
Prototyping Object Speci�cations Using the CO-Nets Approach

Nasreddine Aoumeur Stefan Conrad Gunter Saake

ITI, FIN, Otto-von-Guericke-Universit�at Magdeburg
Postfach 4120, D{39016 Magdeburg

E-mail: faoumeur|conrad|saakeg@iti.cs.uni-magdeburg.de

Abstract

The CO-Nets approach, that we are developing, is an object oriented Petri net-based
framework for specifying as well as prototyping|through graphical animation accompanied
by a concurrent computation based on its semantics expressed in rewriting logic|distributed
information systems. Taking bene�ts of these (validation) capabilities, we presents how pro-
totyping and implementation of systems speci�ed using widely accepted information sys-
tems languages, namely the Troll language, can be directly drawn up. This is mainly
achieved through an intuitive translation of such speci�cations into the CO-Nets approach
where graphical animation and formal computation are carried out. Moreover, because of
the capabilities of the CO-Nets approach for conceiving such systems as autonomous but
yet cooperative components, it becomes semantically sound to enrich these languages with
syntactical constructions for more modularity leading to more e�cient rapid-prototyping.

1 Introduction

Characterized as being open and reactive systems with large databases and application pro-
grams, information systems are ubiquitous in most of existing organizations. With the aim
of specifying and afterwards implementing (and maintaining) them accurately, very promising
object speci�cation languages have been forwarded in the last decade. They include particu-
larly Albert [DB95], LCM [FW93] and Troll [JSHS96]. These languages allow for naturally
conceiving such systems as a community of interacting objects related by di�erent abstractions
mechanisms including specialization, object composition and aggregation.

However, on the one hand, most of these languages are highly declarative and then lack
for an intrinsic operational semantics that allows for bridging the gap between the speci�cation
and its corresponding implementation through an e�cient rapid-prototyping of the speci�cation.
Indeed, besides of being a crucial step towards a correct, secure and e�cient implementation, the
prototyping phase also allows for checking and then correcting the speci�cation against missing,
errors due to misunderstanding between the speci�er and the user in a very early phase of the
system development. On the other hand, most of these languages according to their associated
semantics deal only poorly with the distribution|that has to be reected by the exhibition
of intra- as well as inter-object true concurrency with synchronous as well as asynchronous
communication| and modularity as a way of composing di�erent system components without
a�ecting their internal behaviour.

With the aim to contribute to these challenging aspects, we are developing an adequate
object-oriented Petri net-based framework for specifying and validating distributed information
systems regarded as autonomous and cooperative components. Referred to as CO-Nets, the
model is based on a complete and sound integration of the OO concepts and constructions into
an appropriate variant of algebraic Petri nets. Particular to the CO-Nets approach, we mainly
cite: its semantics that is expressed in rewriting logic [Mes92], which allows a formal and true
concurrent computation using rewriting techniques; its capability of modeling classes rather as
modules with local features (including structure and behaviour) that are hidden to other classes

1

and observed, external features as interface for communicating with the environment and other
classes; the straightforward modeling of di�erent forms of inheritance (i.e. simple, multiple,
with overriding and with associated polymorphism and dynamics binding) leading to the notion
of component as a hierarchy of classes. Such components behave w.r.t. an intra-component
evolution pattern that enhances intra- as well as inter-object concurrency. For interaction of such
components through their interfaces, leading to complex systems, a suitable inter-component
interaction pattern is proposed, that promotes (intra- and inter-object) concurrency and keeps
encapsulated all local features of the interacting components.

The present work describes �rst steps on how (distributed) information systems, speci�ed
in one of the mentioned languages, particularly the Troll language, can be easily validated
using the CO-Nets capabilities, namely the graphical animation of the constructed nets with a
formal computation based on concurrent rewriting techniques. This is mainly achieved through
a straightforward translation of such speci�cations into the CO-Nets approach. Moreover, for
e�ciently prototyping systems speci�ed in this language, we propose to improve the resulted
speci�cation by distinguishing between local and external features; and henceforth to enrich the
Troll language with new constructions for dealing with this modularity.

