
CADE-21
The 21

st Conference on Automated Deduction

4th International Verification Workshop
VERIFY’07

Editor:

Bernhard Beckert

Bremen, Germany, July 15–16, 2007

CADE-21 Organization:

Conference Chair: Michael Kohlhase (Jacobs University Bremen)
Program Chair: Frank Pfenning (Carnegie Mellon University)

Workshop Chair: Christoph Benzmüller (University of Cambridge)
Local Organization: Event4 Event Management

II

Preface

The VERIFY workshop series aims at bringing together people who are in-
terested in the development of safety and security critical systems, in formal
methods, in the development of automated theorem proving techniques, and in
the development of tool support. Practical experiences gained in realistic veri-
fications are of interest to the automated theorem proving community and new
theorem proving techniques should be transferred into practice. The overall ob-
jective of the VERIFY workshops is to identify open problems and to discuss
possible solutions under the theme “What are the verification problems? What
are the deduction techniques?”.

This volume contains the research papers presented at the 4th International

Verification Workshop (VERIFY’07) held July 15–16, 2007 in Bremen, Germany.
This workshop was the 4th in a series of international meetings since 2002. It
was affiliated with the 21st Conference on Automated Deduction (CADE-21).

Each paper submitted to the workshop was reviewed by three referees, and
an intensive discussion on the borderline papers was held during the online
meeting of the Program Committee. 13 research papers were accepted based on
originality, technical soundness, presentation, and relevance. I wish to sincerely
thank all the authors who submitted their work for consideration. And I would
like to thank the Program Committee members and other referees for their great
effort and professional work in the review and selection process. Their names are
listed on the following pages.

In addition to the contributed papers, the program included three excellent
keynote talks. I am grateful to Prof. Cesare Tinelli (The University of Iowa,
USA), Prof. Tobias Nipkow (TU München, Germany), and Prof. Aaron Stump
(Washington University in St. Louis, USA) for accepting the invitation to address
the workshop.

July 2007 Bernhard Beckert

IV

V

Program Chair and Organiser

Bernhard Beckert University of Koblenz-Landau, Germany

Program Committee

Serge Autexier DFKI & University Saarbrücken, Germany
Yves Bertot INRIA Sophia Antipolis, France
Bruno Dutertre SRI International, USA
Reiner Hähnle Chalmers University, Gothenburg, Sweden
Dieter Hutter DFKI Saarbrücken, Germany
Andrew Ireland Heriot-Watt University, Edinburgh, UK
Deepak Kapur University of New Mexico, USA
Joost-Pieter Katoen RWTH Aachen, Germany
Joseph Kiniry University Dublin, Ireland
Heiko Mantel RWTH Aachen, Germany
Fabio Massacci University of Trento, Italy
Stephan Merz INRIA Lorraine, France
Till Mossakowski University of Bremen, Germany
Lawrence C. Paulson University of Cambridge, UK
Wolfgang Reif University of Augsburg, Germany
Julian Richardson Powerset Inc., USA
Luca Viganò University of Verona, Italy
Christoph Walther TU Darmstadt, Germany

Steering Committee

Serge Autexier DFKI & University Saarbrücken, Germany
Heiko Mantel RWTH Aachen, Germany

Additional Referees

Dominik Haneberg
Holger Grandy
Kurt Stenzel

VI

Table of Contents

Invited Talks

Reflecting Linear Arithmetic: From Dense Linear Orders to Presburger
Arithmetic . 1
Tobias Nipkow

Lightweight Verification with Dependent Types . 2
Aaron Stump

Trends and Challenges in Satisfiability Modulo Theories 3
Cesare Tinelli

Research Papers

Formal Device and Programming Model for a Serial Interface 4
Eyad Alkassar, Mark Hillebrand, Steffen Knapp, Rostislav Rusev,

Sergey Tverdyshev

A Mechanization of Phylogenetic Trees . 21
Mamoun Filali

Combinations of Theories and the Bernays-Schönfinkel-Ramsey Class 37
Pascal Fontaine

ALICE: An Advanced Logic for Interactive Component Engineering 55
Borislav Gajanovic, Bernhard Rumpe

A History-based Verification of Distributed Applications 70
Bruno Langenstein, Andreas Nonnengart, Georg Rock, Werner Stephan

Symbolic Fault Injection . 85
Daniel Larsson, Reiner Hähnle

A Termination Checker for Isabelle Hoare logic . 104
Jia Meng, Lawrence C. Paulson, Gerwin Klein

The Heterogeneous Tool Set . 119
Till Mossakowski, Christian Maeder, Klaus Lüttich

Fully Verified JAVA CARD API Reference Implementation 136
Wojciech Mostowski

Automated Formal Verification of PLC Programs Written in IL 152
Olivera Pavlovic, Ralf Pinger, Maik Kollmann

VIII

Combining Deduction and Algebraic Constraints for Hybrid System
Analysis . 164
André Platzer

A Sequent Calculus for Integer Arithmetic with Counterexample
Generation . 179
Philipp Rümmer

Inferring Invariants by Symbolic Execution . 195
Peter H. Schmitt, Benjamin Weiß

Author Index . 211

Reflecting Linear Arithmetic:

From Dense Linear Orders to

Presburger Arithmetic

Tobias Nipkow

Institut für Informatik, Technische Universität München
http://www.in.tum.de/˜nipkow

Abstract

This talk presents reflected quantifier elimination procedures for both integer
and real linear arithmetic. Reflection means that the algorithms are expressed
as recursive functions on recursive data types inside some logic (in our case
HOL), are verified in that logic, and can then be applied to the logic itself. After
a brief overview of reflection we will discuss a number of quantifier elimination
algorithms for the following theories:

– Dense linear orders without endpoints. We formalize the standard DNF-based
algorithm from the literature.

– Linear real arithmetic. We present both a DNF-based algorithm extending
the case of dense linear orders and an optimized version of the algorithm by
Ferrante and Rackoff [3].

– Presburger arithmetic. Again we show both a naive DNF-based algorithm
and the DNF-avoiding one by Cooper [2].

We concentrate on the algorithms and their formulation in Isabelle/HOL, using
the concept of locales to allow modular definitions and verification. Some of the
details can be found in joint work with Amine Chaib [1].

References

1. A. Chaieb and T. Nipkow. Proof synthesis and reflection for linear arithmetic. Technical report,
Institut für Informatik, Technische Universität München, 2006. Submitted for publication.

2. D. Cooper. Theorem proving in arithmetic without multiplication. In B. Meltzer and D. Michie,
editors, Machine Intelligence, volume 7, pages 91–100. Edinburgh University Press, 1972.

3. J. Ferrante and C. Rackoff. A decision procedure for the first order theory of real addition with
order. SIAM J. Computing, 4:69–76, 1975.

Lightweight Verification with Dependent Types

Aaron Stump

Computer Science and Engineering Dept.
Washington University in St. Louis

Abstract

Dependent types, studied for many years in Logic, have recently been gaining
attention in Functional Programming Languages for expressing rich properties as
types. A simple example is a type 〈list A n〉, for lists of length n holding objects
of type A. A more complex example is 〈trm G T 〉, for terms in some object
language which have object-language type T in context G. Dependently typed
programming languages seek to support static verification of code manipulating
such data types, by statically enforcing the constraints the data types impose.
The verification is lightweight in the sense that the aim is typically to verify
preservation of datatype properties, rather than full functional specifications of
programs.

This talk will explore dependently typed programming in the context of
Guru, a new dependently typed programming language under development at
Washington University in St. Louis. Guru lifts the restriction to terminating
programs which is commonly required by dependently typed programming lan-
guages (such as Coq, Epigram, and ATS, to name just a few). This is done by
the novel technical feature of strictly separating program terms from proofs, and
types from formulas, thus going counter to the commonly used Curry-Howard
isomorphism. We will consider dependently typed programming in Guru via sev-
eral examples: tree operations which are statically verified to preserve the binary
search tree property, and compilation of simply typed object programs which is
statically verified to preserve the programs’ object-language type.

Trends and Challenges in

Satisfiability Modulo Theories

Cesare Tinelli⋆

Department of Computer Science

The University of Iowa

tinelli@cs.uiowa.edu

Abstract

Satisfiability Modulo Theories (SMT) is concerned with the problem of deter-
mining the satisfiability of first-order formulas with respect to a given logical
theory T . A distinguishing feature of SMT is the use of inference methods tai-
lored to the particular theory T . By being theory-specific and restricting their
language to certain classes of formulas (such as, typically but not exclusively,
ground formulas), such methods can be implemented into solvers that are more
efficient in practice than general-purpose theorem provers. SMT techniques have
been traditionally developed to support deductive software verification, but they
have also applications in model checking, certifying compilers, automated test
generation, and other formal methods.

This talk gives an overview of SMT and its applications, and highlights
some long-standing challenges for a wider applications of SMT techniques within
formal methods, as well as some fresh challenges introduced by new potential
uses. A major challenge is providing adequate model generation features for
disproving verification conditions.

⋆ The author’s research described in this talk was made possible with the partial support of grants

#0237422 and #0551646 from the National Science Foundation and a grant from Intel Corporation.

Formal Device and Programming Model
for a Serial Interface

Eyad Alkassar1,?, Mark Hillebrand2,?, Steffen Knapp1,?,
Rostislav Rusev1,?, and Sergey Tverdyshev1,?

1 Saarland University, Dept. of Computer Science, 66123 Saarbrücken, Germany
{eyad, sknapp, rusev, deru}@wjpserver.cs.uni-sb.de

2 German Research Center for Artificial Intelligence (DFKI GmbH), Stuhlsatzenhausweg 3, 66123 Saarbrücken,
Germany

mah@dfki.de

Abstract. The verification of device drivers is essential for the pervasive verification of an oper-
ating system. To show the correctness of device drivers, devices have to be formally modeled. In
this paper we present the formal model of the serial interface controller UART 16550A. By com-
bining the device model with a formal model of a processor instruction set architecture we obtain
an assembler-level programming model for a serial interface. As a programming and verification
example we present a simple UART driver implemented in assembler and prove its correctness.
All models presented in this paper have been formally specified in the Isabelle/HOL theorem
prover.

1 Introduction

The Verisoft project [1] aims at the pervasive modeling, implementation, and verifica-
tion of complete computer systems, from gate-level hardware to applications running
on top of an operating system. The considered systems employ various devices, e.g., a
hard disk controller for persistent storage, a time-triggered bus controller for commu-
nication in a distributed system, and a serial interface for user interaction via a termi-
nal. The drivers controlling these devices are part of the operating system and proving
their correctness is critical to proving the correctness of the system as a whole.

Here we consider a system which the user may control with a terminal connected
via a serial interface. To prove the functional correctness of the serial interface device
driver it is not sufficient to argue only about the driver code; the serial interface itself
and its interaction with the processor have to be formally modeled, too. In this paper
we present for the first time a formal model of a serial interface and its program-
ming model at the assembler language level. Furthermore, as an informal example,
we present a serial interface driver and sketch its correctness proof with respect to our
models.

The remainder of this paper is structured as follows. In Sect. 2 we discuss previous
and related work. In Sect. 3 we sketch the instruction set architecture of the VAMP

? Work of the first author was supported by the German Research Foundation (DFG) within the program ‘Perfor-
mance Guarantees for Computer Systems’. Work of the third author was supported by the International Max
Planck Research School for Computer Science (IMPRS). Work of all but the fourth author was supported by
the German Federal Ministry of Education and Research (BMBF) in the Verisoft project under grant 01 IS C38.

Formal Device and Programming Model for a Serial Interface 5

processor [2, 3] and show how memory-mapped devices can be integrated into this
architecture. In Sect. 4 we present the formal model of a UART 16550A controller
and formalized environmental and software conditions. To informally demonstrate the
utility of the framework, in Sect. 5 we present a simple driver written in assembler,
which writes several words to the serial interface. We sketch its correctness proof.

2 Previous and Related Work

For the pervasive verification of computer systems, as done in the Verisoft project,
devices must be modeled at different system layers. Some results of Verisoft’s com-
pleted or ongoing work in the context of devices and their drivers have already been
published. One subproject of Verisoft deals with the verification of a FlexRay-like
shared serial bus interface to be used in distributed automotive systems. To verify
such a system we need to argue formally about low-level clock synchronization [4],
gate-level implementation, and driver real-time properties of the FlexRay interface.
All these arguments will finally be combined into one formal pervasive correctness
proof. A paper-and-pencil style description of this ongoing effort can be found in
Knapp and Paul [5].

In another Verisoft subproject the formal pervasive verification of a general-purpose
computer system is attempted. In this context, Hillebrand et al. [6] presented paper-
and-pencil formalizations of a system with devices for the gate and the assembler
level. For a hard disk as a specific device, correctness arguments justifying these mod-
els and a correctness proof for a disk driver were given on paper. Here we formalize
large portions of [6] for a communication device.

So far almost all other device related verification approaches have either aimed
at the correctness of a gate-level implementation or at showing safety properties of
drivers.

In approaches of the former kind, simulation- and test based techniques are used
to check for errors in the hardware designs. In particular, [7–10] deal with UARTs in
that manner. Berry et al. [8] specified a UART model in a synchronous language and
proved a set of safety properties regarding FIFO queues. From that model a hardware
description can be generated (either in RTL or software simulation) and run on a
FPGA.

In approaches of the latter kind the driver code is usually shown to guarantee
certain API constraints of the operating system and hence cannot cause the system
to crash. For example, the SLAM project [11] provides tools for the validation of
safety properties of drivers written in C. Lately, the success of the SLAM project
led to the deployment of the Static Driver Verifier (SDV) as part of the Windows
Driver Foundation [12]. SDV automatically checks a set of 65 safety rules concern-
ing Windows Driver API for given C driver programs. Hallgren et al. [13] modeled
device interfaces for a simple operating system implemented in Haskell. Three basic
memory-mapped I/O primitives were specified: read, write, and a test for valid region.

6 Eyad Alkassar, Mark Hillebrand, Steffen Knapp, Rostislav Rusev, Sergey Tverdyshev

Proc
mifi

mifo D1

...

Dn

eifo

eifi

Processor Devices
External
Environment

eev

Fig. 1. Overview: A System with Processor and Devices

However, the only correctness property being stated is the disjointness of the device
address spaces.

In contrary to all mentioned approaches, we aim at the formalization and func-
tional verification a (UART) driver interacting with a device. Thus, it is not sufficient
to argue about the device or the programming model alone. Similar in scope is the
‘mini challenge’ proposed by Holzmann [14], which deals with the formal verifica-
tion of a file system for a Flash device. Apparently, formalizing the device and its
interaction with the driver is also part of the challenge. However, no details have yet
been published.

3 Processor and Devices

In this section we define the instruction set architecture (ISA) of a processor with
memory-mapped devices as depicted in Fig. 1.

Compared to regular ISA definitions we have the following differences: in addi-
tion to the processor state, the state space of the combined architecture also includes
devices states. Processor and devices may interact (i) by the processor issuing mem-
ory operations to special memory regions (device addresses) and (ii) by the device
causing interrupts. Additionally, devices can make computational steps on their own
when interacting with an external environment (e.g., a network). Therefore we model
the computation of ISA with devices as an interleaved computation.

Note that at the hardware level processor and devices run in parallel and not inter-
leaved. This requires some non-trivial extensions of the formal hardware correctness
proof, which we will report on elsewhere.

3.1 Processor

A processor configuration cP is a tuple consisting of (i) two program counters cP.pc
and cP.dpc implementing delayed branching, (ii) general purpose, floating point, and
special purpose register files cP.gpr , cP.fpr , cP.spr , and (iii) a byte addressable mem-
ory cP.m.

Formal Device and Programming Model for a Serial Interface 7

Devices are mapped into the processor memory. Thus by simple read and write
operations the processor can access them. In addition devices can signal an interrupt
to the processor via an external event signal (cf. Fig. 1).

Let DA denote the set of memory addresses mapping to devices, which are disjoint
from regular physical memory addresses. The processor indicates an access to an
address in DA via the memory interface input mifi and receives the device’s response
on the memory interface output mifo; this naming convention is from the point of
view of the devices.

Formally, let the predicates lw(cP) and sw(cP) indicate load and store word in-
structions and let ea(cP) and RD(cP) denote the address and affected processor reg-
ister for such operations (see Müller and Paul [15] for full definitions).

The memory interface input has the following four components: (i) the read flag
mifi .rd = lw(cP)∧ ea(cP) ∈ DA is set for a load from a device address, (ii) the write
flag mifi .wr = sw(cP) ∧ ea(cP) ∈ DA is set for a store to a device address, (iii) the
address mifi .a = ea(cP) is set to the effective address, with ea[14 : 12] specifying
the accessed device and ea[11 : 2] specifying the accessed device port (we support up
to eight devices with up to 1024 ports of width 32 bits), and finally (iv) the data input
mifi .din = cP.gpr [RD(cP)] is set to the store operand.

The memory interface output mifo ∈ {0, 1}32 contains the device’s response for
a load operation on a device.

The processor model is defined by the output function ωP and the next state func-
tion δP. The former takes a processor state cP and computes a memory interface input
mifi to the device as defined above. The latter takes a processor state cP, a device out-
put mifo, and an external event (interrupt) vector eev (where eev [i] is set iff device
Di indicates an interrupt). It returns the next state of the processor c′

P.

3.2 Devices

The configurations of all devices are combined in a mapping cD from an index Di to
the corresponding device configuration.

Our device model is sequential in the sense that a device may progress either due
to a processor access or an input from the external environment. To distinguish both
cases we extend the set of device indices by the processor index P and denote this set
by PD .

The device transition function δD specifies the interaction of the devices with the
processor and the external environment. It takes a processor-device index idx ∈ PD ,
an input from the external environment eifi , an input from the processor mifi , and a
combined device configuration cD. It returns a new device configuration c′

D, an output
to the processor mifo, and an external output eifo.

Depending on the input index idx and the memory input mifi , the transition func-
tion δD is defined according to the following three cases:

8 Eyad Alkassar, Mark Hillebrand, Steffen Knapp, Rostislav Rusev, Sergey Tverdyshev

– If idx 6= P , a step of the device idx is triggered by the external input eifi . In this
case δD ignores the given mifi .

– If idx = P ∧ (mifi .wr ∨mifi .rd), a device step is triggered by a processor device
access. In this case δD ignores the given eifi and produces an arbitrary eifo. The
device being accessed as well as the access-type is specified by the given mifi .

– Otherwise the processor does not access any device. In this case, δD does nothing.

The device output function ωD computes the external event vector eev for the proces-
sor based on the current device configurations.

3.3 Combined System

By combining the processor and device models we obtain a model for the overall
system with devices as depicted in Fig. 1. This model allows interaction with an
external environment via eifi and eifo whereas the communication between processor
and devices is not visible from the outside anymore.

A configuration cPD of the combined model consists of a processor configuration
cPD.cP and device configurations cPD.cD.

Similarly to the previous models, we define a transition function δPD and an output
function ωPD. Both functions take the same three inputs: a processor-device index idx ,
a configuration cPD, and an external input eifi .

We introduce some more notation for the transition and the output function. Let
mifi = ωP(cPD.cP) be the memory interface input from the processor to the de-
vices. Let (c′

PD.cD,mifo, eifo) = δD(idx , cPD.cD, eifi ,mifi) denote the updated de-
vice configuration, the memory output to the processor, and the external output. Let
eev = ωD(c′

PD.cD) denote the external event vector, which is computed based on the
updated device configuration. Finally, if idx = P then c′

PD.cP denotes the updated
processor configuration, i.e., c′

PD.cP = δP(cPD.cP, eev ,mifo). Otherwise c′
PD.cP de-

notes the unchanged processor configuration, i.e., c′
PD.cP = cPD.cP.

The transition function δPD returns the new configuration, δPD(idx , eifi , cPD) =
c′
PD. The output function ωPD simply returns the output to the external environment,

ωPD(idx , cPD, eifi) = eifo.

3.4 Model Run

A model run is computed by the function runPD, which executes a number of steps
in the combined model. It takes as inputs an initial configuration c0

PD, a number of
steps i, an external input sequence eifiseq ∈ N → eifi , and a computational se-
quence seqPD ∈ N → PD, which designates the interleaving of the processor and
device steps. It returns an updated configuration c′

PD and an external output sequence
eifoseq ∈ N → eifo.

The run function runPD is defined by recursive application of δPD. For the base
case, i.e., i = 0, we set runPD(0, seqPD, eifiseq , c0

PD) = (c0
PD, 〈〉).

Formal Device and Programming Model for a Serial Interface 9

For i + 1, let (cPD, eifoseq) = runPD(i, seqPD, eifiseq , c0
PD) denote configura-

tions and outputs after executing i steps. To execute the (i + 1)-th step, we ap-
ply the transition and output function of the combined model one more time. Let
c′
PD = δPD(seqPD(i), eifiseq(i), cPD) and eifo = ωPD(seqPD(i), eifiseq(i), cPD). We

define runPD(i + 1, seqPD, eifiseq , c0
PD) = (c′

PD, eifoseq ◦ (eifo, seqPD(i))).

4 Serial Interface (UART 16550A)

The universal asynchronous receiver / transmitter (UART) is a chip for communica-
tion over a serial interface. In the following we will simply speak of a serial interface.

A serial interface provides a computing device with the capability to send data via
a few copper wires to another serial interface. This facility is used for non-network
communication, e.g., with terminals, modems, and other computers.

In this section we describe the driver programmer’s model of the serial interface
chip UART 16550A [16]. Briefly summarized, the processor can send or receive data
byte-wise. In case of a send this byte is stored in a FIFO queue, called the transmitter
buffer, and later on sent to the external environment. A receiver buffer stores all in-
coming bytes from the environment. Reads from the programmer are served in FIFO
manner, too. The UART provides the programmer with two methods to access status
information for both buffers: either by interrupts or by polling special ports.

The transmitter and receiver queue are bounded in size (16 bytes); thus they may
overrun. The receiver queue may overrun if the speed of incoming data from the
environment exceeds the speed at which the processor can handle it. The transmitter
queue may overrun if the processor writes data into the transmitter buffer faster than
the serial interface can send out the data to the environment. Another error related to
the queue size occurs when an empty receiver queue is read.

Our model handles the three error cases as follows: (i) overruns in the receiver
queue are treated according to the UART specification, i.e., new incoming bytes are
dropped, (ii) writing to a full transmitter queue and reading the empty receiver buffer
are not allowed in our model, they are excluded through explicit software conditions.

Discharging these software conditions for a particular driver is tricky, and obvi-
ously it would be desirable to find easier accessible programming rules, e.g., write
only if the transmitter buffer signals that it is empty. Proving that a concrete system
will never let the receiver queue overrun, is even harder. A programmer would typi-
cally rely on run-time estimations, which ensure that the environment does not send
data faster than the driver code can handle (when running on a certain machine). How-
ever, our model does not provide any real-time bounds on computations, and hence
proving correctness of a concrete system would either require further assumptions
over the environment (e.g., as part of a communication protocol between two serial
interfaces) or correctness criteria which tolerate overruns.

For brevity, in this paper we do not go into detail regarding the memory control
register and the memory status register. These registers are used to address additional

10 Eyad Alkassar, Mark Hillebrand, Steffen Knapp, Rostislav Rusev, Sergey Tverdyshev

wires connected to some external modem and to configure hardware flow control.
The remainder of this section is structured as follows. In Sect. 4.1 the configuration
and the ports of the serial interface is detailed. The transition function δu of the serial
interface is split into two logical parts: a processor- and an environment sided transi-
tion function. The first part is specified in Sect. 4.2, the second in Sect. 4.3. Finally
in Sect. 4.4 all required software and environment restrictions are stated and different
ways of discharging them are discussed.

4.1 Configuration

In the definition of the UART we use FIFO queues CT of maximum size 16 for
types T . For example, we use queues of type CB8 to send and receive data.

We model these queues by cyclic buffers with head and tail pointers hd and tl . The
buffer content ct maps indices to elements of type T . The number of queue entries is
denoted as len.

Queues with len = 0 and len = 16 are called empty and full. The head element
of a queue is accessed by head(b) = b.ct(b.hd). Queues are manipulated by the
operations push and pop. The function push adds a new byte to the queue at the
tail pointer. It is only defined for non-full queues. We set push(bdin, b) = b′ where
b′.ct [b.tl] = bdin, b′.tl = (b.tl + 1) mod 16 and b′.len = b.len + 1. The function pop
deletes the element pointed to by the head pointer. It is only defined for non-empty
queues. We set pop(b) = b′ where b′.hd = (b.hd +1) mod 16 and b′.len = b.len− 1.
A configuration of a serial interface cu is a record with the following components:

1. The transmitter holding buffer thb ∈ CB8 is a FIFO byte queue of size 16. Input
bytes from the external environment are stored in chronological order. The transmitter
holding buffer can be read byte-wise by the programmer.

2. The receiver buffer rb ∈ CB8 is a FIFO byte queue of size 16. It can be written
byte-wise by the programmer.

3. Interrupt driven mode configuration. The serial interface generates four types
of interrupts (mapped to a single interrupt line). For each type two kinds of flags are
maintained in the configuration: one indicating whether the interrupt type is enabled
or disabled and the other indicating whether a corresponding interrupt is still pending.
– The received data available interrupt is generated, when the number of bytes

in the receive buffer exceeds its interrupt trigger level. This level is computed
as itl(x) = 7x[1] + 3x[0] · (x[1] + 1) + 1 ∈ {1, 4, 8, 14} for x = cu.rbitl ∈
B2. The component cu.erdai ∈ B indicates if the interrupt is enabled or not,
while cu.rdai ∈ B indicates if the interrupt is currently pending.

– The transmitter holding buffer empty interrupt is generated if the transmitter buffer
is empty. The component cu.ethrei ∈ B indicates if the interrupt is enabled or not,
while cu.threi ∈ B indicates if it is currently pending.

– The receiver line status interrupt is generated if certain transmission errors occur.
These are overrun, parity, framing, and breaking errors. The components cu.oe

Formal Device and Programming Model for a Serial Interface 11

specifies if an overrun in one of the two queues occurred. The parity, framing,
and breaking errors are linked to particular bytes in the receiver queue. Their
occurrence is saved in the 3-bit FIFO queue cu.trerr ∈ CB3 . For example, 110
encodes a parity and a framing error in the corresponding byte of the receiver
queue.

– The timeout interrupt is generated if for a certain period of time no data was
received or read from the receiver queue. The UART sets this timeout to the time
needed to receive four bytes. This interrupt type can be used by the programmer to
ensure that no data is forgotten in the receive queue after the input stream ended.
The component cu.toi ∈ B indicates if the interrupt is currently pending. This
interrupt is enabled iff the received data available interrupt is.
4. Polling mode configuration. The serial interface can also be operated in polling

mode, in which the driver can check the status of the buffers by reading special
ports. These ports map to three boolean configuration components: the data ready
flag cu.dr ∈ B, the empty transmitter holding buffer flag cu.ethb, and the empty data
holding registers flag cu.edhr .
It is possible to mix interrupt and polling modes, e.g., the programmer could be in-
formed about incoming data by an interrupt and then read the receiver buffer as long
as it is non-empty.

5. Word length configuration. The following components can be set by the pro-
grammer, but do not affect the modeled behavior of our device. Nevertheless we need
to model them: when connecting two serial interfaces the word length must be con-
figured equally on both sides.
The serial interface uses a timer with a 115.2 kHz frequency; the baud rate is com-
puted as 115200/cu.div. Due to port overloading the programmer has to set a so-
called Divisor Latch Access Bit cu.dlab ∈ B before accessing the cu.div field.
The low-level encoding of the transmitted data (including error protection) is config-
ured via the word length cu.wl ∈ B2, the stop bit length cu.sbl ∈ B, and the parity
select cu.ps ∈ B3. We omit details here.
The UART has eleven different registers, which are mapped to eight different ad-
dresses. Hence, some addresses are used in different contexts. They map to different
registers either depending on the access type (read / write operation) or depending on
the value of the divisor latch access bit cu.dlab (see Table 1).

4.2 Processor-Side Transitions

As already mentioned, the transition function δu of the serial interface is split into two
logical parts: a processor-side and an environment-side transition function.

The processor-side transition function δmem
u defines the behavior of the serial in-

terface when communicating with the processor. Given a current configuration of the
serial interface and an input from the processor, it computes an updated serial inter-
face configuration and an output to the processor, i.e., δmem

u (cu,mifi) = (mifo, c′
u).

12 Eyad Alkassar, Mark Hillebrand, Steffen Knapp, Rostislav Rusev, Sergey Tverdyshev

Table 1. Ports of the serial interface

UART Register / Buffer Port Abbreviation Access Type

Transmitter Holding Buffer 0 THBp Write, dlab = 0
Receiver Buffer 0 RBp Read, dlab = 0
Divisor Latch Low Byte 0 DLLBp Read / Write, dlab = 1
Interrupt Enable Register 1 IERp Read / Write
Divisor Latch High Byte 1 DLHBp Read / Write, dlab = 1
Interrupt Identification Register 2 IIRp Read
FIFO Control Register 2 FCRp Write
Line Control Register 3 LCRp Read / Write
Line Status Register 5 LSRp Read

Note that the transition function δmem
u is only partially defined because some pro-

cessor accesses to the device are considered illegal and lead to an undefined device
configuration. Later on we will formulate software conditions excluding all these
cases.

In the following we abbreviate a read access to port x by rd(mifi , x) = mifi .rd ∧
mifi .a = x and a write access to port x by wr(mifi , x) = mifi .wr ∧ mifi .a = x.
Although in general we allow devices to have ports of width 32 bit, the serial interface
only has ports of width 8 bit. Hence, only the lower 8 bits of mifi .din and mifo are
significant. In the following we assume that mifo will be zero-padded by the device
and omit these extra bits here.

Configuration Updates. If the bit dlab is cleared and the processor reads the port
receiver buffer having the address RBp and the receiver queue of the serial interface
is not empty then its first byte is popped. Furthermore the queue maintaining trans-
mission errors for received bytes is updated, too:

rd(mifi ,RBp) ∧ cu.dlab = 0 ∧ cu.rb.len > 0 =⇒
(c′

u.rb = pop(cu.rb)) ∧ (c′
u.trerr = pop(cu.trerr))

The processor writes the byte to be transmitted into the port transmitter holding
buffer. If the corresponding queue is not full, the written byte is pushed into it:

wr(mifi ,THBp) ∧ cu.thb.len < 16 =⇒ c′
u.thb = push(cu.thb,mifi .din[7 : 0])

Pending interrupt flags, raised by the device, are cleared if the processor reads the
corresponding ports. Reading the receiver buffer clears the received data available-
and the time-out interrupt. Similarly reading the interrupt identification register or
reading the transmitter holding buffer clears the transmitter holding buffer empty in-
terrupt. Finally the receiver line status interrupt is cleared by reading the line status
register:

rd(mifi ,RBp) =⇒ c′
u.rdai = 0 ∧ c′

u.toi = 0
rd(mifi ,THBp) ∨ rd(mifi , IIRp) =⇒ c′

u.threi = 0
rd(mifi ,LSRp) =⇒ c′

u.rlsi = 0

Formal Device and Programming Model for a Serial Interface 13

By writing the port interrupt enable register, the programmer can specify which
interrupt types are enabled, i.e., which can be raised by the device. Since the timeout
interrupt is enabled when the received data available interrupt is, only three bits are
relevant. The other five bits are ignored:

wr(mifi , IERp) =⇒
(c′

u.erdai = mifi .din[0]) ∧ (c′
u.ethrei = mifi .din[1]) ∧ (c′

u.erlsi = mifi .din[2])

The transmit or receive FIFO can be cleared manually by the programmer through
writing the FIFO control register FCRp. The bit zero of the FCRp indicates if FIFOs
should be used at all. If it is cleared no buffers will be used.

Setting bits one and two will clear the receiver and transmitter buffers, resp.:

wr(mifi ,FCRp) ∧mifi .din[1] = 1 =⇒ c′
u.rb.len = 0 ∧ c′

u.rb.hd = cu.rb.tl
wr(mifi ,FCRp) ∧mifi .din[2] = 1 =⇒ c′

u.thb.len = 0 ∧ c′
u.thb.hd = cu.thb.tl

Bit three indicates if DMA is supported. In this paper we do not deal with DMA. Bit
four and five of the FCRp are reserved.

If the received data available interrupt is enabled, the last two bits of the FCRp

encode at what length of the receive queue an interrupt is generated. Hence, the two
bits map to the rbitl component of the serial interface:

wr(mifi ,FCRp) =⇒ c′
u.rbitl = mifi .din[7 : 6]

The first two bits of the line control register are mapped to the transmission word
length wl, bit two relates to the stop bit length sbl, bits three to five map to the parity
select ps, bit seven is set to access the two divisor bytes, and bit six is reserved:

wr(mifi ,LCRp) =⇒ (c′
u.wl = mifi .din[1 : 0]) ∧

(c′
u.sbl = mifi .din[2]) ∧ (c′

u.ps = mifi .din[5 : 3]) ∧ (c′
u.dlab = mifi .din[7])

By writing the divisor latch high byte register DLHBp and the divisor latch low
byte register DLLBp the divisor div is set:

wr(mifi ,DLLBp) ∧cu.dlab = 1 =⇒ c′
u.div[7 : 0] = mifi .din[7 : 0]

wr(mifi ,DLHBp) ∧cu.dlab = 1 =⇒ c′
u.div[15 : 8] = mifi .din[7 : 0]

Generated Output. The predicate is int indicates if for a given configuration of the
serial interface cu at least one of the four interrupts types is pending:

is int(cu) = cu.threi ∨ cu.rdai ∨ cu.rlsi ∨ cu.toi

In case of a write operation the 32-bit wide data output mifo is irrelevant and
therefore set to zero. In case of a read operation the first 24 bits of the output are filled
with zeros since the serial interface operates byte-wise.

14 Eyad Alkassar, Mark Hillebrand, Steffen Knapp, Rostislav Rusev, Sergey Tverdyshev

If the processor reads from the receiver buffer and the receive queue is not empty,
the first byte is taken from the queue and returned to the processor:

rd(mifi ,RBp) ∧ cu.dlab = 0 ∧ cu.rb.len > 0 =⇒
mifo = head(cu.rb) ∧ c′

u.rb = pop(cu.rb)

If the processor reads port DLLBp, the lower eight bits of the divisor compo-
nent div are returned. If it reads port DLHBp, the upper eight bits of the divisor
component div are returned:

rd(mifi ,DLLBp) ∧(cu.dlab = 1) =⇒ mifo = cu.div[7 : 0]
rd(mifi ,DLHBp) ∧(cu.dlab = 1) =⇒ mifo = cu.div[15 : 8]

When reading the interrupt enable register the output encodes the four flags indi-
cating which interrupt types are enabled:

rd(mifi , IERp) ∧ (cu.dlab = 0) =⇒ mifo = 05 ◦ cu.erlsi ◦ cu.ethrei ◦ cu.erdai

The type of the interrupt that caused the eev flag to be set can be checked by
reading the interrupt identification register. For rd(mifi , IIRp) we define mifo =
1100 ◦ is ◦ ¬is int(cu) where the three interrupt status bits is ∈ B3 are defined
as follows:

is =

011 if cu.rlsi

010 if ¬cu.rlsi ∧ (cu.rdai ∨ cu.toi)

110 if ¬cu.rlsi ∧ ¬(cu.rdai ∨ uart .toi)

001 if ¬uart .rlsi ∧ ¬(uart .rdai ∨ uart .toi) ∧ uart .threi

The line status register is a read-only register which encodes the polling mode in-
formation of the transmitter and the receiver queues. Furthermore, in case of a trans-
mission error (i.e., in case of line status interrupt), this register provides the error
type. Remember that the component cu.trerr stores parity, framing and break errors
of all bytes in the receiver queue. When reading LSRp, the errors occurred in the head
of the queue are reported in bits two, three and four. Let errQ denote whether at least
one error occurred in any of the bytes in the queue. Reading the port LSRp results in:

rd(mifi ,LSRp) =⇒
mifo = errQ ◦ cu.edhr ◦ cu.ethb ◦ head(cu.trerr)[2 : 0] ◦ cu.oe ◦ cu.dr

The line control register can also be read out. As mentioned before it contains
the parity select, word length, stop bit length, set break interrupt enable flag and the
divisor latch bit components of the serial interface:

rd(mifi ,LCRp) =⇒ mifo = cu.dlab ◦ cu.ebi ◦ cu.ps ◦ cu.sbl ◦ cu.wl

Formal Device and Programming Model for a Serial Interface 15

4.3 Environment-Side Transitions

We describe the interaction of the serial interface with the environment, which is
given by the environment-sided transition function δenv

u . This function takes an input
from the environment and a serial interface configuration and it returns an updated
serial interface configuration and an output to the environment, i.e., δenv

u (cu, eifi) =
(eifo, c′

u).
The input from that environment is given by (i) a bit eifi .tshrready indicating if

the transmitter shift register is empty and hence the next byte of the transmitter queue
can be sent, (ii) a bit eifi .serdinvalid indicating if new and valid data was received,
(iii) the serial input data eifi .serdin, (iv) three bits indicating parity, framing, and
break error, eifi .pe, eifi .fe and eifi .be, (v) and a bit eifi .to indicating a time-out in-
terrupt. Since no time is modeled, a non-deterministic input from the environment
signals time-out. The only output of the serial interface to the environment is the byte
being sent.

If the transmission shift register is empty eifi .tshrready and the transmitter queue
has data in it, cu.thb.len > 0, the first byte of the queue is sent, head(cu.thb) to the
external environment. Otherwise, a special empty output is transmitted, i.e., 08.

The byte written to the external environment is taken from the transmitter queue:

eifi .tshrready ∧ cu.thb.len > 0 =⇒ c′
u.thb = pop(cu.thb)

If the receive queue is not full, received bytes are added to it. Furthermore the
queue maintaining the parity, framing and break errors is updated for the received
byte:

eifi .serdinvalid ∧ cu.rb.len < 16 =⇒ c′
u.rb = push(cu.rb, eifi .serdin) ∧

c′
u.trerr = push(cu.trerr , eifi .pe ◦ eifi .fe ◦ eifi .be)

If a new byte is received although the receive queue is full, then the new byte is
dropped and an error is indicated by raising the overrun flag:

eifi .serdinvalid ∧ cu.rb.len = 16 =⇒ c′
u.oe = 1

The interrupt pending signals are raised if (i) the transmitter queue is empty
and the environment signals through eifi .tshrready that the next byte can be sent,
c′
u.threi = c′

u.thbp.len > 0, (ii) the length of the receiver queue reaches the specified
trigger level (receive data available interrupt), c′

u.rdai = cu.rb.len ≥ itl(cu.rbitl),
(iii) or a framing, parity, break or an overrun error occurs (line status interrupt),
c′
u.rlsi = eifi .fe∨eifi .pe∨c′

u.oe, (iv) or the receiver queue is non-empty and the exter-
nal environment signals the occurrence of a time-out, c′

u.toi = eifi .to∧c′
u.rb.len > 0.

In the polling driven mode the configuration is updated similarly: (i) c′
u.ethb is set

if the transmitter queue is not empty, (c′
u.thbp.len = 0), (ii) c′

u.dr is set if the receiver
queue is non-empty, (c′

u.rb.len > 0), (iii) c′
u.edhr is set if both the transmitter queue

and the shift register are empty, (c′
u.thbp.len = 0) ∧ eifi .tshrready .

16 Eyad Alkassar, Mark Hillebrand, Steffen Knapp, Rostislav Rusev, Sergey Tverdyshev

4.4 Software Conditions and Environment Restrictions

The transition function δu is not total. Undefined cases are related to over- and under-
runs of the queues and illegal accesses to unmodeled or write-only ports. Formally, we
characterize these cases by predicates over memory input and UART configurations:

– The line-status register must not be written, ¬wr(mifi ,LSRp), and the unmodeled
ports MCRp and MSRp must not be accessed, mifi .a /∈ {MSRp,MCRp}.

– The receiver buffer must not be read when empty and the transmitter buffer must
not be written to when full. Formally, if cu.dlab = 0 then rd(mifi ,RBp) =⇒
cu.rb.len > 0 and wr(mifi ,THBp) =⇒ cu.thb.len < 16.

Only if these software conditions are met, we can assume the model to be accurate.
The driver programmer is responsible for discharging them. For example, a driver
which writes no more than 16 byte chunks between each two transmitter holding
buffer empty interrupts, obviously fulfills the second condition.

For proving correctness of a driver implementation we need to impose further
restrictions on the behavior of the environment.

Liveness. We need to assume liveness of the sending part: data in the transmitter
buffer must eventually be sent, ∀i∃j > i . seqPD(j) = Duart∧ eifiseq(j).tshrready =
1.

Also the processor is assumed to be live, ∀i∃j > i . seqPD(j) = P . While liveness
can be assumed by the programmer, it has to be shown in the hardware correctness
proof.

Overrunning Receiver Queue. The speed of the environment sending packets to the
serial interface is not related in any sense to the speed of the processor; packets ar-
rive completely non-deterministically. The question is: how can a driver programmer
under these circumstances assure that no packets are lost due to overrunning queues?

This is a tricky task. In a first approach we might impose timing restriction on
the environment. Hardware implementation details like caches, pipelining, etc. are
invisible in the ISA. Thus, the numbers of instructions executed cannot be related
to real time and a relation between transmission speed and ISA execution cannot be
established.

Note that the problem of overrunning queues is not inherent to our way of mod-
eling. It is a problem that a device programmer must expect and deal with in non-
real-time operating systems, too. This situation leads to serious difficulties in the for-
malization of the correctness statements for serial interface drivers. For example, it is
impossible to prove that all key presses sent from a keyboard to a serial interface are
finally processed by the driver because the model contains runs in which the environ-
ment is too fast leading to a queue overrun. There are three approaches to deal with
the problem:

Formal Device and Programming Model for a Serial Interface 17

0: addi r3,r0,#Da(Duart) (1.1)
4: addi r4,r0,#3 (1.2)
8: sw LCRp · 4(r3),r4 (1.3)
12: sw IERp · 4(r3),r0 (1.4)
16: addi r0,#14, r4 (1.5)
20: sw FCRp · 4(r3),r4 (1.6)
24: lw r6, 0(r1) (2.1)
28: sw THBp · 4(r3), r6 (2.2)
32: slri r6, r6, #8 (2.3)
36: sw THBp · 4(r3), r6 (2.4)
40: slri r6, r6, #8 (2.5)

44: sw THBp · 4(r3), r6 (2.6)
48: slri r6, r6, #8 (2.7)
52: sw THBp · 4(r3), r6 (2.8)
56: addi r1, r1, #4 (2.9)
60: lw r4, LSRp · 4(r3) (3.1)
64: andi r4, r4, #32 (3.2)
68: beqz r4, #-12 (3.3)
72: nop (3.4)
76: subi r5, r5, #1 (4.1)
80: bnez r5, #-60 (4.2)
84: nop (4.3)

Fig. 2. UART driver. We assume that registers r1 and r2 are preset to a and n.

1. Model overruns in specification and use software synchronization. A widely
used mechanism is called software flow control: the receiver signals the sender when
ready / unable to accept new data via the special characters Xon / Xoff.

2. Hardware synchronization. Synchronization can also be implemented directly
in hardware (called autoflow control), as was done for the UART 16750. Using such
hardware an assumption can be introduced stating that the environment is not sending
new data while the receiver buffer is still full.

3. Worst case execution time (WCET) analysis. Good run-time estimates require a
cycle-accurate model for the target processor. Indeed, there are tools for several archi-
tectures to precisely estimate the WCET of given programs, e.g., [17]. By analyzing
the serial interface driver and parts of the kernel, such as the interrupt handlers, we
can compute the latency of processing data received at the serial interface. This yields
a maximum baud rate under which the driver may be run safely without overruns.

5 Example: A Simple UART Driver

We construct a simple device driver and sketch its correctness proof with respect to
the ISA of Sect. 3. The driver writes n words from the processor’s memory, starting
at address a, to the serial interface with index Duart and base address Da(Duart).
Its code is shown in Fig. 2; its size is approximately an order of magnitude smaller
than the code of a realistic driver for the UART 16550A. We use a MIPS-like syntax.
GPRs, immediates, and register-indexed memory operands are denoted as rk, #l, and
m(rn). Lines are prefixed with an offset to a certain code base address cba. Arrows
indicate jump targets; all jumps are executed with one delay slot.

