to process roles and in-
put and output work products, organized into disciplines, and refined into steps.
Whenever possible, the proposal shall also provide guidance on process elements,
especially for activities, steps and work products. Activities and steps will be de-
scribed in detail, and the procedure for generating output work products from
input work products will be made explicit. Work products, in turn, will be pre-
cisely described, especially those which will be specific to model transformation
development. This enables automatic work product manipulation.

6 Methodology and Validation Strategy

The proposed methodology is intended to apply to the development of practical
model transformations. For defining such a development process we need to ana-
lyze concrete experiences in the context of concrete applications of development
processes [4]. Only a few practical model transformations were reported [12].

4

Use Case

-atr1

Class1

Class2

-atr2

Class3

-atr3
-atr4

Class4** Association1

*
* Association2

-atr1

Class1

Class2

-atr2

Class3

-atr3
-atr4

Class4** Association1

*
* Association2

Domain Model

Object1 Object2

Message1

Object3
Message2

Object1 Object2

Message1

Object3
Message2

Communication

Diagram

 : Sistema
 : Cajero

iniciarVenta()

agregarProducto(id,cant)

terminarVenta()

realizarPago(monto)

descripcion, subtotal

* [mas productos]

total con impuestos

cambio, recibo

 : Sistema
 : Cajero

iniciarVenta()

agregarProducto(id,cant)

terminarVenta()

realizarPago(monto)

descripcion, subtotal

* [mas productos]

total con impuestos

cambio, recibo

System

Sequence Diagram

+oper1()

-atr1

Class1

+oper2()
+oper3()

Class2

+oper4()

-atr2

Class3

+operacion1()
+operacion2()
+oper5()

-atr3
-atr4

Class4

** Association1

*
* Association2

+oper1()

-atr1

Class1

+oper2()
+oper3()

Class2

+oper4()

-atr2

Class3

+operacion1()
+operacion2()
+oper5()

-atr3
-atr4

Class4

** Association1

*
* Association2

Design

Class Diagram

Software

Contract

T2 T3 T4

T5
T1

Fig. 1. Partial definition of RUP as a partial order of model transformations.

We therefore propose to use a concrete development process as a source. The
Rational Unified Process (RUP) was chosen for a number of reasons. First, it is
a modern and widely used development process. Second, “modeling” is one of
RUP’s best practices, and although it is not defined in terms of transformations,
models are core concepts. Third, it is general and broad in scope; we expect
to identify from it a large number of assorted model transformations. Figure 1
shows a part of RUP, rendered as a partial order of model transformations.

The set of model transformations identified can then be classified according
to criteria based on those introduced in [4] and [9], and classes of equivalence can
be defined. Developing an appropriate representative of each class will provide
the basis for defining our methodology. Inspiration will also come from related
work and from established application development processes, for example RUP
itself. We also believe that our methodology would benefit from concepts present
in MDE-based processes.

Experiments will be then conducted by applying the methodology to a fresh
set of transformations of different classes of equivalence. Some of those can pos-
sibly be from outside the scope of RUP. The results will be used for adjusting
the methodology as required. To this end, a set of metrics for evaluating the
quality of model transformations, such as size, complexity, scalability and main-
tainability, need to be defined. Validation is finally conducted revisiting some
selected classes of equivalence. Using the defined metrics, we compare results of
the initial ad-hoc development against those from applying the final version of
the methodology.

Concrete activities are: (Act1) Investigate characterizations of model trans-
formations and define classification criteria; (Act2) Identify a set of practical
transformations; (Act3) Classify the transformation set; (Act4) Develop and an-
alyze the selected transformations; (Act5) Investigate existing processes; (Act6)
Build the methodology; (Act7) Define metrics; (Act8) Refine and validate the
proposal; and (Act9) Evaluate the results.

7 Advanced Work and Current State

In what follows, we refer to the activities presented above and discuss their
relative progress and status. Investigation in Act1 was already performed as

5

part of the survey of related work. Act2 is partially performed. Figure 1 shows
a representation of a part of the existing results. Act4 is partially performed.
Work in [12] and [13] reports the results of development carried out so far, cor-
responding to transformations T5 and T4 in Fig. 1, respectively. Act5 is close to
completion, and results were used for identifying practical transformations. Act6
was started. With results already obtained, basic decisions about the structure
of the methodology have been made.

8 Expected Results

The expected contributions of this thesis are: (1) A generic methodology for de-
veloping and evolving model transformations; (2) Definition of RUP as a partial
order of model transformations; (3) Definition of criteria for classifying model
transformations in multiple dimensions; (4) Classification of the transforma-
tions identified for RUP into classes of equivalence; (5) Implementation of a set
of transformations identified for RUP applying the proposed methodology; (6)
Evaluation of the implemented transformations; and (7) A set of metrics for
measuring quality aspects of model transformations.

References

1. Model Driven Engineering Languages and Systems, MoDELS 2006, volume 4199
of LNCS. Springer, 2006.

2. J. Bézivin, F. Büttner, M. Gogolla, F. Jouault, I. Kurtev, and A. Lindow. Model
Transformations? Transformation Models! In MoDELS [1], pages 440–453.

3. J. Bézivin, N. Farcet, J.M. Jézéquel, B. Langlois, and D. Pollet. Reflective Model
Driven Engineering. In UML, volume 2863 of LNCS, pages 175–189, 2003.

4. K. Czarnecki and S. Helsen. Classification of Model Transformation Approaches.
In OOPSLA 2003 Workshop on Generative Techniques in the context of Model
Driven Architecture, October 2003.

5. D. Hearnden, M. Lawley, and K. Raymond. Incremental Model Transformation
for the Evolution of Model-Driven Systems. In MoDELS [1], pages 321–335.

6. J. M. Küster. Definition and Validation of Model Transformations. Software and
Systems Modeling, 5(3):233–259, 2006.

7. J. M. Küster, K. Ryndina, and R. Hauser. A Systematic Approach to Designing
Model Transformations. Report RZ 3621, IBM, Zurich, July 2005.

8. Y. Lin, J. Zhang, and J. Gray. A Testing Framework for Model Transformations.
In Model-driven Software Development, pages 219–236, Chapter 10. Springer, 2005.

9. T. Mens and P. Van Gorp. A Taxonomy of Model Transformation. Electronic
Notes in Theoretical Computer Science, 152:125–142, 2006.

10. MATT Associate Team. INRIA and Colorado State University. Internet:
http://www.irisa.fr/triskell/matt/, 2006.

11. L. Tratt. Model Transformations and Tool Integration. Software and System
Modeling, 4(2):112–122, 2005.

12. A. Vignaga and C. Bastarrica. Transforming System Operations’ Interactions into
a Design Class Diagram. In SAC, pages 993–997. ACM, 2007.

13. A. Vignaga, D. Perovich, and C. Bastarrica. Extracting a Design out of Software
Contracts using Model Transformations. In consideration for publication, 2007.