The rest of this paper is organized as follows: the second section presents a simpli�ed 'Bank'
object speci�cation using the Troll language. The main steps for translating Troll speci�ca-
tion into the CO-Nets approach are described in the third section, that we illustrate by the 'Bank'
example. In the fourth section, �rst we present how the object speci�cation have to be improved
in order to derive more e�cient prototypes, secondly we illustrate how concurrent computation
may be e�ciently achieved using a concrete object community. Some concluding remarks and
hints to our future work close this paper. However, we note that due to space limitation, for an
overview of the CO-Nets approach we advice the reader to consult [AS99a] and [AS99b] (that
is under :http://link.springer.de/link/service/series/0558/bibs/1626/16260381.htm)

2 Object Speci�cation : An Example

The example of object speci�cation, through which we discuss the translation into the CO-Nets,
consists in a small universe of discourse consisting of one or more bank objects and account
objects belonging to these banks. The speci�cation language we employ is the Troll language
Troll [JSHS96] which o�ers a wide spectrum of modeling concepts for describing structure
of objects as well as object dynamics. In this simpli�ed speci�cation, each object class is
characterized by the sort of its object identi�ers that follows the identi�cation clause, by the
list of its attributes identi�ers, that follows the attributes clause, with their corresponding types
and optionally initial, restricted or constant values. Finally, the di�erent events with their e�ect
and the condition that gouverns their application are described after the events clause.

object class Bank

identi�cation ByBankID: (Name, No) .

attributes

Name: string .

No: nat constant

restricted No>=1 and No<=99999999 .

components

Acct: Account set .

events

Open(BankName:string, BankNo:nat)

birth

changing Name := BankName,

No := BankNo .

OpenNewAccount(HID:|Customer|, AN:nat)

2

calling Account(Self, AccountNo).Open(Self, AN, HID)

changing Acct := insert(Acct, Account(Self, AN).Self) .

Transfer(AN1:nat, AN2:nat , M:money)

enabled in(Account(Self, AN1), Acct) and

in(Account(Self, AN2), Acct) and

M > 0.00

calling Account(Self, AN1).Withdrawal(M) ,

Account(Self, AN2).Deposit(M) .

end object class Bank

object class Account

identi�cation ByAccountID: (Bank, No) .

attributes

No: nat constant

restricted No>=1 and No<=99999999 .

Bank: |Bank| .

Holder: |Customer| .

Balance: money initialized 0.00 .

Interest: money initialized 0.00 .

Limit: money initialized 0.00

restricted Limit<=0.00 .

events

Open(BID:|Bank|, AN:nat, HID:|Customer|)

birth

changing Bank := BID,

No := AN,

Holder := HID .

Withdrawal(W:money)

enabled W >= 0.00 and Balance - W >= Limit

changing Balance := Balance - W .

Deposit(D:money)

enabled D >= 0.00

changing Balance := Balance + D .

IncreaseInterest(NI:Interest)

enabled Interest < NI .

changing Interest := NI .

end object class Account

3 Translating Object Speci�cation into CO-Nets

Because of the object oriented setting which the CO-Nets approach as well as the Troll are
based on, (OO) systems speci�ed usingTrollmay be translated in straightforward way into the
CO-Nets approach. Indeed, by �rmly respecting the Troll concepts that make no distinction
between local / hidden object (structural and behavioural) features and external / observed
ones1, the mainTroll concepts (that are addressed in the example) can be expressed in terms of
those of the CO-Nets following two steps: template signature translation and template behaviour
translation. These two steps are intrinsically related to the CO-Nets approach that makes a clear,
but yet coherent distinction between the structural aspects of a given template speci�cation and
the behavioural aspects that are captured by associating a (CO-) net.

Accordingly, the translation summarized in the table below can be made more explicit as
follows.

1We will see in the next section how such distinction, naturally supported by the CO-Nets approach, allows
for an optimal and e�cient prototyping

3

Template signature Translation : This concerns mainly the translation of attributes and
events declaration.

1. The di�erent attributes associated with a given Troll object class are directly spec-
i�ed as a (object state) term with adding to it the object identity declared in the
identi�cation clause. The possibilities of restricting, initializing or �xing some at-
tributes values have to be expressed as conditions in the transition associated with
the object creation.

2. With each event a message is associated. That is to say, just the identity of the
invoked object is added as a new argument to each action (name with all its other
arguments).

Template behaviour translation : Following the CO-Net approach, in addition to the object
place that has to contain the di�erent object state, with each event (now a message)
generator a corresponding place is associated. The behaviour of each event is captured by
an appropriate transition, where:

1. The place associated with this event is taken as input place, while the event (calling)
itself labels the corresponding input arcs;

2. The clause enabled is expressed either as conditions in this transition or as appropriate
instantiations in the label of the input arc from the object place ;

3. The changing clause is modeled as an appropriate labelling of the output arc that
goes to the object place.

4. Finally the calling clause is captured by output arcs labelled by the corresponding
called message and destinate to their associated (message) place.

