
Scenario integration via the transformation and
manipulation of higher-order graphs?

Hongzhi Liang

School of Computing, Queen’s University, Canada
liang@cs.queensu.ca

Abstract. The integration of different models, such as scenarios, is an
important component of the requirements engineer’s work. If manually
performed, the integration operation is error-prone and time consuming.
Thus, an integrated computer-aided environment would be desirable.
In the paper, we propose a framework based on mathematical category
theory machinery of algebraic operations with higher-order graphs that
provides a formalization and a generic pattern for scenario integration.
In order to evaluate the proposed framework, we have instantiated the
framework and are currently developing an experimental tool.

1 Introduction

As applications become larger and more complex, multiple teams may parallelly
involve in different development phases. For instance, during the requirement
phase, partial behavior models are created independently by different modelers
and then they are merged in order to describe a more comprehensive behavior.
Thus, the ability to integrate, e.g., merge two or more models, becomes im-
portant in such scenarios. Although integration could be manually performed,
the operation is likely error-prone and time consuming. Therefore, an integrated
computer-aided environment for the integration operation would be very use-
ful. Our research goal, hence, is aimed to develop an integrated environment
where model management (MMt) tasks, for instance model integration, could
be performed in an intelligent way.

A fundamental problem of model integration is that different models repre-
senting different views of the same universe can essentially overlap in different
ways. A proper integration has to take this into account, otherwise the result
will implicitly contain duplications and redundancies. The question, therefore,
is what should be specified in addition to the set of models so that their in-
tegration would merge all the information contained in the views without loss
and duplication. Moreover, we need to have a generic pattern for model overlap
not dependant on peculiarities of a particular modeling language. Ideas from
the category theory will be used to build such a generic pattern for the entire
view/model integration operation.
? I would like to thank my supervisor Juergen Dingel and research fellow Zinovy Diskin

for their contributions to this work.



2

2 Research Plan

Our research approach can be separated into two phases. The first phase is
the development of the theoretical framework, where we address the problem
of integration by first giving a precise specifications of what the operations to
be performed are, and then proceeding to how they can be implemented in an
efficient way. The second phase is the implementation phase where we instantiate
the framework. An experimental tool that integrates UML sequence diagrams
[6] will be created to help us evaluate the proposed theoretical framework. The
current status of this research is that we have finished the theoretical framework
and one of the components of the tool. We will briefly elaborate the theoretical
framework and the implementation.

2.1 Theoretical framework

In [2], we presented an extendable framework that provides a formalization and
a generic pattern for integrating models, such as UML2 sequence diagrams or
similar notations such as ITU Message Sequence Chart [4]. The framework is
based on mathematical category theory machinery of algebraic operations with
higher-order graphs. Our theoretical foundation can address, for instance, the
fundamental problem of model overlapping by using a proper integration that
takes this problem into account and merges all the information contained in the
views without loss and duplication. A distinctive feature of our approach is the
use of derived elements, where information that is explicitly specified in one view
can be implicit or derived in another view.

In particular, to integrate sequence diagrams, we first showed that the basic
structure of sequence diagrams can be formalized as a chain of higher-order
graph mappings: base graph←− collaboration graph←− occurrence graph. Base
and collaboration graphs provide the structural basis of the sequence diagrams
in question, which define class and message types, and objects and message
channels, respectively. Occurrence graphs are just a partial order of event and
message occurrences of the sequence diagrams. Based on the formalization, a
procedure of sequence diagram integration has been developed and applied to
a non-trivial example in [2]. A generic pattern for model integration is then
summarized as follows:

1. Formalization. We fix some universe U of higher-order graph-based struc-
tures like scenario graphs. We will call objects of this universe U-graphs or just
graphs. Models to be integrated are presented as U-graphs, G = {G1...Gm},
which we call views.

2. Specifying view correspondences. Correspondences between models are
specified by another family of graphs, R = {R1...Rn}. As we have already men-
tioned, the latter may contain new information not captured by views. Mathe-
matically, graphs Rj play the same role of input structures for the merge algo-
rithm as view graphs Gi. Thus, we come to a family of graphs H = {H1...Hm+n},



3

H = G ∪R, to be integrated modulo some correspondences (equivalences) be-
tween them. To set these correspondences, we may need to augment the view
graphs with new elements derived by the operation of arrow composition. In
this way we come to a family of augmented graphs H = {H1...Hm+n} together
with a family of mappings (determined by correspondences) h = h1...hk between
them.

3. Merge. The configuration (generalized span) (H,h) is automatically merged
according to the algorithm described in [2]. The procedure returns a cospan of
graphs and mappings, S = (S, ι′1...ι

′
m+n), ι′i : Hi → S. Its head S may contain

derived elements.

4. Normalization. In the merge graph S a subgraph S0 should be chosen in
such a way that any element in S can be derived from elements of S0. Besides this
technical requirement, the chosen subgraph should be compact and semantically
meaningful, and should provide transparent meaning for derivations required to
augment it up to S.

2.2 Implementation

Although we have shown that the theoretical framework worked well on a small
number of sample scenarios [2], we would like to create an experimental tool to
help us further evaluate the framework. An implementation of the framework
that integrates UML sequence diagrams is currently under development. The
tool itself will be implemented as an extension to an Eclipse-based UML mod-
eling tool, for instance IBM Rational Software Architect (RSA). The reasons
that we chose to create an extension rather than build a tool from scratch are
1)we will benefit from the existing sequence diagrams editor, and the diagrams
exporting/importing features, 2)we can fully take advantage of the standard fea-
tures of the Eclipse platform and a variety of plug-ins, such as EMF, UML2 and
GMF.