To state the driver correctness, we use the auxiliary function purge. For a device
index idx and an external output sequence eifoseq it returns the sub sequence of
external outputs for device idx .

Let seqPD and eifiseq denote a computational sequence and an external input
sequence fulfilling the liveness assumption. Let c0

PD denote an initial configuration
which starts with the execution of the driver, c0

P.dpc = cba, and where the word

18 Eyad Alkassar, Mark Hillebrand, Steffen Knapp, Rostislav Rusev, Sergey Tverdyshev

count and start address are stored in the first two registers, i.e., c0
P.gpr [1] = a and

c0
P.gpr [2] = n.

Furthermore let ci
PD and eifoseq i denote the reached state and generated output

after the execution runPD(i, seqPD, eifiseq , c0
PD) of some i steps of the combined sys-

tem.

Theorem 1 (Functional correctness). There exists some step number e, after which
the driver finished execution and the n words from the processor’s memory are output
to the external environment: purge(eifoseqe, Duart) = c0

P.m4·n(a)

Proof. The main part of the code is the outer loop in parts (2) to (4). It is traversed
n times, sending a word over the serial interface in each iteration. Before itera-
tion j < n and after iteration j = n of the loop after a certain number s(j) of steps the
following invariants have to hold: (i) j words have been written to the environment,
purge(eifoseqs(j), Duart) = c0

P.m4·j(a), (ii) the first address not yet copied and the
number of remaining words are stored in gpr [1] and gpr [4], and (iii) the device has
an empty transmitter holding buffer, interrupts disabled, and a cleared dlab flag. The
existence of s(j) and the invariants are shown by induction over j.

Initially, the device invariant is established by code part (1) writing the ports
LCRp, IERp, and FCRp. For j > 0, correctness of the code that copies a word
from memory to the transmitter holding buffer, part (2), and the polling loop, part (3)
have to be shown. After part (2), 4− cu.thb.len bytes have been transmitted; the other
bytes will have been transmitted after the polling loop exits. To show termination of
these parts, the liveness condition over the computational and external sequence has
to be applied.

6 Conclusion and Future Work

We have presented the detailed formal model of a serial interface controller, the UART
16550A [16]. By combining this model with the formal model of a processor ISA,
we obtained a formal model of a processor in which the UART may be accessed as
a memory-mapped device. All presented models have been specified in the theorem
prover Isabelle/HOL [18]. The formalized ISA resembles the DLX instruction set
architecture that was taken as a specification for the VAMP processor [2, 3].

Our Isabelle/HOL formalization defines a precise programming model for device
drivers and may be used as the basis of an integrated, self-contained formal driver
verification environment. Thus, it is relevant for both device programmers and verifi-
cation engineers.

For the programmer, the model is a succinct description of the visible state of the
device and its interaction with the external environment and the processor. Moreover,
environmental conditions, which the programmer may assume, and software condi-
tions, which the programmer must satisfy, precisely define the rules for implementing

Formal Device and Programming Model for a Serial Interface 19

a functionally correct device driver. An example of such a driver, transmitting data
via a serial interface, was given in Sect. 5.

In addition, the model may be used by the verification engineer to develop mathe-
matical software correctness proofs and to check them with a computer-aided verifica-
tion system. A sketch of such a proof was given in Sect. 5. In contrast to related work,
the high level of detail in our device models even allows the verification of complex
properties like functional correctness rather than just control or protocol properties.

Our further work in this area can be split into two parts. First, we plan to formalize
and extend the implementation and correctness proofs from Sect. 5 to cover data
reception and successful communication between two serial interfaces. Second, in
the broader context of the attempted system verifications in Verisoft, the scope of our
modelling and verification effort needs to be extended to cover all system layers from
the gate-level hardware of the VAMP processor [2, 3] with devices up to user-level
device drivers for a variety of standard devices (e.g., serial interface, hard disk [6],
FlexRay-like bus controller). The final result of this effort is a stack of computational
models with device support; adjacent layers in this model stack will be related to each
other by simulation theorems.

References
1. The Verisoft Consortium: The Verisoft Project. http://www.verisoft.de/ (2003)
2. Beyer, S., Jacobi, C., Kröning, D., Leinenbach, D., Paul, W.: Instantiating uninterpreted functional units and

memory system: Functional verification of the VAMP. In Geist, D., Tronci, E., eds.: CHARME’03. Volume
2860 of LNCS. Springer (2003) 51–65

3. Dalinger, I., Hillebrand, M., Paul, W.: On the verification of memory management mechanisms. In Borrione,
D., Paul, W., eds.: CHARME’05. Volume 3725 of LNCS. Springer (2005) 301–316

4. Schmaltz, J.: A formal model of lower system layer. In: FMCAD’06, IEEE/ACM Press (2006) 191–192
5. Knapp, S., Paul, W.: Pervasive verification of distributed real-time systems. In Broy, M., Grünbauer, J.,

Hoare, T., eds.: Software System Reliability and Security. Volume 9 of IOS Press, NATO Security Through
Science Series. (2007) To appear.

6. Hillebrand, M., In der Rieden, T., Paul, W.: Dealing with I/O devices in the context of pervasive system
verification. In: ICCD ’05, IEEE Computer Society (2005) 309–316

7. Cohen, B.: Component design by example: A step-by-step process using VHDL with UART as vehicle.
VhdlCohen (2000)

8. Berry, G., Kishinevsky, M., Singh, S.: System level design and verification using a synchronous language.
In: ICCAD, IEEE Computer Society / ACM (2003) 433–440

9. ALDEC – The Design Verification Company: UART nVS. http://www.aldec.com/products/
ipcores/_datasheets/nSys/UART_nVS.pdf (2006)

10. Rashinkar, P., Paterson, P., Singh, L.: System-on-a-Chip Verification: Methodology and Techniques. Kluwer
Academic Publishers, Norwell, MA, USA (2001)

11. Ball, T., Rajamani, S.K.: Automatically validating temporal safety properties of interfaces. In Dwyer, M.B.,
ed.: SPIN. Volume 2057 of LNCS. Springer (2001) 103–122

12. Microsoft Corporation: SDV: Static driver verifier. http://www.microsoft.com/whdc/
devtools/tools/sdv.mspx (2004)

13. Hallgren, T., Jones, M.P., Leslie, R., Tolmach, A.P.: A principled approach to operating system construction
in Haskell. In Danvy, O., Pierce, B.C., eds.: ICFP, ACM (2005)

14. Holzmann, G.J.: New challenges in model checking. http://www.easychair.org/FLoC-06/
holzmann_25mc_floc06.pdf (2006) Symposium on 25 years of Model Checking, Seattle, USA. In-
vited talk.

20 Eyad Alkassar, Mark Hillebrand, Steffen Knapp, Rostislav Rusev, Sergey Tverdyshev

15. Müller, S., Paul, W.: Computer Architecture: Complexity and Correctness. Springer (2000)
16. National Semiconductor: PC16550D – universal asynchronous receiver / transmitter with FIFO’s. http:

//www.national.com/ds.cgi/PC/PC16550D.pdf (2005)
17. Ferdinand, C., Heckmann, R.: Verifying timing behavior by abstract interpretation of executable code. In

Borrione, D., Paul, W., eds.: CHARME’05. Volume 3725 of LNCS. Springer (2005) 336–339
18. Nipkow, T., Paulson, L.C., Wenzel, M.: Isabelle/HOL: A Proof Assistant for Higher-Order Logic. Volume

2283 of LNCS. Springer (2002)

A Mehanization of Phylogeneti TreesMamoun Filali�lali�irit.frIRIT CNRSUniversité Paul Sabatier118 Route de NarnonneF-31062 Toulouse FraneAbstrat. We study the mehanization of phylogeneti trees in higher order logi.After haraterizing trees within suh a logi, we state how to reason and to om-pute about them. We introdue the so alled generative partitions and relations whosepurpose is to allow the reonstrution of a tree from its leaves. After introduing treetransformations, we de�ne the graft operation. and onsider su�ient onditions forthe preservation of the generative partitions or relations after a graft. It follows that wean reonstrut a tree given its set of leaves and its generative relation whih has beenpreserved along the growth of the tree. We apply this result to the reonstrution of adistributed omputation.keywords: HOL, tree struture, veri�ation, ISAR.1 IntrodutionThis paper gives a de�nitional formalization, in higher order logi (HOL), ofphylogeneti trees. We also formalize how to reason and ompute on suh trees.We de�ne the notion of a generative relation, that aims at haraterizing in-formation whih enables to rebuild a tree. Finally, we propose a reonstrutionalgorithm based on the set of leaves and a generative relation. The orretnessof the algorithm is established. We introdue an operation, the graft, that allowsto represent the growth of a tree. a graft are stated. We illustrate suh a reon-strution through the so-alled leaf vetors and a onrete generative relation. Itshould be stressed that our study is not only onerned with the proposal of anoriginal algorithm but also by the formal de�nitions and proofs within a logialframework.The rest of this paper is organized as follows: Setion 2 gives the repre-sentation and the basi operations. Setion 3 introdues the graft operation andstudies its reonstrution properties.Setion 4 presents a onrete example wherewe apply the reonstrution algorithm. Setion 5 ontains the onlusions andrelated works.2 A phylogeneti tree representation and basi operationsIn this setion, we introdue the formal representation of phylogeneti trees;For suh a representation, we onsider how to reason about it and how to om-pute on it. We rely mainly on basi set theory. However, rather than working

22 Mamoun Filaliwith set theory only, we use type theoreti reasoning also. We have done themehanization within the Isabelle logial framework [13℄. Atually, we have usedthe Isabelle/Isar1 [19℄ environment whih goal is to assist in the developmentof human-readable proof douments omposed by the user and heked by themahine.2.1 Notations and basi de�nitionsIn this setion, we reall the basi set theory and order notions, we will use.Wehope that the name of the de�nitions and their formal expression are self ex-planatory. We have used the de�nitions given in [6℄. Moreover, we express themin the Isabelle syntax [13℄. For eah de�nition, �rst, we give its signature, thenits formal expression. For instane, we have used the following de�nitions:"Maximal , λ S . {m ∈ S . ∀ m' ∈ S . m ⊆ m' ⇒ m = m'}""Down , λ(S , e) . { s ∈ S . s ⊆ e }""PDown , λ(S , e) . { s ∈ S . s ⊂ e }"
−−{∗ proper p a r t i t i o n ∗}"PPart i t ion , λ (n , S) . Pa r t i t i on (n , S) ∧ (∀ e ∈ S . e ⊂ n) ""A// r ,

⋃x ∈ A. {r ` ` { x}}" −− {∗ s e t o f equiv l a s s e s ∗}In Isabelle, the re�exive transitive losure of relation r, denoted rˆ⋆, is in-trodued as an indutive data type [2℄. Its introdution rules are rtranl_reflwhih spei�es that every ouple (a,a) belongs to the transitive losure, andrtranl_into_rtranl whih spei�es that if (a,b) belongs to rˆ⋆ and (b,)belongs to r, then (a,) belongs also to rˆ⋆.i ndu t i v e " r^∗"i n t r o sr t r a n l_ r e f l : "(a , a) ∈ r^∗"r t ran l_ in to_rt ran l :"(a , b) ∈ r^∗ =⇒ (b ,) ∈ r =⇒ (a ,) ∈ r ^∗"With respet to the proofs, we have used the Isabelle/Isar format. A proof isestablished by a sequene of intermediate results whih has to be proved reur-sively or already established. Eventually, results are justi�ed either as axiomsof the logi or by rules of the logi. With respet to proofs, Isar promotes the1 �Isar� abbreviates �Intelligible semi-automated reasoning�.

A Mehanization of Phylogeneti Trees 23so alled �delarative style� [18℄ whih is loser to the usual mathematial rea-soning than the proedural format. Let us mention that, basially, Isar supportsnatural dedution but also supports alulational reasoning [7℄.As an example, the following statement whih onsists in assumptions2 (assumes),a onlusion (shows) and a proof sript (proof) establishes that the union oftwo hierarhies (see setion 2.2) is also a hierarhy. A basi statement of theproof has the format:
from 〈fats〉 have label ′ :′ 〈proposition〉 by 〈method〉whih aim is to establish proposition from fats by applying method.theorem Hierarhy_union :assumes h1 : "H1 ∈ Hierarhy "assumes h2 : "H2 ∈ Hierarhy "assumes s : "∀ n1 ∈ H1 . ∀ n2 ∈ H2 . SDS(n1 , n2) "shows "(H1 ∪ H2) ∈ Hierarhy "proof −from h1 h2 have e : "∅ 6∈ H1 ∪ H2" by (unfoldHierarhy_def , b l a s t)from s have "∀ n1 ∈ H1 . ∀ n2 ∈ H2 . SDS(n2 , n1) "by (auto simp only : SDS_def)from this have "∀ n1 ∈ H2 . ∀ n2 ∈ H1 . SDS(n1 , n2) " byautofrom s this h1 h2 have sds : "∀ n1 ∈ H1 ∪ H2 . ∀ n2 ∈ H1 ∪H2 . SDS(n1 , n2) "by (unfold Hierarhy_def , b l a s t)from h1 h2 have f : " f i n i t e (H1 ∪ H2) " by (unfoldHierarhy_def , auto)from h1 h2 have "∀ n ∈ H1 ∪ H2 . f i n i t e n" by(unfoldHierarhy_def , auto)from e sds f this show ? thesis by (unfold Hierarhy_def ,b l a s t)qed2.2 Hierarhies and treesOur mehanization is based on the introdution of phylogeneti trees startingfrom the basi notions of set theory. For suh a purpose, we �rst onsider hier-arhies [3℄ and then introdue trees as restrited hierarhies. Along with thesehierarhies, we give some general de�nitions that will be used later.2 Sometimes assumptions are also alled preonditions.

24 Mamoun FilaliThe basi idea of the following representations is to infer a struture fromthe relations between its elements; the struture is not enoded diretly. Suh aontent based enoding is motivated by the fat that our basi onern is thereonstrution starting from some of the elements, namely the leaves, of the treestruture.Hierarhies. We �rst introdue a generi graph as a set of nodes. A node is aset of generi elements.types' e graph = "(' e s e t) s e t " −− {∗ g en e r i graph ∗}' e node = "(' e s e t) " −− {∗ g en e r i node ∗}Hierarhies are �nite graphs whih elements are �nite and non empty andobey to the SDS: �Subset Disjoint Subset� relation:"SDS , λ(s1 , s2) . s1 ⊆ s2 ∨ s1 ∩ s2 = ∅ ∨ s2 ⊆ s1 ""Hierarhy , {H. f i n i t e (H)
∧ (∀ n ∈ H. f i n i t e (n))
∧ ∅ 6∈ H
∧ (∀ n1 ∈ H. ∀ n2 ∈ H. SDS (n1 , n2))}"In the following, we give the formal de�nitions that will be used."Leaves , λ h . { l ∈ h . PDown(h , l) = ∅}""ROOT , λ h . ⋃ h"" Subtrees , λ t . image (λ e . Down(t , e)) (Maximal (t)) "

−− {∗ proper subt r e e s ∗}"PSubtrees , λ t . Subtrees (t − Maximal (t)) "
−− {∗ roo t s o f proper subtrees , h i l d nodes ∗}"R1 , λ t . image ROOT (PSubtrees (t)) ""Sigma , λ S . {⋃ (⋃ S) } ∪ (⋃ S) "Due to the lak of spae, we do not state all the established results. We willgive them on the �y when needed.Trees and phylogeneti trees. Starting from hierarhies, we �rst de�ne atree as a hierarhy with its ROOT as the single maximal element :

A Mehanization of Phylogeneti Trees 25"Tree , {h ∈ Hierarhy . Maximal (h) = {ROOT(h) }}"Then, we introdue phylogeneti trees as trees whih nodes are either leavesor the union of all its subnodes:"Phylo ,{ t ∈ Tree . ∀ n ∈ t . n ∈ Leaves (t) ∨ n = ⋃ PDown(t , n) }"With respet to phylogeneti trees, we just mention the following equalitythat will allow us to say that the reonstrution an proeed starting from theleaves, while the statement of the reonstrution theorem is over the root. Atu-ally, for a phylogeneti tree t, we have: ROOT(t) =
⋃Leaves(t). Moreover, wewill rely on the following result about the union of phylogeneti trees:lemma phylo_union :assumes t1 : " t1 ∈ Phylo"assumes t2 : " t2 ∈ Phylo"assumes u : "ROOT(t2) ∈ Leaves (t1) "shows " t1 ∪ t2 ∈ Phylo"proof . . . qed

Examples. The �gure 1 illustrates the representation of phylogeneti trees. Forinstane, with respet to the previous de�nitions and the tree let t2, we have:
t0 {x}

{a,e,b}

{a} {e} {b}

t1
{x,y,a,e,b,u,v,w}

{x,y} {a,e,b} {u,v,w}

{x} {y} {a} {e} {b} {u} {v} {w}

t2

Fig. 1. phylogeneti trees

26 Mamoun Filali
t2 = {{x, y, a, e, b, u, v, w}, {x, y}, {x}, {y}

, {a, e, b}, {a}, {e}, {b}, {u, v, w}, {u}, {v}, {w}}Leaves(t2) = {{x}, {y}, {a}, {e}, {b}, {u}, {v}, {w}}ROOT(t2) = {x, y, a, e, b, u, v, w}R1(t2) = {{x, y}, {a, e, b}, {u, v, w}}The deomposition and indution theorems. In order to reason aboutphylogeneti trees, we �rst introdue a deomposition theorem: a tree is eithera singleton ontaining its ROOT, or the sum (Sigma) of its proper subtrees.theorem phylo_ases :assumes t : " t ∈ Phylo"shows " t = {ROOT(t) } ∨ t = Sigma (PSubtrees (t)) "proof . . . qedWe state the indution theorem about phylogeneti trees as follows:theorem phylo_indut :assumes b : "∀ e . P({ e }) "assumes r : "∀ T ∈ domSigma . (∀ t ∈ T. t ∈ Phylo ∧ P(t))
⇒ P(Sigma (T)) "shows "∀ t ∈ Phylo . P(t) "proof . . . qedwhere domSigma spei�es the set of trees whih an be �joined� to form a phy-logeneti tree:"domSigma ,{S . S 6= ∅ ∧ f i n i t e (S) ∧ S ⊆ Tree
∧ (∀ t1 ∈ S . ∀ t2 ∈ S . t1 6= t2 ⇒

⋃ t1 ∩
⋃ t2 = ∅)

∧ PPart i t ion (⋃ ⋃ S , image ROOT S)}"2.3 TransformationsThe basi property of the studied transformations is to preserve the underlyingstruture while transforming the nodes.Hierarhy transformations and preservation theorem. First, we intro-due general transformations whih basi property is to preserve the ardinalityof a set of nodes."G_tr , λ g . { t r . ∀ n1 ∈ g . ∀ n2 ∈ g .(t r (n1) = t r (n2)) = (n1 = n2) }"

A Mehanization of Phylogeneti Trees 27A hierarhy transformation is a general transformation whih preserves therelations between the nodes of a hierarhy:{∗ h i e ra r hy t rans f o rmat i on s s e t ∗}"H_tr , λ h .{ t r ∈ G_tr(h) . (∀ n ∈ h . f i n i t e (n) ⇒ f i n i t e (t r (n)))
∧(∀ n ∈ h . n 6= ∅ ⇒ t r (n) 6= ∅)
∧(∀ n1 ∈ h . ∀ n2 ∈ h . n1 ⊆ n2 ⇒ t r (n1) ⊆ t r (n2))
∧(∀ n1 ∈ h . ∀ n2 ∈ h . n1 ∩ n2 =∅ ⇒ t r (n1) ∩ t r (n2) =∅)}"A hierarhy is preserved by a hierarhy transformation:theorem hierarhy_trans :assumes t : " t ∈ Hierarhy "assumes t r : " t r ∈ H_tr(t) "shows "image t r t ∈ Hierarhy "proof . . . qedA tree is also preserved by a hierarhy transformation.Phylogeneti transformations and preservation theorem. Intuitively,when a phylogeneti transformation is applied to a non-leaf node, the deompo-sition into its desendant nodes is preserved. The haraterizing property of aphylogeneti transformation is expressed as follows:"P_tr , λ h . { t r ∈ H_tr(h) . ∀ n ∈ h .n ∈ Leaves (h) ∨ t r (n) = ⋃ (image t r (R1(Down(h , n)))) }"Then, we state the preservation theorem:theorem phylo_trans :assumes t : " t ∈ Phylo"assumes t r : " t r ∈ P_tr (t) "shows " image t r t ∈ Phylo"proof . . . qedExample. A Mutation is a transformation that onerns the nodes up a graphnode: gp, suh �up� nodes ontain gp, and a mutation is expressed as follows:"Mutation , λ(gp ,R) .λ n . i f gp ⊆ n then (n − gp) ∪ R else n"We show that the Mutation transformation is a phylogeneti transformation:theorem Mutation_P_tr :assumes h : "h ∈ Phylo "assumes g : "g ∈ Phylo "

28 Mamoun Filaliassumes pre : "PreGraft (h , gp , g) "shows "Mutation (gp ,ROOT(g)) ∈ P_tr (h) "proof . . . qedwhere PreGraft (We will use this prediate as the preondition of the Graftoperation.) is de�ned as follows:"PreGraft , λ(h , gp , g) . h ∈ Hierarhy ∧ (((ROOT h) ∩ (ROOT g)) = ∅) ∧gp ∈ Leaves (h) ∧ g ∈ Hierarhy ∧ g 6= ∅"2.4 Generative partitions and relationsOne of our onerns is the reonstrution of a phylogeneti tree starting fromthe set of its leaves. The basi idea of suh a reonstrution is to partitionthe leaves aording to its diret proper subtrees and to apply reursively thereonstrution to eah of the sets of the partition. These suessive partitionsde�ne the sets whih are generated by a generative partition.Generative partitions. Given a phylogeneti tree h, GP is alled a generativepartition of h, if eah node is either a leaf or partitioned aording the diretsub-roots of n (Down(h,n) is the subtree of h whih root is n)."Gene ra t i v ePar t i t i on, λ(h ,GP) . ∀ n ∈ h .GP(n) =(i f n ∈ Leaves (h) then {n} else R1(Down(h , n))) "Generative relations. Semantially, the generative relation is a symmetrirelation of whih the transitive losure is a generative partition. The motivationfor introduing generative relations is to make loal the reasoning about the ofgrowth the tree and onsequently easier than a global one. First, we de�ne R2Pwhih onverts a relation to the partition funtion given by its re�exive andtransitive losure: a node n is partitioned by the lasses of the orrespondingequivalene relation."R2P(r) , λ n . (n // ((r (n)) ^∗)) ""Generat iveRe lat ion , λ (h ,GR) .(∀ n ∈ h . GR(n) ⊆ n × n ∧ sym(GR(n)))
∧ Genera t i v ePar t i t i on (h , R2P(GR)) "2.5 The reonstrution funtion and theoremWe introdue the auxiliary funtion Reonstrut. Its de�nition is set up inorder to be aepted as a well de�ned funtion by Isabelle: sine it is a reursivefuntion that is not primitive, we have to provide a measure that dereases

A Mehanization of Phylogeneti Trees 29at eah all. The ondition of the if expression ensures it. The reonstrutfuntion is a urry�ed version of Reonstrut.redef Reonstrut "measure (λ (GP, s) . ard s) ""Reonstrut (GP, s) =(i f (f i n i t e s) ∧ (∀ s ' ∈ GP(s) . s ' ⊂ s) thenSigma (image (λ e . Reonstrut (GP, e)) (GP s))else { s }) "(hints simp add : psubset_ard_mono)" r e on s t ru t (GP) , λ s . Reonstrut (GP, s) "The theorem haraterizing the reonstrution is stated as follows:theorem gene ra t i v e_par t i t i on_reons t ru t i on :shows"∀ GP. ∀ t ∈ Phylo . Gene ra t i v ePar t i t i on (t ,GP)
⇒ (r e on s t ru t (GP) (ROOT(t)) = t) "proof . . . qedThis theorem is established thanks to the indution theorem over phyloge-neti trees (2.2).2.6 DisussionIn this setion, we disuss the de�nition of phylogeneti trees that has beenelaborated. With respet to the strutural point of view: a phylogeneti tree anbe de�ned as either a singleton node or as the Sigma of its subtrees. Suh aset based onstrution is not admitted by most of the type theory based logialframeworks [9, 1, 4, 13℄. In fat, in suh frameworks a tree is usually reursivelyde�ned through the list of its subtrees, or through a map of its subtrees from agiven index type. We have tried to work with eah of these representations. Theirmain drawbak is to break the underlying natural on�uene. For instane, withsuh representations, inserting a subtree after atually removing it, does not yieldthe original tree. Suh a on�uene is fundamental for establishing naturally ourreonstrution result. Otherwise, we would have to introdue modulo relationsin order to not distinguish between trees of whih subtrees are idential but notin the same order.3 The graft operationIn our setting, the graft operation models the growth of a tree. As its namesuggests, the graft operation onsists in grafting a tree at a given node. In thisstudy, we onsider a restrited version: grafting ours at singleton nodes only.

30 Mamoun Filali3.1 Graft deompositionLet h be a graph, gp a node of h where the graft should our and g the graph tograft. We express the graft through two basi operations: �rst, h is transformedthrough a Mutation, seond, g is grafted through the union (∪) operation. Suha deomposition is illustrated by �gure 2. The Graft is expressed as follows:"Graft , λ(h , gp , g) . (image (Mutation (gp ,ROOT(g))) h) ∪ g"
{x,y,a,e,b,u,v,w}

{x,y} {a,e,b} {u,v,w}

{x} {y} {a} {e} {b} {u} {v} {w}

Graft

{x,y,a,n1,n2,b,u,v,w}

{x,y} {a,n1,n2,b} {u,v,w}

{x} {y} {a} {n1,n2}{b} {u} {v} {w}

{n1} {n2}

{x,y,a,e,b,u,v,w}

{x,y} {a,e,b} {u,v,w}

{x} {y} {a} {e} {b} {u} {v} {w}

{x,y,a,n1,n2,b,u,v,w}

{x,y} {a,n1,n2,b} {u,v,w}

{x} {y} {a} {n1,n2}{b} {u} {v} {w}

{n1,n2}

{n1} {n2}

transformation

union

Fig. 2. Deomposition of a graftWe show that the grafted tree is also a phylogeneti tree. The proof is estab-lished thanks to the deomposition of the graft operation; we �rst establish thatMutation is a phylogeneti transformation, then thanks to the union theorem,g being phylogeneti, it follows that the grafted tree is phylogeneti.theorem graft_phylo :assumes h : "h ∈ Phylo"assumes g : "g ∈ Phylo"assumes pre : "PreGraft (h , gp , g) "shows "Graft (gp , g) (h) ∈ Phylo"proof . . . qed

A Mehanization of Phylogeneti Trees 313.2 Reonstruting a graft through a generative partitionThis setion states a general result about the preservation of a generative par-tition GP. In fat, we have a preondition about the partitioning of the mutatednodes.theorem generat ive_part i t ion_gra f t_phylo :assumes h : "h ∈ Phylo"assumes g : "g ∈ Phylo"assumes pre : "PreGraft (h , gp , g) "assumes gp_h : "Gene ra t i v ePar t i t i on (h ,GP) "assumes gp_g : "Gene ra t i v ePar t i t i on (g ,GP) "assumes gp_tr :"∀ n ∈ h . GP(Mutation (gp ,ROOT(g)) (n)) =(i f n ∈ Leaves (h) then {Mutation (gp ,ROOT(g)) (n) }else image (Mutation (gp ,ROOT(g))) (GP(n))) "shows "Gene ra t i v ePar t i t i on (Graft (h , gp , g) ,GP) "proof . . . qed3.3 Reonstruting a graft through a generative relationIn the same way, a generative relation an be preserved while extending a treethrough a graft. Thanks to this preservation: a tree, growing through graft op-erations, will always be reonstrutible from its leaves through its invariant gen-erative relation.A simpli�ed mutation: the basi update upd. For the purpose of ourappliation, we onsider the following node transformation:"upd , λ (l ,N) . λ S . i f l ∈ S then S − { l } ∪ N else S"Sine we have: upd(l, N) = Mutation({l}, N), upd inherits the property ofMutation; then it is a phylogeneti transformation.Moreover, in order to simplify the proof obligations for establishing thata generative relation is preserved after a graft, we have elaborated su�ientonditions that should be established by the update funtion. Due to the lakof spae, we do not detail them.We have established the preservation of the generative relation for the graftof a so alled anonial tree whih onsists of a root and a set of leaves:"Canoni , λ N. {N} ∪ (S e ∈ N. {{ e }}) "We have the following invariant theorem establishing the preservation of agenerative relation when grafting a anoni tree:

32 Mamoun Filalilemma generat ive_re lat ion_gra f t_phylo :assumes t : " t ∈ Phylo"assumes up : "{ l } ∈ t "assumes gp1 : "Generat iveRe lat ion (t ,GR) "assumes gr_m: "∀ n . GR(n) ⊆ n × n ∧ sym(GR(n)) "assumes te rmina l : "Terminal (t) "assumes N: "∀ n ∈ t . N ∩ n = ∅"assumes N_e: "N 6= ∅ ∧ f i n i t e (N) "assumes gp2 : "Generat iveRe lat ion (Canoni (N) ,GR)"assumes gr_tr :"∀ n ∈ t . l ∈ n ⇒ r_upd(l ,N) (n) (GR(n) ,GR(upd (l ,N) (n))) "shows "Generat iveRe lat ion (Graft ({ l } , Canoni (N)) (t) ,GR) "proof . . . qed4 AppliationAs an appliation of phylogeneti trees, we onsider distributed di�using om-putations. In the initial state, one site (or proess) multi-asts a message to asubset of other nodes. Then, all nodes share the same behavior: when a messageis reeived, the reeiver performs a omputation step and, possibly, multi-astsa message to a subset of other nodes.We are interested in the following problem: how to reonstrut the globalhistory of suh a omputation, after its termination3, from information gatheredduring the omputation. For suh a di�using omputation, the ontrol �ow is atree in whih the nodes are the omputation steps and the edges are the messageommuniations. Our algorithm onsists in olleting an enoded representationof these leaves. From this leaves set, we apply the reonstrution algorithm basedupon a generative relation de�ned on the omputation as a phylogeneti tree.4.1 Control tree enodingWe de�ne an enoding for the ontrol tree. The nodes generated during theomputation (temporary leaves) are enoded as vetors. At eah site, a loalounter is inremented by p − 1 eah time a omputation step multi-asts pmessages. Thus, one4 plus the sum of the loal ounters represents the numberof the ontrol tree leaves. Moreover, the value of the ounter of site s is themaximum of the vetors omponent at the index s.3 Suh a reonstrution is usually used for debugging purposes.4 We have to take into aount the initial states where the ounters are all null and the tree onsistsof one leaf node.

A Mehanization of Phylogeneti Trees 33

collected visit tag

(0,[0,0,0,0])

(1,[1,0,0,0])

S0

S1

S2

S3

(2,[1,1,0,0])

(3,[1,1,2,0])

(site,[x,y,z,t]) internal node tag (site,[x,y,z,t])

(2,[2,1,0,0])

(2,[1,1,2,2])

(1,[2,1,0,0])

(1,[1,1,2,2])

(0,[1,1,2,0])(0,[1,1,2,2])(0,[1,1,0,0])

(1,[1,1,2,0])

(2,[1,0,0,0])

Fig. 3. Visit tags enodingWe assoiate a "visit tag" to eah node. This tag is omposed of the site ofthe node and a natural integers vetor. This vetor V has a size N , orrespondingto the number of sites, and is assigned the loal ounter values of the sites ithas visited. Figure 3 shows the tagging of the nodes of a di�using omputationwith this enoding.The state spae of all the appliation is modeled by a global type State.It ontains the �elds related to the network, the loal omputations and theolletor. The omputation is onerned by the following �elds:� The �eld lounter implements the loal ounter of eah site;� The �eld olleted reords the visit tags of the omputation leaves.Two transitions are onsidered and eah of them is launhed when a messageis reeived:� ReeiveAndEnd desribes a omputing step without further message multi-ast. In this ase, the visit tag ontained in the reeived message is sent tothe olletor;� ReeiveAndSplit desribes a omputing step terminated by a message mul-tiast. In this ase, a new tag is reated: it holds the destination site (d) anda vetor whih is idential to the tag vetor of the splitting node (m.V), ex-ept for the splitting site (self) omponent, whih gets the new loal ountervalue lcounter[self] assigned by this omputation step. No message is sentto the olletor.

34 Mamoun FilaliWith respet to phylogeneti trees, the di�using omputation is seen as atree. A ReeiveAndEnd assigns to a node the de�nitive leaf status. While aReeiveAndSplit extends a tree with new leaves. We interpret it as a Graftoperation. Then, for validation purposes, we have an auxiliary variable auxTreefor reording the growth of suh a �superposed� tree: we prove that at termina-tion, this auxiliary tree and the reonstruted tree are the same.4.2 Termination detetion and reonstrutionWe introdue a olletor proess to gather vetors: a vetor is sent to the ol-letor when a proess performs a omputation step without multi-asting a newmessage. In suh a ase, this step generates a leaf with respet to the ontrol�ow of the omputation. Then, with respet to phylogeneti trees, the olletedtagged messages are in fat leaves of the phylogeneti tree superposed to thedi�using omputation (and reorded in the auxiliary variable auxTree).The reonstrution of the ontrol tree an only start when the global om-putation is terminated. Several distributed algorithms an solve the terminationproblem, espeially, thanks to a olletor proess[12℄. However, the enoding it-self provides a simple riterion for termination detetion [8℄: a omputation isterminated when the number of olleted leaves is equal to one plus the sum ofthe elements in the maximum of the olleted visit vetors5:
| olleted |= 1 +

∑

s∈Site max
v∈collected

v.V [s]The generative relation for the di�using omputation as a phylogeneti treeis de�ned as follows:" gr , λ n . {(v1 , v2) . v1 ∈ n ∧ v2 ∈ n ∧(i f V(v1) = min_on(n) ∨ V(v2) = min_on(n)then (v1 = v2)else (∃ s . V(v1) (s) = V(v2) (s) ∧ s 6= w(v1) ∧s 6= w(v2) ∧ V(v1) (s) 6= min_on(n) (s)))}"We derive the orretness of the reonstrution through the following invari-ant:"Reons t ru t i on Invar i an t , λ s t . auxTree (s t) =r e on s t ru t (R2P(gr)) (o l l e t e d (s t) ∪ network (s t)) "Then, when termination is reahed, the network is empty, and the reon-strution applied to the olleted messages gives the omputation tree.5 |_| denotes the ardinality of _ .

A Mehanization of Phylogeneti Trees 355 ConlusionIn this paper, we have proposed a mehanization of phylogeneti trees. Startingfrom basi set theory, we have introdued phylogeneti trees through hierarhiesand trees. Then, we have de�ned generi transformations. We note that setsbased representations, although already suggested in the literature[10℄, are notwidely used in omputer siene. To the best of our knowledge, the representa-tion of a tree through the set of its leaves together with a generative partitionor relation, as well as the study of dediated transformations, are original. Wehave given a onrete example, where suh notions have been applied to treereonstrution and shown how suh a reonstrution ould be validated. It isinteresting to remark that thanks to theorem proving tehniques, suh a vali-dation was possible; atually we have onsidered an unknown number of nodesand unbounded natural vetors. Usual model heking tehniques annot handlesuh problems.Most of our results have been proved formally within Isabelle. In fat, ourtrees are �unordered� trees. Suh a data type ould be onsidered as an indutivedata type where Sigma would play the role of a onstrutor; however, due tothe negative ourrene 6 most of the logial frameworks (HOL [9℄, Isabelle [13℄,PVS [4℄, Coq [1℄) do not support suh a de�nition shema. Vos and Swiestra [17℄have studied restritions for aepting indutive data types with negative our-renes; sine our trees are �nite, we ould have reused their work. This workis not known to be available within the Isabelle framework. An alternative waywould have been to introdue �unordered� trees through an equivalene rela-tion [14℄ over ordered trees where subtrees are onstruted with a list. It wouldbe interesting to ompare the subsequent developments of phylogeneti trees,generative relations and partitions.With respet to the formalization of trees and biology related results, numer-ous works have been published. Among the more reent, we an ite [16℄ whoonsider the problem of tree inlusion in a ategorial setting. [11℄ reviews ba-si network models for reasoning about biology; he noties that appliations tobiology of existing tools from algebra is just beginning. To the best of our knowl-edge, the mehanization of these works has not been onsidered yet. We thinkthat our work ould be reused as a starting point for establishing algorithmsorretness but also for the orretness of their proposed proofs7.6 The negative ourrene is due to the fat that the parameter of Sigma, onsidered as a onstrutor,is a set of trees.7 It is interesting to remark that the analysis of the algorithm of [5℄ is reported to be inorretin [15℄.

36 Mamoun FilaliReferenes1. B. Barras, S. Boutin, C. Cornes, J. Courant, J. Filliatre, E. Giménez, H. Herbelin, G. Huet,C. Muñoz, C. Murthy, C. Parent, C. Paulin, A. Saïbi, and B. Werner. The Coq ProofAssistant Referene Manual � Version V6.1. Tehnial Report 0203, INRIA, August 1997.http://oq.inria.fr.2. S. Berghofer and M. Wenzel. Indutive datatypes in HOL - lessons learned in formal-logi engi-neering. In Springer-Verlag, editor, Theorem Proving in Higher Order Logis, volume 1690, pages19�36, 1999.3. S. Boker and A. W. Dress. A note on maximal hierarhies. Advanes in Mathematis, (151):270�282, 2000.4. S. Crow, S. Owre, J. Rushby, N. Shankar, and S. Mandayam. A Tutorial Introdutionto PVS. In Workshop on Industrial-Strength Formal Spei�ation Tehniques, Boa Raton,http://www.sl.sri.om/pvs, April 1995.5. J. Culberson and P. Rudniki. A fast algorithm for onstruting trees from distane matries.Information Proessing Letters, 30(4):215�220, may 1989.6. B. Davey and H. Priestley. Introdution to Latties and Order. Cambridge Mathematial Text-books. Cambridge University Press, 1990.7. E. W. Dijkstra and C. S. Sholten. Prediate Calulus and Program Semantis. Springer-Verlag,1989.8. M. Filali, P. Mauran, G. Padiou, P. Quéinne, and X. Thirioux. Re�nement based validationof a distributed termination detetion algorithm . In FMPPTA'2000 , Canun, volume 1800 ofLeture Notes in Computer Siene, pages 1027�1036. Springer-Verlag, may 2000.9. M. Gordon and T. Melham. Introdution to HOL. Cambridge University Press, 1994.10. D. E. Knuth. The art of omputer programming Fundamental algorithms, volume 1. Addison-Wesley, 1969.11. R. Laubenbaher. Algebrai models in Systems biology. In H. Anai and K. Horimoto, editors,Algebrai Biology 2005 - Computer Algebra in Biology, pages 33�40. Universal Aademi press,Tokyo, Japan, 2005.12. F. Mattern. Global quiesene detetion based on redit distribution and re overy. InformationProessing Letters, 30(4):195�200, Feb. 1989.13. T. Nipkow, L. Paulson, and M. Wenzel. Isabelle/HOL. A Proof Assistant for Higher-Order Logi.Number 2283 in Leture Notes in Computer Siene. Springer-Verlag, 2002.14. L. C. Paulson. De�ning funtions on equivalene lasses. ACM Transations on ComputationalLogi, 7(4):658�675, 2006.15. L. Reyzin and N. Srivastava. On the longest path algorithm for reonstruting trees from distanematries. Information Proessing Letters, 101(1):98�100, january 2007.16. F. Rosello and G. Valiente. An algebrai view of the relation between largest ommon subtreesand smallest ommon supertrees. Theoretial Computer Siene, (362):33�53, 2006.17. T. E. Vos and S. D. Swierstra. Indutive data types with negative ourrenes in HOL. InWorkshop on Thirty Five years of Automath, Edinburgh, UK, 2002.18. M. Wenzel and F. Wiedijk. A omparison of the mathematial proof languages Mizar and Isar.Journal of Automated Reasoning, 29:389�411, 2002.19. M. M. Wenzel. Isar � a generi interpretative approah to readable proof douments. Number1690 in Leture Notes in Computer Siene. Springer-Verlag, 1999.

Combinations of Theories and the

Bernays-Schönfinkel-Ramsey Class

Pascal Fontaine

LORIA, Nancy University, France

Abstract. The Bernays-Schönfinkel-Ramsey (BSR) class of formulas is the class of
formulas that, when written in prenex normal form, have an ∃∗∀∗ quantifier prefix and
do not contain any function symbols. This class is decidable. We show here that BSR
theories can furthermore be combined with another disjoint decidable theory, so that
we obtain a decision procedure for quantifier-free formulas in the combination of the
BSR theory and another decidable theory.
The classical Nelson-Oppen combination scheme requires theories to be stably-infinite,
ensuring that, if a model is found for both theories in the combination, models agree
on cardinalities and a global model can be built. We show that combinations with
BSR theories can be much more permissive, even though BSR theories are not always
stably-infinite. We state that it is possible to describe exactly all the (finite or infinite)
cardinalities of the models of a given BSR theory. For the other theory, it is thus only
required to be able to decide if there exists a model of a given cardinality.
With this result, it is notably possible to use some set operators, operators on relations,
orders — any operator that can be expressed by a set of BSR formulas — together
with the usual objects of SMT solvers, notably integers, reals, uninterpreted symbols,
enumerated types.

1 Introduction

Many techniques for the formal verification of information systems generate
verification conditions, i.e. formulas encapsulating parts of the reasoning about
the systems. The deduction tools validating these verification conditions should
accept expressive languages, and should require a minimal amount of human
interaction. Combination of theories is the method behind SMT-solvers (SMT
for satisfiability modulo theories) to build decision procedures for very expres-
sive languages, containing interpreted symbols from several decidable theories.
Usually the theory embedded in the solvers is a static combination of linear
arithmetic, uninterpreted symbols, list operators, bit-vectors,. . . For instance, it
is possible to combine a decision procedure for integer linear arithmetic and a
decision procedure for the empty theory (i.e. a decision procedure for equality
and uninterpreted symbols) into a decision procedure to study formulas like

x ≤ y ∧ y ≤ x + f(x) ∧ P (h(x) − h(y)) ∧ ¬P (0) ∧ f(x) = 0.

The Bernays-Schönfinkel-Ramsey (BSR) class is a wide decidable class of
formulas; any set of function-free universal formulas is indeed decidable. We
consider here this class of formulas as a component in a combination of theories.

38 Pascal Fontaine

The classical Nelson-Oppen combination scheme [11, 16] requires every theory in
the combination to be stably-infinite, i.e. every quantifier-free formula satisfiable
in the theory should have a model with infinite cardinality. BSR theories are not,
in general, stably-infinite: as an example, consider the BSR theory ∀x∀y(x = y)
that only accepts models on a domain with one element. The classical combina-
tion result is not suitable in our case.

It has already been mentioned [17] that a BSR theory can be combined with
a theory T provided

– if a set of ground literals L is T -satisfiable, then the minimal cardinality of
T -models for L can be computed;

– T only has finite models.

We show here that this last strong requirement is not necessary; BSR theories
can in fact be combined with any other decidable theory T (with or without
infinite models, stably infinite or not), provided that, if a set L of ground literals
is satisfiable in T , it is possible to determine if there exists a T -model of a given
finite or infinite cardinality.

Motivations: the incentive for the procedure we present in Section 6 is
double. First, the requirement we impose on the theory T is fulfilled by many
decidable theories; using results in this paper it is possible to extend many
decidable quantifier-languages (for instance, mixing uninterpreted symbols with
linear arithmetic on reals and integers) with new interpreted predicates defined
by a BSR theory. The BSR theory is not required to be stably-infinite. The other
theory is not required to have only finite models.