Troll concepts Mapping to the CO-Nets concepts

Attributes Object state as term with addition of the identity

|constant As constant in the corresponding (algebraic) structure

|restricted, initialized as conditions in the net for object creation

events messages with expliciting the identity of the invoked object

| enabled Transition condition

| calling messages sent

| changing Transition e�ect

Example 3.1 By applying these translating ideas to our Bank speci�cation running example,
we result in the following two corresponding CO-Net template signatures and the associated
(interacted) (CO-)nets. For instance, in the Account template signature all the attributes
identi�ers (with their corresponding sorts) are gathered in the object state as term with adding
the identity to it. On the other hand, the four events respectively Open, Withdraw, Deposit and
IncreaseInterest are expressed as messages with adding to their arguments the object identity.

In the associated net, the four 'message' places corresponds to the four events declaration,
while the object place allows for capturing the Account object instances. Four transitions re-
ecting the behaviour of these events are conceived; where, the enabled condition is translated
into transition condition.

The modelling of the Bank template (and its corresponding class) are similarly constructed
except for two points: �rstly, as shown the �gure 1, the Bank description interacts directly with
the Account class by sending an appropriate message expressed in the calling clause of the
corresponding Troll speci�cation. Secondly, the test of the existence of the two accounts in the
transfer process is directly captured by the suitable form hBjACset : S1:AN1:S2:AN2:S3i; where

4

S1; S2; S3 are variables of sort list[nat] 2 constructed using the asso. comm. operator denoted by
':'3.

Remark 3.2 It is worth mentioning that for each transition, the input as well as the output
arcs are inscribed just by the relevant part of the invoked object state(s). For instance, in the
DEP(OSIT) transition only the attribute balance is invoked (i.e. hCjbal : V i in the input arc and
hCjbal : V +Mi in the output arcs). As it describes the next, this constitutes the key ideas for a
full exhibition of the intra- (and inter-) object concurrency .

obj Bank is

extending Class-structure .

protecting money list[nat] nat string.

sort Id.Bank Bank TRANSF OPEN-AC .

subsort Id.Bank < OId .

(* the Bank object state declaration *)

op h jBnM : ; BnN : ; AcSet : i: Id.Bank String nat List[nat] ! Bank

(* Messages declaration *) .

op OpenNwAc : Id.Bank ! OPEN-NAC

op Transfer : Id.Bank nat nat money ! TRANSFR

Vars AN, AN1, AN2 : nat ; S, S1, S2, S3 : List[nat] ; B : Id.Bank ; M : money endo.

obj Account is

extending Class-structure .

protecting money nat string Id.Bank Id.Customer interest

sort Id.Account Account

sort OPEN-AC WITHDRW DEPOSIT INTRS.

subsort Id.Account < OId .

(* the Bank object state declaration *)

op h jNo : ; bk : ; Hd : ; bal : ; Lmt : ; Ints : i: Id.Account nat Id.bank

Id.Customer money money Interest! Account

(* Messages declaration *) .

op OpenAc : Id.Account Id.Bank nat string! OPEN-AC

op Wdw : Id.Account money ! WITHDWR

op Dep : Id.Account money ! DEPOSIT

op IncI : Id.Account interest ! INTRS

vars H : Id.Customer ; C : Id.Account ; W, D , L : money ; I, NI : Interest

endo.

4 Animating and Validating the Translated Speci�cation

4.1 On the Improvement of Object Speci�cations

Following the CO-Nets semantics and the generic form of rewrite rules given in subsection 3.2, it
is not di�cult to generate the rewrite rules governing the behaviour of given CO-Net modelling an
object speci�cation (dynamic). However, for achieving an e�cient rapid-prototyping it is crucial
to take advantages of the CO-Nets approach in modeling (object) systems not as whole rather
as autonomous and interacting|exclusively through explicit interface| components, conceived
as a hierarchy of classes.

To be more precise, instead of generating directly all the rewrite rules associated with di�er-
ent transitions|as a behaviour of the whole system| and after performing formal computation

2Declared imported as protecting with all the other used data types.
3Detail of the corresponding algebraic speci�cation is omitted here(see, [Mes93] for instance).

5

.

. . . .

.

 ~

 M > 0

 TRANSF

Trsf(Bk,..)

. . . .
<B1 | MnB:DeutschB, NbB:12387,:...>

.

 BANK

B1
B2

. . . .

 <B | ACset : S>

The Behaviour Aspects of the BANK class

The Behaviour Aspects of the ACCOUNT class

 ACNT

 OPNAC

 OPEN
 TRSF

 WDR M > 0
 DEP

 True

OpenAc(Bk,..)

. . . .

. . . .

 NI > I

 Not (AN in S)

 <B.AN | No:N, Bnk:B, Hd:Hid, Bal:0.0,Lmt:0.0,Ints:0.0>

 B.AN

 B.AN

 Wdw(C,M) <C | Bal : B> Dep(C, D)

 IncI(C,NI)
 <C | Ints: I>

 <C | Ints: NI>

 <C | Bal: B - M, Lmt:L>

W > 0 and (B-W) >L

Dep(C1,..)
Wdw(Ci,..)

