
Slicing the Three-layer Architecture:

A Semantic Foundation for Behavioural
Specification

Michelle L. Crane

Queen’s University, Kingston, Ontario, Canada

Abstract. We outline a research proposal whose overall goal is to con-
tribute to the definition of a formal semantics for UML, and indeed visual
behavioural modelling languages in general. Specifically, we aim to val-
idate the three-layer semantic architecture, used as a way of explaining
the behavioural semantics of UML. The validation includes a definition
of the semantics of UML actions and activities, as well as a prototype
interpreter.

1 Motivation

Languages are used for the communication of ideas. This communication be-
comes compromised when the various participants in the communication do not
fully understand, or agree upon, the semantics of the language. Visual mod-
elling languages, especially those using common elements, such as text boxes
and connecting arrows, can be very susceptible to this kind of miscommuni-
cation. Consider, for instance, that a state machine diagram could have three
different interpretations, depending on the formalism used to interpret it [5].

It is important to formally, i.e., precisely and unambiguously, define the se-
mantics of visual modelling languages. Developers must understand the seman-
tics of the language being used in order to communicate with users and other
developers. Tool vendors must understand the semantics of the language so that
their tools support the same semantics understood by developers. In addition to
automatic manipulation, transformation and analysis of models, tool interoper-
ability is becoming more important in Model Driven Development (MDD). Tool
chains, composed of tools created by different vendors, are linked together to
provide customized solutions for developers. These tools must be able to com-
municate with each other, i.e., they must use a common semantics.

Although visual modelling languages are becoming increasingly widespread,
formally defining their semantics has proven difficult. There are several reasons
why it is harder to define the semantics of visual languages than textual ones:

– Visual languages are two-dimensional, unlike a sequence of characters. There
are many factors of a diagram that might or might not be relevant to its
meaning, such as proximity of elements to each other, size/shape/colour of
elements/lines/arrowheads, etc.



– There is a tendency for people, including developers, to view diagrams as
merely “doodles” [6], increasing the likelihood that syntactic and semantic
constraints are violated.

– Many visual languages make use of common elements, e.g., text boxes, ar-
rows, etc. Because these constructs are so common, there may be a tendency
for readers to automatically assume that they understand the language.

A language is defined by its notation (syntax), together with the meaning of
syntactic elements (semantics). This meaning is expressed by mapping the syn-
tax to a semantic domain [6], usually one that is well-understood. The Unified
Modeling Language (UML) is a “general-purpose visual modeling language” [11]
that can be used in the analysis and design of software systems. Although well-
documented (over 1000 pages of specification), UML does not yet have a formal
semantics. The abstract syntax is carefully laid out in the specification, but the
meaning of the syntactic elements is discussed in prose, with a smattering of Ob-
ject Constraint Language (OCL) constraints. The run-time semantics of UML is
defined as a “mapping of modelling concepts into corresponding execution” [10].
This semantics is not formally defined in the UML specification [10]. Instead,
the specification outlines a three-layer semantics architecture, which “identifies
key semantic areas...and how they relate to each other” [10].

This three-layer architecture is shown in Fig. 1. Each layer depends on those
below it, but not vice versa. The bottom layer represents the structural foun-
dations of UML, including concepts such as values, objects, links, messages,
etc. The middle layer is the behavioural base, which contains mechanisms for
individual object behaviour, as well as behaviour between objects. More impor-
tantly, this base also contains the description of a set of UML actions. The top
layer represents different behavioural specifications in UML, all of which rely on
the behavioural base. For instance, activities, state machines, and interactions
all make use of the actions in order to express behaviour. These actions are
explained in terms of constructs in the structural foundations.

Structural FoundationsActionsBehavioural BaseActivities InteractionsState Machines
Fig. 1. The UML semantics layers: the Semantics Foundation consists of the bottom
two layers

The key to this architecture lies in the middle layer, i.e., actions. A funda-
mental premise of UML behavioural semantics is the assumption that “all be-
haviour...is ultimately caused by actions” [10]. Actions are “fundamental units of



behaviour” [10]. As an analogy, actions are comparable to “executable instruc-
tions in traditional programming languages” [10].

The advantage of this approach to defining the run-time semantics is the fact
that once UML actions are clearly mapped to the structural foundation, it should
be relatively easy to define the semantics of different behavioural formalisms.

The three-layer architecture, recently added to UML, has been neither elabo-
rated nor validated. It appears to provide an appealing skeletal framework; how-
ever, essential pieces are still missing before it can be leveraged for the definition
of a formal semantics for behavioral specification in UML. There is no formal
specification of the structural foundations. There is no clear mapping of UML
actions to that foundation. Finally, there is no clear mapping from behavioural
formalisms to individual actions.

2 Research Hypothesis and Proposed Solution

Hypothesis: The layered semantic architecture is a valid approach for formally
defining and implementing behavioural semantics in UML.

We propose to demonstrate the validity of this hypothesis by accomplishing
the following tasks:

1. Model the System Model (see Section 3) as a set of UML classes and imple-
ment in Java. These classes can be instantiated to create a specific System
Model instance, which is a large state machine. Progress: 65% complete.

2. Define a formal semantics for the behaviour of individual UML actions. The
semantics will be axiomatic; pre- and post-conditions will be defined on
the structural foundations described by the System Model. Progress: 15%
complete.

3. Model individual actions as UML classes, and implement in Java; the actions
will cause changes of state in the System Model’s state machine. Progress:
5% complete.

4. Define a formal semantics for the behaviour of a subset of UML activi-
ties. The semantics will be operational; the execution of activities will be
described in terms of the execution of individual actions. Progress: 5% com-
plete.