The second motivation for such a general combination of theories is that
the T -satisfiability of quantifier-free formulas containing operators on sets, re-
lations,. . . can be reduced to studying the satisfiability of sets of literals in the
combinations of T and a BSR theory (see Sections 3 and 4). In Section 5, we
show that there is a straightforward implementation of this method when T is
the empty theory. Good results have been obtained with our prototype on trans-
lations of some problems from the SET domain of the TPTP library. When T
is not the empty theory, we can fall back to the general decision procedure in
Section 6. This decision procedure relies on the computation of model cardinal-
ities of BSR theories. We show in Section 7 that it is possible to know exactly
the cardinalities of BSR theories, and, in particular, we prove that it is possible
to compute if a BSR theory has an infinite model or not.

For convenience, the results in this paper are presented in an unsorted frame-
work, although most SMT-solvers work on a many-sorted logic (see for instance
[5]). The results can easily be transferred to a many-sorted framework, at an
expense of heavier notations.

Combinations of Theories and the Bernays-Schönfinkel-Ramsey Class 39

2 Notations

A first-order language is a tuple L = 〈V,F ,P〉 such that V is a enumerable set
of variables, F and P are sets of functions and predicates (we refer to “symbols”
for the union of F and P). Every function and predicate symbol is assigned an
arity. Nullary predicates are propositions, and nullary functions are constants.
The set of terms on language L is defined in the usual way. A ground term is
a term without variables. An atomic formula is either t = t′ where t and t′ are
terms, or a predicate symbol applied to the right number of terms. Formulas are
built from atomic formulas, connectors (¬, ∧, ∨, ⇒, ≡), and quantifiers (∀, ∃).
A formula with no free variable is closed. A theory is a set of closed formulas.
Two theories are disjoint if no predicate (except the equality) or function symbol
is interpreted in both theories.

An interpretation I for a first-order language assigns a set of elements D to
the domain, a total function I[f] on D with appropriate arity to every function
symbol f , a predicate I[p] on D with appropriate arity to every predicate symbol
p, and an element I[x] to every variable x. By extension, an interpretation gives
a value in D to every term, and a truth value to every formula. A model for a
formula (or a theory) is an interpretation that makes the formula (resp. every
formula in the theory) true. A formula is satisfiable if it has a model. It is
unsatisfiable otherwise. A formula G is T -satisfiable if it satisfiable in the theory
T , that is, if T ∪ {G} is satisfiable. A T -model of G is a model of T ∪ {G}. A
formula G is T -unsatisfiable if it has no T -model.

The cardinality of an interpretation (or model) is the cardinality of the do-
main of this interpretation. The restriction of a predicate p on domain D to
domain D′ ⊆ D is the predicate p′ with domain D′ such that p and p′ have the
same truth value for all arguments in D′.

A conjunctive (disjunctive) normal form is a conjunction of clauses, i.e. a
conjunction of disjunctions of literals, (resp. a disjunction of conjunctions of lit-
erals). It is always possible to transform a quantifier-free formula into a logically
equivalent conjunctive (disjunctive) normal form. A formula is universal if it
is of the form ∀x1 . . . ∀xn.ϕ where ϕ is quantifier-free. A Skolem formula is a
formula where all universal quantifiers appear with a positive polarity only, and
all existential quantifiers appear with a negative polarity only. It is always pos-
sible to transform a given formula into an equisatisfiable Skolem formula, using
Skolemization. We refer to [3] for Skolemization and conjunctive (disjunctive)
normal form transformations.

3 From operators to BSR theories

Objects such as sets, relations, or arrays of bits can be viewed as predicates. For
instance, sets can be unambiguously represented by their characteristic function

40 Pascal Fontaine

Equality ≈ λp q. ∀x. p(x) ≡ q(x)
membership ∈ λx p. p(x)
∅ ∅ λx. ⊥
Ω Ω λx. ⊤
Enumerate {a1, . . . an} λx. (x = a1 ∨ . . . x = an)
Intersection ∩ λp q. λx. p(x) ∧ q(x)
Union ∪ λp q. λx. p(x) ∨ q(x)
Difference \ λp q. λx. p(x) ∧ ¬q(x)
Subset ⊆ λp q. ∀x. p(x) ⇒ q(x)

A. Sets

Equality ≈ λp q. ∀x y . p(x, y) ≡ q(x, y)
Transitive Trans λp. ∀x y z . [p(x, y) ∧ p(y, z)] ⇒ p(x, z)
Symmetric Sym λp. ∀x y . p(x, y) ≡ p(y, x)
Antisym. ASym λp. ∀x y . ¬p(x, y) ∨ ¬p(y, x) ∨ x = y

Total Tot λp. ∀x y . p(x, y) ∨ p(y, x)
Reflexive Refl λp. ∀x p(x, x)
Irreflexive ARefl λp. ∀x ¬p(x, x)
Identity Id λx y. x = y

Product × λp q. λx y. p(x) ∧ q(y)

B. Relations

Equality ≈ λp q. ∀x. p(x) ≡ q(x)
Reading read λp i. p(i)
Writing write λp i x. λj. (j = i ⇒ x) ∧ (j 6= i ⇒ p(j))

C. One-dimensional arrays of bits

Fig. 1. Operators

and operators on sets can be viewed as operators on predicates. In Figure 1,
we give a few examples of set-like operators, operators on relations, operators to
encode read and write operations on arrays of bits. In those examples, we assume
p and q are predicates of appropriate arity and x, y, z are (first-order) variables.
Notice that set-like operators can also be defined for relations; for instance, the
intersection of relations is defined as λp q. λx, y. p(x, y) ∧ q(x, y).

We consider formulas that are written in a first-order language augmented
with the operators — defined as λ-terms given in Figure 1 — applied to the
right number of objects of appropriate type.

Example 1. if A, B, C are unary predicates used to represent sets, a formula
may contain A ≈ B ∩ C which becomes, after substitution of ∩ and ≈ by their
definition

[λp q. ∀x. p(x) ≡ q(x)] (A, (λp q. λx. p(x) ∧ q(x))(B, C)) .

After β-reduction, this becomes

∀x.A(x) ≡ [B(x) ∧ C(x)] . (1)

In general, the formulas obtained after elimination of operators mentioned
in this section are first-order, but may contain quantifiers. Those quantifiers

Combinations of Theories and the Bernays-Schönfinkel-Ramsey Class 41

come directly from the λ-terms; for instance the quantifier in (1) comes from
the definition of ≈. It is easily shown however, that, if the original formula
(with operators on sets, relations. . .) does not contain quantifiers, the resulting
first-order formula is a Boolean combination of (atoms and) formulas of the form
∀x1 . . . xn ϕ where ϕ is quantifier-free. Furthermore, quantified variables are used
only as arguments of predicates, that is, no function has a quantified variable as
an argument.

4 From FOL formulas to combination of theories

The formulas obtained in the previous section are Boolean combinations of
quantified formulas. In this section we describe the process to reduce the T -
satisfiability problem of these quantified formulas, to the satisfiability prob-
lem for sets of literals in the union of two theories: T and a disjoint Bernays-
Schönfinkel-Ramsey theory L∀. For the rest of the paper, we only impose one
restriction on the decidable theory T : if a set of literals is T -satisfiable, it is pos-
sible to compute if there exists a model of a given cardinality. We also assume
that all predicates occurring in operators from Figure 1 are uninterpreted for T .

The form of the formulas issued in the previous section is such that a struc-
tural Skolemization (see for instance [3]) will never introduce Skolem functions,
but only Skolem constants. We assume that the formula is Skolemized, using
such a structural Skolemization. The obtained formula is a Boolean combina-
tion of universal formulas (and atoms), the universal formulas appearing with a
positive polarity only.

The usual technique used in SMT-solvers to check the satisfiability of a
quantifier-free formula in a theory T is a (loose or tight) cooperation of a Boolean
satisfiability checker, and a procedure to check the satisfiability of literals within
T . This cooperation splits the problem into two parts: first, pure Boolean model
searches, and second, T -satisfiability checks for the corresponding conjunctive
sets of literals. For simplicity, we consider here that the split is realized by con-
verting the formula to disjunctive normal form. The formula is satisfiable if
and only if at least one conjunction of literals in the disjunctive normal form
is satisfiable. Now assume Ψ is the obtained formula after Skolemization. The
formula is transformed into disjunctive normal form, the quantified parts being
left unchanged. Since the formula has been Skolemized, the remaining (univer-
sal) quantifiers all appear with a positive polarity. Each conjunction of literals
in the disjunctive normal form only contains:

– first-order literals;

– formulas of the form ∀x1 . . . xn ϕ, where ϕ is a quantifier-free formula, such
that no x1 . . . xn is used within a function;

42 Pascal Fontaine

Example 2. Suppose we want to study the satisfiability of the formula:

a = b ∧ f(a) ∈ A ∧ f(b) /∈ C ∧ [f(b) /∈ A ∨ A ∪ B ≈ C ∩ D] .

Substituting operators ∈, ∪, ∩, ≈ by their definition and applying β-reduction,
one obtains

a = b ∧ A(f(a)) ∧ ¬C(f(b)) ∧
[

¬A(f(b)) ∨ ∀x. [A(x) ∨ B(x)] ≡ [C(x) ∧ D(x)]
]

Structural Skolemization leaves this last formula unchanged, since the sole
universal quantifier appears with a positive polarity. The corresponding disjunc-
tive normal form contains the two conjunctive sets of literals:

{a = b, A(f(a)),¬C(f(b)),¬A(f(b))} (2)

{a = b, A(f(a)),¬C(f(b)), ∀x. [A(x) ∨ B(x)] ≡ [C(x) ∧ D(x)]} (3)

The first set can easily be identified as being unsatisfiable. The second set only
contains first-order (quantifier-free) literals and formulas of the form ∀x1 . . . xn ϕ,
where ϕ is a quantifier-free formula, such that no x1 . . . xn is used within a
function.

In order to study the satisfiability of a set of literals in the combination of
disjoint theories, one usually first computes a separation of the set of formulas
along the languages in the disjoint theories.1 Each part of the separation contains
only the symbols from one theory in the combination; the only shared symbols
are equality and variables. We apply the same technique to separate predicates
that appear in quantified formulas from the rest of the symbols. For instance,
the set (3) is logically equivalent (in whatever theory) to the union of the sets

Lg = {a = b, y = f(a), z = f(b)},

L∀ = {A(y),¬C(z), ∀x. [A(x) ∨ B(x)] ≡ [C(x) ∧ D(x)]},

where y, z are introduced variables. In general, a separation can be built using
the following method.

Algorithm: Initially, L is a set containing literals and universal formulas, and no
quantified variable as argument of a function. The separation algorithm builds
two sets Lg (g for ground), and L∀ (for quantified formulas and related predi-
cates):

– for every uninterpreted predicate p that occurs in a quantified formula in L,
for every occurrence p(t1, . . . tn) of this predicate (in a quantified formula or
not), for every subterm ti that is not a variable (shared or not), introduce a
new shared variable x, add x = ti to Lg, and replace ti by x in L. Handle
similarly all occurrences of the form t1 = t2 in a quantified formula in L. This
is possible since no quantified variable is used as an argument of a function;

1 See for instance [6] for a formal presentation of the separation technique.

Combinations of Theories and the Bernays-Schönfinkel-Ramsey Class 43

– for every uninterpreted predicate p that belongs to a quantified formula in
L, add every literal p(t1, . . . tn) (or ¬p(t1, . . . tn)) from L to L∀. The previous
two steps ensure that here, t1, . . . tn are variables;

– add every quantified formula from L to L∀. Those formulas are universal
formulas, and the previous steps ensures that they are function-free.

– finally, every literal in L that does not belong to L∀ is added to Lg.

In this algorithm:

– the computed L∀ is a set of function-free universal formulas, i.e. a BSR theory;
– the initial L is T -satisfiable if and only if Lg ∪ L∀ is also T -satisfiable;
– the shared terms in Lg and L∀ are all variables.

To summarize, studying the T -satisfiability of a given formula with operators
as described in Figure 1 can be reduced to studying the T -satisfiability of sets
Lg ∪L∀. Another point of view is to study the satisfiability of the sets of literals
Lg, in the combination of the disjoint theories T and L∀. In the following sections,
we show that this problem is decidable, for any decidable theory T , as long as
it is possible to determine if Lg accepts a T -model of a given cardinality.

5 Combining a BSR theory with the empty theory

The method in the previous section leads to checking the satisfiability of a set
of literals Lg in the union of T and a BSR theory L∀ (Lg and L∀ share only
variables). We assume in this section that T is the empty theory. That is, every
function and predicate in Lg is left uninterpreted.

The classical Nelson-Oppen combination scheme cannot be used, since the
theory L∀ is not necessarily stably-infinite, that is, it may be satisfiable only
in finite models. For instance, if the original formula uses the “Enumerate”
operator, the resulting sets of formulas may contain a formula of the form

∀x. x = a ∨ x = b ∨ x = c

which would make L∀ non stably-infinite; the formula accepts models of cardi-
nality at most three. However we known that the empty theory can be combined
with any theory, not only stably-infinite ones [7, 17]. We now recall the combi-
nation algorithm.

Given a partition P of a set of terms, an arrangement induced by P is
the set of all equalities between any two terms in the same class of P, and all
disequalities between any two terms in different classes in P. For instance, the
arrangement induced by {{x1, x2}, {x3}} is {x1 = x2, x1 6= x3, x2 6= x3}. Assume
we have to study the satisfiability of the separation L1∪L2 in the combination of
the stably-infinite disjoint theories T1 and T2, where Li (i ∈ {1, 2}) only contains
symbols from Ti and variables. The classical result for combining stably-infinite

44 Pascal Fontaine

disjoint theories states that L1 ∪ L2 is satisfiable in the combination of T1 and
T2 if and only if there exists an arrangement A on the set of shared variables
between L1 and L2, such that Li ∪ A is Ti-satisfiable, for i = 1 and i = 2.
The procedure terminates, since the set of shared variables is finite, as well as
the set of arrangements. In the case where T1 is the empty theory, and T2 is
any theory (not necessarily stably-infinite), the result still holds [7], but the
arrangement has to be considered on a larger set of terms; the arrangement has
to be considered on all terms and variables in L1 ∪ L2.

2

Applied to our present case, Lg is satisfiable in the combination of the empty
theory and L∀, if and only if there exists an arrangement A of all ground terms
and free variables in Lg such that A∪ Lg and A∪ L∀ are both satisfiable.

Example 3. As an application, consider again the previous example:

{a = b, A(f(a)),¬C(f(b)), ∀x. [A(x) ∨ B(x)] ≡ [C(x) ∧ D(x)]}

one has to study the satisfiability of the unions of the sets

Lg = {a = b, y = f(a), z = f(b)},

L∀ = {A(y),¬C(z), ∀x. [A(x) ∨ B(x)] ≡ [C(x) ∧ D(x)]},

which is equivalent to study the satisfiability of Lg in the combination of the
empty theory and L∀. The combination framework then ensures that Lg ∪ L∀

is satisfiable if and only if there exists an arrangement A of {a, y, z} (the other
terms being necessarily equal to one in this set) such that A ∪ Lg and A ∪ L∀

are satisfiable. There are well known decision procedures for both satisfiability
problems.

5.1 Towards an implementation

The set of formulas A ∪ L∀ is also a BSR theory. It is satisfiable if and only if
A∪ Linst is, where Linst is a set of well-chosen instances of formulas in L∀. This
leads to the following result:

Theorem 1. Given a theory T , a set of literals Lg, a BSR theory L∀ such that
Lg and L∀ only share variables, then Lg∪L∀ is satisfiable (in the empty theory) if
and only if Lg ∪Linst is, where Linst is a set of instances of L∀: for every formula
∀x1 . . .∀xnϕ(x1, . . . xn) in L∀ (ϕ(x1, . . . xn) being quantifier-free), and terms or
free variables t1, . . . tn in Lg ∪ L∀, Linst contains the formula ϕ(t1, . . . tn).

Example 4. Applying this result on the previous example:

Lg = {a = b, y = f(a), z = f(b)},

L∀ = {A(y),¬C(z), ∀x. [A(x) ∨ B(x)] ≡ [C(x) ∧ D(x)]},

2 Another approach considers arrangements on the set of shared variables only, computes minimal
cardinalities of models for the empty theory, and ensures there is a model with a larger (or equal)
cardinality for the other theory [17].

Combinations of Theories and the Bernays-Schönfinkel-Ramsey Class 45

gives the formula

{a = b, y = f(a), z = f(b), A(y),¬C(z), ϕ(y), ϕ(z), ϕ(a)}

where ϕ(x) = [A(x) ∨ B(x)] ≡ [C(x) ∧ D(x)].

Deciding formulas that only contain operators like those in Figure 1, can
be done easily using the capabilities implemented in any SMT-solver (for in-
stance [1, 12]): the ability to deal with a Boolean combination of terms that only
contain uninterpreted symbols. This language being handled very efficiently by
modern solvers, the tools do cope well even if the number of generated instances
is large. A näıve implementation can be realized by doing β-reduction, Skolem-
ization, and instantiation as a preprocess, feeding a Boolean combination of
terms with only uninterpreted symbols to the SMT-solver.

A working prototype has been implemented. We ran this prototype on the
translation of problems SET008+3p, SET064+1p, SET143+3p, SET171+3p,
SET580+3p, SET601+3p SET606+3p, SET623+3p, and SET609+3p from the
TPTP library [15]. Unsurprisingly, these are all solved in a few milliseconds.
We should however mention that it is not really relevant to compare these per-
formances with ones of the FOL provers, since the set theories in which the
problems are checked for satisfiability are not the same for both approaches. For
instance, our approach implicitly assume sets cannot contain other sets, whereas
no such assumption is made in the TPTP problems.

6 Combining BSR theories with arbitrary decidable

theories

In the previous sections we considered formulas that contain uninterpreted sym-
bols, as well as other symbols such as set and relation operators. We show in this
section that there is a decision procedure for formulas that contain such set and
relation operators and interpreted symbols from an arbitrary decidable theory
T , provided (1) there is a decision procedure for the arbitrary theory that is able
to state if there is a model of a given cardinality (2) set and relation operators
are applied on uninterpreted symbols only. We have to study the satisfiability
of the set of ground literals Lg in the combination of the disjoint theories T and
L∀, where Lg only contains symbols from T and variables.

Theorem 2. Given a theory T , a set of literals Lg, and a BSR theory L∀ such
that Lg and L∀ only share variables, then Lg is satisfiable in T ∪L∀ if and only
if there exists an arrangement A of variables shared by Lg and L∀ such that
A ∪ Lg has a T -model, and A ∪ L∀ has a model, both models having the same
cardinality.

46 Pascal Fontaine

This theorem is an adaptation of the general result to combine non-stably-infinite
theories (see for instance [17]).

For theoretic discussions, the process of combining stably-infinite theories
usually implies guessing an arrangement on a set of variables. In practice, it
is equivalent, and more efficient that decision procedures exchange disjunctions
of equalities (see for instance [6] for a presentation of this equivalence). We can
imagine a similar treatment here for cardinalities. The decision procedures could
negotiate the size of the models by exchanging constraints. For simplicity, a näıve
decision procedure for the combination can be:

– build Lg and L∀ according to the method presented in section 4. Both sets
only share variables, and no symbol in L∀ is interpreted by T ;

– guess an arrangement A on shared variables. Notice there is only a finite
number of such arrangements: this guess can thus be replaced by a terminat-
ing loop;

– if the code on Fig. 2 returns “succeed” for A, the Lg ∪ L∀ is T -satisfiable;

– If every arrangement returns “fail” for the code on Fig. 2, Lg ∪ L∀ is T -
unsatisfiable.

The procedure concludes to T -satisfiability if and only if a model is found that
meets the conditions of Theorem 2. It remains to check that that every step
of the code on Fig. 2 is tractable. The test on line 1 is decidable since the T -
satisfiability problem for sets of literals is decidable, and since A∪ L∀ is a BSR
theory (decidable fragment). The results in the following section state that it
is possible to determine exactly what cardinalities are accepted for models of
any BSR theory, and in particular for A ∪ L∀: the tests on lines 3 and 7 are
decidable, and it is possible to enumerate (within finite time) the cardinalities
in line 4. The tests on lines 5, 8 and 13 are possible thanks to the condition
on theory T . For the test on line 15, checking if A ∪ Lg has a T -model with
cardinality greater or equal to k is simply reduced to checking the T -satisfiability
of A∪ Lg ∪

⋃

1≤i≤k

⋃

i<j≤k{ai 6= aj} where a1, . . . ak are fresh constants.

7 Cardinalities of BSR theories

The previous section states that to combine a BSR theory with another theory
is mainly a matter of getting the cardinalities of the models of the BSR theory.
We give now a necessary and sufficient criteria to determine if there is an infinite
model for such a theory, and if not, what are the finite cardinalities for which
there exists a model. For simplicity, we assume here that we have a BSR theory,
with no free variables, but only constants. If this requirement is not met, one can
transform the problem into an equivalent one by replacing free variables with
fresh constants.

Combinations of Theories and the Bernays-Schönfinkel-Ramsey Class 47

1: if A ∪ Lg is T -unsatisfiable or
A∪ L∀ is unsatisfiable then

2: return fail
3: if A ∪ L∀ only has finite models then

4: for each cardinality j of models of A∪ L∀ do

5: if A∪ Lg has a T -model with cardinality j then

6: return succeed
7: if A ∪ L∀ has an infinite model then

8: if A∪ Lg has an infinite T -model then

9: return succeed
10: else

11: k := the number of free variables and constants in A∪ L∀

12: for each j < k do

13: if A∪ Lg has a T -model with cardinality j and
A ∪ L∀ has a model with cardinality j then

14: return succeed
15: if A∪ Lg has a T -model with cardinality ≥ k then

16: return succeed
17: return fail

Fig. 2. Inspecting arrangement A

Given a BSR theory T using k constants, we first recall the simple result
that states that, if T has a model of (finite or infinite) cardinality i greater than
k, then it has a model for every cardinality j such that k ≤ j ≤ i. We then
show that there is a number k′ (> k), computable from T , such that, if there
is a model of cardinality greater or equal to k′, then there is an infinite model.
Altogether, this implies that T either has a model for every cardinality greater
or equal to k (example in Figure 3), or there exists a j smaller than the known,
finite, number k′, such that T has a model of every cardinality between k and j,
and no model of cardinality greater than j (example in Figure 3). Alternatively,
one can also decide if a theory with n distinct quantified variables has an infinite
model by checking if it has a n-repetitive model (see subsection 7.2).

0 k k′

0 k k′j

Fig. 3. Theories with infinite (above) and finite cardinalities.
A dot means there is a model with given cardinality.

48 Pascal Fontaine

7.1 BSR theories and finite models

Intuitively, the following theorem states that, given a model for a BSR theory,
the elements in the domain that are not assigned to ground terms (i.e. the
constants) can be eliminated, keeping it a model:

Theorem 3. Given a model M for a BSR theory T with domain D, then M′

such that

– the domain is a non-empty set D′ ⊆ D, with M[a] ∈ D′ for every constant
a in T ;

– for every predicate p, M′[p] is the restriction of M[p] to the domain D′;

is also a model for T

Proof. Since M is a model for T , for each closed formula ∀x1 . . . xn.ϕ in T (where
ϕ is function and quantifier-free), and for all d1,. . . dn ∈ D′ ⊆ D, Mx1/d1,...xn/dn

is a model for ϕ. This also means that, for all d1,. . . dn ∈ D′, M′
x1/d1,...xn/dn

is a
model for ϕ, and finally that M′ is a model for ∀x1 . . . xn.ϕ. ⊓⊔

Corollary 1. Assume k is the number of constants in a BSR theory T , or 1
if T has no constant. If there is a T -model of cardinality j, there is a finite
T -model with any cardinality i with k ≤ i ≤ j. If there is an infinite T -model,
there is a T -model with any cardinality i with k ≤ i.

7.2 BSR theories and infinite models

We known that a BSR theory either has models for every finite and infinite
cardinality greater than k, or it only has models of finite cardinalities all smaller
than a number k′. What is missing is a way to decide if one theory has an infinite
model or not. If it has no infinite model, the number k′ can be computed (näıvely)
by checking all finite models by increasing cardinalities until k′ is found.

The following definition expresses some symmetry properties of models. We
later show that the existence of an infinite model is equivalent to the existence
of a finite model having such symmetry properties.

Definition 1. Let M be an interpretation on domain D for a BSR theory T .
Let A = {M[a] | a is a constant in T } and B = D \ A. M is n-repetitive if
|B| ≥ n and if there exists a total order ≺ on elements in B such that

– for every m ≤ n;
– for every two strictly increasing (with respect to ≺) series e1, . . . em and

e′1, . . . e
′
m of elements in B;

– for every k-ary predicate symbol p used in T ;
– for every d1, . . . dk ∈ A ∪ {e1, . . . em};

Combinations of Theories and the Bernays-Schönfinkel-Ramsey Class 49

M[p](d1, . . . dk) = M[p](d′
1, . . . d

′
k), with d′

i = e′j if di = ej for some j, d′
i = di

otherwise. By extension, a theory is n-repetitive if it has a n-repetitive model.

Observe that, thanks to Theorem 3, a theory is n-repetitive if it has a n-
repetitive model M such that |B| = n, in the previous definition.

Example 5. Assume T is a theory with constants a1,. . . an0
, unary predicates

p1
1,. . . p

1
n1

, binary predicates p2
1,. . . p

2
n2

.
T is 1-repetitive, if and only if T ∪ R1(b) is satisfiable, with

R1(b) =def {b 6= a1, . . . b 6= an0
}.

In other words, a theory T is 1-repetitive if it accepts a model with an element
in the domain that is not assigned to a constant used in T .

T is 2-repetitive, if and only if

T ∪
⋃

i∈{0,1}

R1(bi) ∪ R2(b0, b1)

is satisfiable, with

R2(b0, b1) =def {b0 6= b1}

∪ {p1
i (b0) ≡ p1

i (b1) | i ∈ [1..n1]}

∪ {p2
i (b0, b0) ≡ p2

i (b1, b1) | i ∈ [1..n2]}

∪ {p2
i (aj, b0) ≡ p2

i (aj , b1) | i ∈ [1..n2], j ∈ [1..n0]}

∪ {p2
i (b0, aj) ≡ p2

i (b1, aj) | i ∈ [1..n2], j ∈ [1..n0]}

T is 3-repetitive, if and only if

T ∪
⋃

i∈{0,1,2}

R1(bi) ∪
⋃

i < j
i, j ∈ {0, 1, 2}

R2(bi, bj) ∪ R3(b0, b1, b2)

is satisfiable, with

R3(b0, b1, b2) =def {p
2
i (b0, b1) ≡ p2

i (b1, b2) ≡ p2
i (b0, b2) | i ∈ [1..n2]}

∪ {p2
i (b1, b0) ≡ p2

i (b2, b1) ≡ p2
i (b2, b0) | i ∈ [1..n2]}

Theorem 4. If a BSR theory T with n distinct quantified variables has a n-
repetitive model with cardinality k, then it has (n-repetitive) models with any
(finite or infinite) cardinality k′ ≥ k.

Proof. Assume M is a n-repetitive T -model of cardinality k on domain D. Let
A be {M[a] | a is a constant in T }, and B = D \A (|B| = k−|A| ≥ n). Assume
also that ≺ is the total order on B mentioned in Definition 1. Choose a strictly
increasing (with respect to ≺) series of n distinct elements e1, . . . en ∈ B.

Let E be such that E∩D = ∅, and |D∪E| = k′. We define an interpretation
M′ on domain D′ = D ∪ E. The total order ≺ on B is extended to B ∪ E. We
then require that M′[a] = M[a] for every constant a in T , and that, for every
m-ary predicate p in T and every d′

1, . . . d
′
m ∈ D′:

50 Pascal Fontaine

– if |{d′
1, . . . d

′
m} \ A| > n, M′[p(d′

1, . . . d
′
m)] does not matter;

– if {d′
1, . . . d

′
m} ⊆ D, M′[p(d′

1, . . . d
′
m)] = M[p(d′

1, . . . d
′
m)];

– otherwise, let e′1, . . . e
′
n be a strictly increasing series including all elements

in {d′
1, . . . d

′
m}\A. M′[p](d′

1, . . . d
′
k) = M[p](d1, . . . dk), with di = ej if d′

i = e′j
for some j, di = d′

i otherwise.

By construction, M′ is n-repetitive.
Every formula in T is of the form ∀x1 . . . xm.ϕ(x1, . . . xm), with m ≤ n. For

all elements d′
1 . . . d′

m ∈ D′, the truth value for M′
x1/d′

1
,...xm/d′m [ϕ(x1, . . . xm)] is

Mx1/d′
1
,...xm/d′m [ϕ(x1, . . . xm)] (i.e. true), if {d′

1, . . . d
′
m} ⊆ D. Otherwise, assume

e′1, . . . e
′
n is a strictly increasing series including all elements in {d′

1, . . . d
′
m} \ A.

Since the model M′ is n-repetitive, then M′
x1/d′

1
,...xm/d′m

[ϕ(x1, . . . xm)] is equal

to Mx1/d1,...xm/dm
[ϕ(x1, . . . xm)] (i.e. true) where di = ej if d′

i = e′j for some j,
di = d′

i otherwise. Finally, M′ is a model of ∀x1 . . . xn.ϕ(x1, . . . xm). ⊓⊔

Theorem 5. If a BSR theory T has a model with a cardinality greater than
a number k′ computable from the theory, then it has a n-repetitive model on
domain D = A ∪ B, where A = {M[a] | a is a constant in T }, A ∩ B = ∅ and
|B| = n.

Proof. Assume T has a finite model M′ on domain D′. We define the sets
A = {M′[a] | a is a constant in T } and B′ = D′ \ A. Choose an order ≺ on B′.
We now compute the size of B′ so that there exists a n-repetitive model. A
suitable k′ can then be computed from |B′|.

Given two ordered (with respect to ≺) series e1, . . . em and e′1, . . . e
′
m of ele-

ments in B′, we will say that the configurations for e1, . . . em and e′1, . . . e
′
m are

the same if for every k-ary predicate p, and for every d1, . . . dk ∈ A∪{e1, . . . em},
M′[p](d1, . . . dk) = M′[p](d′

1, . . . d
′
k), with d′

i = e′j if di = ej for some j, d′
i = di

otherwise. Notice that there are only a finite number of different configura-
tions for m elements in B′: more precisely a configuration is made of at most
b =

∑

p [m + |A|]arity(p) Boolean values, where the sum ranges on all predicates
in the theory. Thus the number of different configurations is bounded by C = 2b.

Understanding colors as being configurations, one can use Theorem 6 (in
Appendix A) to state that, if |B′| > f(n, N, C), then there exists a model of
cardinality |A|+N for T with the same configuration for any m ordered distinct
elements. Recursively applying this procedure for every m ∈ [1..n], it is possible
to compute the cardinality k′ of the original model so that there exists a n-
repetitive model with the suitable cardinality. ⊓⊔

From both previous theorems:

Corollary 2. Given a BSR theory T using n distinct quantified variables. T
has an infinite model if and only if it has a n-repetitive model.

Checking if a BSR theory T has an n-repetitive model is reduced to check-
ing the satisfiability of another BSR theory T ′, basically, T augmented with

Combinations of Theories and the Bernays-Schönfinkel-Ramsey Class 51

some quantifier-free formulas. For formulas containing operators discussed in
Section 3, we have n ≤ 3, and predicates have an arity of at most 2: T ′ is given
in Example 5. If T does not have an infinite model, then there is a maximum
cardinality j for its models. The theory accepts a model for every cardinality
between the number k of constants in T and j. This number j is bounded by a
computable number k′. Unluckily, we currently lack an efficient (if there exists)
way to compute this j. A näıve process to determine this number is to try every
cardinality greater than k; the process will eventually terminate. Finally notice
that this inefficient process is not necessary when combining a BSR theory with
theories that only have infinite models.

8 Conclusions

In Section 3, we noticed that the use of some operators to encode sets, properties
on relation,. . . would imply to have to verify the T -satisfiability of FOL formu-
las with quantifiers. It was also shown that this satisfiability problem can be
reduced to the satisfiability problem of literals in the combination of the theory
T and another decidable theory, precisely a set of Bernays-Schönfinkel-Ramsey
formulas.

Combining a BSR theory with the empty theory is possible, and this is the
basis to build a decision procedure for formulas that contain uninterpreted func-
tions and predicates, some operators on sets, relations,. . . A prototype has been
built, and the first results are promising. When formulas containing operators
from Section 3 have to be studied in some decidable (non-empty) theory T , the
combination process with the BSR theory is more complicated. The method pre-
sented in Section 6 is not in itself a practical procedure: its complexity prevents
a direct application. However we believe that it can be the basis for a useful
tool, with implementation-oriented improvements and proper heuristics.

We mainly target the B [2] and TLA+ [9] formal methods. Those language
heavily rely on some set theories, and we believe that the results in this pa-
per can help automating the proof of some parts of the verification conditions,
which often mix arithmetic symbols, uninterpreted functions, and set operators.
Verification conditions generated within those formal methods are usually small,
within reach of a decision procedure even if it is inefficient. For verification con-
ditions that are not fully within the language of the decision procedure, we built
a certified (through proof reconstruction [8, 10]) cooperation between a proof
assistant and the automated tool. At the present time, this cooperation can be
used to delegate the proof of theorems from Isabelle to our prototype implemen-
tation (see Section 5), and have the proofs rechecked by the kernel of Isabelle,
ensuring consistency of the whole cooperation of both tools.

52 Pascal Fontaine

A direction for further research is to investigate how to use the knowledge
and engineering embedded in state-of-the-art first order provers (for instance [14,
13, 4]) to handle the BSR theories within a combination of decision procedures.

Acknowledgments: I am grateful to Yves Guiraud, Yuri Gurevich, Stephan
Merz, Silvio Ranise, Christophe Ringeissen, and Duc-Khanh Tran for the inter-
esting discussions on this subject.

References

1. Yices: An SMT solver. Available on http://yices.csl.sri.com/.
2. J.-R. Abrial. The B-Book: Assigning Programs to Meanings. Cambridge University Press, 1996.
3. M. Baaz, U. Egly, and A. Leitsch. Normal form transformations. In J. A. Robinson and

A. Voronkov, editors, Handbook of Automated Reasoning, volume I, chapter 5, pages 273–333.
Elsevier Science B.V., 2001.

4. P. Baumgartner, A. Fuchs, and C. Tinelli. Implementing the Model Evolution Calculus. In
S. Schulz, G. Sutcliffe, and T. Tammet, editors, Special Issue of the International Journal of
Artificial Intelligence Tools (IJAIT), volume 15 of International Journal of Artificial Intelligence
Tools, 2005.

5. H. B. Enderton. A Mathematical Introduction to Logic. Academic Press, Inc., Orlando, Florida,
1972.

6. P. Fontaine. Techniques for verification of concurrent systems with invariants. PhD thesis, Institut
Montefiore, Université de Liège, Belgium, Sept. 2004.

7. P. Fontaine and E. P. Gribomont. Combining non-stably infinite, non-first order theories. In
W. Ahrendt, P. Baumgartner, H. de Nivelle, S. Ranise, and C. Tinelli, editors, Selected Papers
from the Workshops on Disproving and the Second International Workshop on Pragmatics of
Decision Procedures (PDPAR 2004), volume 125 of Electronic Notes in Theoretical Computer
Science, pages 37–51, July 2005.

8. P. Fontaine, J.-Y. Marion, S. Merz, L. P. Nieto, and A. Tiu. Expressiveness + automation
+ soundness: Towards combining SMT solvers and interactive proof assistants. In Tools and
Algorithms for Construction and Analysis of Systems (TACAS), volume 3920 of Lecture Notes in
Computer Science, pages 167–181. Springer-Verlag, 2006.

9. L. Lamport. Specifying Systems. Addison-Wesley, Boston, Mass., 2002.
10. S. McLaughlin, C. Barrett, and Y. Ge. Cooperating theorem provers: A case study combining

HOL-light and CVC lite. Electronic Notes in Theoretical Computer Science, 144(2):43–51, 2006.
11. G. Nelson and D. C. Oppen. Simplifications by cooperating decision procedures. ACM Transac-

tions on Programming Languages and Systems, 1(2):245–257, Oct. 1979.
12. R. Nieuwenhuis and A. Oliveras. Decision Procedures for SAT, SAT Modulo Theories and Beyond.

The BarcelogicTools. (Invited Paper). In G. Sutcliffe and A. Voronkov, editors, 12h International
Conference on Logic for Programming, Artificial Intelligence and Reasoning, LPAR’05, volume
3835 of Lecture Notes in Computer Science, pages 23–46. Springer, 2005.

13. A. Riazanov and A. Voronkov. The design and implementation of Vampire. AI Communications,
15(2):91–110, 2002.

14. S. Schulz. System Abstract: E 0.61. In R. Goré, A. Leitsch, and T. Nipkow, editors, International
Joint Conference on Automated Reasoning (IJCAR), number 2083 in Lecture Notes in Artificial
Intelligence, pages 370–375. Springer, 2001.

15. G. Sutcliffe and C. Suttner. The TPTP Problem Library: CNF Release v1.2.1. Journal of
Automated Reasoning, 21(2):177–203, 1998.

16. C. Tinelli. Cooperation of background reasoners in theory reasoning by residue sharing. Journal
of Automated Reasoning, 30(1):1–31, Jan. 2003.

17. C. Tinelli and C. G. Zarba. Combining non-stably infinite theories. In I. Dahn and L. Vigneron,
editors, First Order Theorem Proving, volume 86.1 of Electronic Notes in Theoretical Computer
Science. Elsevier, 2003.

Combinations of Theories and the Bernays-Schönfinkel-Ramsey Class 53

A n-monochromatic theorem

We define a n-subset of S to be a subset of n elements of S. An n-overgraph in
S is a set of n-subsets of S. In particular, a 2-overgraph is a (undirected) graph.
The complete n-overgraph of S is the set of all n-subsets of S, and its size is
the cardinality of S. A n-overgraph G is colored with a set of colors C if there
is a coloring function that assigns an element in C to every n-subset in G. In
particular, a colored 2-overgraph (that is, a colored graph), is a graph where
all edges are assigned a color. A colored n-overgraph is monochromatic if the
coloring function assigns the same color to every n-subset. A colored n-overgraph
A is a sub-overgraph of a colored n-overgraph B if each n-subset S ∈ A belongs
to B, and if the color associated to S is the same in both colored n-overgraphs.

Theorem 6. There exists a computable function f such that, for every set of
colors C, for every n, N ∈ N, and every complete n-overgraph G colored with
C, if the size of G is greater or equal to f(n, N, |C|), there exists a complete
monochromatic n-sub-overgraph of G of size greater or equal to N .

Proof. We proceed by induction on n and the size of C.
Notice first that f(n, N, 1) = N for every n, since a n-overgraph is colored

with a unique color is monochromatic. Also, f(1, N, 2) = 2N , since a set of 2N
elements that have one color in a pair {b, w} contains at least N elements of the
same color.

We now consider f(n, N, 2). Assume G is a complete n-overgraph in S colored
by c using colors in {b, w}. We build the series Si and ei such that

– S0 = S
– ei is any element in Si

– To build Si+1, we consider the complete (n−1)-overgraph in Si\{ei}, colored
by cei

, where cei
assigns to each (n − 1)-subset A of Si \ {ei} the color given

by c to the n-subset A ∪ {ei}. Using the induction hypothesis, if |Si| ≥
f(n− 1, x, 2), there is a subset Si+1 ⊆ Si \ {ei} such that |Si+1| ≥ x and the
complete (n − 1)-overgraph of Si+1 colored by cei

is monochromatic.

Let B be the set of ei such that the (n−1)-overgraph in Si+1 is colored by b, and
W be the set of ei such that the (n − 1)-overgraph in Si+1 is colored by w. The
n-overgraphs in B and W colored by c are monochromatic. To have |B| ≥ N or
|W | ≥ N it is sufficient that |S2N | = n − 1. Defining function g to be such that
g(∗) = f(n − 1, ∗, 2), it is sufficient to have |S0| ≥ gN(N)

It remains to define f(n, N, |C|) when |C| > 2. Assume G is a n-overgraph
in S colored by c using colors in C ∪ k (k /∈ C). We now consider all colors
in C as one sole color; using the induction hypothesis, if |S| ≥ f(n, N ′, 2) then
there exists S ′ ⊆ S such that |S ′| ≥ N ′ and the complete n-overgraph of S ′

colored by c only uses colors in C, or is monochromatic with color k. Any way,

54 Pascal Fontaine

if one chooses N ′ as being greater than f(n, N, |C|), there exists a subset S ′′

of S ′ such that |S ′′| ≥ N and the complete n-overgraph of S ′′ colored by c is
monochromatic. We thus define f(n, N, |C| + 1) = f(n, f(n, N, |C|), 2). ⊓⊔

ALICE

An Advanced Logic for Interactive Component

Engineering

Borislav Gajanovic and Bernhard Rumpe

Software Systems Engineering Institute
Carl-Friedrich-Gauÿ Faculty for Mathematics and Computer Science
Braunschweig University of Technology, Braunschweig, Germany

http://www.sse-tubs.de

Abstract. This paper presents an overview of the veri�cation framework ALICE in
its current version 0.7. It is based on the generic theorem prover Isabelle [Pau03a].
Within ALICE a software or hardware component is speci�ed as a state-full black-box
with directed communication channels. Components send and receive asynchronous
messages via these channels. The behavior of a component is generally described as
a relation on the observations in form of streams of messages �owing over its input
and output channels. Untimed and timed as well as state-based, recursive, relational,
equational, assumption/guarantee, and functional styles of speci�cation are supported.
Hence, ALICE is well suited for the formalization and veri�cation of distributed systems
modeled with this stream-processing paradigm.

1 Introduction

1.1 Motivation

As software-based systems take ever more and more responsibility in this world,
correctness and validity of a software-based system is increasingly important.
As the complexity of such systems is also steadily increasing, it becomes ever
more complicated to ensure correctness. This especially concerns the area of dis-
tributed systems like bus systems in transportation vehicles, operating systems,
telecommunication networks or business systems on the Internet. Expenses for
veri�cation are an order of magnitude higher than the expenses of the software
testing up to now. This, on the one hand, will not change easily in the short
run but it will also become evident that crucial parts of software need a di�er-
ent handling than less critical ones. So veri�cation will go along with testing
in the future. Full veri�cation, however, will at least be used for critical proto-
cols and components. To reduce veri�cation expenses, a lot has been achieved
in the area of theorem provers, like Isabelle [Pau03a, Pau03b, NPW02], in the
last years. Based on these foundational works and on the increasing demand for
powerful domain speci�c theories for such theorem provers, we have decided to
realize ALICE as a stream-processing-oriented, formal framework for distributed,
asynchronously communicating systems.

56 Borislav Gajanovic, Bernhard Rumpe

ALICE is a still growing framework within Isabelle for the veri�cation of logi-
cally or physically distributed, interactive systems, where the concept of commu-
nication or message exchange plays a central role. An interactive system (see also
[BS01] for a characterization) consists of a number of components with precisely
de�ned interfaces. An interactive component interacts with its environment via
asynchronous message sending and receiving over directed and typed communi-
cation channels. Each channel incorporates an implicit, unbounded bu�er that
decouples the sending and arrival of messages, and thus describing asynchronous
communication. In timed channels, we can control how long these messages re-
main in this implicit bu�er. Fig. 1 illustrates the graphical notation for the
syntactical interface of a simple interactive component with one input and one
output channel.

<Name>
<Name> : <Type> <Name> : <Type>

Fig. 1. Illustration of an interactive component as a black-box

In ALICEmessage �ow over channels is modeled by possibly in�nite sequences
of messages called streams. Such a stream represents the observation of what
happens on a channel over time. Since in�nite sequences are also included, the
liveness and fairness properties of systems can also be dealt with. ALICE provides
type constructors astream for building (untimed) streams and tastream for
timed streams over arbitrary types.

As an advanced veri�cation framework, ALICE will o�er precisely formalized
and comfortably usable concepts based on an underlying logic language called
HOL [NPW02] as available in Isabelle. Using a well explored and rather ex-
pressive logic language allows us to build on an elaborated set of veri�cation
techniques for ALICE.