IncI(C1,..) <C | Bal : B + D>

 <C | Bal:B,Lm:L>

 OP-C
Bi.AN1

Bj.ANk

 OP-AC

 OpenAc(B, H, AN)

 OpenAc(B, H, AN)

 Wdw(B.AN1,M) Dep(B.AN2, M)

 Trsf(B, AN1, AN2,M)

 <B | ACset : S1.AN1.S2.AN2.S3>

 <B | ACset : S1.AN1.S2.AN2.S3>

 OpNwAc(B,H, AN)

 WDR

 DEP

 <B | ACset : S.AN>

<C1 | No:N1,Bk:DeutschB, Hid:12387,:...>

<C2 |No:N2, Bk:DresdenB, Hid: NbB:3892, ...>

<B2 |MNB:DresdenB, NbB:3892, ACset:C1,O:O1>

ACNT.ID

Figure 1: The Modelling of the Bank and Account Speci�cations Using CO-Net

on the basis of an initial community of object and message instances, �rst we propose to improve
the object speci�cation by making an explicit distinction between what is local to each class and
thus hidden to the outside from what can be exchanged (and eventually modi�ed) with other
classes. However, in most cases such distinction is not su�cient for completely respecting the
CO-Nets intra- and the inter-component patterns during the translation. Indeed, in the Troll
calling clause, it is quite possible to call event(s) declared in another class(es), which violates
the encapsulation property and thereby the intra-component evolution pattern. For this aim,
we propose to introduce (new) intermediate 'external' events that are responsible for calling
the 'external' events of other classes. A sketch of this operation may be illustarted as depicted
in the schema hereafter; where, for each event behaviour, we have to replace the list of called
(external) events (i.e. event1,. . ., eventk) by a new event (denoted here by New-event) of which
the behaviour is exactely the calling of these external events.

This Troll speci�cation rehabilitation has to be expressed in the corresponding CO-Nets
by the introduction of new places for such new (external) messages and the introduction of new
transitions for capturing their new behaviour (which is just the sending of messages). At the
same time we have to drop all the output arcs (associated with the events event1,. . ., eventk)
from the transition that reects the behaviour of 'event-name'. In this way, the resulting adapted
CO-Net respects both intra- and inter-component evolution and interaction pattern. In other
words, in the intra-component pattern only (external or internal) messages declared in the class
in question are participating in the evolution, while in the intra-component pattern only external
messages possibly from di�erent classes are participating in the communication.

6

object class Class-Name

...

events

event-name(pameters)

changing ...

calling event1(to other classes)

...

eventk(to other classes)

enabled ...

changing ...

...

=)

object class Class-Name

...

events

event-name(pameters)

changing ...

calling New-event(as external)

enabled ...

changing ...

...

New-event(pameters)

calling event1(parameters)

...

eventk(parameters)

The advantages of such distinction towards a more e�cient rapid-prototyping of the (im-
proved) object speci�cation may be highlighted as follows:

� The analysis of the behaviour of a given component (as a class in the simple case), by
concurrent rewriting and simultaneous graphical animation from a given initial compo-
nent community, is completely independent from the other components. The e�ciency
intervenes here by the limited number of manipulated rewriting rules (associated with the
transitions) compared to the case where the whole system (i.e. all the components) is
analyzed.

� The analysis of the communication and the e�ect of interaction between di�erent compo-
nents on the whole system is also achieved independently by taking into account only the
interface of each component.

Example 4.1 Following these guidelines, �rst we have to distinguish between the local and the
observed features in both components de�ned as classes|namely, the Bank and the Account
classes. For the observed attributes it is quite logical to conceive the Bank name|in the Bank
class| and the Account number in the class Account as observed attributes. For the messages,
however, as pointed out the declaration of three messages in the Account class, that the Bank
class address|namely, Open-Ac, Withdraw and Deposit| as external (i.e. imported), is no
more su�cient. In fact, even with this declaration the transitions OPEN as well as TRANSF
(in the Bank class) do not respect nor the intra-component neither the inter-component pattern
and thereby violate the encapsulation property. This is because both transitions include local
messages and at the same time external messages of other classes (here, the Account class).

In order to avoid this inconsistency, it su�ces to apply the extension described above. In this
case, as depicted in �gure 2, we have included two new messages named Open-OK and Transf-
OK. The second step consists in adding the respective 'external' transitions that should play
exactly the role of the dropped (output) arcs from the 'inconsistent' transitions. For instance,
the new 'external' transition TRANF allows for expressing any successful transfer by sending
the withdraw and deposit messages (that are both external).