During an initial investigation, we have discovered that a desired implemen-
tation needs at least the following six components as shown in Figure 1:

1. SD2HG Transformer : required by step 1 of our generic integration pattern,
this automatic transformer would transform sequence diagrams, e.g., ex-
ported from RSA, to higher-order graphs, i.e., base, collaboration and oc-
currence graphs. Some existing transformation tools could be used to develop
this component, for instance, some of the prominent choices including TXL
[8] and XSLT [9]. A TXL-based transformer is currently under development.

2. Mapping Editor : this editor realizes step 2 of the pattern. It would take
higher-order graphs generated by the SD2HG Transformer and produce new
higher-order graphs that contain mappings between the input higher-order
graphs. The users, i.e., requirements engineers, specify the correspondences
between sequence diagrams, or more precisely, sequence diagrams repre-
sented as higher-order graphs by using this editor interactively. Moreover,
any derived elements could also be explicitly specified by using this editor.



4

Eclipse Platform

IBM Rational Software Architect

SD Integration Tool

Eclipse Tools

EMF UML2 GMF

SD2HG
Transformer

HG
Editor

HG2SD
Transformer

HG
Merger

Transformation Tool

Mapping
Editor

Input
HGs

Merged
SDs

Input
SDs

Merged
HGs

Mapping
HGs

Input
HGs

Manager

Fig. 1. The architecture of the proposed SD Integration Tool: the central and its con-
tained boxes show the six components of the proposed tool; the thin arrows and labels
illustrate the control/data flow; the bold arrows and the surrounding boxes denote the
existing technologies the proposed tool would utilize.

3. HG Merger : an automatic higher-order graphs merger takes as input higher-
order graphs from both the SD2HG Transformer and Mapping Editor and
produces merged higher-order graphs. Basically, this component would pro-
vide the functionalities required by step 3 and 4 of the generic pattern.

4. HG2SD Transformer: since the ultimate goal of this tool is to output inte-
grated sequence diagrams, this component, as the dual of the SD2HG Trans-
former, would transform higher-order graphs produced by the HG Merger
back to sequence diagrams. Again, the transformation could be implemented
using, e.g., TXL or XSLT.

5. HG Editor: an interactive graphical editor of higher-order graphs. Some ob-
vious functionalities of this component include editing, modifying, and dis-
playing higher-order graphs. Other functionalities, for instance, validating an
existing or a newly created higher-order graph, should also be provided by
this component. By visualizing the generated higher-order graphs, this edi-
tor would be very useful to help us validate the correctness of our SD2HG
Transformer, Mapping Editor and HG Merger. An implementation based
on the Eclipse Graphical Modeling Framework (GMF) [3] has already been
completed.

6. SD Integration Tool Manager: an accessory component facilitates the overall
sequence diagram integration process and manages the control/data flows
between components. It would also act as the extension or plug-in to RSA.

2.3 Evaluation

To evaluate the implementation phase of this research, we will perform tests on
different case studies, for instance, the wholesale-retail example [2] and the shut-



5

tle system project [7]. Then, the evaluation results on the implementation phase
can be used as feedback for our theoretical framework. Finally, any modifications
reflecting the feedbacks would help us fine tune our framework.

3 Related work

The idea of using algebraic colimit operations for model merge is known for a
long time, e.g., in [1], but mainly in the context of data model merging. There
are just a few works that employ categorical ideas and machineries for behavioral
model merge, for example, [5]. The paper [5] is the only published application
of colimits to scenario merge that we are aware of. In this paper, scenarios
specified by MSCs are encoded as partially-ordered multisets – a well-known
and deserved language. However, the string-based (rather than graph-based)
formalization used by the authors results in a bulky definition of morphism and
makes the entire integration procedure less transparent and less scalable beyond
small examples.

4 Contributions

The contributions expected from this research are: 1) definition of a formal
framework providing the necessary theoretical foundations for model integra-
tion in general and scenario integration in particular. 2) implementation of the
framework in a modeling tool such as RSA. 3) a fully functional UML sequence
diagram integration tool.

References

1. P. Buneman, S. Davidson, and A. Kosky. Theoretical aspects of schema merging.
In Advances in Database Technology - EDBT’92, Springer LNCS # 580, 1992.

2. Z. Diskin, J. Dingel, and H. Liang. Scenario integration via higher-
order graphs. Technical Report 2006-517, Queen’s University, 2006. URL:
http://www.cs.queensu.ca/TechReports/Reports/2006-517.pdf.

3. Eclipse. The Eclipse Graphical Modeling Framework. Online,
http://www.eclipse.org/gmf/, 2007.

4. ITU-TS. Recommendation Z.120: Message Sequence Chart (MSC), 2000.
5. J. Klein, B.Caillaud, and L. Hlout. Merging scenarios. In 9th Int.Workshop on

Formal Methods for Industrial Critical Systems, ENTCS, pages 209–226, 2004.
6. Object Management Group, http://www.uml.org. Unified Modeling Language: Su-

perstructure. version 2.1.1. Formal/07-02-05, 2007.
7. University of Paderborn Software Engineering Group. Shuttle system case study.

Online, http://www.eclipse.org/gmf/, 2007.
8. TXL. About TXL. Online, http://www.txl.ca/nabouttxl.html, 2007.
9. W3. XSL Transformations. Online, http://www.w3.org/TR/xslt, 2007.