ALICE will provide support for a number of techniques to specify a compo-
nent. A speci�cation can be a relation between input and output streams, a
stream-processing function, a mapping of input to output, or a set of stream-
processing functions allowing to describe non-determinism and underspeci�ca-
tion. All variants can be timed or untimed. Further support will be given to map
between these styles, allowing to choose appropriate speci�cation techniques for
each problem and integrating those later.

Although ALICE does already provide some of these features in its current
version, this workshop paper also reports on work still to be done (for the pre-
vious version see [GR06]). In a future version ALICE will provide the following:

� A veri�cation framework based on Isabelle supporting development methods
for real time, distributed, asynchronously communicating and object oriented
systems, respectively. This supports e.g. the development methodologies of
[Rum96] and Focus [BS01].

ALICE: An Advanced Logic for Interactive Component Engineering 57

� A formal semantics framework for various languages based on
stream-processing, e.g. UML's composite structure diagrams that will be
formalized based on streams [BCR06, BCR07a, BCR07b].

� A sophisticated veri�cation tool for distributed, interactive systems or, at
least, their communication protocols based on stream-processing (see [Ste97]
for a survey of stream-processing).

In the following we give a compact overview of Isabelle's HOL and HOLCF
that acts as a reminder for experts of the �eld. An introduction can be found in
[NPW02, Reg94] before we start describing features of ALICE in Section 2 and
demonstrating the use of ALICE in Section 3 on the Alternating Bit Protocol.
Section 4 concludes the paper with a discussion.

1.2 HOL

Isabelle is a generic theorem prover, hence, it can be instantiated with object
logics and appropriate proof tactics. Isabelle/HOL [NPW02], in short HOL, is
such an elaborated higher order logic, dealing amongst others with sets, relations,
total functions, natural numbers, and induction.

HOL provides a term syntax close to mathematical syntax and constructs
from functional languages. It also provides basic types like bool or nat. For
building sets over arbitrary types, HOL provides the type constructor set. Func-
tion types are built with the in�x type constructor⇒ for total functions. To build
more complex types, the mentioned, and a number of additional basic types and
type constructors are provided.

HOL inherits the type system of Isabelle's metalogic including its automatic
type inference for variables. There are two kinds of implication: the implication
on the level of object logic, in this case HOL, symbolized by −→, and the symbol
=⇒ for Isabelle's inference. Analogously, there is an object logics symbol for the
equality, in this case =, and the metalogics symbol≡ for the de�nitional equality.

In Isabelle assumptions of an inference rule are enclosed in [] and separated
by ;. The metalogics universal quanti�er is symbolized by

∧
.

1.3 HOLCF

Isabelle/HOLCF [Reg94, MNvOS99], shortly HOLCF, is a conservative exten-
sion of HOL with domain theoretical concepts, such as chains, continuity, ad-
missibility, �xpoint recursion and induction, as well as some basic types and
datatypes e.g. for lazy lists.

HOLCF extends HOL with the central type class pcpo for �pointed complete
partial orders�. Any type that is a member of this type class features a special
relation symbol v for a partial order on its elements, the least element sym-
bolized by ⊥, and the existence of the least upper bound for any chain of its
elements with respect to v.

58 Borislav Gajanovic, Bernhard Rumpe

This extension is carried out in layers of theories, beginning with the de�ni-
tion of type class po for partial orders. po is extended to type class cpo, where
the existence of the least upper bound for any chain, symbolized by

⊔
i. Y i,

is introduced. Here, Y is a chain of growing elements and i the index over nat-
ural numbers. Based on these theories, monotonicity and continuity for HOL
functions on cpo types is formalized.

Type class pcpo �nally introduces the existence of the least element in
its members. We call the members of this class HOLCF types. Subsequently,
HOLCF provides the new in�x type constructor → for the construction of con-
tinuous functions on HOLCF types. Analogously to the HOLCF types, we call
these functions HOLCF functions or operations. These functions, by de�nition,
exhibit the advantages of continuous functions, such as composability, imple-
mentability etc. A lambda-abstraction, denoted by Λ (not to confuse with HOL's
λ) and a corresponding function application, using the symbol · (opposite to
HOL's white space) is provided accordingly.

Subsequently, the �xpoint theory Fix mainly implements a continuous �x-
point operator, symbolized by fix, and the �xpoint induction principle. Hence,
with →, fix, and HOLCF datatypes a complete HOLCF syntax for de�ning
and reasoning about HOLCF functions and types is provided, which is separate
from HOL's function space. As an advantage, by construction, HOLCF function
abstraction and application remains in the HOLCF world.

1.4 Related Work

A good outline on di�erent approaches to formalize possibly in�nite sequences
in theorem provers like Isabelle or PVS, as well as a detailed comparison can
be found in [DGM97, Mül98]. In contrast to a HOLCF formalization given in
[Mül98], where �nite, partial, and in�nite sequences are de�ned to model traces
of I/O-Automata, our streams have been developed using only partial sequences
and their in�nite completions, which are more appropriate for modeling inter-
active systems as these are generally non-terminating. A pure HOL approach
based on coinduction and corecursion is described in [Pau97].

Another approach is the formal speci�cation language ANDL introduced
in [SS95]. ANDL is a formalization of a subset of Focus with an untimed
syntax and a �xed and an untimed semantics. Currently, ANDL does not provide
an appropriate veri�cation infrastructure or extended sophisticated de�nition
principles, but it is HOLCF oriented. In [SM97] ANDL is used as interface for
an A/C re�nement calculus for Focus in HOLCF. In [Hin98] ANDL is extended
to deal with time.

A recent work in this area is [Spi06], where a pure HOL approach to formalize
timed Focus streams is used. By this approach (see also [DGM97, Mül98]), an
in�nite stream is represented by a higher-order function from natural numbers

ALICE: An Advanced Logic for Interactive Component Engineering 59

to a set of messages. Furthermore a time-driven approach, as it will brie�y be
mentioned in Section 2.4, has been chosen there.

Apart from our idea of building such a logical framework, the realization of
ALICE is based on a rudimentary formalization of Focus streams in HOLCF,
developed by D. von Oheimb, F. Regensburger, and B. Gajanovic (the ses-
sion HOLCF/FOCUS in Isabelle's release Isabelle2005), a concise depiction of
HOLCF in [MNvOS99], as well as on the conclusions from [DGM97, SM97]. It
is elaborately explained in [GR06]. Additionally, it is worth mentioning that, in
the current version HOL's construct typedef has been used to de�ne astream.

2 ALICE

The newly de�ned logic ALICE includes the following parts:

� HOL - the full HOL de�nitions.
� HOL/HOLCF - all theories from HOLCF, like Pcpo, Cont, etc. that are used

on the �interface� between HOL and HOLCF (as discussed in Section 1.3).
� HOLCF - using HOLCF application/abstraction (LCF sublanguage) only.
� ALICE - basic type constructors astream and tastream, as well as recursion,

pattern-matching, automata, etc.
� ALICE - lemmas provided by ALICE theories (they are generally partitioned

in timed and untimed properties).

Please note that, for the development of ALICE, we use a combination of
HOL and HOLCF syntax, but the user of ALICE does not need to. This is due
to the fact that we internally use HOLCF to build up necessary types, operators,
and proving techniques, but will encapsulate these as much as possible.

2.1 Basic Features of ALICE

To understand ALICE in more detail, we �rst summarize its basic features. ALICE
provides:

� polymorphic type constructors astream and tastream for timed and untimed
streams over arbitrary HOL types,

� sophisticated de�nition principles for streams and functions over streams,
such as pattern-matching, recursion, and state-based de�nition techniques,

� incorporated domain theory (concepts of approximation and recursion),
� various proof principles for streams,
� incorporated automata constructs for state-based modeling, also supporting

underspeci�cation or non-determinism,
� extensive theories for handling timed streams, functions and properties,
� a powerful simpli�er (while developing ALICE, a proper set of simpli�cation

rules has been de�ned carefully in such a way as to be used by ALICE auto-
matically), and

60 Borislav Gajanovic, Bernhard Rumpe

� an extensive library of functions on streams and theorems, as well as com-
monly needed types (just like in any other programming language, a good
infrastructure makes a language user friendly).

The following sections provide brief insights in the above listed features. For
a deeper understanding we refer to [GR06].

2.2 Specifying Streams

ALICE provides a basic type constructor called astream for specifying untimed
streams. For any Isabelle type t, the type t astream is member of the HOLCF
type class pcpo as described in Section 1.3. The following exhaustion rule de-
scribes the basic structure of untimed streams as well as the fundamental oper-
ators for their construction:V
s. s = ε ∨ (∃ h rs. s = <h>_rs)

A stream s is either empty, symbolized by ε, or there is a �rst message h and
a remaining stream rs so that pre-pending h to rs yields the stream s. The
operator <.> builds single element streams and ._. de�nes the concatenation
on streams. It is associative and continuous in its second argument and has the
empty stream (ε) as a neutral element. If the �rst argument of concatenation is
in�nite, the second is irrelevant and the �rst is also the result of the concatena-
tion. This e�ectively means that the messages of the second stream then never
appear in the observation at all.

According to the above rules, ALICE also o�ers selection functions, named
aft for the head and art for the rest of a stream, respectively. Function atake

allows us to select the �rst n symbols from a stream. Function adrop acts as
a counterpart of atake as it drops the �rst n messages from the beginning of
a stream s. The operator anth yields for a number n and a stream s, the n-th
message. Beyond that, ALICE provides many other auxiliary functions, e.g. #
for the length of a stream, yielding ∞ for in�nite streams, aflatten for the
�attening of streams of streams, aipower for the in�nite repetition, afilter for
message �ltering. In Section 2.5 we give a tabular review of operators that are
available in the current version of ALICE.

Since streams are HOLCF datatypes, they carry a partial order (see also
Section 1.3), which is described by the following lemma

s1 v s2 =⇒ ∃ t. s1_t = s2

The above rule characterizes the pre�x ordering on streams. It is induced by a
�at order on the messages, disregarding any internal structure of the messages
themselves. Based on these operators, a larger number of lemmas is provided to
deal with stream speci�cations, like case analysis, unfolding rules, composition
rules, associativity, injectivity, and idempotency. Some foundational lemmas are
given in Tab. 1.

ALICE: An Advanced Logic for Interactive Component Engineering 61

Table 1. Some foundational lemmas on stream concatenation

ε _s = s_ε = s

(s_t)_u = s_(t_u)

#ε = 0

#<m> = 1

#(s_t) = #s + #t

#s = ∞ =⇒ s_t = s

2.3 Timed Streams

Built on the untimed case, ALICE provides another type constructor called
tastream for specifying timed streams. Structurally, both are rather similar.
Again, for any Isabelle type t, the type t tastream is a member of pcpo. The
following exhaustion rule describes the basic structure of timed streams. It shows
that timed streams may still be empty, contain a message or a tick as their �rst
element:V
ts. ts = ε ∨ (∃ z. ts = <

√
>_z) ∨ (∃ m z. ts = <Msg m>_z)

In addition to ordinary messages, we use a special message
√
, called the tick, to

model time progress. Each
√

stands for the end of a time frame. To di�erentiate
between the tick and ordinary messages, we use the constructor Msg as shown
above. This operator is introduced by type constructor addTick that extends
any type with the tick.

Please note that any timed stream of type t tastream is also an ordinary
stream of type (t addTick) astream. Therefore, all machinery for astream

types is available.
In addition, ALICE provides a timed take function. ttake n ·s yields at most

n time frames from the beginning of a timed stream s.
To allow inductive de�nitions, tastream streams may be empty. However,

for speci�cations we restrict ourselves to observations over in�nite time, which
means that we will only use the subset of timed streams with in�nitely many
ticks. Therefore, additional machinery is necessary to deal with those. For exam-
ple, the predicate timeComplete is provided to check whether a stream contains
in�nitely many time frames.

For an integration of both stream classes, operator timeAbs maps a timed
stream into an untimed one, just keeping the messages, but removing any time
information.

2.4 Stream Based Proof Principles

Having the necessary types and type classes as well as auxiliary functions and
lemmas at hand, we can introduce proof principles for streams now. At �rst, we
handle the untimed case, as the timed case can be built on that.

62 Borislav Gajanovic, Bernhard Rumpe

Proof Principles for Untimed Streams. A rather fundamental proof prin-
ciple for untimed streams is the so called take-lemma for streams that gives us
an inductive technique for proving equality

(∀ n. atake n ·x = atake n ·y) =⇒ x = y

Two streams are equal if all �nite pre�xes of the same length of the streams
are equal. More sophisticated proof principles, like pointwise comparison of two
streams using the operator anth or the below given induction principles are
built on the take-lemma. The following is an induction principle for proving a
property P over �nite (indicated by the constructor Fin) streams

[[#x = Fin n; P ε;
V
a s. P s =⇒ P (<a>_s)]] =⇒ P x

As said, when necessary, we base our proof principles directly on HOLCF but try
to avoid their extensive exposure. Here is a principle that uses admissibility from
HOLCF (adm) for predicates to span validity to in�nite streams (see [Reg94])

[[adm P; P ε;
V
a s. P s =⇒ P (<a>_s)]] =⇒ P x

The above induction principles have also been extended to the general use of
concatenation, where not only single element streams, but arbitrary streams can
be concatenated.

The concept of approximation (provided by HOLCF) and induction on natu-
ral numbers can also be used to prove properties involving continuous functions
over streams as discussed in Section 2.5.

Proof Principles for Timed Streams. Since timed streams can also be seen
as normal untimed streams, the above given proof principles can also be used to
prove properties of timed streams.

Please note that we have taken a message driven approach to inductively
de�ne timed streams. Messages are added individually to extend a stream. This
also leads to event driven speci�cation techniques. In the contrary, it would
have been possible to model timed streams inductively as a stream (t list)

astream, where each list denotes the �nite list of messages of type t occurring in
one time frame. This de�nition would lead to time-driven speci�cation principles.
It is up to further investigation to understand and integrate both approaches.
As a �rst step in this direction, ALICE provides a timed-take-lemma for timed
streams arguing that streams are equal if they are within �rst n time frames for
each n, as given in the following.

(∀ n. ttake n ·x = ttake n ·y) =⇒ x = y

Analogously, the following proof principle is based on time frame comparison

(∀ n. tframe n ·x = tframe n ·y) =⇒ x = y

ALICE provides more sophisticated proof principles for timed streams, but also
for special cases of timed streams, such as time-synchronous streams, containing
exactly one message per time unit, and the already mentioned time complete
streams, containing in�nitely many time frames.

ALICE: An Advanced Logic for Interactive Component Engineering 63

2.5 Recursive Functions on Streams

Specifying streams allows us to de�ne observations on communication channels.
However, ALICE focusses on speci�cation of components communicating over
those channels. The behavior of a component is generally modeled as function
over streams and is often de�ned recursively or even state-based.

A recursively de�ned function f processes a pre�x of its input stream s by
producing a piece of the output stream and continues to process the remaining
part of s recursively. All functions de�ned in this speci�cation style are per
construction correct behaviors for distributed components. This makes such a
speci�cation style rather helpful. Functions of this kind are de�ned in their
simplest form as illustrated in the following (using the function out to process
the message x appropriately)

f (<x>_s) = (out x)_(f s)

By construction, these functions are monotonic and continuous (lub-preserving,
see below) wrt. their inputs, which allows us to de�ne a number of proof prin-
ciples on functions.

Table 2. Basic operators in ALICE

Operator Signature

<.> 'a ⇒ 'a astream

aft 'a astream ⇒ 'a

art 'a astream → 'a astream

atake nat ⇒ 'a astream → 'a astream

adrop nat ⇒ 'a astream → 'a astream

anth nat ⇒ 'a astream ⇒ 'a

#. 'a astream → inat

._. 'a astream ⇒ 'a astream → 'a astream

aipower 'a astream ⇒ 'a astream

apro1 ('a * 'b) astream → 'a astream

apro2 ('a * 'b) astream → 'b astream

amap ('a ⇒ 'b) ⇒ 'a astream → 'b astream

azip 'a astream → 'b astream → ('a * 'b) astream

afilter 'a set ⇒ 'a astream → 'a astream

atakew ('a ⇒ bool) ⇒ 'a astream → 'a astream

adropw ('a ⇒ bool) ⇒ 'a astream → 'a astream

aremstutter 'a astream → 'a astream

aflatten 'a astream astream → 'a astream

ascanl nat ⇒ ('a ⇒ 'b ⇒ 'a) ⇒ 'a ⇒ 'b astream → 'a astream

aiterate ('a ⇒ 'a) ⇒ 'a ⇒ 'a astream

A number of prede�ned auxiliary operators assist in specifying components.
Due to expressiveness, we also allow to use operators that are not monotonic or
continuous in some arguments, such as _ in its �rst argument or aipower. In
ALICE, it is also possible to de�ne more such functions using pattern-matching
and recursion. The above notions can also be found in standard literature on
semantics like [Win93]. In the following we concentrate on continuous functions.

64 Borislav Gajanovic, Bernhard Rumpe

Continuous Functions - The Approximation Principle. As brie�y dis-
cussed, continuous functions capture the notion of computability in interactive
systems and therefore play a prominent role in stream-processing speci�cation
techniques. The behavior of a continuous function for an in�nite input can be
predicted by the behavior for the �nite parts of the input. Thus, its behavior can
be approximated. As it has been shown amongst others in [Win93], composition
of continuous functions results in continuous functions. Therefore, based on a
number of basic functions and equipped with appropriate de�nition techniques,
it becomes easy to specify further functions. ALICE provides amongst others

� pattern-matching and recursion (like in functional languages),
� state-based de�nitions (using I/O∗-automata [Rum96], see Section 2.6),
� �xpoint recursion (using HOLCF), and
� continuous function-chain construction (using HOL's primrec and approxi-

mation, see [GR06])

Currently, we do have at least the operators on streams depicted in Tab. 2 and
Tab. 3 available. For the sake of brevity, we do not explain those further, but
refer to [GR06] as well as Section 2.2 and 2.3 and furthermore assume that
readers will recognize the functionality through name and signature.

Table 3. Basic operators for timed speci�cations

Operator Signature

timeComplete 'a tastream ⇒ bool

timeSync 'a tastream ⇒ bool

injectTicks nat astream → 'a astream → 'a tastream

timeAbs 'a tastream → 'a astream

ttake nat ⇒ 'a tastream → 'a tastream

tframe nat ⇒ 'a tastream → 'a astream

stretchTimeFrame nat ⇒ 'a tastream → 'a tastream

getTime nat ⇒ 'a tastream ⇒ nat

2.6 State-Based De�nition Techniques

There is quite a number of variants of state machines available that allow for
a state-based description. We use I/O∗-automata that do have transitions with
one occurring message (event) as input and a sequence of messages (events) as
output (hence I/O∗). They have been de�ned in [Rum96] together with a formal
semantics based on streams and a number of re�nement techniques. In contrast
to I/O automata [LT89], they couple incoming event and reaction and need no
intermediate states.

As they are perfectly suited for a state-based description of component be-
havior, we provide assistance for the de�nition of an I/O∗-automaton A in ALICE

by modeling the abstract syntax as a 5-tuple in form of

A = (stateSet A, inCharSet A, outCharSet A, delta A, initSet A)

ALICE: An Advanced Logic for Interactive Component Engineering 65

Automata of this structure can be de�ned using the type constructor ioa. I/O∗-
automata consist of types for its states, input and output messages. delta de-
notes the transition relation of an automaton. It consists of tuples of source
state, input message, destination state and a sequence of output messages. The
5th element initSet describes start states and possible initial output (that is
not a reaction to any incoming message).

As an illustration, we de�ne1 an I/O∗-automaton representing a component
dealing with auctions in the American style, where bidders spontaneously and
repeatedly spend money and after a certain (previously unknown) timeout the
last spender gets the auctioned artifact. The auction component is initialized
with an arbitrary but a non-zero timeout. It counts down using the ticks and
stores the last bidder as he will be the winner.

amiauction :: "((nat * Bid * IAP), Bid addTick, BidUclosed addTick) ioa"

amiauction_def:

"amiauction ≡
(UNIV, UNIV, UNIV,

{t.∃ k b m x.

(* handle time and accept the last bid

as soon as the time limit is reached *)

t = ((k+1,b,x),
√
, (k,b,x), <

√
>) ∧ k > 0 ∨

t = ((0,b,x),
√
, (0,b,x), <

√
>_<Msg closed>) ∨

t = ((1,b,I),
√
, (0,b,I), <

√
>_<Msg closed>) ∨

t = ((1,b,A),
√
, (0,b,A), <

√
>_<Msg (accept b)>_<Msg closed>) ∨

(* store the new bid m if necessary *)

t = ((k+1,b,x), Msg m, (k+1,m,A), ε) ∨ t = ((0,b,x), Msg m, (0,b,x), ε)},

{((ε s. fst s > 0 ∧ snd (snd s) = I), ε)})"

The above automaton is well-de�ned, deterministic and complete. By applying
the operator ioafp, we map this automaton into a function that is continuous
by construction. The recursive de�nition of a stream-processing function is now
embedded in the ioafp operator, leaving a non-recursive but explicit de�nition
of the actual behavior in an event based style.

In fact, a number of proof principles are established on these state machines
that do not need inductive proof anymore, but just need to compare transitions
and states. More precisely, the behaviors can then be compared by establishing
a (bi-)simulation relation between the automata.

A non-deterministic I/O∗-automaton is de�ned in an analogous form and not
mapped to a single but a set of stream-processing functions. This is especially
suitable to deal with underspeci�cation.

As said, ALICE is still in development. Although we have initial results on
this kind of speci�cation style, we will further elaborate ALICE to comfortably
deal with I/O∗-automata of this kind in the future.
1 Due to lack of space, we skip HOL's keyword constdefs in front of a de�nition but symbolize
it by indentation. We also do not introduce the necessary type declarations, which is actually
straightforward for the speci�cations used here.

66 Borislav Gajanovic, Bernhard Rumpe

3 Alternating Bit Protocol - An Example

Based on the theory introduced so far, we show the usefulness of ALICE by
developing a small, yet not trivial and well known example.

The Alternating Bit Protocol (ABP) is a raw transmission protocol for data
over an unreliable medium. Goal of the ABP is to transmit data over a medium
that looses some messages, but does not create, modify, rearrange or replicate
them. The key idea is that the sender adds an identi�er to each message that
is being sent back as acknowledgement by the receiver. If the acknowledgement
does not arrive, the sender sends the same message again. When only one single
message is in transmission, the identi�er can boil down to a single bit with
alternating value � hence the name of the protocol.

The ABP speci�cation involves a number of typical issues, such as underspec-
i�cation, unbounded non-determinism and fairness. Fig. 2 illustrates the overall
structure of the ABP. A detailed explanation of a similar speci�cation can be
found in [BS01].

Sender Receiver

Medium
(Bit)

Medium
(Data x Bit)ds : Data x Bit

as : Bit ar : Bit

dr : Data x Bit

o : Datai : Data

Fig. 2. The architecture of the Alternating Bit Protocol (ABP)

3.1 The ABP Medium

Please note that the medium is modeled after the existing, real world, while
sender and receiver need to be speci�ed and later implemented in such a way
that they can safely deal with the given medium. So, we �rst specify the behavior
of the medium as described above.

Med :: "'t astream ⇒ 't astream ⇒ bool"

Med_def:

"Med x y ≡
∃ p. #(afilter {True} ·p) = ∞ ∧

y = apro1 ·(afilter {a. ∃ b. a = (b, True)} ·(azip ·x ·p))"

Through the use of an internal oracle stream p, we can describe that a medium
does eventually transmit a message if we retry long enough. The fairness, as
described below, is deduced from the above speci�cation as follows.

[[#x = ∞; Med x y]] =⇒ #y = ∞

The lemma is proven easily using the following auxiliary lemma, since the lengths
of the �rst and the second pointwise projection (apro1 and apro2 respectively)
of a stream consisting of ordered pairs are equal.

ALICE: An Advanced Logic for Interactive Component Engineering 67

∀ x. #x = ∞ −→ apro2 ·(afilter {a. ∃ b. a = (b, z)} ·(azip ·x ·p)) = afilter {z} ·p

The above auxiliary lemma is again proven by induction on the free stream
variable p using an appropriate proof principle from Section 2.4.

3.2 The Sender

Now, relative to a given medium, we have to de�ne a sender and a receiver
that establish the desired behavior: safe transmission of messages. The sender
receives data from outside and transmits them together with the alternating bit.
We give a speci�cation in a functional style:

Snd :: "Data astream ⇒ Bit astream ⇒ (Data * Bit) astream ⇒ bool"

Snd_def:

"Snd i as ds ≡
let

fas = aremstutter ·as;
fb = apro2 ·(aremstutter ·ds);
fds = apro1 ·(aremstutter ·ds)

in

fds v i ∧
fas v fb ∧
aremstutter ·fb = fb ∧
#fds = imin #i (iSuc (#fas)) ∧
(#fas < #i −→ #ds = ∞)"

We explicitly de�ne the channel observations for the sender in Fig. 2. The con-
juncts in the in part of the de�nition constrain the sender in the order of their
appearance, using the abbreviations from the let part, as follows

1. Abstracting from consecutive repetitions of a message via aremstutter, we
see that the sender is sending the input messages in the order they arrive.

2. The sender also knows which acknowledgement bit it is waiting for, never-
theless, it is underspeci�ed which acknowledgment bit is sent initially.

3. Each new element from the data input channel is assigned a bit di�erent
from the bit previously assigned.

4. When an acknowledgment is received, the next data element will eventually
be transmitted, given that there are more data elements to transmit.

5. If a data element is never acknowledged then the sender never stops trans-
mitting this data element.

3.3 The Receiver

The receiver sends each acknowledgment bit back to the sender via the acknowl-
edgment medium and the received data messages to the data output channel
removing consecutive repetitions, respectively.

Rcv :: "(Data * Bit) astream ⇒ Bit astream ⇒ Data astream ⇒ bool"

Rcv_def: "Rcv dr ar o ≡ ar = apro2 ·dr ∧ o = apro1 ·(aremstutter ·dr)"

68 Borislav Gajanovic, Bernhard Rumpe

3.4 The Composed System

The overall system is composed as de�ned by the architecture in Fig. 2. This
composition is straightforwardly to formulate in ALICE:

ABP :: "Data astream ⇒ Data astream ⇒ bool"

ABP_def:

"ABP i o ≡ ∃ as ds dr ar. Snd i as ds ∧ Med ds dr ∧ Rcv dr ar o ∧ Med ar as"

This formalization of the ABP uses a relational approach similar to the
speci�cation in [BS01]. However, formalizations as sets of functions or in a state-
based manner are possible as well. Using a more elaborate version of ALICE, we
will be able to de�ne a state-based version of sender and receiver (similar to
[GGR06]), which is on the one hand more oriented towards implementation and
on the other hand might be more useful for inductive proof on the behaviors.
Most important however, we will be able to prove that this relational and the
state-based speci�cations will coincide.

For this case study, we remain in the relational style and specify the expected
property of the overall system (without actually presenting the proof):

ABP i o =⇒ o = i

Please note that, at this stage of the development of ABP, there are neither
realizability nor sophisticated timing constraints considered in the above for-
malization. Due to relational semantics, additional re�nement steps are then
needed to reduce the underspeci�cation towards an implementation oriented or
timing-aware style, since there are in�nite streams ful�lling the speci�cation
that are not valid protocol histories. These, however, would not occur, when us-
ing sets of stream-processing functions as they impose continuity on the overall
behavior.

4 Discussion

In this paper we have introduced ALICE, an advanced logic for formal speci�ca-
tion and veri�cation of communication in distributed systems. ALICE is embed-
ded in the higher order logic HOL, which itself is formalized using the Isabelle
generic theorem prover.

Our approach is based on using HOLCF to deal with partiality, in�nity,
recursion, and continuity. We provide techniques to use ALICE directly from
HOL, thus preventing the user to actually deal with HOLCF specialities.

ALICE is currently under development. So not all concepts and theories pre-
sented here are already completely mature. Further investigations will also deal
with the question of expressiveness, applicability and interoperability. Beyond
the ABP, we already have some experience with other formalizations that show
that the overhead of formalizing a speci�cation in ALICE as apposed to a mere
paper de�nition is not too bad. However, it also shows where to improve comfort.

ALICE: An Advanced Logic for Interactive Component Engineering 69

References

[BCR06] M. Broy, M. V. Cengarle, and B. Rumpe. Semantics of UML. Towards a System
Model for UML. The Structural Data Model. Technical Report TUM-I0612, Munich
University of Technology, 2006.

[BCR07a] M. Broy, M. V. Cengarle, and B. Rumpe. Semantics of UML, Towards a System
Model for UML, Part 2: The Control Model. Technical Report TUM-I0710, Munich
University of Technology, 2007.

[BCR07b] M. Broy, M. V. Cengarle, and B. Rumpe. Semantics of UML, Towards a System
Model for UML, Part 3: The State Machine Model. Technical Report TUM-I0711,
Munich University of Technology, 2007.

[BS01] M. Broy and K. Stølen. Speci�cation and Development of Interactive Systems. Focus
on Streams, Interfaces and Re�nement. Springer Verlag Heidelberg, 2001.

[DGM97] M. Devillers, D. Gri�oen, and O. Müller. Possibly In�nite Sequences in Theorem
Provers: A Comparative Study. In E. L. Gunter and A. Felty, editors, Proceedings
of the 10th International Conference on Theorem Proving in Higher Order Logics
(TPHOLs'97), pages 89�104, Murray Hill, New Jersey, 1997. LNCS 1275, Springer
Verlag.

[GGR06] B. Gajanovic, H. Grönniger, and B. Rumpe. Model Driven Testing of Time Sen-
sitive Distributed Systems. In J-P. Babau, J. Champeau, and S. Gerard, editors,
Model Driven Engineering for Distributed Real-Time Embedded Systems: From MDD
Concepts to Experiments and Illustrations, pages 131�148. ISTE Ltd, 2006.

[GR06] B. Gajanovic and B. Rumpe. Isabelle/HOL-Umsetzung strombasierter De�nitionen
zur Veri�kation von verteilten, asynchron kommunizierenden Systemen. Technical
Report Informatik-Bericht 2006-03, Braunschweig University of Technology, 2006.

[Hin98] U. Hinkel. Formale, semantische Fundierung und eine darauf abgestützte Veri�ka-
tionsmethode für SDL. Dissertation, Munich University of Technology, 1998.

[LT89] N. Lynch and M. Tuttle. An Introduction to Input/Output Automata. CWI Quar-
terly, 2(3):219�246, 1989.

[MNvOS99] O. Müller, T. Nipkow, D. von Oheimb, and O. Slotosch. HOLCF = HOL + LCF.
Journal of Functional Programming, 9(2):191�223, 1999.

[Mül98] O. Müller. A Veri�cation Environment for I/O Automata Based on Formalized Meta-
Theory. Dissertation, Munich University of Technology, 1998.

[NPW02] T. Nipkow, L. C. Paulson, and M. Wenzel. Isabelle/HOL: A Proof Assistant for
Higher-Order Logic. LNCS 2283, Springer Verlag, 2002.

[Pau97] L. C. Paulson. Mechanizing Coinduction and Corecursion in Higher-Order Logic.
Journal of Logic and Computation, 7(2):175�204, 1997.

[Pau03a] L. C. Paulson. Introduction to Isabelle. Computer Laboratory, University of Cam-
bridge, 2003.

[Pau03b] L. C. Paulson. The Isabelle Reference Manual. With Contributions by Tobias Nipkow
and Markus Wenzel. Computer Laboratory, University of Cambridge, 2003.

[Reg94] F. Regensburger. HOLCF: Eine konservative Erweiterung von HOL um LCF. Dis-
sertation, Munich University of Technology, 1994.

[Rum96] B. Rumpe. Formale Methodik des Entwurfs verteilter objektorientierter Systeme.
Herbert Utz Verlag Wissenschaft, 1996.

[SM97] R. Sandner and O. Müller. Theorem Prover Support for the Re�nement of Stream
Processing Functions. In Proc. Tools and Algorithms for the Construction and Anal-
ysis of Systems (TACAS'97). Springer, 1997.

[Spi06] M. Spichkova. FlexRay: Veri�cation of the FOCUS Speci�cation in Isabelle/HOL. A
Case Study. Technical Report TUM-I0602, Munich University of Technology, 2006.

[SS95] B. Schätz and K. Spies. Formale Syntax zur logischen Kernsprache der FOCUS-
Entwicklungsmethodik. Technical Report TUM-I9529, Munich University of Tech-
nology, 1995.

[Ste97] R. Stephens. A Survey of Stream Processing. Acta Informatica, 34(7):491�541, 1997.
[Win93] G. Winskel. The Formal Semantics of Programming Languages. Foundations of

Computing. The MIT Press, Cambridge, Massachusetts, 1993.

A History-based Verification of Distributed

Applications

Bruno Langenstein, Andreas Nonnengart, Georg Rock, and Werner Stephan

German Research Center for Artificial Intelligence (DFKI GmbH)
Saarbrücken, Germany

{langenstein,nonnengart,rock,stephan}@dfki.de

Abstract. Safety and security guarantees for individual applications in general depend
on assumptions on the given context provided by distributed instances of operating
systems, hardware platforms, and other application level programs that are executed on
these platforms. The problem for formal approaches is to formalize these assumptions
without having to look at the details of the (formal) model of the operating system
(including the machines that execute applications).
The work described in this paper presents a modular approach which uses histories of
observable events to specify runs of distributed instances of the system. The overall
verification approach decomposes the given verification problem into local tasks along
the lines of assume-guarantee reasoning. In this paper we focus on this methodology and
on its realization in the Verification Support Environment (VSE). We also illustrate the
proposed approach with the help of a suitable example, namely the specification and
verification of an SMTP server whose implementation makes extensive use of various
system calls as e.g. fork and socket commands.

1 Introduction

The theory developed in the following aims at a modular approach for the speci-
fication and verification of concurrent systems with heterogeneous components.
Concurrency typically results from the actual parallel execution of independent
systems and the abstraction from a concrete scheduler within the context of
a given platform. Like the systems themselves their formal models will consist
of various types of components specified by different types of state transition
systems. In the composed (global) system the components interact with each
other by certain communication mechanisms.

In this paper we consider an instantiation of the general approach which is
taken from the context of the Verisoft project where a pervasive formal model
of a distributed collection of hardware-software platforms with application level
programs running on each of these was established, [1].

Instead of verifying application level programs directly on the Verisoft model,
we propose to use traces of observable events that according to a given view are
attached to steps of computations (or runs) of the distributed system as they
have been formally defined in Verisoft. Since for a state in a run we collect all
events that have happened so far we call these (finite) lists of events histories.
The behavior of the global system as well as that of single components is then

A History-based Verification of Distributed Applications 71

specified by sets of histories thereby abstracting from the local state spaces of the
components. Like an input-output specification for a sequential piece of software
sets of histories describe the concurrent, typically non-terminating computation
of a global system or component thereof. Event traces defined by a certain view
on a given model provide an appropriate interface for an inductive analysis of
cryptographic protocols, [2, 3] or an information flow analysis [4].

Our approach is modular in the sense that the task of verifying a history
specification against runs of the global system can be decomposed into local
verification tasks for its components. Following the general assume-guarantee
approach, see [5] for comprehensive discussion of these approaches, for each
event specified in a history there is exactly one component which may violate

the specification at this point. Therefore, our events allow to determine the
component considered to be responsible for the event. Events in a history a
particular component is not responsible for are considered as assumptions of
that component w.r.t. its environment.

Each history specification, possibly obtained by a combination of sub-speci-
fications, has to be verified against all components of the overall model. Here
we focus on the verification of C01 machines that execute (and give meaning
to) C0 programs extended by external calls that allow to exchange information
with the corresponding operating system and, via a network component, with
C0 machines that run on different (remote) instances of the operating system.
As an example we consider the implementation of an e-mail system consisting
of an e-mail client, a (so-called) mail bag, a SMTP-server, and a SMTP-client.

In the next section we summarize the instantiation of the general approach
by the Verisoft model of distributed systems. As a concrete example in section
3 we provide the specification of the SMTP server by a set of histories. In
Section 4 we describe the verification of application-level C0 programs, like the
implementation of the SMTP server, by means of a transformation to abstract
sequential programs that replay and extend histories. Section 5 summarizes the
described approach and outlines possible future work.

2 Events and Histories

2.1 The Verisoft Model

In the Verisoft project a formal model of an operating system was developed
and verified with respect to its implementation, [6]. Application level programs
run on (abstract) machines that are part of the model. They interact by a kind
of RPC like mechanism and access resources (of the OS) by external calls.

1 C0 is an imperative C-like programming language with some restrictions compared to standard C.
In C0 there are besides others no side effects in expressions and pointers are strictly typed (see [1]
for a complete description of C0).

72 Bruno Langenstein, Andreas Nonnengart, Georg Rock, Werner Stephan

A model of a distributed system consists of instances of (the same) system
and an abstract network component connecting them. Each system is identified
by a unique network address na ∈ Na. It basically consists of two parts. The
simple operating system provides resources like input-output devices, a file sys-
tem, and sockets for the communication over the network component. A process

is identified by a process identifier pid ∈ Pid and the network address of the
system instance it is running on. For each process given by p = mk proc(pid, na)
a machine (interpreter) is part of the system na. In this paper we are interested
in applications implemented in C0, the subset of C considered in Verisoft. Hence
our processes represent abstract execution mechanisms where the program part
of a configuration is a C0 program π.

From point of view of an application programmer the system context consists
of all operating systems and the network connecting them. Hence we consider
this complete context as a single component in our decomposition. It will be
denoted by the constant SOS.

The view we have chosen is depicted in Figure 1.

The communication between user pro-

Net

os@na

pid@na

system-context

Net

os@na

pid@na

system-context

Fig. 1. Verisoft Model

grams and the surrounding operating sys-
tem (instance) is by so called external calls.
External calls cext(τ̄ : z̄, res) take the same
syntax as ordinary function calls. We use τ̄
as a sequence of value parameters and z̄, res
as a sequence of return parameters. Typi-
cally the value of res will indicate success or
failure. Whenever a system call is reached
during the computation of a process p the

normal execution as given by the (small step) semantics RC0 ⊆ Conf × Conf
is interrupted (stopped) and a request is sent to the corresponding operating
system. With these steps of a global computation we associate events of the
form mk ev(p, SOS, m) where the message m encodes the particular call given
by cext and the values of the parameters (τ̄ : z̄) in mem′. For a call of socket
read socket read(sid : length, buffer, ec) the corresponding message will by
Sread(sid, length) where Sread is a constructor symbol for an abstract data
type and sid, length are the values of the programming variables sid, length in
mem′. They indicate the socket and the length of the string to be read.

To model the return of external calls the standard C0 machines have to be
extended by steps where the resulting configuration is determined by an answer
(message) from the corresponding operating system. The (answer) information
intended for process p will be written to the return parameters (of the pending
call). The event we associate with these steps is of the form mk ev(SOS, p, m)
where the message m represents the return information. For example a successful
call of socket read the message will be Succ sread(length, buffer) where length

A History-based Verification of Distributed Applications 73

indicates the elements in the fixed length array buffer that have actually been
read. These values uniquely determine the values of the result parameters after
return of that external call.

2.2 History Specifications

Having defined events for all external calls (and also RPC calls) we may specify
global system runs by a set (or unary predicate) H of finite sequences of events.
A global System SOS(π0, , . . . , πn−1) consisting of arbitrary many instances of
the operating system with arbitrary many C0-processes executing π0, , . . . , πn−1.

By SOS(π0, , . . . , πn−1) |= H we denote the fact that for each state in a
global run of SOS(π0, , . . . , πn−1) the sequence of events that have happened so
far satisfies H . Given an event e = mk ev(s, r, m) we say that s (the sender) is
responsible for that event. In addition we define that e is relevant for s as well as
the receiver r. By SOS(π0, , . . . , πn−1) ↓ i |= H we denote the fact that no process
p executing πi ∈ {π0, , . . . , πn−1} violates H first, i.e. in a step p is responsible
for. Similarly we use SOS(π0, , . . . , πn−1) ↓ SOS |= H for a projection to the
operating systems themselves.

To establish SOS(π0, , . . . , πn−1) ↓ i |= H locally outside the context of
a global system we transform πi into a program π̃i where the external calls
manipulate histories. Altogether π̃i replays and possibly extends histories.

Using π̃i |= H for the fact that π̃i preserves H , soundness of this method
(w.r.t. the verification of application level programs) is demonstrated by a kind of
simulation theorem that allows to conclude that π̃i |= H ⇒ SOS(π0, , . . . , πn−1) ↓
i |= H holds. The simulation theorem is application independent and established
by looking at the C0 execution mechanism. As opposed to that π̃i |= H is con-
cerned with the verification of individual programs.

Before we present the specification of the SMTP-server and the verification
technique given by the -̃transformation we have to discuss special events that
provide the binding between programs πi and processes in a given history.

2.3 Life Cycle Events

Histories cover the whole life cycle of processes. This includes the association of
process identifiers with the programs that are executed. This binding takes place
upon creation of a new process. The lifetime of a process ends by an explicit
termination event.

In the verification process we are interested in a particular program (text) π.
To associate programs with process identifiers we assume a fixed enumeration
of programs. In histories π = πi is then represented by the constant i.

Create events 〈SOS, p, Create(i)〉 are caused by the corresponding instance
of the SOS while the identifier for the new process p = mk proc(na, pid) is

74 Bruno Langenstein, Andreas Nonnengart, Georg Rock, Werner Stephan

considered as the recipient of the message indicating the program text πi to be
executed starting with a fixed initial state.

Clone create events 〈SOS, p, Clone Create(p′, b)〉 are caused by the corre-
sponding SOS as possible positive reaction to a call of fork. p = mk proc(na, pid)
indicates the child process which continues to execute the program of the parent

process given by p′ in the message. b ∈ {0, 1} is a flag indicating access to the
terminal. The initial state of p is the state of p′ reached before execution of fork.

A process p (executing some πi) is terminated by exit or kill events. Exit
events are caused by p while kill events are caused by the corresponding instance
of the SOS.

A sub-history h0 of h is called a thread of p in h if there is exactly one create
event for p in h0 which is the first event (in h0) relevant for p. The thread is
called open if h0 does not contain a terminating event for p.

Now in defining π̃i |= H by a program π̃(i) that replays and (possibly)
extends histories h we have to consider all threads in h that execute πi. Since a
given specification H can only be violated if some h ∈ H is actually extended by
π̃ we restrict ourselves to open threads executing πi. It is a simple observation
that for each p there is at most one open thread in a given h. Therefore we
provide a (guess of) p as an argument to the replay and extend procedure. If
there is no open thread of p that executes πi, then the given history h is delivered
unchanged as the result.

Open threads chosen in this way include those where a child p of p′ is created
by an event 〈SOS, p, Clone Create(p′, b)〉 following a call of fork during the
execution of πi. Since we have to know the correct internal state the replay and
extend procedure has to start with the first ancestor p′′ of p. The computation
of this process is initiated by a create event 〈SOS, p′′, Create(i)〉 .

In the start of the replay and extend procedure for πi as well as in the im-
plementation of calls of fork we use the function anc(i, p, h) which computes the
sequence of ancestor threads for a given p and h. In case there is no open thread
of p in h executing πi anc(p, h) = []. For anc(p, h) = [h0, . . . , hn1

], hn1
is the open

thread of p in h with 〈SOS, p, Create(i)〉 or 〈SOS, p, Clone Create(p′, b)〉 as first
event and h0 is the first ancestor thread with first element 〈SOS, p′′, Create(i)〉.

3 SMTP-Server

As already mentioned earlier we considered a non-trivial example in the Verisoft
context, namely the full implementation (in a C-like language) and the full
specification (in terms of histories) of an SMTP-Server as part of an Simple
Mail Transfer Scenario. All in all this implementation required about 7.500 lines
of code.