4.2 Prototyping (Improved) Object Speci�cations: The example

Hereafter, �rst we derive the di�erent rewriting rules associated with both Bank and Account
classes as independent components as well as the rules gouverning their interaction. Then, using

7

 TRANSF

Trsf(Bk,..)

. . . .
<B1 | MnB:DeutschB, NbB:12387,:...>

<B2 |MNB:DresdenB, NbB:3892, CPset:C1,O:O1>

.

 BANK

. . . .

 <B | ACset : S>

. . . .

 ~

. . . .
. . . .

 True True

. . . .

The Strict Local Behaviour Aspects of the ACCOUNT class

 M > 0

The Interacted Behaviour Between the Two Clssaes

The Strict Internal Behaviour Aspects of the BANK class

.

 OP-OK

 OP-OK
 TRS-OK

PenAcv´(Bk,..) Wdw(Bk,..) Dep(Bk,..)

TrsfOk(Bk,..)

OpAcOk(Bk,..)

OpNwAc(Hid1..)

.

 ACNT

 M > 0
 DEP

 TRSF-OK

 TRSF

 OPEN-AC
 Not (AN in S)

 Wdw(C,W)

 WDR

 True

 <C | Bal : B + M>

. . . .

 NI > I

 <C | Ints : I>

 <C | Ints : NI>

IncI(AN1,..)

 INTR

 INTR
 OPENC

 OpNwAc(B, Hid, AN)

 OpAcOk(B, Hid, AN)

 <B.AN | No:N, Bnk:B, Hd:Hid, Bal:0,Lm:0, Ints:0>

 <C | Bal: B - W, Lm:L>

W > 0 and (B-W) >=L

 <C | Bal:B, Lmt:L>

 <C| Bal : B>

 Dep(C, D)

 IncI(C,NI)

 OPNAC

 <B | ACset : S.AN>

 <B | ACset : S1.AN1.S2.AN2.S3>

 <B | ACset : S1.AN1.S2.AN2.S3>
 Trsf(B, AN1, AN2,M)

 TrsfOk(B, AN1, AN2,M)

 TrsfOk(B, AN1, AN2,M)

 Wdw(B.AN1,M)

 DEP WDR
 OP-AC

Bi.AN1

Bj.ANk

 B.AN

 B.AN

 OpenAc(B, H, AN)

 OpAcOk(B, H, AN)

 OpenAc(B, H, AN)

 Dep(B.AN2, M)

<C1 | No:N1, IdB:B1, Hid:Stefan,Bal:10000,....>

<C2 | No:N2, IdB:B2, Hid:Nacer,..>

ACNT.ID

Figure 2: The Bank Speci�cation with Explicit interface.

a simpli�ed Account community we show how formal computation based on (intra-and inter
object) concurrent rewriting is achieved.

Example 4.2 By applying the general forms of rewrite rules, it is not di�cult to generate the
rules governing both Bank and Account classes as well as their interaction.

� The Behaviour of the Bank class

OPEN-AC: 4(OPNAC;OpNwAc(B;Hid;AN))
 (BANK; hBjACset : Si))
) (BANK; hBjACset : S:ANi))
 (OP �OK;OpAcOk(H;Ac)) if Not(AN 2 S)

TRSF: (BANK; hBjACset : S1:AN1:S2:AN2:S3i)
 (TRSF; Trsf(B;AN1; AN2;M))

) (BANK; hBjACset : S1:AN1:S2:AN2:S3i)
(TRSF�OK;TrsfOk(B;AN1; AN2;M))

if (M > 0)

� The Behaviour of the Account class

OPENC: (OP �AC;OpenAc(B;Hid;AN))
 (ACNT:ID; SetAC)
) (ACNT; hB:AN jNo : AN;Bnk : B;Hd : H;Bal : 0:0; Lmt : 0:0; Ints : 0:0i)

(ACNT:ID; SetAC �B:AN) if Not(B:AN 2 SetAC)

4The label corresponds to the transition identi�er.

8

WDR: (WDR;Wdr(C;W))
 (ACNT; hCjBal : B;Lmt : Li)
) (ACNT; hAcjBal : B �M;Lmt : Li) if (W > 0) ^ (B �W) � L

DEP: (DEP;Dep(C;D))
 (ACNT; hCjBal : Bi)
) (ACNT; hCjBal : B +Di) if (M > 0)

INTR: (INTR; IncI(C;NI))
 (ACNT; hCjInts : Ii)

) (ACNT; hCjInt : NIi) if (NI > I)

� The Interacted Behaviour of the Two classes

OP-OK: (OP �OK;OpAcOk(B;H;AN))) (OP �AC;OpenAc(B;H;AN))

TRSF-OK: (TRS �OK;TrsfOk(B;AN1; AN2;M))

) (WITHDW;Wdw(AN1;M))
 (DEP;Dep(AN2;M))

In order to show how such rewrite rules can be applied to an initial object community with
message instances), we restrict ourselves to a simpli�ed account community as depicted in �gure
3.