5. Model the subset of activities as UML classes, and implement in Java; activ-
ities will be used to combine individual activities into behaviours, which will
cause sequences of changes to the System Model’s state machine. Progress:
0% complete.

6. Implement a basic prototype activity/action “virtual machine/interpreter”,
based on the formal semantics. This phase will include the description of a
simple surface language for activities. Progress: 15% complete.

7. Look for problems with, or potential improvements to: the three-layer archi-
tecture, the current specification of actions and activities, and the System
Model. Progress: 5% complete.



3 Related Work

The System Model [2–4] was created as the “basis for a semantic model for
UML 2.0”; its goal is to represent the structural foundations of UML (lowest
layer of the three-layer semantic architecture from Fig. 1). The System Model
is described in a precise fashion, using mathematics, specifically, sets, relations,
and functions. By choosing pure mathematics to describe UML, the authors
have aimed to avoid limitations or biases inherent in other formal specification
formalisms.

One of the basic premises of UML semantics is that all behaviour is “ulti-
mately caused by actions” [10]. Actions were originally introduced into UML 1.5,
and in UML 2.0 activities were brought more in line with these actions to pro-
duce a more procedural model [11]. UML 2 includes 45 primitive actions to
model the manipulation of objects and links, model communication, and model
computation [11]. Because UML actions are relatively new, there is little current
research on formally defining their semantics. One of the best sources of infor-
mation about UML actions is a series of articles by Conrad Bock (see [1]), which
explain (in natural language) how actions should execute. Research is currently
being performed on the concept of executable UML (xUML) [9], focusing on
determining a subset of UML, including actions, that could be used to create
executable models.

In UML, an activity “represents the execution of a computation” [11]. Defin-
ing the semantics of UML activities is a vibrant research area; although the fact
that activities substantially changed with the introduction of UML 2 narrows
the field somewhat. However, there has been research on defining the seman-
tics of UML 2 activities based on several formalisms, such as Abstract State
Machines [12], Petri nets [13], dynamic meta modelling [7], etc.

Our work can also be compared to other research that executes activity
diagrams. ActiveChartsIDE [12] is a particularly well-developed project (using
Microsoft Visio, Visual Basic, and C#), with an interpreter that allows the
simulation and debugging of activity diagrams. Another project is a plug-in for
IBM’s Rational Software Architect, which permits the animation and debugging
of activity diagrams [8]. Neither of these two approaches make use of the UML
actions as fundamental units of behaviour. As of yet, there are no published
accounts on the formal semantics of individual UML actions.

4 Contributions

The proposed research advances the field of formal semantics of UML in the
following ways:

1. Modelling and implementing the System Model will allow us to find in-
consistencies, ambiguities and gaps in both the System Model and UML
specification, as well as determine if the System Model is over-specified.

2. We will define a formal semantics for (a majority of) UML actions.



3. We will define a formal semantics for basic UML activities, including those
containing sequential composition, fork/join, and decision/merge nodes.

4. An interpreter of a subset of actions and activities will be created. This
interpreter will implement the formal semantics of actions and activities.

5. We will examine the thesis that the three-layer architecture is a suitable
framework for defining the behavioural semantics of UML. By creating our
prototype implementation, we will demonstrate that the architecture is valid.

5 Conclusion

The overall goal of this research is to contribute to the definition of a formal
semantics for UML, specifically UML actions and activities. When complete,
our results will be forwarded to the authors of the System Model, as well as
the authors of the actions and activities chapters of the UML specification, in
order to improve those documents. In addition, we will also submit our results
to conferences related to modelling and formal semantics.

References

1. C. Bock. UML 2 activity and action models, part 6: Structured activities. Journal
of Object Technology, 4(4):43–66, 2005.

2. M. Broy, M.V. Cengarle, and B. Rumpe. Semantics of UML – Towards a System
Model for UML: The Structural Data Model. Tech. Report TUM-I0612, TUM,
2006.

3. M. Broy, M.V. Cengarle, and B. Rumpe. Semantics of UML – Towards a System
Model for UML: The Control Model. Tech. Report TUM-I0710, TUM, 2007.

4. M. Broy, M.V. Cengarle, and B. Rumpe. Semantics of UML – Towards a System
Model for UML: The State Machine Model. Tech. Report TUM-I0711, TUM, 2007.

5. M.L. Crane and J. Dingel. UML vs. classical vs. Rhapsody statecharts: not all
models are created equal. Software and Systems Modelling, 2007. Online first
DOI: 10.1007/s10270-006-0042-8.

6. D. Harel and B. Rumpe. Meaningful modeling: What’s the semantics of “seman-
tics”? IEEE Computer Magazine, 37(10):64–72, 2004.

7. J.H. Hausmann. Dynamic Meta Modeling. PhD thesis, University of Paderborn,
Oct 2005.

8. A. Kirshin and D. Dotan. UML model simulator. Poster handout at MoDELS
2006, Oct 2006.

9. OMG. Semantics of a foundational subset for executable UML models. Initial
Submission ad/06-05-02, 2006.

10. OMG. Unified Modeling Language: Superstructure version 2.1. Document ptc/06-
01-02, Object Management Group, Jan 2006.

11. J. Rumbaugh, I. Jacobson, and G. Booch. The Unified Modeling Language Refer-
ence Manual. Addison-Wesley, second edition, 2005.

12. S. Sarstedt, J. Kohlmeyer, A. Raschke, M. Schneiderhan, and D. Gessenharter. Ac-
tiveChartsIDE. Poster at the European Conference on Model Driven Architecture
(ECMDA 2005), Nov 2005.

13. H. Störrle and J. Hausmann. Towards a formal semantics of UML 2.0 activities. In
Proceedings German Software Engineering Conference, volume P-64 of LNI, pages
117–128, 2005.