The SMTP server listens for connections from SMTP clients. If a connection
has been established, it spawns a child process, which inherits the socket grant-

A History-based Verification of Distributed Applications 75

ing access to that new connection. The child communicates with the remote
SMTP client while obeying the so-called SMTP Protocol. In the meantime, the
main SMTP server process listens again for new connections and spawns child
processes to handle the session. This behaviour can be formalised by a step by
step description of the main process and its child processes. For the formalisation
we fix the constant SOS (Simple Operating System) representing the operating
system. Any process – and thus the SOS as well – is determined by a network
address (the host) and a process id on this host. We assume that – for a given
process p – we can access the network address by get na(p).

For simplicity we make use of the following definitions: For every history h
and process p we define h ↓ p as the projection of the history h on process p.
I. e.,

() ↓ p = ()
(〈s, r, m〉 ◦ h) ↓ p = 〈s, r, m〉 ◦ h ↓ p if s=p or r=p
(〈s, r, m〉 ◦ h) ↓ p = h ↓ p otherwise

With h+ = {h′ ∈ Hist | h′ ↓ p = h} we can describe (for a given history
h and an implicitly given process p) the set of histories whose projection on
p is just h. Recall that we defined the binary operator ◦ on histories as the
concatenation of its two arguments. In what follows we also use this operator for
the ”concatenation” of two history sets: H1 ◦H2 = {h1 ◦ h2 | h1 ∈ H1, h2 ∈ H2}.

The top-level specification (in terms of histories) of the SMTP-Server then
looks as follows: we consider the prefix-closure of the set HSMTP Server(p) where
HSMTP Server(p) = HINIT(p) ◦ HLOOP(p, sid) for some process p representing the
SMTP-Server process and some socket id sid.
The history set HINIT(p) describes the initialization phase of the SMTP-Server.
I. e., the SOS first creates the SMTP-process (represented by the message
Create(SMTP Server , SOS, 1)). Then the newly created SMTP-process sends
a message to the SOS that it wants a socket to be opened on port 25 (the stan-
dard SMTP-port). After the SOS successfully responds with a new socket id the
SMTP-Server requests to listen to this new socket. The history set HINIT(p) is
thus easily defined as

HINIT(p) = (〈SOS, p,Create(SMTP Server , SOS, 1)〉 ◦
〈p, SOS, Sopen(25)〉 ◦ 〈SOS, p, Succ sopen(sid)〉 ◦
〈p, SOS, Slisten(sid)〉 ◦ 〈SOS, p, Succ〉)+

for a process p representing the SMTP-Server process and a socket id sid. The
history set HLOOP(p, sid) is supposed to cover the parent process of the SMTP-
server together with all the children processes that might be initiated. It is

76 Bruno Langenstein, Andreas Nonnengart, Georg Rock, Werner Stephan

defined as the smallest set of histories that satisfies the equation

HLOOP(p, sid) = (〈p, SOS, Saccept(sid)〉)+ ∪
(HACC(p, sid, sid′) ◦ HFORK CALL(p) ◦

((HFORK ANS C(p′) ◦ HCHILD(p′, sid)) ∩
(HFORK ANS P(p) ◦ HCLOSE(p, sid′) ◦ HLOOP(p, sid))))

for some socket id sid′ 6= sid and some process p′ 6= p .
This history set HLOOP(p, sid) might require some more explanation. First the
SMTP-Server issues a socket-accept command. This command might never be
answered and thus the SMTP-Server might wait forever (first line in the defi-
nition of HLOOP(p, sid)). If, however, there is an answer to the accept-request
(another process issued a corresponding connect-request) then the SMTP-Server
calls a fork-command, thus producing a child of its own process. Now, both the
SMTP-Server and its child run concurrently as indicated by the intersection of
the two history sets in the last two lines of the HLOOP(p, sid) definition.

With this explanation the definition of the history sets HACC(p, sid, sid′),
HFORK(p), and HCLOSE(p, sid′) should be fairly obvious, namely

HACC(p, sid, sid′) = (〈p, SOS, Saccept(sid)〉〈SOS, p,Succ saccept (sid′, rna, rpn)〉)+

for some remote network address rna and port number rpn

HFORK CALL(p) = (〈p, SOS, Afork(1)〉)+

HFORK ANS P(p) = (〈SOS, p,Succ afork(hdl)〉)+ for some handle hdl 6= none

HFORK ANS C(p) = (〈SOS, p,Create Clone(iC , p, 1)〉〈SOS, p,Succ afork(none)〉)+

HCLOSE(p, sid) = (〈p, SOS, Sclose(sid)〉〈SOS, p,Succ〉)+

Note that the first argument of the Create Clone message indicates the (index
of the) program that is supposed to run as the child process.
Remains the most complicated case, namely the specification of the child process
which is responsible for carrying out the SMTP protocol. As above, we consider
only the successful case here.

HCHILD(p, sid) = HGREETING(p, sid) ◦ HReadEmails(p, sid) ◦
HQUIT(p, sid) ◦ HCLOSE(p, sid)

The history set for HCLOSE(p,sid) is already defined above. HGREETING(p, sid)
and HQUIT(p, sid) look as follows:

HGREETING(p, sid) = HREADY(p, sid) ◦ HReadLine(p, sid, ”EHLO ” + ipr) ◦
HGREETS(p, sid, ipr) for some remote ip address ipr

HREADY(p, sid) = (〈p, SOS, Swrite(sid, ”220 ” + get na(p) +
” SMT Service Ready”)〉〈SOS, p,Succ〉)+

HGREETS(p, sid, ipr) = (〈p, SOS, Swrite(sid, ”250 ” + get na(p) + ” greets ” + ipr)〉
〈SOS, p,Succ〉)+

HQUIT(p, sid) = HReadLine(p, sid, ”QUIT”) ◦
(〈p, SOS, Swrite(sid, ”221 ” + p + ” closing”)〉 ◦
〈SOS, p,Succ〉 ◦ 〈p, SOS, Exit〉)+

ReadLine consists essentially of successively reading one character after the
other. A slight complication arises as it may be possible that the attempt to

A History-based Verification of Distributed Applications 77

read a single character may be successful, yet results in an empty string (i. e.,
we assume the socket-read command to be non-blocking).

HReadLine(p, sid, string) =

8

<

:

HReadString(p, sid, string) if ∃s : string = sˆCRˆLF

and s does not contain CRˆLF

Ø otherwise

i. e., reading a line means to read a string that (uniquely) ends with a carriage
return (CR) followed by a line feed (LF).
HReadString is defined as the smallest set satisfying the equations

HReadString(p, sid, ””) = ()+

HReadString(p, sid, cˆs) = HReadChar(p, sid, c) ◦ HReadString(p, sid, s)

where

HReadChar(p, sid, c) = HReadEmpty(p, sid) ◦ HReadChar1(p, sid, c)
HReadChar1(p, sid, c) = (〈p, SOS, Sread(sid, 1)〉〈SOS, p, Succ sread(1, ”c”)〉)+

and HReadEmpty(p, sid) = µH.(H = ()+ ∪ HReadEmpty1(p, sid) ◦ H) where

HReadEmpty1(p, sid) = (〈p, SOS, Sread(sid, 1)〉〈SOS, p, Succ sread(0, ””)〉)+

Remains to specify the history set HReadEmails (which in addition covers writ-
ing the email to the Inbox file). HReadEmails is the smallest set satisfying the
equation HReadEmails(p, sid) = ()+ ∪

(
HReadEmail(p, sid) ◦ HReadEmails(p,sid)

)
, i. e.,

HReadEmails(p, sid) = µH.
(
H = ()+ ∪ HReadEmail(p, sid) ◦ H

)

where HReadEmail(p, sid) splits into several parts, namely in reading the sender’s
address, the recipient’s address, the email data and the writing of the email to
the file system.

HReadEmail(p, sid) = HReadS(p, sid, s) ◦ HReadR(p, sid, r) ◦ HReadD(p, sid, d) ◦
HWriteEmail(p, sˆrˆd) for some s, r, d

HReadS(p, sid, s) = HReadLine(p, sid, ”MAIL FROM: ” + s) ◦
(〈p, SOS,Swrite(sid, ”OK”)〉 ◦ 〈SOS, p,Succ〉)+

HReadR(p, sid, r) = HReadLine(p, sid, ”RCPT TO: ” + r) ◦
(〈p, SOS,Swrite(sid, ”OK”)〉 ◦ 〈SOS, p,Succ〉)+

HReadD(p, sid, d) = HReadLine(p, sid, ”DATA:”) ◦
(〈p, SOS,Swrite(sid, ”354 Start mail input;

end with CRLF .CRLF”)〉 ◦ 〈SOS, p,Succ〉)+ ◦
HReadD′(p, sid, d) ◦
(〈p, SOS,Swrite(sid, ”OK”)〉 ◦ 〈SOS, p,Succ〉)+

HReadD′(p, sid, ”.”) = HReadLine(p, sid, ”.”)
HReadD′(p, sid, lˆd) = HReadLine(p, sid, l) ◦ HReadD′(p, sid, d) provided l 6= ”.”

The final step is to specify HWriteEmail.

HWriteEmail(p, e) = (〈p, SOS, Flock(Inbox)〉〈SOS, p,Succ〉 ◦
〈p, SOS, Fseek (Inbox, 1, 0)〉〈SOS, p,Succ fseek(pos1)〉 ◦
〈p, SOS, Fwrite(Inbox, e)〉〈SOS, p,Succ fwrite(pos2, n)〉 ◦
〈p, SOS, Funlock(Inbox)〉〈SOS, p,Succ〉)+

78 Bruno Langenstein, Andreas Nonnengart, Georg Rock, Werner Stephan

for some file positions pos1 and pos2.
It is certainly out of the scope of this paper to show all the verification

details for the whole SMTP-Server. Instead, we emphasise on a small portion of
it, namely the readLine procedure as specified above.
In a VSE-like fashion the procedure is listed below:

PROCEDURE readLine(sid:length,buffer,res)

int length, ec;

buffer buffer_array;

char c, cprevious;

bool res;

BEGIN length := 1; res := true; c := null; cprevious := null;

cl := nil;

WHILE ((cprevious /= CR OR c /= LF) AND res = true) DO

length := 1; socket_read(sid:length,buffer,ec);

if (ec = SUCC) then res := true else res := false fi;

if (length = 1 and res = t) then

cprevious := c; c := buffer[0]; cl := write(cl,c) fi

OD;

END

The readline procedure is supposed to read characters from the given TCP/IP
socket until it finds a CR followed by a LF. This behaviour is described by the
history set HReadLine(p, sid, cl) for a procedure identifier p, socket id sid and a list
of characters (string) cl. The segments of the histories that are members of this
set are the results of calling the readLine procedure from above. Therefore, for
the verification of the SMTP server, we need to make sure that this procedure
(implementation) meets its intended semantics (the corresponding history sets
from above).

According to the technique described above we have to prove the following
property:

h0
c = hc ∧ h0

out = hout ∧ mode = fin
→ 〈readLine(p, sid : hc, hout, mode, cl, res)〉

mode 6= stop →
∃h : hout = h0

out ◦ h ∧ ((mode = fin ∧ res = t) ↔ h ∈ HReadLine(p, sid, cl))

The proof of this property is split into three main lemmas (and several small
lemmas about the data structures used): The first lemma is formulated close to
an invariant used to deal with the (single) while loop occurring in the body of
readLine.

h0
out = hout ∧ mode = fin

→ 〈readLine(p, sid : hc, hout, mode, cl, res)〉
mode 6= stop
→ ∃h : hout = h0

out = h ∧
((mode = fin ∧ res = t)
→ h ∈ HReadString(p, sid, cl) ◦ HReadEmpty(p, sid)) ∧

(h ∈ HReadString(p, sid, cl) ◦ HReadEmpty(p, sid) ∧ cl 6= 〈〉
→ (mode = fin ∧ res = t))

A History-based Verification of Distributed Applications 79

The following lemma states that we can drop the history sets HReadEmpty,
because HReadEmpty(p, sid) \ HReadEmpty1(p, sid) = {[]}.

h0
out = hout ∧ mode = fin

→ 〈readLine(p, sid : hc, hout, mode, cl, res)〉
mode 6= stop → ∃h : hout = h0

out ◦ h ∧
((mode = fin ∧ res = t) → h /∈ HReadEmpty1(p, sid) ◦ H)

Finally, we need a lemma that deals with the fact that end of lines are marked
with 〈CR, LF 〉. Notably, the proof for this lemma does not require any knowl-
edge about the external call simulation socket read sim. Thus this example
shows how a proof can be separated into parts dealing with concurrent commu-
nication and those dealing with properties independent of the communication,
even if the properties are not separated by the program structure.

〈readLine(p, sid : hc, hout, mode, cl, res)〉

mode = fin ∧ res = t → ∃cl0 : cl = cl0 ◦ 〈CR, LF 〉

4 Application Level Programs

In this section we describe the construction of π̃i out of πi. The C0 program π
with external calls is transformed into a program π̃ that takes histories as input
and produces histories as output but uses only standard function calls. Since
histories describe initial segments of nonterminating behaviors the new program
is intended always to terminate. We consider its result as an approximation of
the computation of π following the general replay and extend strategy outline
above.

We suggest a uniform transformation of the program into an approximation
exhibiting the same behavior as the original program with respect to prefixes
of event histories. The transformation preserves the structure of the program.
Thus it is possible to use a verification approach that follows the structure of
the implementation. Moreover this approach enables us to employ well known
verification techniques for sequential programs as described in, for instance, [7]
and [8]. The latter system has been used for the verification of SMTP.

4.1 Computing Approximations

In this section the uniform procedure to convert programs πi into their approx-
imations π̃i is described. Let the program πi be given as πi = (δi|αi(x̄)), where
x̄ are the (program) variables occurring free in αi and δi is the list of procedure

80 Bruno Langenstein, Andreas Nonnengart, Georg Rock, Werner Stephan

declarations used in αi. The function approxπi
(p0, h0) will be computed by the

program π̃i given by

(approx i(p, hin : hout, mode) ⇐ declare hc := hin; x̄ := σ̄

begin mode := fin; hout := []; start i(: p, hc, hout); α̃i(x̄);

stop(: hout, hc, mode) end,

ext call(πi), δ̃i | approx i(p0, h0 : h1, m0))

where the initial values of h1 and m0 (used to return the results) are not relevant.

The sequence ext call(πi) contains declarations for the procedures that sim-
ulate the external calls occurring in πi together with additional start and stop
procedure, start i and stop, respectively.

In the computation of the approximation a local variable hc is used that
contains the currently remaining history during the execution of α̃i. It is set to
hin initially. The output history is collected in hout as the computation proceeds
while the mode is kept in mode.

The construction is guided by the following general idea. An initial segment
of the computation of αi executed by p is replayed using (consuming) h and
extending hout.

External calls c(τ̄ : z̄, res) are replaced (or simulated) by procedures with
declarations c sim(p, x̄ : ȳ, res, hc, hout, mode) ⇐ bodyc. The simulating pro-
cedures analyze and shorten (consume) the current history h and extend the
current output hout. The first argument indicates the process that is executing
αi. Let v̄ and w̄ be the values of τ̄ and z̄, respectively.

If in hc there is no event generated by p, then the computation (of α̃i) stops
with hout ◦ h ◦ [evc(p, v̄ : w̄)] as final output, where evc(p, v̄ : w̄) is the event
generated by this call of c.

If in hc there is a further event generated by p, then it has to be evc(p, v̄ : w̄).
Otherwise the computation stops signalling a failure. In that case the particular
hc is not realized by πi (and π̃i) which might happen due to over specification.

For hc = h0 ◦ h′

1, where in h0 there is no event generated by p and fst(h′

1) =
evc(p, v̄ : w̄), h′

1 is scanned for a matching answer event. If there is no such
answer, then the computation stops with hout ◦h as the final output history and
mode being set to stop.

In all these cases the procedure simulating the external call leaves the result
parameters untouched since they are not needed anymore.

In the following paragraph we make use of the predicate Match ev(e1, e2)
which checks whether the event e2 represents a matching answer for the event e1.
〈p, SOS, Sread(sid, 1)〉 and 〈SOS, p, Succ sread(1, ”c”)〉 represents an example
for a pair of matching messages. These two messages represent the call of a
socket read on the socket identified by sid and the corresponding answer message
containing the read string c (see also chapter 3).

A History-based Verification of Distributed Applications 81

For h′

1 = h1 ◦ h2, where rst(h1) contains no answer matching fst(h′

1) =
fst(h1) = evc(p, v̄ : w̄) and fst(h2) = e such that Match ev(evc(p, v̄ : w̄), e)
the procedure returns values for the result parameters according to the message
contained in e and the computation of α̃i continues with rst(h2) as the new
remaining history and hout ◦ h0 ◦ h1 ◦ [fst(h2)] as the new current output.

The above mentioned analysis of the current history h with respect to an
external call c(τ̄ : z̄, res) of p is given by parsec(p, h, v̄, w̄) ∈ His × His × His,
where again v̄ and w̄ are the values of τ̄ and z̄, respectively.

parsec(p, h, v̄, w̄) = (h0, h1, h2) ↔ (h = h0 ◦ h1 ◦ h2 ∧

evc(p, v̄ : w̄) 6∈ h0 ∧

(h1 6= [] → (fst(h1) = evc(p, v̄ : w̄) ∧

∀e ∈ rst(h1).¬Match ev(evc(p, v̄ : w̄), e))) ∧

(h2 6= [] → Match ev(evc(p, v̄ : w̄), fst(h2))))

The body of the procedure is given below.

bodyc :≡ declare h0 := parsec(p, hc, x̄, ȳ).0;

h1 := parsec(p, hc, x̄, ȳ).1;

h2 := parsec(p, hc, x̄, ȳ).2

begin

if mode 6= fin then skip else

if ∃e ∈ h0.Gen(p, e) then mode := fail else

if h2 = [] then mode := stop;

if h1 = [] then

hout := hout ◦ h ◦ [evc(p, x̄, ȳ)];

hc := [] fi

else

hout := hout ◦ h0 ◦ h1 ◦ [fst(h2)];

hc := rst(h2); y0 := ret val1c (fst(h2))

. . .

yn−1 := ret valn−1
c (fst(h2))

res := ret resc(fst(h2))

fi fi fi

where Gen(p, e) is true if the event e is generated by the process represented by
p. The function ret valic(e) extracts the result parameters from the event e and
ret resc(e) returns the result value of the corresponding external call c.

82 Bruno Langenstein, Andreas Nonnengart, Georg Rock, Werner Stephan

Before the execution of α̃i is started the begin of an active thread of p has
to be determined by the start procedure, or if p has been started by a fork call,
the start of the ancestor’s thread who was running the very beginning of the
program has to be found. If there is no p-thread executing πi (or no suitable
ancestor), then the given input history is returned as output and mode is set to
term.

The procedure that simulates the start of a process πi is given by the dec-
laration start i(: p, hc, h out, mode) ⇐ bodystart i. It parses the given history h
according to the definition of Proc.

parsestart i(p, hc) = (h0, h1) ↔ h = h0 ◦ h1 ∧

(h1 6= [] → (Create(i, p, fst(h1)) ∧

∀e ∈ rst(h1).¬Term(i, p, e)))

The procedure body then is given below.

bodystart i :≡ declare ah := anc(i, p, h); h0 := []; h1 := [];

begin

if ah = [] then mode := term; hout := hc; else

h1 := fst(ah); h0 := ∆(hc, h1);

hc := rst(h1); hout := h0 ◦ [fst(h1)];

p := get rec(fst(h1))

fi

Finally we need a stop procedure stop(: hout, h, mode) ⇐ bodystop that final-
izes the simulation. It restores the original history by appending the remaining
h to hout. Note that in those cases where a new (final) event was generated hc

will be []. If we have reached the end of α̃i, indicated by mode = fin, we check
whether according to the remaining history something needs to be done a sig-
nal the result by setting mode to fin or term, respectively. This information is
needed for decomposing verification problems. The body of the stop procedure
is then given as

bodystop :≡ hout := hout ◦ h;

if mode = fin ∧ ∀e ∈ h.¬Gen(p, e) then mode := term fi

Whenever mode is changed (to m ∈ {stop, fail}) by a procedure simulating
an external call the rest of α̃i has to be skipped. This is achieved by adding a
kind of guards to while loops and (possibly) recursive procedures. In addition h,
hout, and mode have to be passed as arguments to the procedures declared in δi.

A History-based Verification of Distributed Applications 83

For declarations we have

∅ 7→∼ ∅

q(x̄ : ȳ) ⇐ β , δ 7→∼ q̃(x̄ : ȳ, hc, hout, mode) ⇐

if mode 6= fin then skip else β̃ fi , δ̃

Commands are modified as follows.

skip 7→∼ skip

x := τ 7→∼ x := τ

α0; α1 7→∼ α̃0; α̃1

if ǫ then α0 else α1 fi 7→∼ if ǫ then α̃0 else α̃1 fi

while ǫ do α od 7→∼ while ǫ ∧ mode 6= fin do α̃ od

q(τ̄ : z̄) 7→∼ q̃(τ̄ : z̄, hc, hout, mode)

c(τ̄ : z̄, res) 7→∼ c sim(p, τ̄ : z̄, res, hc, hout, mode)

5 Conclusion and Related Work

Our work was motivated by the problem of verifying application level programs
with certain communication primitives given a complex formal model for dis-
tributed instances of an operating system that are connected by a network and
include machines for the interpretation of C0 programs. Instead of working di-
rectly on the model we have introduced sets of (finite) sequences H of commu-
nication events to specify open distributed systems. This is a particular kind of
stream specification as discussed in [9]. However, we restrict ourselves to prefix
closed sets expressing safety properties.

Apart from abstracting from the local state spaces these histories were used
for a reduction to local verification problems (compositionality). In case of ap-
plication level programs this reduction is provided by a uniform transformation
π 7→ π̃. Once and for all we had to establish a relation to the original model
by a simulation theorem. This proof is based on the Verisoft C0 interpreter and
is the only semantic consideration necessary in our approach. As opposed to
the Hoare-style proof system presented in [10] we do not need a new semantic
interpretation for π̃.

An earlier attempt to map the Verisoft model to the temporal framework
implemented in VSE failed. Temporal verification techniques, like those men-
tioned in [11], turned out not to be appropriate for large programs (more than
7.500 lines) and complex internal data structures. The results of the verification
of π̃ can be viewed as properties of a (total!) function approxπ : Hist → Hist
that (possibly) extends a given history h by a further event (step). Turning this
function into an action of TLA, [12], (manipulating variables for histories) al-
lows for a temporal treatment of liveness and reactivity. The underlying safety
assertion, 2h ∈ H has already been established outside temporal logic.

84 Bruno Langenstein, Andreas Nonnengart, Georg Rock, Werner Stephan

Despite many technical differences the basic idea for the reduction to π̃ is
similar to the use of (prefix closed) time diagrams in [10]. In particular this holds
for the distinction between events caused by π̃ and those caused by the envi-
ronment. However, neither do we need a special semantics for the transformed
program π̃ nor an explicit composition theorem for the concurrent execution of
programs. Composition as well as the inference of additional properties is done
entirely at the level of history specifications H . For the latter we might use func-
tions that extract (as a first-order data structure) for example ”the last e-mail
that was sent” from a given history h.

References

1. The Verisoft Consortium: The verisoft project http://www.verisoft.de.
2. Cheikhrouhou, L., Rock, G., Stephan, W., Schwan, M., Lassmann, G.: Verifying a chip-card-based

biometric identification protocol in vse. In: The 25th International Conference on Computer
Safety, Security and Reliability (SAFECOMP 2006). (2006)

3. Paulson, L.C.: The inductive approach to verifying cryptographic protocols. Journal of Computer
Security 6 (1998) 85–128

4. Mantel, H.: Information flow control and applications — bridging a gap. Lecture Notes in
Computer Science 2021 (2001)

5. de Roever, W.P.: Concurrency Verification – Introduction to Compositional and Noncomposi-
tional Methods. Cambridge University Press (2001)

6. Gargano, M., Hillebrand, M., Leinenbach, D., Paul, W.: On the correctness of operating system
kernels. In Hurd, J., Melham, T.F., eds.: Proceedings of the TPHOLs 05, Springer (2005) 1–16

7. Schirmer, N.: A verification environment for sequential imperative programs in isabelle/hol. In
Baader, F., Voronkov, A., eds.: Proceedings of the LPAR 04, Springer (2005) 398–414

8. Hutter, D., Langenstein, B., Sengler, C., Siekmann, J.H., Stephan, W., Wolpers, A.: Deduction
in the Verification Support Environment (VSE). In: Proceedings FME96. Volume 1051., Springer
(1996)

9. Broy, M., Stolen, K.: Specification and Development of Interactive Systems: FOCUS on Streams,
Interfaces and Refinement. Springer (2001)

10. de Boer, F.S., Hannemann, U., de Roever, W.P.: Hoare-style compositional proof systems for
reactive shared variable concurency. In: Proceedings of the 17th Conference on Foundations of
Software Technology and Theoretical Computer Science, London, UK, Springer-Verlag (1997)
267–283

11. Manna, Z., Pnueli, A.: The Temporal Logic of Reactive and Concurrent Systems. Springer (1991)
12. Lamport, L.: Specifying Systems – The TLA+ Language and Tools for Hardware and Software

Engineers. Addison-Wesley (2003)

Symbolic Fault Injection

Daniel Larsson and Reiner Hähnle

Chalmers University of Technology, Department of ComputerScience and Engineering
S-412 96 Gothenburg, Sweden,{reiner,danla }@chalmers.se

Abstract. Fault tolerance mechanisms are a key ingredient of dependable systems. In particular,
software-implemented hardware fault tolerance (SIHFT) isgaining in popularity, because of its
cost efficiency and flexibility. Fault tolerance mechanismsare often validated using fault injection,
comprising a variety of techniques for introducing faults into a system. Traditional fault injection
techniques, however, lack coverage guarantees and may failto activate enough injected faults. In
this paper we present a new approach calledsymbolic fault injectionwhich is targeted at validation
of SIHFT mechanisms and is based on the concept of symbolic execution of programs. It can be
seen as the extension of a formal technique for formal program verification that makes it possible
to evaluate the consequences ofall possible faults (of a certain kind) in given memory locations for
all possible system inputs. This makes it possible to formally prove properties of fault tolerance
mechanisms.

1 Introduction

One of the most common and important ways to ensure the dependability of com-
puter systems and to analyse their fault tolerance mechanisms isfault injection. This
includes a variety of techniques for deliberately introducing faults into a computer
system and monitoring the system’s behavior in the presenceof these faults.

From a methodological point of view, fault injection is an experimental technique
similar to testing: individual runs of a system are executed with input test data which
in the case of fault injection is additionally instrumentedwith specific locations for
fault injection.

During the last decadeformal methodswere increasingly used to ensure the ab-
sence of (or to detect the presence of) permanent software faults. Formal techniques
such as model checking [11], extended static checking [10],and deductive verifica-
tion [5] are able to find bugs or verify safety properties of industrial software. The
common advantage of these methods is that they aresymbolicand work on a logic-
based representation of software properties. In consequence, one single correctness
proof of a system property represents system runs forall admissible inputs.

Formal methods are not a replacement, but a complement of conventional soft-
ware testing, because they typically work on source or bytecode and do not cover
faults in machine code, compilers, or runtime environments. In order to verify the
latter, testing is indispensable. Formal methods are also too expensive (or unsuitable)
to cover all aspects of a system such as the user interface or I/O. For safety-critical
segments of source code, on the other hand, formal verification is an increasingly cost
efficient and extremely reliable alternative to testing [24, 2].

86 Daniel Larsson, Reiner Hähnle

In the existing approaches to formal software verification,a program is proven to
have certain properties under the assumption that no hardware faults occur (that are
not detected and handled by the hardware or the operating system) during execution
of the program. In other words, nothing is proven about the fault tolerance of the
program. This is clearly a limitation of formal methods in the area of safety-critical
systems.

The main contribution of this paper is to show that symbolic techniques such as
formal software verification can be extended to symbolic analysis of fault injection
and to software fault tolerance mechanisms. In contrast to conventional fault injec-
tion, this establishes the possibility toprove that a given fault tolerance mechanism
achieves the desired behaviour for all inputs andall modeled faults. In particular, it
is possible to guarantee that all injected faults are actually activated. Even when a
fault tolerance mechanism fails to contain the injected faults and, therefore, a proof is
not possible, the verification system allows to investigatethe effects of the introduced
faults. The method presented in this paper is applicable tonode-levelfault tolerance
mechanisms, i.e., mechanisms for achieving fault tolerance withing a single node (or
in an non-distributed environment).

To the best of our knowledge, this is the first presentation ofa formal verifica-
tion framework for software-implemented hardware fault tolerance (SIHFT). Related
work is discussed in Sect. 7. We call our approachsymbolic fault injection. It is based
on symbolic executionof source code [8], a technique where program execution is
simulated using symbolic representations rather than actual values for input data, and
the effect of program execution is expressed as logical expressions over these sym-
bols.

The central idea is to inject symbolic faults (representingwhole classes of con-
crete faults) during symbolic execution which then reflectsthe consequences of the
injected faults. This has been prototypically implementedand evaluated in a tool for
formal verification of (JAVA) software, the KeY [1, 5] tool.

The paper is organized as follows: in the following section we review SIHFT, our
main target application. We discuss our fault model in Sect.3. Readers unfamiliar
with formal verification find the necessary background in Sect. 4. The core of the
paper is Sect. 5, where we explain how symbolic fault injection is modeled and im-
plemented in the logic of the verification system. In Sect. 6 we present a case study
showing the potential of symbolic fault injection. We closewith related work, a dis-
cussion of the achieved results and future work.

2 SIHFT

It is impossible to guarantee that a given computer system isfree of faults. Even
using the best available techniques for manufacturing hardware components, the best
available processes for the design of the hardware and the software, and the best
available techniques for testing a system, it may still contain defects. Moreover, it is

Symbolic Fault Injection 87

impossible to guarantee that no transient faults occur during operation of the computer
system. Therefore, in order to construct dependable computer systems we need to
equip them with mechanisms for detecting and recovering from faults. Faults can
be classified into hardware and software faults. An orthogonal classification divides
faults into transient, intermittent, and permanent faults. In this paper the focus is on
transient hardware faults, specifically, bit-flips in data memory locations.

Fault tolerance mechanisms can be based on hardware (for example, redundant
components) or on software. From a cost perspective it is often beneficial to use
software-implemented fault tolerance whenever possible,because (i) commercial,
standardized components can be used; (ii) hardware redundancy can be avoided; and
(iii) high flexibility can be obtained.

The scenario, where mechanisms for handling hardware faults are implemented
in software, is called SIHFT (Software-Implemented Hardware Fault Tolerance) (for
example, [7]). Common SIHFT techniques include assertions, algorithm-based fault
tolerance (ABFT), control-flow checking, and data duplication and comparison. Other
examples are checksum algorithms like CRC (Cyclic Redundancy Check). We apply
our symbolic technique to the latter in Sect. 6 below.

Our method for formal verification in the presence of faults operates on the source
code level of high-level programming languages and hence isrestricted to software
mechanisms. The type of faults we tried to emulate so far are transient hardware
faults, specifically, bit-flips in the data area of memory (this is not an inherent limi-
tation: other kinds of faults could be modelled, see Sect. 8). SIHFT is a natural tar-
get application for our method. The fact that hardware-implemented fault detection
mechanisms rarely detect faults in the data area of the memory [4] further motivates
the choice of our fault model which is described in detail in the following section.

3 Fault Injection and Fault Model

The purpose of using fault injection is to provoke the occurrence of errors in a system
in order to validate the system’s dependability. Errors occur too infrequently during
normal operation of a computer system to be able to perform such a validation within
reasonable time.

Existing fault injection approaches can be classified into hardware-implemented
and software-implemented fault injection (SWIFI). Examples of the first are tech-
niques, where integrated circuits are exposed to heavy-ionradiation [16] or electro-
magnetic interference [15], and the injection of faults directly on the pins of an inte-
grated circuit [3]. Software-implemented fault injectioncan be further classified into
prototype-based [9] and simulation-based [14] fault injection. In the first case the ac-
tual computer system to be validated (or a prototype thereof) is running while faults
are introduced into the system through software. In the second case a simulation of
the system is used when the faults are introduced.

88 Daniel Larsson, Reiner Hähnle

A fault injection approach is based on afault modelwhich specifies the exact
kind of faults to be injected or emulated. In many fault injection approaches/tools
only single bit-flips are used since they are considered to beefficient in revealing
dependability weaknesses.

The next question to consider iswhereandwhenthe faults are to be injected. For
the purpose of evaluating the relative effectiveness of fault tolerance mechanisms on
different levels (hardware level, operating system level,and application level), it is
useful to be able to inject faults, with high precision, in specific parts of the hardware.
For example, faults might be injected into the MMU (Memory Management Unit)
to evaluate a system’s robustness against this kind of faults. When one is mainly in-
terested in evaluating the mechanisms on the application level, it is often sufficient
to inject faults in memory. It is also useful to be able to control when faults are in-
jected, i.e., how the faults aretriggered. Fault injections can be related to a certain
instruction being executed or a memory location being manipulated, or a fault can be
injected after a specified time.

The major weakness of conventional fault injection techniques is their lack of
coverage. For example, to evaluate the effect of a fault in a given memory location,
typically one bit or a few bits are flipped. But there is no guarantee that these partic-
ular faults will actually exhibit any defects present in thefault handling hardware or
software. In other words, using fault injection nothing isprovedabout the fault toler-
ance property of a system. Similar to ordinary testing, fault injection can only show
the presence of defects, not their absence.

Conventional fault injection techniques also suffer from other problems. Hardware-
implemented techniques require special hardware which is very difficult—sometimes
even impossible—to design for modern processors [9]. Thesetechniques are also not
easily ported to other platforms or expanded to new classes of faults. In the case of
techniques using heavy-ion radiation or electromagnetic interference it is difficult to
exactly trigger the time and location of a fault injection [13]. One source of problems
with existing SWIFI tools is the target system monitoring for detecting the activation
of faults and for investigating the exact effects of the faults [9]. Software solutions for
monitoring have an undesired impact on the target system behavior. Moreover, the
analysis of the huge amounts of monitor data is both difficultand time-consuming.
Another problem with existing SWIFI techniques is that a large proportion of the
injected faults are not activated, for example, faults injected into unused memory lo-
cations or faults placed in registers before the registers are written to [4].

The approach presented in this paper can be characterized assoftware-implemented,
simulation-based fault injection. In the experiments performed, the simulation con-
sists of the machinery available in the KeY tool for performing symbolic program
execution. The fault model so far consists of bit-flips. There are no inherent restric-
tions on the types of faults we can emulate; if a certain hardware part is explicitly
simulated as part of the verification, it is possible to emulate the effects of faults in
that part. It would also be quite easy to emulate software faults. Our approach works

Symbolic Fault Injection 89

on the source code level. We emulate transient bit-level faults in the data segment of
memory by manipulating the variables in the program, and we relate fault injection to
pseudo-statements instrumented into the source code and triggered during symbolic
execution.

4 Formal Methods

Formal methods comprise a wide range of techniques including black box approaches
such as specification-only or specification-based testcasegeneration. Here we con-
centrate onformal verificationof software. Among the various approaches to formal
software verification [1, 10, 11] we single out verification by symbolic program exe-
cution [8], because of its compatibility with the analysis of propagation of injected
faults through a program.

Our implementation platform is the formal software verification tool KeY [1, 5].
In its current version it can handle most of sequential JAVA and there is ongoing
work to deal with concurrency [18] and for support of the C language. KeY takes as
input a JAVA program (source code) and a formal specification of that program. The
combination of the program and the specification is combinedinto aproof obligation
expressed in JAVA Dynamic Logic (JAVA DL). JAVA DL is a typed first-order logic
(FOL) extended with a dynamic part that can handle JAVA programs.

The idea of verification by symbolic program execution is to use logic in order to
represent all possible values of locations in a program and to track their value updates
during execution. We illustrate the main ideas by an example.

pub l i c c l a s s C {
s t a t i c i n t a,b;

pub l i c s t a t i c vo id swap()
{

b = a - b;
a = a - b;
b = a + b;

};
}

Fig. 1.Theswap() method.

Theswap() method in Fig. 1 exchanges the values of the fieldsa andb of class
Cwithout the need for a temporary variable. Symbolic execution of the method would
start by assigning symbolic integer valuesi andj to fieldsC.a andC.b , respectively.
Since we want to analyseswap() for arbitrary valuesi andj we quantify universally

90 Daniel Larsson, Reiner Hähnle

over them. A total correctness assertion in the program logic used in the KeY system
[1] looks then as follows:

∀ int i; ∀ int j; ({C.a := i}{C.b := j}

〈C.swap(); 〉(C.a .
= j & C.b .

= i)) (1)

The universal quantifiers range over integer variablesi and j that are assigned to
the fieldsC.a andC.b as symbolic initial values. Variablesi and j are so-called
rigid variables whose value cannot be changed during the execution of a program
(roughly corresponding tofinal locations in JAVA). For a compilable JAVA program
p, a formula of the form “〈p〉post” expresses that every run ofp with the current
initial values terminates normally and afterwards the postcondition “post” is true.
In other words,p is totally correctwith respect to the given postcondition. If one is
merely interested inpartial correctness, the[]-operator can be used instead: “[p]post”
expresses thatif p terminates normallythen“post” will be true in the end state. In
formula (1) the postcondition expresses that the initial values of the fieldsC.a and
C.b have been swapped by stating that the value ofC.a now is equal to initial value
j and C.b is equal toi (we use the symbol.= to distinguish between equality in
formulas and assignment statements). In this way it is possible to formally specify
the functionality of a given method.

The translation into a logical framework makes it possible to reason formally
about a program. A universally quantified formula such as (1)is valid if and only if
the formula

{C.a := i}{C.b := j}〈C.swap(); 〉(C.a
.
= j & C.b

.
= i) (2)

is true for any possible interpretation ofi andj. The expressions in curly brackets are
called stateupdate. Let U = {loc := val} be such an update, whereloc is a location
(program variable, field or array access) andval is a side-effect free expression. The
semantics of an updated formulaUφ is to change the environment relative to which
φ is evaluated in such a way that the value ofloc becomesval and everything else
is unchanged. Hence, the meaning of formula (2) is: wheneverswap() is started in
an initial state whereC.a has valuei andC.b has valuej, thenswap() terminates
normally and afterwards the contents of the fieldsC.a andC.b is swapped.

The logic JAVA DL used in the KeY system provides symbolic execution rules for
any formula of the form “U〈ξ; ω〉post”, where ξ is a single JAVA statement andω
the remaining program.ξ is called the firstactive statementof the program, i.e., the
statement the rule operates on. JAVA DL rules such as (3) can be seen as an opera-
tional semantics of the JAVA language. Application of rules can then be thought of as
symbolic code execution. A program is verified by executing its code symbolically
and then checking that the FOL conditions after execution isfinished are valid. Dur-
ing proof search rules are applied from bottom to top. From the old proof obligation
(conclusion), new proof obligations are derived (premisses).

Symbolic Fault Injection 91

We give some examples of JAVA DL symbolic execution rules. Updates are used
to record the effect of assignment statements during symbolic execution:

⊢ {v := e}〈ω〉φ

⊢ 〈v = e; ω〉φ (3)

The symbol⊢ stands for derivability. The rule says that in order to derive the formula
in theconclusion(on bottom) it is sufficient to derive the formula in the singlepremiss
(on top). The idea is to simply replace an assignment with a state update. This rule
can only be used ife is a side-effect free JAVA expression. Otherwise, other rules
have to be applied first to evaluatee and the resulting state changes must be added to
the update.

The effect of an update is not computed until a program has been completely
(symbolically) executed. For example, after expanding themethod body ofC.swap()
and symbolic execution of the first two statements we obtain the following interme-
diate result:

⊢ {C.a := j}{C.b := i − j}〈method-frame(C()): b = a + b; 〉

(C.a
.
= j & C.b

.
= i)

During method expansion amethod frame, which records the receiver of the invo-
cation result and marks the boundaries of the inlined implementation, was created.
The updates ofC.a andC.b reflect the assignment statements that have been ex-
ecuted already. After executing the last statement and returning from the method
call the code has been fully executed. The subgoal reached atthis point is similar
to ⊢ {C.a := j}{C.b := i}〈 〉(C.a

.
= j & C.b

.
= i), where the updates are fol-

lowed by the empty program. Only now updates are applied to the postcondition
which results in the trivial subgoal⊢ j

.
= j & i

.
= i.

Below is another rule example, namely the rule for theif - elsestatement which
has two premisses. The rule is slightly simplified.

b
.
= TRUE ⊢ 〈p ω〉φ b

.
= FALSE ⊢ 〈q ω〉φ

⊢ 〈 if (b) p else q; ω〉φ

This rule shows that in contrast to normal program execution, in symbolic execution
even of sequential programs it is sometimes necessary to branch the execution path.
This happens whenever it is impossible to determine the value of an expression that
has an influence on the control flow. This is the case for conditionals, switch state-
ments, and polymorphic method calls, among others. The ruleabove is applicable if
b is an expression without side effects, otherwise other rules need to be applied first.

A problem occurs with loops and recursive method calls. If the loop bound is
finite and known, then one can simply unwind the loop a suitable number of times.
But in general one needs to apply an induction argument or an invariant rule to prove
properties about programs that contain unbounded loops. Both approaches tend to
be expensive, because they require human interaction. The automation of induction
proofs for imperative programs is an area of active research[26].

92 Daniel Larsson, Reiner Hähnle

5 Symbolic Fault Analysis

5.1 General Idea

Our plan is to extend the approach to formal verification of software sketched in the
previous section with the concept of symbolic fault injection. This makes it possible to
prove that a program with software-based fault tolerance mechanisms ensures certain
properties even in the presence of faults. Alternatively, one may calculate the conse-
quences of the introduced faults in terms of strongest postconditions. The realization
is based on the following two ideas:

– The source code is instrumented with pseudo-instructions of the form “inject(
location); ” that are placed where the faults are to be injected. The argument
location is the name of a memory location (local variable, field access, formal
parameter, etc.) visible at this point in the program. This makes it possible to
handle (symbolic) fault injectionuniformlyby symbolic code execution.

– Symbolic fault injection is realized by extending the symbolic execution mecha-
nism with suitable rules for theinject pseudo-instructions.

The examples given below are in JAVA since the current version of KeY handles
JAVA , but the principles given hold for any imperative language.

An injection of a symbolic fault causes a change in the JavaDLrepresentation of
the symbolic program state, and this state change corresponds to the consequences of
all the concrete faults that can appear during program execution and that are instances
of the symbolic fault.

Assume that we want to emulate the effect ofall possiblebit-flips in the memory
location that corresponds to a given variable. First we needto clarify what is meant
by “all possible” bit-flips. Is it the effect of all possiblesinglebit-flips or all possible
combinations of an arbitrary number of bit-flips (in the samememory location)? Con-
sidering a JAVA int (represented by 32 bits): there are32 different possible outcomes
in the first case, but232 in the second. Obviously, when trying to prove properties
about algorithms that can detect bit-flips, it is essential to distinguish between single
bit-flips (or, perhaps, a fixed, small number) and an arbitrary number of bit-flips. For
example, the CRC algorithm discussed in Sect. 6 can detect situations where one or
a few bits are flipped. Trying to prove the fault detection capability of such an algo-
rithm using the “arbitrary number of bit-flips” semantics ofthe inject statement
will not succeed. However, in other situations it might be desirable and possible to
prove properties for an arbitrary number of bit-flips. Our solution is to use two differ-
ent inject statements:inject(location) means that an arbitrary number of bits
in the memory location will be flipped, whileinject1(location) means that a
single bit is flipped. To model a situation where a fixed numbern of bits in a location
is flipped,inject1 is simply applied at that locationn times.

Symbolic Fault Injection 93

Another important question is whether the “no change” case is included in the
meaning of theinject /inject1 statements, i.e. whether the property we are try-
ing to prove should also hold for the case where no bits are flipped. As will be-
come apparent in Sect. 6, sometimes a semanticsnot including the “no change” case
is needed. Below we introduce different flavours of rules forhandling theinject
/inject1 statements covering both cases: one including the “no change” case and
the other one excluding it.