 ~

 DEP
 WDR

 True

 D > 0

 NI > I

 W > 0 and (B-W)>L

 OPENC

 B.AN

 B.AN

Wdw(b3.6,2000)
Wdw(b1.33,1000.)
Wdw(b4.2,8075.)

Dep(b2.12,500)

Dep(b2.20,5000)

IncI(b4.2,.15)

b1.33b2.12

b3.6
b2.20 b4.2

 Wdw(C,W) <C | Bal:B,Lmt:L>
 Dep(C, D)

 <C | Bal : B + D>

 <C | Ints:I>

 <C | Ints:NI>

 IncI(C,NI)

 <C | Bal: B - W, Lmt:L>

 ACNT

<b1.33| No:33,Bk:b1,Hid:h8,Bal:2000,Lm:0,Ints:0.1>

<b2.12| No:12,Bk:b2,Hid:h9,Bal:230,Lm:0,Ints:0.0>

<b3.6| No:6,Bk:b3,Hid:h6,Bal:90000,Lm:20,Ints:0.15>

<b2.20| No:20,Bk:b2,Hid:h0,Bal:80,Lm:0,Ints:0>
<b4.2| No:2,Bk:b4,Hid:h3,Bal:8080,Lm:10,Ints:0.1> <C | Bal : B>

 DEP
 WDR

 OP-AC

 OpenAc(B, H, AN)

 <B.AN | No:AN, Bnk:B, Hid:H, Bal:0.0,Lmt:0.0,Ints:0.0>

 INTR

 INTR

A Concrete Initial ACCOUNT Community

OpenAc(b2,h4,20)

OpenAc(b1,h7,50)

OpenAc(b2,h1,15,)

IncI(b2.20,.01)
IncI(b3.6,0.1)

ACNT.ID

Figure 3: A Simpli�ed (initial) Account Community.

This CO-Net initial state corresponds formally to:
(OP�AC;OpenAc(b1; h1; 50)�OpenAc(b2; h3; 15)�OpenAc(b2; h4; 20))
(WDR;Wdr(b3:6; 2000)�

Wdr(b1:33; 1000)�Wdr(b4:2; 8075))
(DEP;Dep(b2:12; 50)�Dep(b2:20; 5000))
(INTR; IncI(b4:2; 0:15)�

IncI(b2:20; 0:1))
(ACNT:ID; b2:12�b1:33�b3:6�b2:20�b4:2)
(ACNT; hb1:33jNo : 33; Bk : b1; Hid :

h8; Bal : 2000; Lmt : 0; Ints : 0:1i � hb2:12jNo : 12; Bk : b2; Hid : h9; Bal : 230; Lmt : 0; Ints :

0:1i � hb3:6jNo : 6; Bk : b3; Hid : h6; Bal : 90000; Lmt : 20; Ints : 0:15i � hb2:20jNo : 20; Bk : b2; Hid :

h0; Bal : 80; Lmt : 0; Ints : 0:1i � hb4:2jNo : 2; Bk : b4; Hid : h3; Bal : 8080; Lmt : 10; Ints : 0:1i)

Using the associativity and the commutativity of both � and
 and the splitting/merging axiom,
we will deduce the CO-Net state depicted in �gure 4 by just one-step concurrent R-rewrite|
by exhibiting several intra- and inter-object concurrency.
First we should 'split' the di�erent object states in the place ACNT w.r.t. the left hand sides of
the corresponding rewrite rules. This yields the following sub-state :

(ACNT; hb1:33jNo : 33; Bk : b1; Hid : h8; Ints : 0:1i � hb1:33jBal : 2000; Lmt : 0i � hb2:12jNo :

12; Bk : b2; Hid : h9; Lmt : 0; Ints : 0:1i � hb2:12jBal : 230i � hb3:6jNo : 6; Bk : b3; Hid : h6; Ints :

0:15i � hb3:6jBal : 90000; Lmt : 20i � hb2:20jNo : 20; Bk : b2; Hid : h0; Lmt : 0i � hb2:20jBal :

80i � hb2:20jInts : 0:1i � hb4:2jNo : 2; Bk : b4; Hid : h3; Bal : 8080; Lmt : 10; Ints : 0:1i � hb4:2jBal :