5.2 Rules

We need to add new rules to the JAVA DL calculus that handle theinject pseudo-
instructions. The rules for the cases when thelocation argument ofinject has
type booleanor byte are below. In the case ofboolean typed variables there is no
need to distinguish between single bit-flips and an arbitrary number of bit-flips as
they hold only one bit, however, the distinction between inclusion and exclusion of
the “no change” case is relevant, and the two rules are presented below (inclusion of
the “no change” case is indicated by appendingNC to the rule name).

booleanNC
⊢ {b := true}〈ω〉φ ⊢ {b := false}〈ω〉φ

⊢ 〈inject(b); ω〉φ

boolean
⊢ {b := !b }〈ω〉φ

⊢ 〈inject(b); ω〉φ
(4)

The first rule splits symbolic execution into two paths, where in exactly one of themb
is unchanged and in the other it is complemented. The second rule continues symbolic
execution with the value ofb complemented. Next we show the rule for an arbitrary
number of bit-flips in abyte variable. Only the “no change” version is shown.

byteNC
⊢ ∀byte i; {b := i}〈ω〉φ

⊢ 〈inject(b); ω〉φ
(5)

In this case the memory location can contain anybyte value after the injection. This
means that whatever program property that should be proved has to be proved for all
values of this variable. In logical terms it means that a universal quantification has to
be introduced. We do this by quantifying over a new logical variablei followed by an
update that assigns the value ofi to the locationb.

Finally, the rules for theinject1 statement onbytes and arrays ofbytes are
presented. Only the rules excluding the “no change” case is shown.

byte1
⊢ ∀ int j; 0 ≤ j ≤ 7 → {b := bˆ(1 ≪ j)}〈ω〉φ

⊢ 〈inject1(b); ω〉φ
(6)

After injection, the memory location can contain any value resulting from flipping
exactly one bit inb. The intuition behind the rule is that the variable isxored with the
masks,00000001, 00000010,. . . ,10000000 respectively. The rule for arrays ofbytes,

94 Daniel Larsson, Reiner Hähnle

byteArr1
⊢ ∀ int i; ∀ int j; 0 ≤ i < a.length & 0 ≤ j ≤ 7 → {a[i] := a[i]ˆ(1 ≪ j)}〈ω〉φ

⊢ 〈inject1(a); ω〉φ

Fig. 2. The inject1 rule for byte arrays.

pictured in Fig. 2, is similar but includes universal quantification over the array ele-
ments. The rule shown is a bit simplified since the real rule has to take the possibility
of a null reference into account. We created analogous rules for the other primitive
JAVA types, which are not presented here.

5.3 Example: Verification

We proceed to show by example how the rules for the pseudo-instruction inject
are used in practice. The examples are based on a simple JAVA class shown below.

c l a s s MyBoolean {
boolean v;
boolean myOr(boolean b) {

boolean t=b;
inject(t);
re turn t||v;

}
}

MyBoolean can be viewed as a wrapper forbooleanprimitive valuess. It contains a
booleanfield v that holds the value of aMyBoolean instance. It also has a method,
myOr, with obvious meaning. (The temporary variablet is unnecessary for the be-
havior of myOr. It is added for the presentations of the proofs below, as it makes it
possible to refer to the original value of the parameterb in an easy way.) The inter-
esting point is theinject statement that injects a fault into thebooleanargument
before the return value is computed. Attempts to prove thatmyOr has certain correct-
ness properties even in the presence of faults are shown below.

Symbolic execution and first-order logic reasoning as implemented in KeY is used
in the proof attempts. Note the use of rule (4) forinject(t) (marked with an aster-
isk on the right in Fig. 3 and Fig. 4). In the first example, shown in Fig. 3, an attempt
is made to prove that the method still has the semantics expected from logical or (the
variableresult in the proof stands for the return value ofmyOr): the postcondition
states that the return value ofmyOr is true if and only if one of the arguments is true.
This is impossible to prove due to the injected fault. We get four different branches in
the proof, one for each combination of values in fieldv and parameterb. All branches
must be proven in order to show the property. Due to space restrictions we only show
one of the branches that are impossible to prove, indicated by Γ in the antecedent
which abbreviates “v .

= false& b
.
= true”. The proof tree is shown in Fig. 3. As

expected, we end up with a sequent which is impossible to prove valid.

Symbolic Fault Injection 95

Γ ⊢ false

Γ ⊢ false ↔ true

Γ ⊢ false
.
= true ↔ (false

.
= true ∨ true

.
= true)

Γ ⊢ false
.
= true ↔ (v

.
= true ∨ b

.
= true)

Γ ⊢ {result:= false}〈〉(result
.
= true ↔ (v

.
= true ∨ b

.
= true))

Γ ⊢ {result:= v}〈〉(result
.
= true ↔ (v

.
= true ∨ b

.
= true))

Γ ⊢ 〈return v;〉(result
.
= true ↔ (v

.
= true ∨ b

.
= true))

Γ ⊢ {t := false}〈return t ? true : v;〉(result
.
= true ↔ (v

.
= true ∨ b

.
= true))

Γ ⊢ {t := false}〈return t ‖ v;〉(result
.
= true ↔ (v

.
= true ∨ b

.
= true))

Γ ⊢ {t := true}〈inject(t); return t ‖ v;〉(result
.
= true ↔ (v

.
= true ∨ b

.
= true))

∗

Γ ⊢ {t := b}〈inject(t); return t ‖ v;〉(result
.
= true ↔ (v

.
= true ∨ b

.
= true))

Γ ⊢ 〈boolean t=b; inject(t); return t ‖ v;〉(result
.
= true ↔ (v

.
= true ∨ b

.
= true))

Fig. 3. Failed proof attempt: correctness property ofMyBoolean::myOr(). One of four branches in the proof:Γ

stands for “v
.
= false& b

.
= true”.

Now consider an attempt to prove something weaker, namely that myOr() re-
turnstrue whenever the fieldv wastrue. Again, only one of the four proof branches
is shown, but all are provable. We useΓ in the same way as above. The proof tree is
in Fig. 4. We end up with a sequent that is valid indicating provability. We showed the

[Γ ⊢ true]

Γ ⊢ false → false

Γ ⊢ false
.
= true → false

.
= true

Γ ⊢ v
.
= true → false

.
= true

Γ ⊢ {result:= false}〈〉(v
.
= true → result

.
= true)

Γ ⊢ {result:= v}〈〉(v
.
= true → result

.
= true)

Γ ⊢ 〈return v;〉(v
.
= true → result

.
= true)

Γ ⊢ {t := false}〈return t ? true : v;〉(v
.
= true → result

.
= true)

Γ ⊢ {t := false}〈return t ‖ v;〉(v
.
= true → result

.
= true)

Γ ⊢ {t := true}〈inject(t); return t ‖ v;〉(v
.
= true → result

.
= true)

∗

Γ ⊢ {t := b}〈inject(t); return t ‖ v;〉(v
.
= true → result

.
= true)

Γ ⊢ 〈boolean t=b; inject(t); return t ‖ v;〉(v
.
= true → result

.
= true)

Fig. 4. Successful proof: weakened correctness property ofMyBoolean::myOr(). One of four branches in the
proof:Γ stands for “v

.
= false & b

.
= true”.

formal proofs in some detail in order to give an impression how symbolic execution
of code and injected faults works. All proofs, respectively, proof attempts are created
by the KeY prover within fractions of a second and fully automatically.

96 Daniel Larsson, Reiner Hähnle

5.4 Example: Calculating Strongest Postcondition

Besides proving that a program has certain properties in thepresence of faults it is
possible to calculate the consequences of a fault in terms ofstrongest postconditions.
Below is a simple program containing aninject statement for which we calculate
the strongest postcondition.

i n t aMethod() {
i n t i = 0;
inject(i);
re turn i;

}

The calculation of the strongest postcondition of the program is shown below. Note
that aninject rule for int type variables similar to (5) is used.

⊢ ∃ int k; result
.
= k

⊢ ∀ int j; {result:=j}〈〉?

⊢ ∀ int j; {i:=j}{result:=i}〈〉?
⊢ ∀ int j; {i:=j}〈return i; 〉?

⊢ ∀ int j; {i:=0}{i:=j}〈return i; 〉?

⊢ {i:=0}〈inject(i); return i; 〉?

⊢ 〈 int i=0; inject(i); return i; 〉?

The symbolic execution tells us that after a fault injectionin variable i the return
value can be anyint value. The example is trivial and not very interesting in itself
but illustrates the idea: the symbolic execution makes it possible to analyse the con-
sequences of faults for all admissible inputs.

6 Case Study

We illustrate the application of symbolic fault injection to a realistic fault handling
mechanism: an implementation of the widely used CRC (CyclicRedundancy Check)
algorithm. CRC is a fault detection algorithm: it calculates a checksum on a block of
data. This checksum is typically appended to the data block before it is transmitted
and the receiver is then able to determine whether the data has been corrupted. The
basic idea behind CRC is to treat the block of data as a binary representation of an
integer and then to divide this integer with a predetermineddivisor. The remainder of
the division becomes the checksum. The kind of division usedis not the one found in
standard arithmetic but in so-called polynomial arithmetic. The property that makes
CRC so useful is that it minimizes the possibility that several bit-flips “even out” with
respect to the checksum and therefore go undetected. The algorithm fully utilizes the
number of bits used to represent the checksum. By choosing the divisor (also called
poly) carefully, the algorithm can detect all single bit-flips, all two-bit errors (up to a

Symbolic Fault Injection 97

certain size of the block of data), all errors where an odd number of bits are flipped,
and so-called burst errors (where a number of adjacent bits are flipped) up to a certain
number of bits depending on the size of the divisor.1

We describe briefly the implementation of the algorithm. We cannot use JAVA ’s
built-in division operation, because the block of data, viewed as an integer, in general
is far too big to store in a register; also, we need to use polynomial arithmetic. There-
fore, the data is fed step by step to a division register whilethe required operations
are applied to its content. In its simplest and least efficient implementation of the al-
gorithm the data is shifted bit by bit, while the most commonly used implementation
shifts the data one “register length” at a time and uses a lookup table. Below is an
example of a table-driven implementation in JAVA generated by the “CRC genera-
tor”.2 The block of data is here represented by an array ofbytes, which is given as
parameterbuf to the program. The method returns the computed CRC value.

s t a t i c byte compute(byte[] buf) {
i n t count = buf.length;
byte reg = (byte)0x0;
whi le (count > 0) {

byte elem = buf[buf.length-count];
i n t t = ((i n t)(regˆelem)&0xff);
reg <<= 8;
reg ˆ= table[t];
count--;

}
re turn reg;

}

The arraytable in the program above refers to an array of256 precomputedbytes
that allows to perform the division, shifting the block of data onebyte at the time
(instead of onebit at the time). It would be useful to prove formally that this method
has certain properties. Even though the theory behind the CRC algorithm is well
known, there is no guarantee that this particularimplementationof the algorithm is
free from errors, in particular, since concrete algorithmsare synthesized by a program
generator based on several parameters.

In the following we document an attempt to formally prove that the implementa-
tion above detects all single bit-flips. Detecting single bit-flips is something we expect
even the most simple checksum algorithms to manage, but nevertheless it is valuable
to formally prove that a given CRC implementation actually does this. More precisely,
the following should be proved. Assume one arbitrarybyte array of arbitrary length.
This array is duplicated, an arbitrary single bit-flip inoneof the arrays is performed,
and then CRC checksums for both arrays are computed. The two checksums should

1 For the algorithm and possible implementations see http://www.repairfaq.org/filipg/LINK/Fcrc v3.html.
2 http://members.cox.net/tonedef71/bodyjcrcgen.htm#output

98 Daniel Larsson, Reiner Hähnle

differ and the first step to prove this property is to create the test harness below. It is a
modified version of the CRC implementation with the following changes.

– All variables (exceptcount), including thebyte array constituting the input to
the algorithm, are duplicated. All statements acting on these variables are also
duplicated.

– An inject1 statement (described in Sect. 5.2) is added that injects a bit-flip
fault in one of the input arrays.

– Instead of returning the CRC checksum, this modified versionreturns the com-
parison of the two computed CRC checksums in form of abooleanvalue. That is,
the method returnstrue if the two checksums are equal (the fault isnot detected)
and false otherwise.

s t a t i c byte crcTest(byte[] buf1, byte[] buf2) {
inject1(buf2);
i n t count = buf1.length;
byte reg1 = (byte)0x0;
byte reg2 = (byte)0x0;
whi le (count > 0) {

byte e1 = buf1[buf1.length-count];
byte e2 = buf2[buf2.length-count];
i n t t1 = ((i n t)(reg1ˆe1)&0xff);
i n t t2 = ((i n t)(reg2ˆe2)&0xff);
reg1 <<= 8;
reg2 <<= 8;
reg1 ˆ= table[t1];
reg2 ˆ= table[t2];
count--;

}
re turn (reg1 == reg2);;

}

The reason for modifying the original program is to facilitate the proving process.
It could be argued that this modification might change the behavior of the original
program in an unintended way, e.g., that the checksum calculated for the non-faulty
array is not equal to the checksum calculated for the same array using the original
program. For this program, however, it is fairly easy to see that this is not the case. In
case of doubt, it is possible to formally prove this.

The next step is to express formally the property this program should have. The
proof obligation expressed in JAVA DL is presented below (7). The variableresult
stands for the return value of the method. For sake of claritysome parts dealing
with potentialNullPointerException s and similar are omitted. The variables
msg1lv andmsg2lv are used to quantify over all possible values of the input message

Symbolic Fault Injection 99

blocksmsg1 andmsg2. The precondition states that (the reference variables)msg1
andmsg2 do not refer to the same array, but that the arrays are identical. Note that
the[]-operator is used, i.e., proving termination is not part of the proof obligation (see
Sect. 4). The reason is that this makes it possible to apply a loop invariant rule; see
discussion below. Termination has been proven separately.

∀byte[] msg1lv; ∀byte[] msg2lv;

(msg1lv 6= msg2lv & msg1lv.length
.
= msg2lv.length

& ∀ int j; (j ≥ 0 & j < msg1lv.length → msg1lv[j]
.
= msg2lv[j])

→ {msg1 := msg1lv} {msg2 := msg2lv}

[Crc.crcTest(msg1,msg2);](result
.
= false))

(7)

When trying to prove properties about programs containing unbounded loops (like
thecrcTest() method), then either a loop invariant or induction must be used. We
chose to use an invariant of which a simplified version is shown below (8). The part of
the program preceding the while statement was symbolicallyexecuted. Then a loop
invariant rule was applied, which includes providing the actual invariant.

(inject ar elem < msg1.length − count → reg1 6= reg2)

& (inject ar elem ≥ msg1.length − count → reg1 .
= reg2) (8)

The integerinject ar elem results from the execution of theinject1 statement
and refers to the element in themsg2 array where the fault is injected. It is a skolem
constant originating from the universal quantification over the array elements used in
the rule forinject1 (see Fig. 2). In other words, the invariant has to hold for all
possible values ofinject ar elem.

After application of the loop invariant rule, the proof splits into three branches:
one where it must be proven that the invariant holds before the while statement starts
to execute, one where one needs to prove that (8) is indeed an invariant of the loop
body provided that the guard holds, and one where it must be shown that the proof
obligation (7) follows from the invariant and the negated loop condition. We proved
all three cases using KeY. Here is the summary of the overall proof that (7) holds after
execution ofcrcTest() .

1. The part of the program preceding the while statement was symbolically executed.
This is automatic.

2. The loop invariant rule was applied and the loop invariant(8) manually provided.
3. KeY’s automatic application of rules was restarted whichresulted in about2500

rule applications in less than8 minutes. The result was13 open goals, i.e., branches
of the proof that could not be proved automatically. In all open goals, the program
part of the proof obligation was completely (symbolically)executed, i.e., only
program-free FOL formulas remained.

100 Daniel Larsson, Reiner Hähnle

4. The13 open goals were proved by manual rule application. This is tedious, but
straightforward.

In summary, we proved formally that a certain implementation of the CRC fault
detection algorithm discoversall possiblesingle bit-flips in an arbitrarybyte array.
The proving activity was to a large extent automatic. It is straightforward to apply the
same methodology to related algorithms, now that a valid pattern of loop invariants
has been established.

7 Related Work

In [19] an approach for evaluating the system reliability with respect to bit-flip er-
rors using model-checking principles is presented. This isapplied to a software-
implemented mechanism that detect errors corrupting the control flow, a signature
analysis technique. A control flow graph of the considered generic target program,
which is a representative model over a general class of all possible applications (i.e.,
it covers all possible fault scenarios with respect to the fault model) is created. The
model checker SPIN is applied to the model and the fault detection mechanism in
order to investigate whether the detection mechanism detects all faults. Since the de-
scription of the approach in the paper is highly dependent onthe signature analysis
technique, it is hard to see to which degree it is possible to generalize it to other kinds
of fault tolerance mechanisms. Clearly, a necessary requirement is the ability to con-
struct an abstract model of an imagined target program that covers all possible fault
scenarios with respect to a considered fault model.

In several papers one specific fault tolerance mechanism is formally verified. In
most cases these are system-level (in contrast to node-level) mechanisms for dis-
tributed systems, e.g., the TTP Group Membership Algorithm. Some examples of this
line of work follow: in a paper by Bernardeschi et al. [6], a fault tolerance mechanism
called “inter-consistency mechanism”, a component of an architecture for embedded
safety-critical systems, was formally specified and verified using the model checker
JACK. The properties the mechanism should satisfy were expressed as temporal logic
formulas and the model of the mechanism was given as a Labelled Transition System
(LTS) which included faults that could affect the behavior of the mechanism itself. In
[25], a model of a startup algorithm for the Time-Triggered Architecture was proven
to have certain safety, liveness, and timeliness properties using model checking (the
SAL toolset from SRI). It is claimed that all possible failure modes were examined, an
approach the authors call “exhaustive fault simulation”. Afault-tolerant group mem-
bership algorithm of TTP was formally specified and verified using a diagrammatic
representation of the algorithm. The work is described in [21]. The PVS theorem
prover was used for the verification. Clock synchronizationalgorithms are an im-
portant part of distributed dependable real-time systems.The paper [23] describes
a formal generic theory of clock synchronization algorithms (that extracts the com-
monalities of specific algorithms) in the form of parameterized PVS theories. Several

Symbolic Fault Injection 101

concrete algorithms are formally verified with PVS using this framework. In [22], dif-
ferent aspects of formal verification of algorithms for critical systems are discussed.
As an example, the Interactive Convergence Algorithm (ICA)is proved to have cer-
tain properties using the EHDM system.

What distinguishes our approach from the mentioned papers is that we presenta
general frameworkfor analysis and formal verification ofexecutable implementations
(in contrast to abstract models) of fault tolerance mechanisms.

Finally, it should be mentioned that symbolic fault injection has been used in
a method for calculating thecoverage factor, i.e., the proportion of faults that are
actually handled by a system [17].

8 Discussion and Future Work

Traditional fault injection techniques suffer from a number of drawbacks, notably
lack of coverage and failure to activate injected faults. Inthis paper we presented a
new approach called symbolic fault injection which is targeted at validation of SIHFT
mechanisms and is based on the concept of symbolic executionof programs.

It is an analytic approach in contrast to experimental evaluation done in conven-
tional fault injection. With symbolic fault injection it becomes possible to emulate the
consequences ofall possiblefaults in a certain memory location. All injected faults
are also activated, which is in general not the case with conventional fault injection.
Symbolic fault injection based on formal verification can beexpensive and requires
some expertise, but this is also the case with conventional fault injection. In particu-
lar, to investigate the consequences of an injected fault isdifficult and time consuming
when using conventional methods.

Our fault model so far consists of single bit-flips in memory locations. This is
achieved through pseudo-instructions added to the source code together with rules
for handling these pseudo-instructions during symbolic execution. We implemented
a prototype of our method based on the formal software verification tool KeY. We
showed the viability of the approach by proving that a CRC implementation detects all
possible single bit-flips. Clearly, this is only a proof of concept and a proper evaluation
with realistic industrial software needs to be done.

An argument that is often raised against the usage of formal methods is that formal
specifications of systems are normally not available and arevery time consuming to
create. Note that our approach is useful even without the availability of a formal
specification, because it can be used to compute the symboliceffect of faults in the
form of strongest postconditions (Sect. 5.4).

Limitations Our current implementation suffers from a number of limitations: since
our fault injection technique is simulation-based, no real-time properties can be eval-
uated with it. Formal verification of real-time systems is still an area of research. So
far we have not considered the injection of faults in pointer- or reference-variables,

102 Daniel Larsson, Reiner Hähnle

and we have only looked at faults in the data area of the memory, not the code area.
We also inherit a number of limitations from the underlying verification system. The
most important are that the program logic of the KeY system atthe moment cannot
handle multi-threaded programs or floating point data types. Research that overcomes
the first of these is under way [18]. A practical limitation isthat full automation can
only be achieved when bounds on loops and recursion are finiteand concrete. Other-
wise, induction or invariant rules with expensive user interaction is required. Again,
research to improve this situation is under way [20].

Future Work It would be interesting to generalize our approach to different fault
models and fault trigger mechanisms. This is principally possible by parameterizing
the total correctness modality〈p〉φ with additional parameters for a trigger condition
t, a symbolic faultinject , and a reset expressionR, wheret is a FOL formula,
inject is an inject pseudo-statement, andR is a state update (Sect. 4). The seman-
tics of the formula〈p | t | inject | R〉φ is the same as〈p〉φ, but before symbolic
execution of the next active statement it is checked whethert holds andinject is
inserted whenever it does. In addition, after symbolic execution of each statement the
updateR is added to the current environment. IfR is something like{b := false},
then it easy to emulate a stuck-at-zero fault.

We think that it is attractive to integrate our technique into a framework for de-
sign and assessment of dependable software such as Hiller et. al.’s [12]. Part of this
framework uses fault injection for error propagation analysis to find the locations in
the software where it is most effective to place fault handling mechanisms. We think
that our technique could be very useful in the error propagation analysis.

References
1. W. Ahrendt, T. Baar, B. Beckert, R. Bubel, M. Giese, R. Hähnle, W. Menzel, W. Mostowski, A. Roth,

S. Schlager, and P. H. Schmitt. The KeY tool.Software and Systems Modeling, 4(1):32–54, 2005.
2. P. Amey. Correctness by construction: Better can also be cheaper. CrossTalk Magazine, The Journal of

Defense Software Engineering, pages 24–28, March 2002.
3. J. Arlat, M. Aguera, L. Amat, Y. Crouzet, J.-C. Fabre, J.-C. Laprie, E. Martins, and D. Powell. Fault injection

for dependability validation: A methodology and some applications.IEEE Trans. Softw. Eng., 16(2):166–182,
1990.

4. J. Arlat, Y. Crouzet, J. Karlsson, P. Folkesson, E. Fuchs,and G. H. Leber. Comparison of physical and
software-implemented fault injection techniques.IEEE Trans. Comput., 52(9):1115–1133, 2003.

5. B. Beckert, R. Hähnle, and P. Schmitt, editors.Verification of Object-Oriented Software: The KeY Approach,
volume 4334 ofLNCS. Springer, 2006.

6. C. Bernardeschi, A. Fantechi, and S. Gnesi. Formal validation of the GUARDS inter-consistency mechanism.
In M. Felici, K. Kanoun, and A. Pasquini, editors,Intl. Conf. on Computer Safety, Security and Reliability
(SAFECOMP), pages 420–430, 1999.

7. P. Bernardi, L. Bolzani, M. S. Rebaudengo, M. S. Reorda, and M. Violante. An integrated approach for in-
creasing the soft-error detection capabilities in SoCs processors. InIntl. Symp. on Defect and Fault Tolerance
in VLSI Systems (DFT), pages 445–453, 2005.

8. R. M. Burstall. Program proving as hand simulation with a little induction. InInformation Processing ’74,
pages 308–312. Elsevier/North-Holland, 1974.

9. J. Carreira, H. Madeira, and J. G. Silva. Xception: A technique for the experimental evaluation of depend-
ability in modern computers.Software Engineering, 24(2):125–136, 1998.

Symbolic Fault Injection 103

10. C. Flanagan, K. R. M. Leino, M. Lillibridge, G. Nelson, J.B. Saxe, and R. Stata. Extended static checking for
Java. InProc. ACM SIGPLAN Conf. on Progr. Language Design and Implementation, Berlin, pages 234–245.
ACM Press, 2002.

11. K. Havelund and T. Pressburger. Model checking JAVA programs using JAVA pathfinder.Int. Journal on
Software Tools for Technology Transfer, 2(4):366–381, 2000.

12. M. Hiller, A. Jhumka, and N. Suri. PROPANE: an environment for examining the propagation of errors in
software. InProc. ACM SIGSOFT Intl. Symp. on Software Testing and Analysis, pages 81–85. ACM Press,
2002.

13. M.-C. Hsueh, T. K. Tsai, and R. K. Iyer. Fault injection techniques and tools.IEEE Computer, 30(4):75–82,
1997.

14. E. Jenn, J. Arlat, M. Rimen, J. Ohlsson, and J. Karlsson. Fault injection into VHDL models: The MEFISTO
tool. InProc. 24th Intl. Symp. on Fault Tolerant Computing, (FTCS-24), IEEE, Austin/TX, USA, pages 66–75,
1994.

15. J. Karlsson, P. Folkesson, J. Arlat, Y. Crouzet, G. Leber, and J. Reisinger. Application of three physical
fault injection techniques to the experimental assessmentof the MARS architecture. InIFIP Working Conf.
on Dependable Computing for Critical Applications (DCCA-5), pages 267–287, Urbana-Champaign, USA,
September 1995. IEEE Computer Society.

16. J. Karlsson, P. Liden, P. Dahlgren, R. Johansson, and U. Gunneflo. Using heavy-ion radiation to validate
fault-handling mechanisms.IEEE Micro, 14(1):8–23, 1994.

17. L. T. Klauwer. Application of Formal Methods to Fault Injection and Coverage Factor Calculation. Master’s
thesis, Chalmers University of Technology, Department of Computer Science and Engineering, Göteborg,
Sweden, 2006.

18. V. Klebanov, P. Rümmer, S. Schlager, and P. H. Schmitt. Verification of JCSP programs.Concurrent Systems
Engineering, 63:203–218, 2005.

19. B. Nicolescu, Y. Savaria, E. Aboulhamid, and R. Velazco.On the use of model checking for the verification
of a dynamic signature monitoring approach.IEEE Transactions on Nuclear Science, 52:1555–1561, Oct.
2005.

20. O. Olsson and A. Wallenburg. Customised induction rulesfor proving correctness of imperative programs. In
B. Beckert and B. Aichernig, editors,Proc. Software Engineering and Formal Methods, Koblenz, Germany,
pages 180–189. IEEE Press, 2005.

21. H. Pfeifer. Formal verification of the TTP Group Membership algorithm. InProc. FIP TC6 WG6.1 Joint Intl.
Conf. on Formal Description Techniques for Distributed Systems and Communication Protocols (FORTE
XIII) and Protocol Specification, Testing and Verification (PSTV XX), pages 3–18. Kluwer, 2000.

22. J. M. Rushby and F. von Henke. Formal verification of algorithms for critical systems.IEEE Trans. Softw.
Eng., 19(1):13–23, 1993.

23. D. Schwier and F. W. von Henke. Mechanical verification ofclock synchronization algorithms. InProc. 5th
Intl. Symp. on Formal Techniques in Real-Time and Fault-Tolerant Systems, LNCS, pages 262–271. Springer-
Verlag, 1998.

24. A. E. K. Sobel and M. R. Clarkson. Formal methods application: An empirical tale of software development.
IEEE Transactions on Software Engineering, 28(3):308–320, 2002.

25. W. Steiner, J. Rushby, M. Sorea, and H. Pfeifer. Model checking a fault-tolerant startup algorithm: From
design exploration to exhaustive fault simulation. InThe Intl. Conf. on Dependable Systems and Networks,
pages 189–198, Florence, Italy, June 2004. IEEE Computer Society.

26. A. Wallenburg. Proving by induction. In B. Beckert, R. H¨ahnle, and P. Schmitt, editors,Verification of Object-
Oriented Software: The KeY Approach, volume 4334 ofLNCS, pages 453–480. Springer-Verlag, 2006.

A Termination Checker for Isabelle Hoare Logic

Jia Meng1, Lawrence C. Paulson2, and Gerwin Klein3

1 National ICT Australia jia.meng@nicta.com.au
2 Computer Laboratory, University of Cambridge lp15@cam.ac.uk

3 National ICT Australia gerwin.klein@nicta.com

Abstract. Hoare logic is widely used for software specification and verification. Fre-
quently we need to prove the total correctness of a program: to prove that the program
not only satisfies its pre- and post-conditions but also terminates. We have implemented
a termination checker for Isabelle’s Hoare logic. The tool can be used as an oracle, where
Isabelle accepts its claim of termination. The tool can also be used as an Isabelle method
for proving the entire total correctness specification. For many loop structures, verifying
the tool’s termination claim within Isabelle is essentially automatic.

1 Introduction

For many critical systems, such as operating systems kernels, testing is not ad-
equate to ensure correctness. Formal methods have become popular in research
as well as industry. There are several approaches to verifying program correct-
ness. For example, Hoare logic has been used to specify a program’s pre- and
post-conditions; using logical deduction, one can prove the program meets its
specification. A program that fails to terminate satisfies its post-condition by
default, so total correctness requires a proof that the program terminates.

Total correctness proofs are complicated and require a lot of human effort.
A different approach is to focus on the termination property of a program,
which can usually be automated with some human assistance. An example is
the Terminator program developed at Microsoft Research [3, 8], which checks
whether a C program terminates.

A proof of termination is useful, but it does not guarantee that a program
does what it is supposed to do. Full specification and verification is still what we
are aiming at, and the most important formalism for that purpose is Hoare logic.
Our current work is part of a larger project to verify the functional correctness
of the L4 operating system micro kernel. An automatic termination checker can
reduce manual work. Since Terminator is not publicly available, we have imple-
mented a termination checker in the spirit of Terminator and have integrated
this tool into Isabelle [6]. The tool can be used by Isabelle’s Hoare logic to prove
total correctness specifications. In this paper, we concentrate on termination of
WHILE constructs.

Although our termination checker and Terminator are based on the same
technology, we have a different emphasis. In addition to implementing the ter-
mination tool, we also investigate how we can have the tool’s results used by

A Termination Checker for Isabelle Hoare Logic 105

Isabelle’s Hoare logic. The termination tool is based on model checking and it
returns a set of well-founded (WF) relations for each cyclic path. However, a
total correctness specification in Hoare logic requires one single WF relation
(the variant) for each looping construct. An explicit variant represents evidence
of termination, but this variant is not given as a result by either Terminator

or our tool, which are both based on the model checking technology. Much of
our investigations concern how to make the results from the termination tool
usable to Isabelle. As far as we know, our tool is the first integration of a model-
checking-based termination tool with an interactive prover, and our work is the
first integration of the terminator technology to Hoare logic.

In addition, we invented an optimization for our termination checker (§4.3)
to meet our particular requirements on the generated WF relations. Finally,
Podelski and Rybalchenko [8] have proved the mathematical theory behind
Terminator. In order that we can use the tool in Isabelle, we have had to
formalize their proofs in Isabelle, and this is the first formalization of the proofs
in any interactive prover.

Another method for termination analysis is to translate imperative programs
into functional programs so that one can prove the termination property of
an imperative program by proving its functional counterpart terminates [1].
However, we decided to adopt another approach, which is based on disjunctively
well-founded relations. This approach is comparatively novel and is a promising
method that has been applied to full C programs.

Paper outline. We first present background information on Isabelle’s Hoare
logic and termination requirements of programs (§2). We then describe how we
have implemented our termination checker (§3). Subsequently, we illustrate the
two approaches we have used to integrate the termination checker into Isabelle
(§4 and §5). In order to show how we can use our termination checker with
Isabelle, we give some examples (§6). Finally, we conclude the paper (§7).

2 Isabelle and Termination Properties

2.1 Hoare logic in Isabelle

We base our work on Norbert Schirmer’s implementation of Hoare logic in Isa-
belle/HOL [9]. Schirmer has designed a small but expressive imperative lan-
guage, called SIMPL, with recursive procedures. He defines an operational se-
mantics for SIMPL and derives a sound and complete Hoare logic. The Hoare
logic implementation includes an automated verification condition generator
(vcg). In other work [10], we have provided an Isabelle front-end for mapping C
into SIMPL.

Since SIMPL treats procedures, the Hoare triple format that we show in
examples later also mentions procedure environments, Γ . Partial correctness

106 Jia Meng, Lawrence C. Paulson, Gerwin Klein

is written Γ ⊢ {|P |}C{|Q|}; total correctness is written with subscript t, as
Γ ⊢t {|P |}C{|Q|}. Partial correctness means if C is executed in a state where
P is true, and if C terminates, then it will end in a state where Q is true.
Total correctness includes a termination requirement: if C is executed in a state
satisfying P , then it will terminate in a state satisfying Q.

For proving total correctness, there are two approaches. One approach is to
separate partial correctness from termination, as with the following rule

Γ ⊢ {|P |} C {|Q|} Γ ⊢t {|P |} C {|⊤|}

Γ ⊢t {|P |} C {|Q|}

where ⊤ is logical truth. The second premise says that the program C started in
a state satisfying P will terminate. If we assert it without giving any evidence,
we have implemented an oracle that accepts an external claim of termination.
Here we follow the convention that unmentioned variables do not change their
values.

The second approach is to use Hoare logic rules for total correctness. These
rely on the concept of a well-founded (WF) relation: one that has no infinite
descending chains. In this paper we do not consider the recursive procedure
call of SIMPL, which makes WHILE the only looping construct. Schirmer uses
sets of states to formalize all predicates, such as pre- and post-conditions and
the loop’s boolean expression. For the verification condition generator, a typical
WHILE statement is annotated with an invariant, which is again a set of states,
and a variant, which is some WF relation. This means the WHILE-rule for total
correctness in Schirmer’s Hoare logic is the following:

∀σ. Γ ⊢t {| {σ} ∩ I ∩ b |} C {| {t | (t, σ) ∈ V } ∩ I |}
P ⊆ I I ∩ −b ⊆ Q wf V

Γ ⊢t {|P |} WHILE b INV I VAR V DO C {|Q|}

The first premise fixes the pre-state σ and requires that the loop body C de-
creases the variant while maintaining the invariant I. The set {t | (t, σ) ∈ V }
consists of all post-states t such that (t, σ) are in the variant V . If V is a WF
relation, the loop must terminate. This approach is good for generating full
termination proofs, because the variant gives explicit evidence for termination.

The rest of this paper shows how we can integrate externals tools into Isa-
belle/HOL to produce the variants mentioned above and how to prove them
well-founded. This reduces the manual proof effort for total correctness goals,
either by oracle or by proof fully verified in Isabelle/HOL.

A Termination Checker for Isabelle Hoare Logic 107

2.2 Termination Properties

Before we explain the termination properties, it is helpful to have a brief review
of the transition system that is usually used as an abstraction of programming
languages. For more information, we refer readers to the book by Manna [5].

Each program has an associated transition system. A transition system con-
sists of four parts: Π , Σ, R and Θ.

– Π is a finite set of state variables, which consists of program variables that
appear in the program statements and also control variables, such as the
program counter (PC).

– Σ is a set of states. Each state s is an interpretation of Π , which assigns
values to each variable in Π . For example, x s is the value of variable x in
the state s.

– R is a finite set of transitions. For a deterministic program, a transition τ is a
function Σ → Σ. If a transition τ leads a state s to another state s′ (written
as s

τ
−→ s′), then s′ is reachable from s. We say that s and s′ are pre- and

post-states of τ .
– Finally Θ is the initial condition, which is a set of initial states

Each transition τ is characterized by its transition relation ρτ , where (s′, s) ∈
ρτ if and only if s′ is reachable from s by τ . In addition, we can extract one or
more transition relations from each program statement. For example, if we have a
WHILE statement at program location L as WHILE(x > 0){x = x -1;}, then its
transition relations are {(s′, s) | PC s = L∧x s > 0∧x s′ = x s−1∧PC s′ = L}
and {(s′, s) | PC s = L ∧ x s ≤ 0 ∧ x s′ = x s ∧ PC s′ = M}, where M is the
exit location of the WHILE construct.

This set notation for transition relations is sometimes abbreviated by a logical
formula: the value of a variable in the pre-state is represented directly by the
variable name and the value in the post-state is represented by the primed
version of the variable name. When the PC value is understood from the context,
its pre- and post-values are also ignored. For example, the first transition relation
above can be abbreviated to x > 0 ∧ x′ = x − 1.

A computation is a possibly infinite sequence of states s0, s1 . . ., such that s0

is in an initial state and each si+1 is reachable from si via some transition.
A path in a transition system is a sequence of transitions π = τ1 . . . τn, such

that the PC’s value in the post-state of τi is the same as the value in the pre-
state of τi+1. There is a path transition relation for each path, which is just the
relational composition of each consecutive transition relation involved in this
path. The path above is cyclic if the PC value in the pre-state of τ1 is the same
as the value in the post-state of τn.

A program is terminating if there is no infinite computation. Theoretically,
this can be proved by showing that there is a WF relation T , such that each
consecutive pair of states si and si+1 has (si+1, si) ∈ T . However, it is often

108 Jia Meng, Lawrence C. Paulson, Gerwin Klein

too difficult to find one single WF relation T for this purpose. Podelski and
Rybalchenko [8] have proved that it is sufficient to find a finite set of WF relations
T = {T1, . . . , Tn} to show the program is terminating, provided we can prove
R+

I
⊆ T1 ∪ . . . ∪ Tn, where R is the program’s transition relation, R+ is the

transitive closure of R and R+

I
is a reachable subset of R+. This means for each

reachable path, its path transition relation must be a member of some Ti of T .

Since each non-cyclic path induces a WF relation, to show the program is
terminating, we only need to show there is a WF relation Ti for each reachable
cyclic-path. Cook et al. have shown [3] that program termination checking can
be translated into program reachability analysis. For this to work, auxiliary pro-
gram variables are introduced and the relations between them and the original
variables are established to mimic the transition relations of the program. A
designated program location ERROR is used: it is only reachable if there is no
WF relation Tk such that the post-state s′ and pre-state s of a cyclic path’s
transition relation has (s′, s) ∈ Tk. If this happens, one can try to find a WF
relation for that cyclic path. If no WF relation can be found, then the program
is reported as possibily non-terminating. If a WF relation can be generated for
the path, then the process continues with other cyclic paths, until ERROR is really
not reachable, which means all cyclic paths are covered by some WF relations.

2.3 Using a Termination Tool for Generating Variants

Although we can use the termination tool to generate WF relations for all cyclic
paths, these relations cannot be used as variants for Hoare logic.

First, there may be nested WHILE constructs. The variant V for the outer
WHILE has to be one single WF relation so that the pre-state s and the post-
state s′ of the body transition relation satisfy (s′, s) ∈ V , regardless how many
times the inner WHILE are entered and whether they are entered at all. This
means V has to satisfy multiple cyclic paths. We can use the termination tool
to generate WF relations to cover all these cyclic paths, but the variant must be
one single WF relation, and we believe that automatically combining multiple
WF relations into one is impossible in general.

Second, even if a program has no nested WHILEs, there may be more than one
(cyclic) path and hence more than one path transition relation between the start
and the end of the WHILE loop. Each transition relation has to be a conjunction
of positive atomic formulae, and each atomic formula is a mathematical asser-
tion over state variables. This is because we use an external ranking function
generator to synthesis WF relations and the tool only accepts a transition rela-
tion expressed as a conjunctive formula without negations. Consequently, if the
guard of the WHILE has disjunctions or negations or the body has IF constructs,
then we will have multiple path transition relations. We again need to combine
multiple WF relations into one.

A Termination Checker for Isabelle Hoare Logic 109

Instead of generating a single WF relation, we could investigate another ap-
proach that tries to construct a termination argument from these WF relations.
However, our work aims to use the termination checker to support proofs per-
formed in Isabelle Hoare logic, and the total correctness rule requires the variant
as the termination argument.

3 Implementing a Termination Checker

We have implemented a termination checker that checks C programs involving
integer variables, in the spirit of Terminator [3], in the sense that we check the
termination of the entire program by generating one or more WF relations for
its cyclic paths. Currently, we only use the tool to check cyclic paths produced
by WHILE constructs and the tool does not handle pointers. Moreover, we use
two external tools: Blast and Rankfinder.

3.1 Using Blast and Rankfinder

Blast [4] is a model checker for C programs. It checks that software behavior
meets its specification using lazy abstraction. For our purpose, we use Blast to
check if a designated location called ERROR is reachable. If ERROR is not reachable,
then Blast reports the program is safe. If ERROR is reachable, then Blast returns
a trace: a sequence of locations from the start of the program to ERROR.

Here, we are using the location ERROR to signal a possibly non-terminating
cyclic path. If ERROR is not reachable, then there is no non-terminating cyclic
path. However, if Blast reports a trace that leads to ERROR, then we can extract
a cyclic path from it, and then we can examine if we can generate a WF relation
to show the path is terminating, using Rankfinder.

Rankfinder [7] is a ranking function (a.k.a. measure function) generator. A
ranking function is a decreasing function, with a lower bound. Given a transition
relation τ , Rankfinder tries to synthesize a decreasing ranking function, with
two parameters: an integer bound b and a positive integer d that is the minimum
decrease of the ranking function during the transition relation. For example, if
the transition relation is x ≥ 0 ∧ x′ = x − 1, then the ranking function from
Rankfinder is x, the bound is 0 and minimum decrease is 1. Each ranking
function F induces the well-founded relation

{(s′, s) | b s ≤ F s ∧ F s′ ≤ F s − d}

where s′ and s are the post- and pre-states of the transition.

3.2 The Termination Checker

Our tool is closely integrated with Isabelle and it is called via an Isabelle invo-
cation. It works as follows.

110 Jia Meng, Lawrence C. Paulson, Gerwin Klein

1. The C program embedded in SIMPL is extracted to generate a control flow
graph. For better performance, we “compact” the flow graph so that only
WHILE locations and the program entrance point are kept in the graph. All
the remaining program locations are removed from the graph by joining the
path transition relations. If the pre-condition P of the Hoare specification
is non-empty (i.e. there are initial conditions on program variables), then
we modify the flow graph to include the initial conditions. Subsequently, we
examine each WHILE construct in turn, and the order in which we examine
the WHILE constructs does not matter.

2. For each WHILE construct, writing its program location as L, check the ter-
mination of all cyclic paths that start from and finish at L:
(a) Insert the already-generated WF relations for L into the C program and

generate a text file, then call Blast. Initially no WF relation is generated,
so nothing is inserted.

(b) If Blast reports the program is safe, i.e. ERROR is not reachable, then move
to the next WHILE construct. If Blast reports an error trace, then we ex-
tract the cyclic paths from the trace and calculate the reachable transition
relations. We then call Rankfinder to generate a ranking function for each
transition relation. If Rankfinder succeeds, then use the newly generated
WF relations to modify the C program and re-run Blast. If Rankfinder
cannot generate a well-founded relation for a transition relation, then the
program is reported as possibily non-terminating.

3. If ERROR is no longer reachable, Blast will report the program is safe. We
can then move on to the next WHILE construct if available.

4. If for each WHILE construct, its cyclic paths are reported to be terminating,
then the entire program is terminating; the generated WF relations are also
reported. Otherwise, the program is reported as possibly non-terminating.

4 Integrating the Termination Checker into Isabelle

Our termination checker has been used as a tool for Isabelle, both as an oracle
and as a proof method. Isabelle’s oracle mechanism accepts an external tool’s
result without verifying it. When used as a proof method, the result is used to
create an Isabelle proof that is verified through Isabelle’s kernel.

4.1 Integration as an Oracle

Recall that a total correctness goal can be proved separately as a partial cor-
rectness goal and a termination goal (§2.1). When used as an oracle, we only
use the tool to prove the second subgoal, namely the program is terminating,
if started from a state satisfying P . We do not need to generate variants in
this case. Therefore, if the tool reports the program is terminating, the second
subgoal is removed from the proof state.