8080; Lmt : 10i � hb4:2jInts : 0:1i)

9

Now using the distribution law of the
 over � and their communicative properties, we ob-
tain the following equivalent OB-Net state:

(OP �AC;OpenAc(b2; h1; 12))
 (OP �AC;OpenAc(b1; h3; 34))
 (OP �AC;OpenAc(b2; h4; 20))

(ACNT:ID; b2:12�b1:33�b3:6�b2:20�b4:2)
(WDR;Wdr(b3:6; 2000))
(ACNT; hb3:6jBal : 90000; Lmt :

20i)
 (WDR;Wdr(b1:33; 2000))
 (ACNT; hb1:33jBal : 20000; Lmt : 0i)
 (WDR;Wdr(b4:2; 8075))

(ACNT; hb1:33jBal : 8080; Lmt : 0:1i)
(DEP;Dep(b2:12; 500))
(ACNT; hb2:12jBal : 230i)
(DEP;Dep(b2:20; 5000))

(ACNT; hb2:20jBal : 80i)
(INTR; IncI(b4:2; 0:15))
(ACNT; hb4:2jInts : 0:1i)
(INTR; IncI(b2:20; 0:01))

(ACNT; hb2:20jInts : 0i)

(ACNT; hb1:33jNo : 33; Bk : b1; Hid : h8; Ints : 0:1i � hb2:12jNo : 12; Bk :

b2; Hid : h9; Lmt : 0; Ints : 0:1i � hb3:6jNo : 6; Bk : b3; Hid : h6; Ints : 0:15i � hb2:20jNo : 20; Bk :

b2; Hid : h0; Lmt : 0i � hb4:2jNo : 2; Bk : b4; Hid : h3i5)

By concurrently applying the rewrite rules associated with the Account class using the replace-
ment inference rule (of the rewriting logic [Mes92], see the Appendix) to di�erent sub-terms
dealing either with the same object state like the withdraw with the increase of interest of the
object b4:2 and the deposit with the increase of interest of the object b2:20 or di�erent object
states, we obtain directly the �nal state|after 'merging' the di�erent object states| as depicted
in the right hand side of �gure 4.

(OP �AC;OpenAc(b2; h4; 20)6)
 (ACNT:ID; b2:12� b1:33� b3:6� b2:20� b4:2� b2:15� b1:50)

(WDR;Wdr(b4:2; 8075))
 (INTR; IncI(b3:6; 0:1))(ACNT; hb1:33jNo : 33; Bk : b1; Hid : h8; Bal :

1000; Lmt : 0; Ints : 0:1i � hb2:12jNo : 12; Bk : b2; Hid : h9; Bal : 730; Lmt : 0; Ints : 0:1i � hb3:6jNo :

6; Bk : b3; Hid : h6; Bal : 89000; Lmt : 0:15; Ints : 0:15i � hb2:20jNo : 20; Bk : b2; Hid : h0; Bal :

5080; Lmt : 0; Ints : 0:2i � hb2:15jNo : 15; Bk : b4; Hid : h3; Bal : 0; Lmt : 0; Ints : 0i � hb1:50jNo :

50; Bk : b4; Hid : h3; Bal : 0; Lmt : 0; Ints : 0i)

 ~

 DEP
 WDR D > 0

 IncI(AN,NI)

 NI > I

 W > 0 and (B-W)>L

 OPENC

 B.AN

b1.33b2.12

b3.6
b2.20 b4.2

b2.15

b1.50

IncI(b3.6,.1)

 <C | Bal:B,Lmt:L>

 <C | Bal: B - W, Lmt:L>

 <C | Bal : B>
 Dep(C, D)

 <C | Bal : B + D>

 <C | Ints:I>

 <C | Ints:NI>

 WDR

 OP-AC

<b2.15| No:15,Bk:b2,Hid:h1,Bal:0.0,Lm:0,Ints:0>
<b1.50| No:50,Bk:b1,Hid:h7,Bal:0,Lm:0,Ints:0>
<b1.33| No:33,Bk:b1,Hid:h8,Bal:1000,Lm:0,Ints:0.1>

<b2.12| No:12,Bk:b2,Hid:h9,Bal:730,Lm:0,Ints:0.0>

<b3.6| No:6,Bk:b3,Hid:h6,Bal:89000,Lm:20,Ints:0.15>

<b4.2| No:2,Bk:b4,Hid:h3,Bal:8080,Lm:10,Ints:0.15>
<b4.2| No:2,Bk:b4,Hid:h3,Bal:8080,Lm:10,Ints:0.1>

 OpenAc(B, H, AN)

 B.AN

 Wdw(C,W)