A Termination Checker for Isabelle Hoare Logic 111

4.2 Integration as an Isabelle Proof Method

Using the termination checker as an Isabelle oracle gives us a quick answer to
whether the program is terminating. Of course, using the tool as an Isabelle
proof method would yield greater confidence. This requires us to use the tool to
generate a variant for each WHILE construct. Moreover, we would like the variant
to be as simple as possible. The form of the variant generated depends on the
complexity of the program, as well as the WF relations generated for WHILE

constructs.
For this purpose, we divide the WF relations for each WHILE construct (W)

into two sets: Tin is generated for cyclic paths that do not leave W and Tout is
generated for cyclic paths that leave W and re-enter. This is because a variant
for W is essentially a set of transition relations of paths that do not leave W .
Therefore, if we define a variant using a relation that does not include any path
that leaves W , we only need Tin for WF proofs. Tout is needed when we try to
prove the entire program R is WF, since we need to prove R+ is WF and R+

contains paths that leave W .
In this section, we describe the form of the variants generated and will infor-

mally explain why they are variants and why they are WF. We will show some
formal proofs in the next section.

Programs with No Nested Loops If a program has a single loop, then the
variant generated only depends on the number of WF relations in Tin because
we are not concerned about the paths leaving and re-entering the WHILE (W).
There are two cases to consider.

First, if there is only one ranking function F generated, then we generate an
Isabelle measure function M from it. The difference between F and M is that F

involves integers whereas M uses natural numbers only, but this is easily dealt
with.

Hoare logic requires us to prove that the loop body decreases the variant.
More formally, V must be a set containing all the post- and pre-states pairs of
the loop. We can indeed prove that the transition relations of each cyclic path
starting and finishing at location W form a subset of V .

Second, if there is more than one ranking function in Tin, then we define
the variant to be the intersection RL ∩ I of the transition relation of the loop
and the invariant of the loop. Frequently we can use RL as the variant, which
is weaker. The use of the invariant1 is important when reachability becomes
a concern (§4.4). As there is only one WHILE construct, RL does not need to
mention its PC value. As an example, consider the following C program.

WHILE (x > 0 || p > 2){x = x - 1; p = p - 2;}

1 Currently, invariants are generated manually, but we plan to incorporate automatic invariant gen-
eration in the future.

112 Jia Meng, Lawrence C. Paulson, Gerwin Klein

Its RL is

{(s′, s) | x s > 0 ∧ x s′ = x s − 1 ∧ p s′ = p s − 2 ∨

p s > 2 ∧ x s′ = x s − 1 ∧ p s′ = p s − 2}

Obviously, the transition relation is a variant, and we can prove (see §5) that
RL is well-founded.

Programs with Nested Loops This is the complicated case. We generate the
variant for each WHILE in turn. The form of the generated variant also depends
on the complexity of the WHILE construct.

If there is only one ranking function F in Tin, then we generate its corre-
sponding Isabelle measure function M as above.

If there are multiple ranking functions, then the variants are defined in terms
of transition relations. Since there are multiple WHILE loops, the transition rela-
tion must mention PC values. There are two cases to consider.

First, if the WHILE construct with location L has no nested inner loop, then
we define the variant to be

V = fix pc L (RL ∩ I)

where RL, I are transition relation and invariant of the WHILE construct and the
definition of fix pc is

definition

fix pc :: "int ⇒((α * int) * (α * int)) set ⇒(α * α) set"

where "fix pc pc R = {(s’,s). ((s’,pc),(s,pc)) ∈R}"

The function fix pc removes the dependence on the PC by restricting a relation
to the given PC value. Again, RL can replace RL ∩ I sometimes.

Second, if the loop has inner nested loops, then we define its variant V as

V = fix pc L R+

where R is the transition relation of the entire program. The formula on the right
hand side is indeed a variant, because any path that starts from and finishes at
the WHILE with location L must have its corresponding transition relation ρ as
a subset of R+, i.e. ρ ⊆ R+. In addition, ρ must be a set containing tuples
of the form ((s′, pc′), (s, pc)), where pc = L and pc′ = L. We will discuss the
well-foundedness property of V in section 5.

4.3 An Optimization

The complexity of the WF proofs for variants largely depends on the number of
WF relations our tool generates for the WHILE constructs. If a WHILE construct

A Termination Checker for Isabelle Hoare Logic 113

is shown terminating using a set of WF relations, then it may also be possible
to find another smaller set of WF relations that does the job. Suppose we have
two WF relations T1 and T2, which show the termination of two cyclic paths π1

and π2 using ρ1 ⊆ T1∧ρ2 ⊆ T2, where ρ1 and ρ2 are the path transition relations
for the two paths. Then if we can generate a weaker WF relation S such that
ρ1 ⊆ S ∧ ρ2 ⊆ S, then we can replace T1 and T2 by S. Please note, in general we
cannot derive S by simply making a union of the two WF relations, since the
result of the union may not be well-founded.

For each WHILE construct, our tool attempts to generate a WF relation when
a possibly non-terminating cyclic path is found. Therefore, the order in which the
WF relations are generated depends on the order in which these cyclic paths are
detected. Since we use Blast to detect these cyclic paths, we have no control
over its searching strategy and so we cannot ask for any specific paths to be
reported first.

For a WHILE construct W that has one or more inner loops, some of W ’s
cyclic paths (i.e. those start from and finish at W) enter inner loops (call them
P1) while some do not (call them P2). It may happen that there is something
decreasing along the execution of W , regardless whether any of W ’s inner loops
are entered. More precisely, there may be a set T with one or more WF relations
that cover paths from both P1 and P2. This means, we may be able to generate
T without entering any of W ’s inner loops. We call this set of WF relations the
global WF relations for W , since it exists regardless of the inner loops’ behaviour.

Suppose there is one inner WHILE U of W , and the path transition relation
from W to U is ρ1, the path transition of U loop is ρu and the path transition
relation from U back to W is ¬b∧ρ2, where b is the guard of U , i.e. the condition
when U is entered. The path transition relation from W back to W is

ρ = (¬b ∧ ρ2) o ρ+

u o ρ1.

To generate the required T , we generate WF relations for ρA = ρ2 o ρ1. This
path corresponds to a program W ′, which is W with U completely commented
out. We do not generate WF relations for ρB = (¬b ∧ ρ2) o ρ1. since this path
simulates the effect that the guard of U is not true. Clearly ρA is weaker than ρB

and if a WF relation can be used for ρA, then it can be used for ρB. Nevertheless,
our aim is to have the generated WF relations to work for ρ as well; if the WF
relation for ρB is too strong, then it may not work for ρ.

Of course, a given WHILE construct W may not have this global set T of WF
relations. As a result, we still need to generate WF relations for all cyclic paths
that enter inner loops. The advantage of generating T is that some relations in
T may make it unnecessary to generate new WF relations for some cyclic paths,
thereby reducing the number of relations generated. We have implemented this
optimization in our termination checker.

114 Jia Meng, Lawrence C. Paulson, Gerwin Klein

4.4 An Issue of Reachability

As we have mentioned, the technique of termination checking works by ensur-
ing all reachable cyclic paths are terminating. When we use Blast to check
the reachability of the ERROR location, the notion of reachable cyclic path is
already present implicitly with Blast. However, sometimes we need to express
reachability explicitly, for two reasons.

The first one is for Rankfinder to generate WF relations. For example, we
may have a program

y = 2; WHILE (x > 0){x = x - y;}

Without knowing y > 0, the transition relation of WHILE’s cyclic path is not
well-founded and so Rankfinder will fail to generate a WF relation for it. To
strengthen the transition relation, we note that y > 0 is an invariant and by
adding it to the transition relation of the path, the new relation is indeed WF.

The second reason for including the reachability condition is to have a strong
enough variant. There may be non-terminating cyclic paths that do not concern
Blast since they are deemed to be unreachable, and so Rankfinder will not
have to generate WF relations for them. However, when defining the variant,
which are effectively the transition relations of paths, we need to incorporate in
it the reachability condition so that unreachable paths are removed from it.

We have tried several ways of expressing this reachability requirement of
loop variants. A simple way is to include the loop’s invariant in the variant. For
single-looped program, we define the variant as RL ∩ I. For an innermost loop,
we define its variant as fix pc L (RL ∩ I). We have used this method to prove
problems that were not provable otherwise.

If the WHILE construct has nested inner loops, its variant can also be strength-
ened by adding invariants. To discover an invariant can require much thought,
and ideally we would use an automatic tool for generating invariants. At present
we are using no such tool and have decided to use fix pc L R+ as the variant.
This heuristic choice does not affect the soundness of our tool and will not affect
the way the tool is used as an oracle. When the tool is used as a proof method, if
a non-reachable non-terminating cyclic path is included, then a user will fail to
prove that a (non-WF!) path transition is well-founded. This is a signal that the
path may be in fact not reachable. The user can then make another attempt: ei-
ther trust the oracle or try to strengthen the variant by finding a strong invariant
of the entire program.

5 Proving Variants being Well-Founded

Having generated the required variants, we need to show their well-foundedness.
Showing that the relation defined for V is a variant is a separate task, which
requires the users to have found the correct invariants.

A Termination Checker for Isabelle Hoare Logic 115

When the generated V has the form measure M , we can apply Isabelle’s ex-
isting methods to show it is WF automatically. Otherwise, there are several
possibilities:

– A single-loop program: the variant has the form RL ∩ I or RL.
– A multi-loop program: the variant has the form fix pc L R, where R is either

RL ∩ I or RL.
– In the most complicated case, the variant has the form fix pc L R+.

The proofs are based on disjunctively well-founded relations of Podelski and
Rybalchenko [8]. A relation is disjunctively well-founded, if it is the union of
finitely many well-founded relations. We need to formalize them for Isabelle
proofs to work.

5.1 Proving that R and fix pc L R are Well-Founded

These are the simpler of the three cases. In order to show that R is WF, we
need to prove R+ is WF. We have proved the following two essential theorems
in Isabelle:

theorem union wf disj wf1:

" [[
V

s. s ∈ R =⇒ wf s; r ⊆
S

R; finite R]] =⇒ disj wf r"

theorem trans disj wf implies wf:

" [[trans r; disj wf r]] =⇒ wf r"

The first theorem characterizes what it means for a relation r to be disjunctively
well-founded (disj wf). The second theorem states the crucial result that if a
relation is both transitive and disjunctively WF, then it is WF. The Isabelle
proof follows the informal argument [8] in using Ramsey’s theorem. Using these
two theorems, we can prove that R+ is WF by proving R+ ⊆

⋃
T , where T is

the set of WF relations the tool generates. We can prove that R is well-founded
using another Isabelle lemma:

"wf (r+) =⇒ wf r"

Finally, we have used another theorem to prove variants of the form fix pc L R.

theorem fix pc wf:

"wf R =⇒ wf (fix pc pc R)"

5.2 Proving that fix pc L R
+ is Well-Founded

This is the complicated case and we have tried two approaches.
In the first approach, we tried to prove R+ is WF by restricting attention to

cyclic paths. In order to restrict R+ to the transitions of cyclic paths, we have
defined the constant same pc :

116 Jia Meng, Lawrence C. Paulson, Gerwin Klein

definition

same pc :: "((α * int) * (α * int)) set"

where "same pc = {((s’,pc’),(s,pc)). pc’ = pc}"

Now R+ ∩ same pc denotes the subset of R+ concerning cyclic paths. We need to
prove that the relation fix pc L R+ is well-founded. It suffices to show

R+ ∩ same pc ⊆
⋃

T,

where T is the set of generated WF relations. We cannot prove this by induction
because the same pc property is not preserved from one transition to the next. To
make this approach work, we need to identify an invariant S of R+, such that
we can prove R+ ⊆ S by induction and then prove S ∩ same pc ⊆

⋃
T .

In the second approach, we attempted to prove that R+ ⊆
⋃

T directly.
Since R+ includes both cyclic and non-cyclic paths, we tried modifying the
tool to generate WF relations for non-cyclic paths as well. However, we found
that R+ ⊆

⋃
T still could not be proved by induction, apparently because the

induction hypothesis was too weak: the set
⋃

T was too large. We suspect that
it is not practical to generate sufficiently strong WF relations for all non-cyclic
paths because there are simply too many such paths.

5.3 Automation in WF Proofs

We have implemented several Isabelle proof methods to invoke the termination
checker. When the tool generates all the required WF relations and shows the
program is terminating, the goal will be modified with variants inserted. The
generated WF relations are also proved automatically to be WF. There is also
an option to insert the WF relations as theorems to the assumption of the proof
goal for users to inspect.

After this step, we can use vcg followed by auto to finish the proof, if the
variants are measure functions. For the variants of the forms R, R∩ I, fix pc L R

or fix pc L (R∩ I), we have implemented proof methods check wf sw and check wf mw

to prove their well-foundedness automatically.

6 Examples and Experiments

Our termination tool is still in the early stage of development. At the moment,
it does not support pointers or data structures, such as arrays. However, based
on our current development, we can easily add in support for arrays, though
pointers require more effort.

Users invoke the termination tool via Isabelle methods: check termination oracle

uses the tool as an oracle; check termination and check terminationH construct vari-
ants and the latter uses the optimization(§4.3). If variants are generated, users

A Termination Checker for Isabelle Hoare Logic 117

will need to apply a a few more Isabelle methods to prove the variants being
WF. For this step to work, users usually also need to construct invariants. For
example, in order to prove the lemma

lemma "Γ⊢t {|True |}
WHILE (x >= 0) INV {|True |}
DO

x :== x + 1;; y :== 1;;

(WHILE (y <= x ∨ p > 0) FIX X. INV {|x = X |}
DO y :== y + 1;; p :== p - 2 OD);;

x :== x - 2

OD

{|True |}"

we first apply check terminationH to generate variants and then finish the proof
with vcg, auto and check wf mw. check wf mw is an Isabelle method that we have
implemented to automatically prove relations WF.

We carried out several experiments on our tool, with the results shown in
Table 1. The experiments we ran mainly involved nested WHILE loops. The last
example is terminating, but because of the lack of invariants, our tool reported
it as non-terminating.

Result Remark

proved by oracle Fibonacci series with two nested WHILEs, no invariants

proved by oracle Factorial with two nested WHILEs, no invariants

proved by oracle Arithmetic exponentiation with two nested WHILEs, no invariants

proved by oracle Example from [2]. Two nested WHILEs, no invariants

proved by method Example lemma shown above

proved by method Artificial example with two nested WHILEs, with invariants

proved by oracle Artificial example with three nested WHILEs, no invariants

Blast failed to terminate Arithmetic exponentiation with three nested WHILEs

Blast failed to terminate Artificial example with three nested WHILEs

reported as non-terminating A non-terminating program

reported as non-terminating A terminating Euclid algorithm, no invariants

Table 1. Termination Tool Experiments

7 Conclusions

Automatic termination checking is too valuable a tool to reserve for the field of
automated program analysis. Interactive program verifiers would like to benefit
from as much automation as possible. We have shown how techniques designed
for automatic termination checking can, in many cases, be incorporated in a
Hoare logic proof, with the termination argument made explicit as variant func-
tions in WHILE loops. The resulting subgoals can often be proved automatically,

118 Jia Meng, Lawrence C. Paulson, Gerwin Klein

using dedicated proof methods that we have written. In the most complicated
loop structures, the information returned by the automated analysis does not ap-
pear to be detailed enough to allow the proof to be reproduced in Isabelle/HOL.
To handle those cases, we have also implemented an interface to the tool that
accepts the termination as an oracle.

In order to meet our objectives, we have formalized Podelski and Rybal-
chenko’s theory of disjunctive well-foundedness [8] in Isabelle/HOL2, and we
have optimized the termination tool to eliminate redundant outputs that would
complicated the proofs.

Acknowledgements. The research was funded by the L4.verified project of Na-
tional ICT Australia.3 Norbert Schirmer answered our questions about his im-
plementation of Hoare logic, and Ranjit Jhala answered questions about Blast.
In formalizing the theory of disjunctive well-foundedness, we used an Isabelle
proof of Ramsey’s theorem contributed by Tom Ridge.

References

1. Jürgen Brauburger and Jürgen Giesl. Approximating the domains of functional and imperative
programs. Sci. Comput. Program., 35(2):113–136, 1999.

2. Byron Cook, Andreas Podelski, and Andrey Rybalchenko. Abstraction refinement for
termination. In Chris Hankin and Igor Siveroni, editors, SAS, volume 3672 of Lecture Notes in
Computer Science, pages 87–101. Springer, 2005.

3. Byron Cook, Andreas Podelski, and Andrey Rybalchenko. Termination proofs for systems code.
In PLDI ’06: Proceedings of the 2006 ACM SIGPLAN conference on Programming language
design and implementation, pages 415–426, New York, NY, USA, 2006. ACM Press.

4. Thomas A. Henzinger, Ranjit Jhala, Rupak Majumdar, and Gregoire Sutre. Software
verification with Blast. In Thomas Ball and Sriram K. Rajamani, editors, Model Checking
Software, 10th International SPIN Workshop, Lecture Notes in Computer Science 2648, pages
235–239. Springer-Verlag, 2003.

5. Zohar Manna and Amir Pnueli. The temporal logic of reactive and concurrent systems.
Springer-Verlag New York, Inc., New York, NY, USA, 1992.

6. Tobias Nipkow, Lawrence C. Paulson, and Markus Wenzel. Isabelle/HOL: A Proof Assistant for
Higher-Order Logic. Springer, 2002. LNCS Tutorial 2283.

7. Andreas Podelski and Andrey Rybalchenko. A complete method for the synthesis of linear
ranking functions. In Bernhard Steffen and Giorgio Levi, editors, VMCAI, volume 2937 of
Lecture Notes in Computer Science, pages 239–251. Springer, 2004.

8. Andreas Podelski and Andrey Rybalchenko. Transition invariants. In Harald Ganzinger, editor,
Proceedings of the Nineteenth Annual IEEE Symp. on Logic in Computer Science, LICS 2004,
pages 32–41. IEEE Computer Society Press, July 2004.

9. Norbert Schirmer. Verification of Sequential Imperative Programs in Isabelle/HOL. PhD thesis,
Technische Universität München, 2006.

10. Harvey Tuch, Gerwin Klein, and Michael Norrish. Types, bytes, and separation logic. In Martin
Hofmann and Matthias Felleisen, editors, Proc. 34th ACM SIGPLAN-SIGACT Symposium on
Principles of Programming Languages (POPL’07), pages 97–108, Nice, France, January 2007.

2 The proofs will appear in a future technical report.
3 National ICT Australia is funded by the Australian Government’s Department of Communica-

tions, Information Technology, and the Arts and the Australian Research Council through Backing
Australia’s Ability and the ICT Research Centre of Excellence programs.

The Heterogeneous Tool Set

Till Mossakowski1, Christian Maeder1, and Klaus Lüttich2

1 DFKI Lab Bremen and Department of Computer Science, University of Bremen, Germany
2 SFB/TR 8 and Department of Computer Science, University of Bremen, Germany

Abstract. Heterogeneous specification becomes more and more important because complex sys-
tems are often specified using multiple viewpoints, involving multiple formalisms. Moreover, a
formal software development process may lead to a change of formalism during the development.
However, current research in integrated formal methods only deals with ad-hoc integrations of
different formalisms.
The heterogeneous tool set (HETS) is a parsing, static analysis and proof management tool com-
bining various such tools for individual specification languages, thus providing a tool for hetero-
geneous multi-logic specification. HETS is based on a graph of logics and languages (formalized
as so-called institutions), their tools, and their translations. This provides a clean semantics of
heterogeneous specifications, as well as a corresponding proof calculus. For proof management,
the calculus of development graphs (known from other large-scale proof management systems)
has been adapted to heterogeneous specification. Development graphs provide an overview of the
(heterogeneous) specification module hierarchy and the current proof state, and thus may be used
for monitoring the overall correctness of a heterogeneous development.
We illustrate the approach with a sample heterogeneous proof proving the correctness of the com-
position table of a qualitative spatial calculus. The proofinvolves two different provers and logics:
an automated first-order prover solving the vast majority ofthe goals, and an interactive higher-
order prover used to prove a few bridge lemmas.

1 Introduction

“As can be seen, a plethora of formalisms for the verificationof programs, and, in particular, for the
verification of concurrent programs has been proposed. . . .there are good reasons to consider all the
mentioned formalisms, and to use whichever one best suits the problem.” [43] (italics in the original)

In the area of formal specification and logics used in computer science, numerous
logics are in use:

– logics for specification of datatypes,
– process calculi and logics for the description of concurrent and reactive behaviour,
– logics for specifying security requirements and policies,
– logics for reasoning about space and time,
– description logics for knowledge bases in artificial intelligence/the semantic web,
– logics capturing the control of name spaces and administrative domains (e.g. the

ambient calculus), etc.

Indeed, at present, it is not imaginable that a combination of all these (and other)
logics would be feasible or even desirable — even if it existed, the combined formal-
ism would lack manageability, if not become inconsistent. Often, even if a combined
logic exists, for efficiency reasons, it is desirable to single out sublogics and study

120 Till Mossakowski, Christian Maeder, Klaus Lüttich

translations between these (cf. e.g. [43]). Moreover, the occasional use of a more
complex formalism should not destroy the benefits ofmainlyusing a simpler formal-
ism.

This means that for the specification of large systems, heterogeneous multi-logic
specifications are needed, since complex problems have different aspects that are best
specified in different logics. Moreover, heterogeneous specifications additionally have
the benefit that different approaches being developed at different sites can be related,
i.e. there is a formal interoperability among languages andtools. In many cases, spe-
cialized languages and tools often have their strengths in particular aspects. Using
heterogeneous specification, these strengths can be combined with comparably small
effort.

Current heterogeneous languages and tools do not meet theserequirements. The
heterogeneous language UML [3] deliberately has no formal semantics, and hence
is not a formal method or logic in the sense of the present work. (However, UML
could be integrated in the Heterogeneous Tool Sets as a formalism without semantics,
while the different formal semantics that have been developed for UML would be
represented as logic translations.) Likewise, languages for mathematical knowledge
management like OpenMath and OMDoc [18] are deliberately only semi-formal. Ser-
vice integration approaches like MathWeb [48] are either informal, or based on a
fixed formalism. Moreover, there are many bi- or trilateral combinations of different
formalisms; consider e.g. the integrated formal methods conference series [41]. In-
tegrations of multiple decision procedures and model checkers into theorem provers,
like in the PROSPER toolkit [9], provide a more systematic approach. Still, these ap-
proaches are uni-lateral in the sense that there is one logic(and one theorem prover,
like the HOL prover) which serves as the central integrationdevice, such that the
user is forced to use this central logic, even if this may not be needed for a particular
application (or the user may prefer to work with a different main logic).

By contrast, the heterogeneous tool set (HETS) is a both flexible, multi-lateraland
formal (i.e. based on a mathematical semantics) integration tool. Unlike other tools,
it treats logic translations (e.g. codings between logics)as first-class citizens. This
can be compared with the treatment oftheory morphismsas first-class citizens, which
is a distinctive feature of formalisms like OMDoc [18] and tools like Specware [17]
and IMPS [12, 11]. A clear referencing of symbols to their theories can distinguish,
for example, the naturals with zero from the naturals without zero, even if they are
denoted with the same symbolNat. Theory morphisms can relate the two different
theories of naturals. In HETS, both theory morphisms and logic comorphisms are first-
class citizens. This means that HETScan also distinguish conjunction in Isabelle/HOL
from conjunction in PVS3 (these actually have two different semantics!) and relate the
underlying logics with a comorphism.

3 At least once a logic for PVS has been added.

The Heterogeneous Tool Set 121

The architecture of the heterogeneous tool set is shown in Fig. 2 on page 123. In
the sequel, we will explain the details of this figure.

2 Heterogeneous Specifications: the Model-Theoretic View

We take a model-theoretic view on specifications [42]. This means that the notion of
logical theory (i.e. collection of axioms) is considered tobe only an auxiliary concept,
and the meaning of a formal specification (of a program module) is given by

– its signature; listing the names of entities that need to be implemented, typically
together with their types, that is, thesyntactic interfaceof the module, and

– its class of models, that is, the set of possiblerealizationsor implementations of
the interface.

This model-theoretic view is even more important when
moving from homogeneous to heterogeneous specifications:
in general, one cannot expect that different formalisms (say,
a specification and a programming language, or a process
algebra and a temporal logic) are related by translating the-
ories — it is themodelsthat are used to link different for-

������
������
������
������

������
������
������
������

Structure Data Process

Fig. 1: Multiple viewpoints

malisms. This point of view is also expressed by the so-calledviewpoint specifications
(see Fig. 1), which use logical theories in different logical formalisms in order to re-
strict the model class of an overall system from different viewpoints (while a direct
specification of the model class of the overall system would become unmanageably
complex).

The correct mathematical underpinnings to this are given bythe theory ofinsti-
tutions[14]. Institutions capture in a very abstract and flexible way the notion of a
logical system, by leaving open the details of signatures, models, sentences (axioms)
and satisfaction (of sentences in models). The only condition governing the behaviour
of institutions is thesatisfaction condition, stating thattruth is invariant under change
of notation(or enlargement of context):

M′ |=Σ ′ σ(ϕ) ⇔ M′|σ |=Σ ϕ

Here,σ : Σ −→Σ ′ is asignature morphism, relating different signatures (or module
interfaces),σ(ϕ) is the translation of theΣ -sentenceϕ along σ , and M′|σ is the
reduction of theΣ ′-modelM′ to aΣ -model.

The importance of the notion of institutions lies in the factthat a whole body of
specification theory (concerning structuring of specifications, module concepts, pa-
rameterization, implementation, refinement, development, proof calculi) can be de-
veloped independently of the underlying institutions — allthat is needed is captured
by the satisfaction condition.

122 Till Mossakowski, Christian Maeder, Klaus Lüttich

Different logical formalisms are related byinstitution comorphisms[13], which
are again governed by the satisfaction condition, this timeexpressing that truth is
invariant also under change of notation across different logical formalisms:

M′ |=J
Φ(Σ) αΣ (ϕ) ⇔ βΣ (M′) |=I

Σ ϕ.

Here,Φ(Σ) is the translation of signatureΣ from institutionI to institutionJ, αΣ (ϕ)
is the translation of theΣ -sentenceϕ to aΦ(Σ)-sentence, andβΣ (M′) is the transla-
tion (or perhaps: reduction) of theΦ(Σ)-modelM′ to aΣ -model.

Heterogeneous specification is based on some graph of logicsand logic transla-
tions, formalized as institutions and comorphisms. The so-calledGrothendieck insti-
tution [10, 24] is a technical device for giving a semantics to heterogeneous spec-
ifications. This institution is basically a flattening, or disjoint union, of the logic
graph. A signature in the Grothendieck institution consists of a pair(L,Σ) where
L is a logic (institution) andΣ is a signature in the logicL. Similarly, a Grothendieck
signature morphism(ρ,σ) : (L1,Σ1) → (L2,Σ2) consists of a logic translationρ =
(Φ ,α,β) : L1−→ L2 plus anL2-signature morphismσ : Φ(Σ1)−→Σ2. Sentences,
models and satisfaction in the Grothendieck institution are defined in a component
wise manner.

The Grothendieck institution can be understood as a flat combination of all of the
involved logics. Here, “flat” means that there is no direct interaction of e.g. logical
connectives from different logics that lead to new sentences; instead, just the disjoint
union of sentences is taken. However, this does not mean thatthe logics just coexist
without any interaction: they interact through the comorphisms. Comorphisms allow
for translating a logical theory into some other logic, and via this translation to interact
with theories in that logic (e.g. by expressing some refinement relation).

We refer the reader to the literature [14, 13, 23, 30] for fullformal details of in-
stitutions and comorphisms. Subsequently, we use the terms“institution” and “logic”
interchangeably, as well as the terms “institution comorphism” and “logic transla-
tion”.

3 Implementation of a Logic

How is a single logic implemented in the Heterogeneous Tool Set? This is depicted
in the left column of Fig. 2.

The syntactic entities of a logic are represented using types for signaturesand
signaturemorphismsforming a category with functions for identity morphisms and
composition of morphisms as well as for extracting domains and codomains. There
is also a type ofsentencesas well as a sentence translation function, allowing for
translation of sentences along a signature morphisms.

In order to model a more verbose and user-friendly input syntax of the logic
we further introduce types for the abstract syntax ofbasic specificationsandsym-
bol maps.

The Heterogeneous Tool Set 123

Architecture of the heterogeneous tool set Hets

Text

Parser

Abstract syntax

Static Analysis

(Signature, Sentences)

XML, Aterm

Interfaces

Tools for specific logics

Conservativity and

Model checkers

Tools for heterogeneous
specifications

Text

Parser

Abstract syntax

Static Analysis

Global Environment

XML, Aterms

Interfaces

Heterogeneous
development graphs

Heterogeneous proof trees

Logic graph

Grothendieck logic

(Flattened logic graph)

WWW, GUI

Heterogeneous inference engine
Decomposition of proof obligations
Management of proofs & change

Theorem provers

Rewriters

HasCASL

OWL-DL

SoftFOL

CASL-DL

CASL

Haskell

ModalCASL

Isabelle

CoCASL

Fig. 2. Architecture of the heterogeneous tool set

class Logic lid sign morphism sentence basic_spec symbol_map
| lid -> sign morphism sentence basic_spec symbol_map where

identity :: lid -> sign -> morphism
compose :: lid -> morphism -> morphism -> morphism
dom, codom :: lid -> morphism -> sign
parse_basic_spec :: lid -> String -> basic_spec
parse_symbol_map :: lid -> String -> symbol_map
parse_sentence :: lid -> String -> sentence
empty_signature :: lid -> sign
basic_analysis :: lid -> sign -> basic_spec -> (sign, [sentence])
stat_symbol_map :: lid -> sign -> symbol_map -> morphism
map_sentence :: lid -> morphism -> sentence -> sentence
provers ::

lid -> [(sign, [sentence]) -> [sentence] -> Proof_status]
cons_checkers :: lid -> [(sign, [sentence]) -> Proof_status]

Fig. 3. The basic ingredients of logics

Each logic has to provideparserstaking an input string and yielding an abstract
syntax tree of either a basic specifications or a symbol map.Static analysistakes the
abstract syntax of a basic specification to atheorybeing a signature with a set of
sentences. Actually, an additional parameter of the analysis, a signature called “local
environment”, corresponds to imported parts of a specification and will be initially
the empty signature. The static analysis also takes symbol maps (written concise and
user-friendly) to signature morphisms (corresponding to mathematical objects, as part
of an institution).

124 Till Mossakowski, Christian Maeder, Klaus Lüttich

Models are usually mathematical objects, often infinite, and hence usually not
directly represented as syntactical objects. Still, usually it is possible to represent
all finite models and some of the infinite models finitely. We assume that there is
a syntactically recognizable subset ofconstructivespecifications that are guaranteed
to have a model, and use these as descriptions for models.4 We do not require that a
constructive specification has exactly one model; this covers cases where a uniqueness
property would be achievable only with additional effort (such as recursive function
definitions). Amodel checkerevaluates whether a formula holds in a given model, or
more precisely, in all models of a constructive specification.

Proof theory, more specifically, derivability of sentencesfrom other sentences, is
captured by the notion ofentailment system[23]. In the HETS interface for logics,
this is realized as follows. A theory, where some sentences are marked as axioms
and others as proof goals, can be passed to a (logic-specific)proverwhich computes
the entailment relation. A prover returns a proof-status answer (proved, disproved or
open), together with a proof tree and further prover-specific information. The proof
tree is expected to give at least the information about whichaxioms have been used
in the proof. Amodel findertries to construct models for a given theory, while a
conservativity checkercan check whether a theory extension is conservative (i.e. does
not lead to new theorems).

Each logic is realized in the programming language Haskell [35] by a set of types
and functions, see Fig. 3, where we present a simplified, stripped down version, where
e.g. error handling is ignored. For technical reasons a logic is taggedwith a unique
identifier type (lid), which is a singleton type the only purpose of which is to de-
termine all other type components of the given logic. In Haskell jargon, the interface
is called a multiparameter type class with functional dependencies [36]. The Haskell
interface for logic translations is realised similarly.

4 Logics Available in Hets

In this section we give a short overview of the logics available in HETS.

Propositional is classical propositional logic, with the zChaff SAT solver [15] con-
nected to it.

CASL extends many sorted first-order logic with partial functions and subsorting. It
also provides induction sentences, expressing the (free) generation of datatypes.
For more details on CASL see [8, 6]. We have implemented the CASL logic in such
a way that much of the implementation can be re-used for CASL extensions as
well; this is achieved via “holes” (realized via polymorphic variables) in the types
for signatures, morphisms, abstract syntax etc. This easesintegration of CASL

extensions and keeps the effort of integrating CASL extensions quite moderate.

4 If necessary, one can always extend the logic with new sentences leading to constructive specifications.

The Heterogeneous Tool Set 125

CoCASL [33] is a coalgebraic extension of CASL, suited for the specification of
process types and reactive systems. The central proof method is coinduction.

ModalCASL is an extension of CASL with multi-modalities and term modalities. It
allows the specification of modal systems with Kripke’s possible worlds seman-
tics. It is also possible to express certain forms of dynamiclogic.

HasCASL [44] is a higher order extension of CASL allowing polymorphic datatypes
and functions. It is closely related to the programming language Haskell and al-
lows program constructs to be embedded in the specification.

Haskell [35] is a modern, pure and strongly typed functional programming language.
It simultaneously is the implementation language of HETS, such that in the future,
HETS might be applied to itself.

OWL DL is the Web Ontology Language (OWL) recommended by the World Wide
Web Consortium (W3C,http://www.w3c.org). It is used for knowledge
representation and the Semantic Web [5].

CASL-DL [20] is an extension of a restriction of CASL, realizing a strongly typed
variant of OWL DL in CASL syntax.

SoftFOL [21] offers three automated theorem proving (ATP) systems for first-order
logic with equality: (1) SPASS [45]; (2) Vampire [39]; and (3) MathServ Broker5

[47]. These together comprise some of the most advanced theorem provers for
first-order logic.

Isabelle [34] is an interactive theorem prover for higher-order logic, and (jointly with
others) marks the frontier of current research in interactive higher-order provers.

Propositional, SoftFOL and Isabelle are the only logics coming with a prover. Proof
support for the other logics can be obtained by using logic translations to a prover-
supported logic.

5 Heterogeneous Specification

Heterogeneous specification is based on some graph of logicsand logic translations.
The graph of currently supported logics is shown in Fig. 2. However, syntax and se-
mantics of heterogeneous specifications as well as their implementation in HETS is
parameterized over an arbitrary such logic graph. Indeed, the HETS modules imple-
menting the logic graph can be compiled independently of theHETS modules imple-
menting heterogeneous specification, and this separation of concerns is essential to
keep the tool manageable from a software engineering point of view.

Heterogeneous CASL (HETCASL; see [26]) includes the structuring constructs
of CASL, such as union and translation. A key feature of CASL is that syntax and
semantics of these constructs are formulated over an arbitrary institution (i.e. also
for institutions that are possibly completely different from first-order logic resp. the
CASL institution). HETCASL extends this with constructs for the translation of spec-
ifications along logic translations.

5 which chooses an appropriate ATP upon a classification of theFOL problem

126 Till Mossakowski, Christian Maeder, Klaus Lüttich

SPEC ::= BASIC-SPEC
| SPEC then SPEC
| SPEC then %implies SPEC
| SPEC with SYMBOL-MAP
| SPEC with logic ID

DEFINITION ::= logic ID
| spec ID = SPEC end
| view ID : SPEC to SPEC = SYMBOL-MAP end
| view ID : SPEC to SPEC = with logic ID end

LIBRARY = DEFINITION*

Fig. 4. Syntax of a simple subset of the heterogeneous specificationlanguage.BASIC-SPEC andSYMBOL-MAP
have a logic specific syntax, whileID stands for some form of identifiers.

The syntax of heterogeneous specifications is given (in verysimplified form) in
Fig. 4. A specification either consists of some basic specification in some logic (which
follows the specific syntax of this logic), or an extension ofa specification by an-
other one (writtenSPEC then SPEC, or, if the extension only adds theorems that
are already implied by the original specification, writtenSPEC then %implies
SPEC). A translation of a specification along a signature morphism is writtenSPEC
with SYMBOL-MAP, where the symbol map is logic-specific (usually abbreviatory)
syntax for a signature morphism. A translation along a logiccomorphism is written
SPEC with logic ID.

A specification library consists of a sequence of definitions. A definition may se-
lect the current logic (logic ID), which is then used for parsing and analysing the
subsequent definitions. It may name a specification, and finally it may also declare a
viewbetween two specifications. A view is a kind of refinement relation between two
specifications, expressing that the first specification (when translated along a signa-
ture morphism or a logic comorphism) is implied by the secondspecification. Indeed,
using the heterogeneous language constructs (including the possibility to add new
logic translations involving e.g. behavioural quotient constructions) it is possible to
capture a large variety of different refinement notions justby heterogeneous views as
explained above.

It should be stressed that the name “HETCASL” only refers to CASL’s structuring
constructs. The individual logics used in connection with HETCASL and HETScan be
completely orthogonal to CASL. Actually, the capabilities of HETS go even beyond
HETCASL, since HETS also supports other module systems. This enables HETS to
directly read in e.g. OWL files, which use a structuring mechanism that is completely
different from CASL’s. Moreover, support of further structuring languages is planned.

The Grothendieck logic (see Sect. 2), which is the semantic basis of HETCASL,
can be implemented as a bunch ofexistentialdatatypes over the type classLogic.
Usually, existential datatypes are used to realize — in a strongly typed language —

The Heterogeneous Tool Set 127

heterogeneous lists, where each element may have a different type. We use lists of
(components of) logics and translations instead. This leads to an implementation of
the Grothendieck institution over a logic graph.

6 Parsing and Analysis of Heterogeneous Specifications

Based on the type classLogic, a number of logics and various comorphisms among
these have been implemented for HETS. We now come to the logic-independent mod-
ules in HETS, which can be found in the right half of Fig. 2. These modules comprise
roughly one third of HETS’ 100.000 lines of Haskell code.

The heterogeneous parser transforms a string conforming tothe syntax in Fig. 4
to an abstract syntax tree, using theParsec combinator parser [19]. Logic and trans-
lation names are looked up in the logic graph — this is necessary to be able to choose
the correct parser for basic specifications. Indeed, the parser has a state that carries
the current logic, and which is updated if an explicit specification of the logic is given,
or if a logic translation is encountered (in the latter case,the state is set to the target
logic of the translation). With this, it is possible to parsebasic specifications by just
using the logic-specific parser of the current logic as obtained from the state.

The static analysis is based on the static analysis of basic specifications, and trans-
forms an abstract syntax tree to a development graph (cf. Sect. 7 below). Starting
with a node corresponding to the empty theory, it successively extends (using the
static analysis of basic specifications) and/or translates(along the intra- and inter-
logic translations) the theory, while simultaneously adding nodes and links to the
development graph.

7 Proof Management with Development Graphs

The central device for structured theorem proving and proofmanagement in HETS is
the formalism ofdevelopment graphs. Development graphs have been used for large
industrial-scale applications with hundreds of specifications [16]. They also support
management of change. The graph structure provides a directvisualization of the
structure of specifications, and it also allows for managinglarge specifications with
hundreds of sub-specifications.

A development graph (see Fig. 7 for an example) consists of a set of nodes (cor-
responding to whole structured specifications or parts thereof), and a set of arrows
calleddefinition links, indicating the dependency of each involved structured specifi-
cation on its subparts. Each node is associated with a signature and some set of local
axioms. The axioms of other nodes are inherited via definition links. Definition links
are usually drawn as black solid arrows, denoting an import of another specification.

Complementary to definition links, whichdefinethe theories of related nodes,the-
orem linksserve forpostulatingrelations between different theories. Theorem links

128 Till Mossakowski, Christian Maeder, Klaus Lüttich

are the central data structure to represent proof obligations arising in formal develop-
ments. Theorem links can beglobal(drawn as solid arrows) orlocal (drawn as dashed
arrows): a global theorem link postulates that all axioms ofthe source node (including
the inherited ones) hold in the target node, while a local theorem link only postulates
that the local axioms of the source node hold in the target node.

Both definition and theorem links can behomogeneous, i.e. stay within the same
logic, or heterogeneous, i.e. the logic changes along the arrow. Technically, this is
the case for Grothendieck signature morphisms(ρ,σ) whereρ 6= id. This case is
indicated with double arrows.

Theorem links are initially displayed in red in the tool. (InFig. 7, they are dis-
played using thin lines and non-filled arrow heads.) Theproof calculusfor devel-
opment graphs [28, 31, 27] is given by rules that allow for proving global theorem
links by decomposing them into simpler (local and global) ones. Theorem links that
have been proved with this calculus are drawn in green. Localtheorem links can be
proved by turning them intolocal proof goals. The latter can be discharged using
a logic-specific calculus as given by an entailment system (see Sect. 3). Open lo-
cal proof goals are indicated by marking the corresponding node in the development
graph as red; if all local implications are proved, the node is turned into green. This
implementation ultimately is based on a theorem [27] stating soundness and relative
completeness of the proof calculus for heterogeneous development graphs.

While the semantics of theorem links is explained in entirely model-theoretic
terms, theorem links can ultimately be reduced to local proof obligations (and con-
servativity checks) of a proof-theoretic nature, amenableto machine implementation.
Note however, that this approach is quite different from that of logical frameworks.
Suppose that we have a global theorem linkσ : N1−→N2 between two nodesN1 and
N2 in a development graph. Note that the logics ofN1 andN2 may be different. The
logical framework approach assumes that the theories ofN1 andN2 are encoded into
some logic that is fixed once and forall. By contrast, in HETS we can rather flexibly
find a logic that is a “common upper bound” of the logics of bothN1 andN2 and that
moreover has best possible tool support. This freedom allows us to exploit specialized
tools. This is also complemented by a sublogic analysis, which is required for each of
the logics in HETS, and which allows for an even more fine-grained determination of
available tools.

8 An Example

In the domain of qualitative constraint reasoning, a subfield of AI which has evolved
in the past 25 years, a large number of calculi for efficient reasoning about spatial and
temporal entities have been developed. A prominent exampleof that kind are the var-
ious region connection calculi [38]. In the region connection calculus RCC8, which
also has become a GIS standard, it is possible to express relations between regions
(= regular closed sets) in a metric space. The set of RCC8 baserelations consists

The Heterogeneous Tool Set 129

of the relations DC (“DisConnected”), EC (“Externally Connected”), PO (“Partially
Overlap”), TPP (“Tangential Proper Part”), NTPP (“Non-Tangential Proper Part”),
the converses of the latter two relations (TPPi and NTPPi, resp.) and EQ (“EQals”)
(see Fig. 5 for a pictorial representation). The RCC5 calculus is similar, but does
not distinguish between tangential and non-tangential parts; it hence has only 5 basic
relations.

X DCY X ECY X TPPY X NTPPY

X POY X EQY X TPPiY X NTPPiY

Fig. 5.The RCC-8 relations

For efficiency and feasibility reasons, qualitative spatial and temporal reasoning is
not directly done in a (typically infinite) metric space, butrather at the abstract level of
a (finite) relation algebra, for example, using the so-called path consistency algorithm.
The heart of this approach is the composition table, which captures composition of
relations at the abstract and finitary level of the relation algebra.

Composition tables need to be set up only once and for all. Still, this process
is error-prone, and we already have found errors in published composition tables.
Hence, formal verification of composition tables (w.r.t. their semantic interpretation)
is an important task. In [46], we present a heterogeneous verification of the RCC8
composition table w.r.t. the interpretation in metric spaces. This verification goal can
be split into two subgoals:

1. Verification that closed discs in a metric (cf. nodeRCC FO in Fig. 7) satisfy
some of Bennett’s connectedness axioms [4] (cf. nodeMetricSpace in Fig. 7).
RCC FO consists of veryfew (actually, 4) theorems, so-calledbridge lemmas.
SinceMetricSpace is a higher-order theory, they need to be translated to higher-
order logic, and can then be proved using theinteractivetheorem prover Isabelle.