 <B.AN | No:AN, Bnk:B, Hid:H, Bal:0.0,Lmt:0.0,Ints:0.0>

 True

 DEP

 INTR

 INTR

A Concrete Final ACCOUNT Community

<b2.20| No:20,Bk:b2,Hid:h0,Bal5080,Lm:0,Ints:0.1>

OpenAc(b2,h4,20)

Wdw(b4.2,8075)

 ACNT

ACNT.Id

Figure 4: The Final state of the simpli�ed Account community

5 Conclusion

The prototyping phase in developing (distributed) information systems, following an object
oriented approach, is one of the crucial tasks for bridging the gap between a reliable object
speci�cation and secure and e�cient implementation of such systems. Aiming to signi�cantly
contribute for achieving this di�cult task, we proposed in this paper a two-steps approach

5The non invoked parts of di�erent object states in the e�ect of messages.
6Because the object state identi�ed by b2:20 already exists.

10

based on two formal frameworks. Firstly, information systems are speci�ed using widely ac-
cepted object speci�cation languages, namely the Troll language, which propose a variety
of constructions and abstraction mechanisms. Secondly, the resulted speci�cation is translated
into the CO-Nets approach, an appropriate object Petri net-based model that we are developing,
where animation and concurrent formal computation is achieved using advantages of Petri nets
and the CO-Nets semantics based on rewriting logic.

The proposed translation from object speci�cation into CO-Nets, that we have illustrated
through a simpli�ed example, was shown to be natural and straightforward. Moreover, for
e�ciently rapid-prototyping the resulted CO-Net speci�cation, we have proposed to enhance
the original object speci�cation by distinguishing between local and external features of each
class composing the speci�cation. It allowed us particularly to derive (intra- and inter-object)
true concurrent formal computation, based on rewriting techniques, visualized by simultaneous
graphical animation for each class separately. On the other hand, the interaction between the
di�erent class is validated without violating the (explicitly declared as) encapsulated features of
each classes which allows to easily understand the di�erent interaction between the components.

However, due to the increasing in size and space complexity of real-world applications, we
are conscious that after this �rst step much work remains ahead. Firstly, we have to generalize
the proposed CO-Nets approach for dealing with all constructions in object speci�cations and
particularly in-large abstractions mechanisms (like specialization and aggregation). Secondly,
more complex case studies have to be undertaken in order to �nd out the di�erent sorts of errors
and missing that can be detected by the proposed prototyping. Besides that, we are working for
a more advanced version of CO-Nets that allows for dealing with 'run-time' evolution of object
speci�cation as it has been shown for Troll speci�cations using the evolving temporal logic
[CRSS98].

References

[AS99a] N. Aoumeur and G. Saake. Towards a New Semantics for Mondel Speci�cations Based on the
CO-Nets Approach. In J. Desel and K. Pohl and P. Schuerr, editor, Proc. of Modellierung'99,
pages 107{122, Karlsrule, Germany, March 1999. B.G. Teubner-Verlag.

[AS99b] N. Aoumeur and G. Saake. Towards an Object Petri Nets Model for Specifying and Validating
Distributed Information Systems. In M. Jarke and A. Oberweis, editors, Proc. of the 11th

Int. Conf. on Advanced Information Systems Engineering, CAiSE'99, Heidelberg, Germany,
volume 1626, pages 381{395, Berlin, 1999. Springer-Verlag.

[CRSS98] S. Conrad, J. Ramos, G. Saake, and C. Sernadas. Evolving Logical Speci�cation in Information
Systems. In J. Chomicki and G. Saake, editors, Logics for Databases and Information Systems,
chapter 7, pages 199{228. Kluwer Academic Publishers, Boston, 1998.

[DB95] P. Du Bois. The Albert II Language: On the Design and the Use of a Formal Speci�cation

Language for Requirements Analysis. PhD thesis, Computer Department, University of Namur,
Namur(Belgique), September 1995.

[FW93] R. B. Feenstra and Wieringa. LCM 3.0: A Language for describing Conceptual Models. Tech-
nical report, Faculty of Mathematics and Computer Science, Vrije Universiteit Amsterdam,
1993.

[JSHS96] R. Jungclaus, G. Saake, T. Hartmann, and C. Sernadas. Troll { A Language for Object-
Oriented Speci�cation of Information Systems. ACM Transactions on Information Systems,
14(2):175{211, April 1996.

[Mes92] J. Meseguer. Conditional rewriting logic as a uni�ed model for concurrency. Theoretical

Computer Science, 96:73{155, 1992.

[Mes93] J. Meseguer. A Logical Theory of Concurrent Objects and its Realization in the Maude
Language. Research Directions in Object-Based Concurrency, pages 314{390, 1993.

11