2. Verification that Bennett’s connectedness axioms imply the standard RCC axioms
(cf. nodesExtRCCByRCC5Rels andExtRCCByRCC8Rels in Fig. 7). The
latter aremany(actually, 95) first-order theorems, and can be proved usingthe
automatedtheorem proving system SPASS.

130 Till Mossakowski, Christian Maeder, Klaus Lüttich

view RCC FO IN METRICSPACE:
RCC FO to
{EXTMETRICSPACEBYCLOSEDBALLS[M ETRICSPACE]
then %def

pred C : ClosedBall× ClosedBall;
nonempty(x : ClosedBall) ⇔ x C x

∀ x, y : ClosedBall
• x C y⇔ ∃ s : S• rep x s∧ rep y s % (C def)%

} =
QReg7→ ClosedBall

end

Fig. 6. Specification of a heterogeneous refinement expressing correctness of the RCC8 composition table

MetricSpaceExtMetricSpaceByClosedBallsRCC_FO

ExtRCC_FO

ExtRCCByRCC5Rels ExtRCCByRCC8Rels

Fig. 7. Development graph for correctness proof of RCC8 composition table in CASL and HASCASL

9 Theorem Proving with HETS

Fig. 6 contains the heterogeneous refinement expressing thecorrectness of the RCC8
composition table. After parsing and static analysis of an heterogeneous specification
(see Sect. 6), HETS constructs a heterogeneous development graph, see Fig. 7. This
graph can be inspected, e.g. theories of nodes or signature morphisms of links can be
displayed. Using the calculus mentioned in Sect. 7, the proof obligations in the graph
can be (in most cases automatically) reduced to local proof goals at the individual
nodes. Nodes with local proof goals are marked with a grey color in Fig. 7, while
in the tool, red is used. The thick edges in the development graph are definition links
and the thin ones are theorem links. A double arrow denotes a heterogeneous link (e.g.

The Heterogeneous Tool Set 131

between RCCFO and the extension of EXTMETRICSPACEBYCLOSEDBALLS). Un-
named nodes show intermediate structuring of specifications and box-shaped nodes
are imported from a different specification library, while the round nodes are theories
specified locally.

Fig. 8. Hets Goal and Prover Interface Fig. 9. Interface of the SPASS prover

The graphical user interface (GUI) for calling a prover is shown in Fig. 8. The list
on the left shows all goal names prefixed with the proof statusin square brackets. A
proved goal is indicated by a ‘+’, a ‘-’ indicates a disprovedgoal and a space denotes
an open goal. Within this list, one can select those goals that should be inspected or
proved. A button ‘Display’ shows the selected goals in the syntax of this theory’s
logic.

The list ‘Pick Theorem Prover:’ lets you choose one of the connected provers.
By pressing ‘Prove’ the selected prover is launched and the theory along with the
selected goals is translated via the shortest possible pathof comorphisms into the
prover’s logic. However, the shortest path need not always be the best one. Therefore,
the button ‘More fine grained selection...’ lets you pick a specific path of comorphisms
in the logic graph that leads into a prover supported logic. It is assumed that all co-
morphisms are model-expansive, which means that borrowingof entailment systems
along the composite comorphismρ = (Φ ,α,β) is sound and complete [7, 27]:

132 Till Mossakowski, Christian Maeder, Klaus Lüttich

(Σ ,Γ) |=I
Σ ϕ iff (Φ(Σ),α(Γ)) |=J αΣ (ϕ).

That is, if the entailment⊢ generated by the prover captures semantic consequence
|=, we can re-use the prover along the (composite) comorphism.In the terminology
of [1], (Σ ,Γ) |=I

Σ ϕ in institutionI captures thewhat to prove, while its translation to
institutionJ captures thehow to prove.

Additionally, this interface offers to select in detail theaxioms and proven theo-
rems which are included in the theory for the next proof attempt. Among the axioms
theorems imported from other specifications are marked withthe prefix ‘(Th)’. This
is particularly useful for large theories with problematictheorems that blow up the
search space of ATP systems. A detailed discussion of using ATPs for CASL can be
found in [21].

If an ATP is selected, a new window is opened, which controls the prover calls
(Fig. 9). Here we use the connection to SPASS [45], for the other ATPs listed (Math-
Serv Broker and Vampire) see [21]. Isabelle [34], a semi automatic theorem prover,
is started with ProofGeneral [2] in a separate Emacs from theGUI.

The ’Close’ button allows for integrating the status of the goals’ list back into the
development graph. If all goals have been proved, this theory’s node turns from red
into green.

For the example presented in Sect. 8 we successfully used SPASS for proving the
CASL proof obligations in the unnamed grey nodes between the nodes “RCC FO”
and “ExtRCCFO” and below “ExtRCCFO”. To discharge the proof obligations in
the node below “RCCFO” with incoming heterogeneous theorem links on the right
of the center of Fig. 7 the higher-order proof assistance system Isabelle was applied.
The most interesting point here is that we used a first-order specification, namely
RCC FO, to prove as much as possible by the ATP SPASS (thus minimizing the
number of proof obligations to be proven by a semi-automaticreasoner).

10 Conclusion

The Heterogeneous Tool Set is available athttp://www.dfki.de/sks/hets;
some specification libraries and example specifications (including those of this pa-
per) underhttp://www.cofi.info/Libraries. A user guide is also avail-
able there. Brief introductions into HETS are given in [32] and [6].

There is related work about generic parsers, user interfaces, theorem provers etc.
[34, 2]. However, these approaches are mostly limited togenericity, and do not sup-
port realheterogeneity, that is the simultaneous use of different formalisms. Techni-
cally, genericity often is implemented with generic modules that can be instantiated
many times. Here, we deal with a potentially unlimited number of such instantiations,
and also with translations between them.

The Heterogeneous Tool Set 133

logic CSP-CASL

spec BUFFER=
data L IST

channels read,write : Elem
process letBuf(l : List[Elem]) =

read?x → Buf(cons(x,nil))
� if l = nil then STOP

else write!last(l) → Buf(rest(l))
in Buf(nil)

with logic → MODALCASL

then %implies • AGF∃x : Elem. 〈write.x〉 true
end

Fig. 10.A specification of fair buffers in CASL, CSP-CASL and MODALCASL.

It may appear that HETS just provides a combination of some first-order provers
and Isabelle, and the reader may wonder what the advantage ofHETS is when com-
pared to an ad-hoc combination of Isabelle and such provers,like [22]. But already
now, HETS provides proof support for modal logic (via the translationto CASL, and
then further to either SPASS or Isabelle), as well as for COCASL. Hence, it is quite
easy to provide proof support for new logics by just implementing logic translations,
which is at least an order of magnitude simpler than integrating a theorem prover.
Although this can be compared to embedding the new logic in a HOL prover, our
translational approach has the major advantage that several translations may exist in
parallel (think of the standard and functional translations of modal logic), and the best
one may be chosen depending on the theory at hand.

Future work will integrate more logics and interface more existing theorem prov-
ing tools with specific institutions in HETS. In [25], we have presented a heteroge-
neous specification with more diverse formalisms, namely CSP-CASL [40] (a com-
bination of CASL with the process algebra CSP), and a temporal logic (as part of
MODALCASL). An example is shown in Fig. 10. CSP-CASL is used to describe the
system (a buffer implemented as a list), and some temporal logic is used to state
fairness or eventuality properties that go beyond the expressiveness of the process
algebra (here, we express the fairness property that the buffer cannot read infinitely
often without writing).

In [29] we describe how heterogeneous specification and HETS could be used
for proving a refinement of a specification in CASL into a Haskell-program. Another
challenge is the integration of proof planners into HETS. Finally, there is work in
progress about the meta-level specification of institutions and their comorphisms in
Twelf [37], which shall lead to correctness proofs for the comorphisms integrated into
HETS.

Acknowledgement

This work has been supported by the project MULTIPLE of theDeutsche Forschungs-
gemeinschaftunder grant KR 1191/5-2. We thank Katja Abu-Dib, Mihai Codescu,

134 Till Mossakowski, Christian Maeder, Klaus Lüttich

Carsten Fischer, Jorina Freya Gerken, Rainer Grabbe, SonjaGröning, Daniel Haus-
mann, Wiebke Herding, Hendrik Iben, Cui “Ken” Jian, Heng Jiang, Anton Kirilov,
Tina Krausser, Martin Kühl, Mingyi Liu, Dominik Lücke, Maciek Makowski, Im-
manuel Normann, Razvan Pascanu, Daniel Pratsch, Felix Reckers, Markus Roggen-
bach, Pascal Schmidt, Lutz Schröder, Paolo Torrini, RenéWagner, Jian Chun Wang
and Thiemo Wiedemeyer for help with the implementation of HETS, and Erwin R.
Catesbeiana for testing the consistency checker.

References

1. Jean-Raymond Abrial and Dominique Cansell. Click’n prove: Interactive proofs within set theory. In
David A. Basin and Burkhart Wolff, editors,Theorem Proving in Higher Order Logics, 16th International
Conference, TPHOLs 2003, Rom, Italy, September 8-12, 2003,Proceedings, volume 2758 ofLecture Notes
in Computer Science, pages 1–24. Springer, 2003.

2. David Aspinall. Proof general: A generic tool for proof development. In Susanne Graf and Michael I.
Schwartzbach, editors,TACAS, LNCS 1785, pages 38–42. Springer, 2000.

3. Thomas Baar, Alfred Strohmeier, Ana M. D. Moreira, and Stephen J. Mellor, editors.UML 2004, LNCS
3273. Springer, 2004.

4. B. Bennett. Logical Representations for Automated Reasoning about Spatial Relationships. PhD thesis,
School of Computer Studies, The University of Leeds, 1997.

5. T. Berners-Lee, J. Hendler, and O. Lassila. The Semantic Web. Scientific American, May 2001.
6. M. Bidoit and P. D. Mosses. CASL User Manual, volume 2900 ofLNCS. Springer, 2004.
7. M. Cerioli and J. Meseguer. May I borrow your logic? (transporting logical structures along maps).Theoret-

ical Computer Science, 173:311–347, 1997.
8. CoFI (The Common Framework Initiative). CASL Reference Manual. LNCS 2960 (IFIP Series). Springer,

2004.
9. Louise A. Dennis, Graham Collins, Michael Norrish, Richard J. Boulton, Konrad Slind, and Thomas F.

Melham. The prosper toolkit.STTT, 4(2):189–210, 2003.
10. R. Diaconescu. Grothendieck institutions.Applied categorical structures, 10:383–402, 2002.
11. William M. Farmer. An infrastructure for intertheory reasoning. InAutomated Deduction - CADE-17, LNCS

1831, pages 115–131. Springer, 2000.
12. William M. Farmer, Joshua D. Guttman, and F. Javier Thayer. IMPS: An interactive mathematical proof

system.Journal of Automated Reasoning, 11(2):213–248, 1993.
13. J. Goguen and G. Roşu. Institution morphisms.Formal aspects of computing, 13:274–307, 2002.
14. J. A. Goguen and R. M. Burstall. Institutions: Abstract model theory for specification and programming.

Journal of the Association for Computing Machinery, 39:95–146, 1992. Predecessor in: LNCS 164, 221–
256, 1984.

15. Marc Herbstritt. zChaff: Modifications and extensions.report00188, Institut für Informatik, Universität
Freiburg, July 17 2003. Thu, 17 Jul 2003 17:11:37 GET.

16. Dieter Hutter, Bruno Langenstein, Claus Sengler, JörgH. Siekmann, Werner Stephan, and Wolpers Wolpers.
Verification support environment (VSE).High Integrity Systems, 1(6):523–530, 1996.

17. Kestrel Development Corporation. Specware 4.1 language manual.http://www.specware.org/.
18. Michael Kohlhase.OMDoc - An Open Markup Format for Mathematical Documents [version 1.2]. LNCS

4180. Springer, 2006.
19. Daan Leijen and Erik Meijer. Parsec: Direct style monadic parser combinators for the real world. Technical

report. UU-CS-2001-35.
20. K. Lüttich, T. Mossakowski, and B. Krieg-Brückner. Ontologies for the Semantic Web in CASL. In José

Fiadeiro, editor,WADT 2004, LNCS 3423, pages 106–125. Springer, 2005.
21. Klaus Lüttich and Till Mossakowski. Reasoning Supportfor CASL with Automated Theorem Proving Sys-

tems. WADT 2006, Springer LNCS, to appear.
22. Jia Meng, Claire Quigley, and Lawrence C. Paulson. Automation for interactive proof: First prototype.Inf.

Comput, 204(10):1575–1596, 2006.

The Heterogeneous Tool Set 135

23. J. Meseguer. General logics. InLogic Colloquium 87, pages 275–329. North Holland, 1989.
24. T. Mossakowski. Comorphism-based Grothendieck logics. In K. Diks and W. Rytter, editors,MFCS, LNCS

2420, pages 593–604. Springer, 2002.
25. T. Mossakowski. Foundations of heterogeneous specification. In M. Wirsing, D. Pattinson, and R. Hennicker,

editors,WADT 2002, LNCS Vol. 2755, pages 359–375. Springer, 2003.
26. T. Mossakowski. HetCASL - heterogeneous specification.language summary, 2004.
27. T. Mossakowski. Heterogeneous specification and the heterogeneous tool set. Habilitation thesis, University

of Bremen, 2005.
28. T. Mossakowski, S. Autexier, and D. Hutter. Developmentgraphs – proof management for structured speci-

fications.Journal of Logic and Algebraic Programming, 67(1-2):114–145, 2006.
29. Till Mossakowski. Institutional 2-cells and Grothendieck institutions. In K. Futatsugi, J.-P. Jouannaud, and

J. Meseguer, editors,Algebra, Meaning and Computation. Essays Dedicated to Joseph A. Goguen on the
Occasion of His 65th Birthday, LNCS 4060, pages 124–149. Springer, 2006.

30. Till Mossakowski, Joseph Goguen, Razvan Diaconescu, and Andrzej Tarlecki. What is a logic? In Jean-Yves
Beziau, editor,Logica Universalis, pages 113–133. Birkhäuser, 2005.

31. Till Mossakowski, Piotr Hoffman, Serge Autexier, and Dieter Hutter. CASL logic. In Peter D. Mosses, editor,
CASL Reference Manual, LNCS 2960, part IV. Springer Verlag, 2004.

32. Till Mossakowski, Christian Maeder, and Klaus Lüttich. The Heterogeneous Tool Set. In Orna Grumberg and
Michael Huth, editors,TACAS 2007, volume 4424 ofLecture Notes in Computer Science, pages 519–522.
Springer-Verlag Heidelberg, 2007.

33. Till Mossakowski, Lutz Schröder, Markus Roggenbach, and Horst Reichel. Algebraic-co-algebraic specifi-
cation in CoCASL.Journal of Logic and Algebraic Programming, 67(1-2):146–197, 2006.

34. T. Nipkow, L. C. Paulson, and M. Wenzel.Isabelle/HOL — A Proof Assistant for Higher-Order Logic.
Springer Verlag, 2002.

35. S. Peyton-Jones, editor.Haskell 98 Language and Libraries — The Revised Report. Cambridge, 2003. also:
J. Funct. Programming13 (2003).

36. Simon Peyton Jones, Mark Jones, and Erik Meijer. Type classes: exploring the design space. InHaskell
Workshop. 1997.

37. Frank Pfenning and Carsten Schürmann. System description: Twelf - a meta-logical framework for deductive
systems. pages 202–206.

38. D. A. Randell, Z. Cui, and A. G. Cohn. A spatial logic basedon regions and connection. In B. Nebel,
W. Swartout, and C. Rich, editors,Principles of Knowledge Representation and Reasoning: Proceedings of
the 3rd International Conference (KR-92), pages 165–176. Morgan Kaufmann, 1992.

39. Alexandre Riazanov and Andrei Voronkov. The design and implementation of VAMPIRE.AI Communica-
tions, 15(2-3):91–110, 2002.

40. Markus Roggenbach. Csp-casl - a new integration of process algebra and algebraic specification.Theor.
Comput. Sci., 354(1):42–71, 2006.

41. Judi Romijn, Graeme Smith, and Jaco van de Pol, editors.Integrated Formal Methods, 5th International
Conference, IFM 2005, Eindhoven, The Netherlands, November 29 - December 2, 2005, Proceedings, volume
3771 ofLecture Notes in Computer Science. Springer, 2005.

42. Donald Sannella and Andrzej Tarlecki. Essential concepts of algebraic specification and program develop-
ment.Formal Aspects of Computing, 9:229–269, 1997.

43. Klaus Schneider.Verification of Reactive Systems. Springer Verlag, 2004.
44. L. Schröder and T. Mossakowski. HasCASL: Towards integrated specification and development of Haskell

programs. In H. Kirchner and C. Reingeissen, editors,AMAST, 2002, LNCS 2422, pages 99–116. Springer,
2002.

45. C. Weidenbach, U. Brahm, T. Hillenbrand, E. Keen, C. Theobalt, and D. Topic. SPASS version 2.0. In Andrei
Voronkov, editor,Automated Deduction – CADE-18, LNCS 2392, pages 275–279. Springer-Verlag, 2002.

46. Stefan Wölfl, Till Mossakowski, and Lutz Schröder. Qualitative constraint calculi: Heterogeneous verification
of composition tables. In20th International FLAIRS Conference, 2007.

47. Jürgen Zimmer and Serge Autexier. The MathServe Systemfor Semantic Web Reasoning Services. In
U. Furbach and N. Shankar, editors,3rd IJCAR, LNCS 4130. Springer, 2006.

48. Jürgen Zimmer and Michael Kohlhase. System description: The mathweb software bus for distributed math-
ematical reasoning. In Andrei Voronkov, editor,18th CADE, LNCS 2392, pages 139–143. Springer, 2002.

Fully Verified JAVA CARD API Reference

Implementation

Wojciech Mostowski

Computing Science Department, Radboud University Nijmegen, the Netherlands
woj@cs.ru.nl

Abstract. We present a formally verified reference implementation of the JAVA CARD

API. This case study has been developed with the KeY verification system. The KeY
system allows us to symbolically execute the JAVA source code of the API in the KeY
verification environment and, in turn, prove correctness of the implementation w.r.t.
formal specification we developed along the way. The resulting formal API framework
(the implementation and the specification) can be used to prove correctness of any JAVA

CARD applet code. As a side effect, this case study also serves as a benchmark for the
KeY system. It shows that a code base of such size can be feasibly verified, and that
KeY indeed covers all of the JAVA CARD language specification.

1 Introduction

We present a formally verified reference implementation of the JAVA CARD API
version 2.2.1 [11]. JAVA CARD is a technology used to program smart cards and it
comprises a subset of the desktop JAVA; a subset of the programming language
itself, and a cut down version of the API. Reference implementations of the API
that are normally available for JAVA CARD are developed for a particular running
environment, usually a JAVA CARD simulator or emulator. Some of the API rou-
tines are not implementable in JAVA alone. For example, JAVA CARD transaction
mechanism functionality is normally provided by the JAVA CARD VM and/or the
operating system of the actual smart card hardware. A simulator provides similar
functionality through JAVA Native Interface (JNI). Thus, the API implementa-
tion consists of the JAVA part and the JNI part, the latter reflecting the low-level
behaviour of the card. Both parts together enable the API implementation to
run on a simulator. In contrast, our API implementation has been developed
for the KeY interactive verification system1 [1]. That is, the implementation is
designed to be symbolically executed in a formal verification environment. Sim-
ilarly to a simulator, the KeY verifier also needs to handle low-level JAVA CARD

specific routines. In this case the JNI functionality is provided by the formal
model of the JAVA CARD environment embedded in the KeY verifier logic; a set
of specialised logic rules to symbolically execute JAVA CARD native method calls.
Figure 1 shows corresponding architectures of the API implementations.

Along with the implementation we developed a set of formal specifications
for the API. And, naturally, we used the KeY system to prove the correctness

1 http://www.key-project.org

Fully Verified JAVA CARD API Reference Implementation 137

of our implementation w.r.t. to the specification. The proving is done by means
of symbolic execution of the JAVA source code of the API implementation in
the KeY system and then evaluating the specification formulae on the resulting
execution state.

Fig. 1. Architecture of
JAVA CARD API imple-
mentations

This case study serves three main goals: (i) an API
framework (implementation and specification) for ver-
ification of JAVA CARD applet source code, (ii) consis-
tency of the informal API specification [5], and (iii) as
a benchmark for the KeY system and as a verification
case study itself that explores the usability of formal
methods in practice. We elaborate on these goals in
the following paragraphs.

In the current PinPas JAVA CARD project2 we inves-
tigate fault injection attacks on smart cards. A possi-
bility for a fault injection calls for appropriate coun-
termeasures. One of such countermeasures are simply
modifications to JAVA applet source code to detect and
neutralise faults. Such modifications can result in a
complex code. One of our goals in the project is to be able to formally verify such
modified source code, i.e., that the more complex fault-proof code behaves the
same way as the simple fault-sensitive code, as described in earlier work [4]. For
this we need a verification tool that faithfully reflects JAVA CARD programming
language semantics, and also a faithful reflection of the API behaviour. The veri-
fication tool of our choice, the KeY system, already provides the formalisation of
the whole of JAVA CARD programming language semantics. We said earlier that
JAVA CARD is a subset of JAVA. In practice, because of the specifics of the smart
card technology, JAVA CARD introduces additional complications to the language.
Namely, two different kinds of writable memory (persistent EEPROM and tran-
sient RAM), an atomic transaction mechanism, and applet firewall mechanism.
All these features are embedded into the JAVA CARD Virtual Machine (JCVM)
running on a card. In effect, this sometimes changes the semantics of the primi-
tive JAVA statements in the context of a smart card application. The KeY system
already supports all of the mentioned JAVA CARD specific features [1, Chapter 9],
with a notable exception of the firewall mechanism, which is being integrated
into KeY in parallel to this work.

When it comes to the API behaviour, however, our approach so far was to
specify and implement only those API methods that are required for a given
verification task at hand [1, Chapter 14]. Ultimately, to be able to verify any

given JAVA CARD applet code w.r.t. wide range of properties, the specification
and the implementation for the whole of the API should be present. The need

2 http://www.win.tue.nl/pinpasjc/

138 Wojciech Mostowski

for having both the specification and implementation is justified as follows. First
of all, reasoning on the level of interfaces, i.e., relying on method contracts only,
is not sufficient for some properties. In particular, strong invariant properties re-
quire the evaluation of all intermediate atomic states of execution, including the
ones that result from the execution of an API method. Moreover, in principle,
method contracts cannot be applied in the context of JAVA CARD transactions.
Here, sometimes a special “transaction aware” contract is needed, which in some
cases can only be constructed by hand based on the actual implementation of the
method. In essence, one needs to state the behaviour of the method in terms of
conditionally updated data, rather than the actual data. For some API methods
that interact heavily with the transaction mechanism giving a suitable contract
is not possible at all [1, Chapter 9]. Finally, in some few cases, formal reasoning
based on the code instead of the specification can be simply more efficient.

We tried to make the reference implementation as faithful as possible, i.e.,
closely reflecting the actual card behaviour. The official informal specifications
were closely followed, and sometimes also the actual cards were tested to clarify
the semantics of some API methods. However, some JAVA CARD aspects had to
be omitted in the implementation and it is obvious that certain gaps will always
remain between our reference implementation executing in a formal verification
environment and API implementations executing on actual smart cards. We
discuss those issues in detail in Section 3.

One of the other goals of the PinPasJC project is to discover inconsistencies
between the actual cards and the official informal JAVA CARD specifications, i.e.,
to simply find implementation bugs on the cards. Implementing the whole of the
JAVA CARD API gave us a good chance to review the informal specification and
identify “hot spots” – descriptions that are likely to be ignored or misinterpreted,
unintentionally or on purpose. We mention this briefly in Section 4.

Finally, our reference implementation serves as a verification case study. First
of all, it gives a general idea of how big a code base can be subjected to for-
mal verification by the KeY tool. The JAVA CARD API consists of 60 classes
adding up to 205KB of JAVA source code (circa 5000 LoC) and 395KB of formal
specifications (circa 10000 LoC). The KeY system managed to deal with it giv-
ing satisfying verification results, although not without problems, see Section 4.
Moreover, the case study shows the compliance of the KeY system to the JAVA

CARD language specification – the reference implementation utilises practically
all of the JAVA CARD language subset and was successfully verified by the KeY
system. Last, but not least, this case study will serve to further optimise and
tune the KeY system in terms of performance (resource-wise) and minimising
user interaction.

Related Work. The work we present here is one of many that formally treats the
JAVA CARD API library. However, to the best of our knowledge, we are the first

Fully Verified JAVA CARD API Reference Implementation 139

ones to give a relatively full, (soon) publicly available reference implementation
of version 2.2.1 of the API together with specifications. The older JAVA CARD

development kits distributed by Sun contained a reference implementation of
the API up to version 2.1.1.3 Since that version the source code of the API is no
longer available with the development kits. Our code borrows ideas from Sun’s
reference implementation, there are however two major differences to be noted.
First, our implementation treats the newer API version which introduces many
new features. Secondly, our back-end system is the KeY JAVA CARD model, while
Sun’s API is implemented for the JCWDE simulator.

When it comes to formal treatment of the API, a full set of JML specifica-
tions4 [9] for the API version 2.1.1 has been developed for the LOOP verification
tool [6] and ESC/JAVA2 [2]. These efforts, however, do not include the implemen-
tation itself, only specifications. As a side effect of our work, we also constructed
lightweight JML specifications of the API version 2.2.1 for ESC/JAVA2.5 More-
over, in an earlier work we investigated specification of the JAVA CARD API in
OCL [7].

Recently a work has been published on a method to formally verify native
API implementations based on specification refinement [10]. Three levels of spec-
ifications for the native API code are given in the Coq language: functional speci-
fication, high-level description, and low-level description. The last level is not yet
the actual implementation of the code on the card (normally written in C or even
assembly), but is claimed to have a one to one correspondence with the code run-
ning on the card. The correctness of the low-level description is verified by means
of refinement relation between the three levels of specification. The main goal is
to verify the actual API implementations found on cards, while we aim at pro-
viding a JAVA source code verification framework to be used outside of the card.

Structure of the Paper. The rest of this paper is organised as follows. Section 2
describes tools and methodologies we used: the KeY system, its logic, the JAVA

CARD formal model on top of which our reference implementation was written,
and a discussion about the choice of the specification language. Section 3 de-
scribes the implementation and its specification in more detail with samples of
both, while Section 4 gives some insights into the verification effort and discusses
our experience. Finally, Section 5 concludes the paper.

2 Tools and Methodology

In this section we describe the main building blocks of our case study: the KeY
system, the KeY model of the JAVA CARD environment, and briefly the JAVA CARD

Dynamic Logic, which we used a specification language.

3 http://java.sun.com/products/javacard/dev_kit.html
4 http://www.sos.cs.ru.nl/research/escjava/esc2jcapi.html
5 Available at http://www.cs.ru.nl/~woj/software/software.html

140 Wojciech Mostowski

2.1 Verification Tool

The verification tool of our choice for this case study is the KeY system. The
KeY system is a highly automated interactive program verifier for JAVA and JAVA

CARD programs. Currently KeY supports verification of sequential JAVA without
floating point arithmetic and dynamic class loading, and practically all of JAVA

CARD
6 including the JAVA CARD transaction mechanism and (non)persistence of

the JAVA CARD memory [1, Chapter 9]. The formalism behind the KeY system
is the JAVA CARD Dynamic Logic (JAVA CARD DL) [1, Chapter 3] built on top
of first order logic. The rules of the logic are used to symbolically execute JAVA

programs in the KeY prover and then evaluate the properties to be verified. We
describe this idea with a simple example. Take the following JAVA code:

public void decreaseCounter() { if(counter > 0) counter--; }

What we would like to specify and prove is that assuming the counter is non-
negative it will stay non-negative after the execution of the method, i.e., that the
method preserves the invariant counter >= 0. A corresponding JAVA CARD DL
formula would take the following form (we use the actual KeY system syntax):

self != null & self.counter >= 0 ->

\<{ self.decreaseCounter(); }\> self.counter >= 0

The formula itself does not contain any class or method definitions, these are
implicitly present in the prover. The left side of the implication (->) represents
the state in which we are about to execute the program, i.e., the precondition of
the program. The program itself, calling of a method decreaseCounter on the
object self, is included in the diamond modality \<·\>. The formula attached
to the modality is to be evaluated after the program in the modality executes,
thus, the formula represents the postcondition of the program. In JAVA CARD DL
the diamond modality requires the program to terminate and do so in a non-
abrupt fashion. In particular, the program is not allowed to throw any exceptions.
Contrary to the diamond modality, the box modality \[·\] does not require
(non-abrupt) termination. In our work, however, the stronger (for deterministic
programs) diamond semantics is always used.

The first few simplification steps transform the formula above into a JAVA

CARD DL sequent:

self != null, self.counter >= 0 ==>

\<{ self.decreaseCounter(); }\> self.counter >= 0

The left side of the sequent (marked by ==>), the antecedent, represents the
assumptions and the right side, the succedent represents the proof goal. The
next few rules of the symbolic execution unfold the sequent into two branches:

6 With a notable exception of the JAVA CARD firewall mechanism. However, this does not limit the
set of JAVA CARD programs that can be verified with KeY, only the set of properties, see Section 3
for details.

Fully Verified JAVA CARD API Reference Implementation 141

self != null, self = null, self.counter >= 0 ==>

\<{ throw new NullPointerException(); }\> self.counter >= 0

self != null, self.counter >= 0 ==>

\<{ if(self.counter > 0) self.counter--; }\> self.counter >= 0

The first branch represents the null value check for accessing the object self.
Whenever an object is accessed (field access or method call), the JAVA CARD DL
calculus establishes non-nullness of the referenced object which, if not satisfied,
would cause a null pointer exception. This branch is easily closed (proved) by
a contradiction in the antecedent self = null and self != null. We skip
further null pointer checks in the rest of the example.

The JAVA CARD DL rule for the if statement splits the second sequent into
two branches that correspond to the execution paths of the if statement:

self != null, self.counter >= 0, self.counter > 0 ==>

\<{ self.counter--; }\> self.counter >= 0

self != null, self.counter >= 0, self.counter <= 0 ==>

\<{ }\> self.counter >= 0

The second branch does not contain any program in the modality anymore, the
modality is removed and the postcondition can be evaluated to true based on the
assumptions. The first branch contains an assignment. Applying a corresponding
JAVA CARD DL rule results in a state update of the program under execution,
which is represented in the following way:

self != null, self.counter >= 0, self.counter > 0 ==>

{self.counter := self.counter - 1}\<{ }\> self.counter >= 0

JAVA CARD DL state updates are very much like JAVA assignments, except that
they are only allowed to appear in their canonical form, in particular, the right
hand side of an update has to be side effect free. Further steps in the proof
remove the empty modality from the sequent and apply the state update on the
formula that is attached to it:

self != null, self.counter >= 0, self.counter > 0 ==>

self.counter - 1 >= 0

This sequent is easily closed (proved) by simple integer arithmetic reasoning.
Obviously, this simple example cannot discuss all of the details of the logic,

in particular, how dynamic method binding is done or how object aliasing is
handled by the state update mechanism. All the details can be found in [1,
Chapter 3]. However, the last thing we want to discuss here is the treatment
of exceptions. The diamond modality requires that no exceptions are thrown.
Nevertheless, one can easily construct a proof obligation stating that a method
is allowed to throw a given kind of exception by simple program transformation:

exc = null & ... -> \<{ try { self.decreaseCounter(); }

catch(SomeException e) { exc = e; } }\> self.counter >= 0

142 Wojciech Mostowski

Here, SomeException possibly thrown by method decreaseCounter is caught by
the try-catch block resulting in a non-abruptly terminating program. Moreover,
it is possible to distinguish the abrupt termination state in the postcondition by
making a case distinction on the value of exc. A non-null value of exc determines
that an exception indeed occurred. This exception treatment is essential to how
exceptions are treated when higher level specification languages are translated
into JAVA CARD DL. The KeY system provides interfaces for both JML [8] and
OCL [14]. A specification written in JML or OCL together with the associated
code is automatically translated into JAVA CARD DL and then can be verified
with the KeY prover. If the specification happens to state exceptional behaviour,
e.g., with JML’s signals clause, the mechanism described above is used during
translation.

2.2 JAVA CARD Native Interface

Each JAVA CARD API implementation relies on a native interface to the under-
lying smart card execution environment (actual hardware or a simulator). Our
implementation is meant to be symbolically executable in the KeY system. Thus,
the native code interface has to be provided by KeY itself. For this purpose, we
equipped the KeY system with a dedicated JAVA class with a number of JAVA

CARD specific native methods. As a convention all such methods are named with
a jvm prefix. Here is an excerpt from the KeYJCSystem class:

public static native byte jvmIsTransient(Object theObj);

public static native byte[] jvmMakeTransientByteArray(

short length, byte event);

public static native void jvmBeginTransaction();

public static native void jvmCommitTransaction();

public static native void jvmArrayCopy(byte[] src, short srcOff,

byte[] dest, short destOff, short length);

Whenever the KeY system encounters a call to one of these methods an axiomatic
JAVA CARD DL rule is used to reflect the result of execution in the KeY verifier.
For example, a call like this:

\<{ transType = KeYJCSystem.jvmIsTransient(obj); ... }\> ...

results in a state update of the following form:

{transType := obj.<transient>}\<{ ... }\> ...

Here <transient> is an implicit attribute associated with each object in the
KeY JAVA CARD model that indicates whether a given object is persistent (kept
in card’s EEPROM) or transient (kept in RAM). For example, the code resulting
from the execution of jvmMakeTransientByteArray sets this attribute to event

in the array that is being created. The value of event indicates on which event
(card reset or applet deselection) the contents of the transient array should be
cleared.

Fully Verified JAVA CARD API Reference Implementation 143

All of the native methods declared in the KeYJCSystem class have such corre-
sponding JAVA CARD DL axiomatic rules. Then it is possible to give the reference
implementation of the JAVA CARD API in terms of this native interface, for ex-
ample:

public class JCSystem {

public static byte isTransient(Object theObj){

if(theObj == null) return NOT_A_TRANSIENT_OBJECT;

return KeYJCSystem.jvmIsTransient(theObj); }

public static byte[] makeTransientByteArray(short length, byte event)

throws SystemException, NegativeArraySizeException {

if(event != CLEAR_ON_RESET && event != CLEAR_ON_DESELECT)

SystemException.throwIt(SystemException.ILLEGAL_VALUE);

if(length < 0) throw KeYJCSystem.nase;

return KeYJCSystem.jvmMakeTransientByteArray(length, event); } }

2.3 Specification Language

The KeY system supports specifications written in JML or OCL. OCL is not best
suited for a case study like this one, it is relatively high level and not too closely
coupled to JAVA [7]. A perfect solution would be to use JML, which provides a
specification language closely related to JAVA. Moreover, large parts of existing
JML specifications for JAVA CARD API [9] could be reused. JML too, however,
currently poses one major problem for this case study, namely, the semantics
of the generated proof obligations (or rather method contracts associated with
a given class and method specification), and the current inability of KeY to
manipulate easily the way the contracts are generated. Without going into too
much detail, we want our contracts to preserve invariants for the objects of our
choice. In most cases this is simply the object a given method is invoked on, and
possibly objects passed as parameters or stored in instance attributes. Currently
the KeY system does not allow such fine grained selection of object invariants
when generating proof obligations from JML specifications.

To solve this problem, we used JAVA CARD DL itself as a specification lan-
guage, i.e., provided readily generated JAVA CARD DL contracts customised to
our needs. This approach does not introduce any complication into the process
of constructing specifications. The semantics of JAVA CARD DL expressions and
the actual syntax is very close to those of JML. The main difference is that a
JAVA CARD DL specification already constitutes a full method contract, thus, one
has to manually specify which invariants for which objects are to be included
in the precondition and the postcondition of the method. For example, suppose
we have the following class with JML annotations:

public class MyClass {

int a=0; //@ invariant a >= 0;

/*@ requires val >= 0; ensures a = val; assignable a; @*/

void setA(int val) { a = val; } }

144 Wojciech Mostowski

Then, assuming that we want to establish preservation of the invariant only for
one instance of the class (self), the corresponding JAVA CARD DL contract takes
the following form:

MyClass_setA_contract { \programVariables { MyClass self; int val; }

self.a >= 0 & val >= 0 ->

\<{ self.setA()@MyClass; }\> (self.a = val & self.a >= 0)

\modifies { self.a } };

One more advantage of specifying contracts directly in JAVA CARD DL is
the possibility to take “shortcuts”. For example, one can directly specify the
persistency type of an object by referring to its <transient> attribute. In JML
that would require including the isTransient method call in the specification.
Such shortcuts improve considerably on the size of the resulting proofs.

Our approach of considering invariants for single object instances assumes
that changes to one instance of an object cannot influence the invariant of an-
other instance. That is, we assume there is no inter-object data aliasing. To get
confidence that this is indeed the case we would also have to prove that data
is properly encapsulated within objects. Currently we cannot do this in KeY
in a simple way, proof obligations for proving encapsulation have to be created
manually [1, Section 8.5.2]. For a case study of this size this is infeasible. It is of
course also possible to employ other formal techniques to prove data encapsula-
tion, for example data universes [3]. On the other hand, for the JAVA CARD API
this is not a big issue. Our implementation hardly ever copies data by reference
and declares most of the relevant data private, which prohibits direct violation
of other objects’ invariants.

Finally, we should mention that the KeY JML front-end undergoes heavy
refactoring at the moment (partly because of the described deficiencies). Once
complete, verification based on JML version of our specification should be pos-
sible.

3 Implementation and Specification of the API

The JAVA CARD API [11, 12] provides an interface for smart card specific rou-
tines. It is relatively small (60 classes and interfaces) and does not really share
common features with the regular desktop JAVA API. Only the very basic classes
(like Object and NullPointerException) are present in both APIs. Apart from
that the JAVA CARD API version 2.2.1 provides support for the following smart
card specific features: JAVA CARD applets, APDU (Application Protocol Data
Units) communication, AID (Applet IDentifiers) registry lookup, owner PIN ob-
jects, the atomic transaction mechanism, JAVA CARD inter applet object sharing
through the JAVA CARD applet firewall, the JAVA CARD Remote Method Invo-
cation (RMI) interface, cryptographic keys and ciphers, and simple JAVA CARD

utility routines. The specifics of the JAVA CARD platform requires the API to have

Fully Verified JAVA CARD API Reference Implementation 145

a small memory footprint. Thus, JAVA CARD does not support strings and asso-
ciated classes, collections, etc. Moreover, most of the classes that are present in
the API are modified to enable low resource usage. For example, cryptographic
routines are implemented with a smaller amount of interfaces and methods (com-
pared to JAVA Cryptography Extensions) and operate only on byte arrays.

Our reference implementation follows the official documentation as closely
as possible. However, implementation of some features would be very difficult
and the amount of work required would not compensate for the possible gains.
Moreover, an over-engineered implementation would be very difficult to verify.
Another reason for leaving out certain features is the inability to formally reason
about them in KeY.

The first item on the unimplemented feature list are the cryptographic rou-
tines. Giving a functional implementation of ciphers and keys in JAVA that would
be easy to understand and verify is simply infeasible. In fact, actual smart cards
incorporate a cryptographic coprocessor and highly optimised native code is used
for the implementation of ciphers and keys. Thus, our implementation does not
contain any actual cryptographic routines. However, all the other features of
the cipher and key classes are implemented. For example, the lengths of encryp-
tion blocks depending on the encryption algorithm are accurately calculated, or
CryptoExceptions are reported on all conditions that do not involve checking
the result of cryptographic calculations, e.g., that the key is initialised or that
the plain text does not exceed its maximum allowed length.

The second unimplemented feature is the low-level APDU communication,
i.e., the routines that are normally responsible for sending and receiving data
from the card reader. Our implementation simply assumes that communication
happens behind the scenes implicitly. This is not a real limitation. During formal
verification of applet code it is sufficient to specify what the contents of the
APDU buffer is. Knowing that it has in fact been transported to or from the
card terminal is usually not necessary.

The third gap in the implementation are the routines related to RMI dis-
patching. Again, this would be possible, but very difficult to implement, result-
ing in a unjustifiably large code. On the other hand it is very easy to verify
RMI based applet code without knowing the details of how RMI methods are
dispatched. That is, it is not necessary to know how a given RMI method is mar-
shaled or unmarshaled to verify its code. Moreover, even if we did implement
the RMI dispatching routines in our API, it would not be possible to reason
about them with the KeY system. Such reasoning would require (at least par-
tial) support for class and method reflection which is not present in KeY at the
moment.

Finally, the JAVA CARD platform is capable of tracking and reporting memory
consumption on the card through API methods. This is implementable only to
certain extent, namely, dedicated methods for allocating transient memory can

146 Wojciech Mostowski

keep track of transient memory usage. Tracking persistent memory usage is not
possible. In principle, this would require hooking some JAVA code into the built-
in new operator. On the other hand, it would be possible to delegate the job of
tracking memory usage to KeY, i.e., in principle memory usage properties could
be verified during symbolic execution. The support for reasoning about memory
usage properties is yet another feature currently being integrated into KeY.

Apart from that our implementation includes all of the JAVA implementable
features specified in the official JAVA CARD documentation [11]. Notably, the
following items are taken into account.

The JAVA CARD firewall mechanism enforces object access checks on two
levels, the JAVA CARD VM level and the API level. All checks required on the
API level are included in our implementation. The routines to provide shareable
interface objects to client applets across the firewall are also implemented. In the
KeY system, the modelling of the checks on the VM level requires changes to the
JAVA CARD DL. The work to incorporate the firewall mechanism formalisation
into JAVA CARD DL is underway. Without this formalisation, the API firewall
checks are transparent during verification. All objects in verified JAVA CARD

programs are treated as if they are owned by the JAVA CARD system, i.e., all
objects are privileged and access is always allowed.

All features related to transaction mechanism and memory types (persistent
or transient) are included. In particular, it means that (i) methods specified in
the documentation to be atomic utilise the transaction mechanism in a suit-
able way, (ii) data that is required to be transient is kept in transient memory
blocks, and (iii) updates to all data that are to be excluded from the transaction
mechanism are implemented in a suitable way. A notable example of the last is
the PIN try counter [4]. The KeY system fully supports the JAVA CARD transac-
tion mechanism and different memory types, and thus all of the code involving
transactions can be faithfully specified and verified with KeY.

All cryptographic interfaces (ciphers and keys) have associated implementing
classes, but do not include the actual cryptographic logic as described above. A
possibility to declare a cipher to be shareable or non-shareable between differ-
ent applets, or for a key to implement internal key data encryption (the Key-

Encryption interface) are both included in the implementation.

A lightweight applet registry is implemented to track applet identifiers (AID
registry) and applet installation, activation, and selection. A possibility of an
applet to be multi-selectable is also taken into account. The registry is minimal
in the sense that it is just sufficient to provide meaningful results to methods of
the API that require the applet registry functionality, e.g., the method getAID

of the JCSystem class.

In the remainder of this section we give two samples of our implementation
and associated specifications. The first example is the implementation of the
method partialEquals of the AID class. The method is simply responsible for

Fully Verified JAVA CARD API Reference Implementation 147

comparing length bytes of the provided byte array to the AID bytes stored
in the object. The comparison itself is simply a call to the arrayCompare util-
ity method. First, however, some checks for the firewall mechanism have to be
performed:

public final boolean partialEquals(byte[] bArray,

short offset, byte length) throws SecurityException,

ArrayIndexOutOfBoundsException {

if (bArray==null) return false; // resp. documentation

if(length > _theAID.length) return false; // resp. documentation

// Firewall check:

if (KeYJCSystem.jvmGetContext(KeYJCSystem.jvmGetOwner(bArray))

!= KeYJCSystem.jvmGetContext(

KeYJCSystem.jvmGetOwner(KeYJCSystem.previousActiveObject))

&& KeYJCSystem.jvmGetPrivs(bArray) != KeYJCSystem.P_GLOBAL_ARRAY)

throw KeYJCSystem.se; // System owned singleton instance

// Actual comparison:

return Util.arrayCompare(bArray, offset, _theAID, (short)0, length)==0;

}

The firewall check establishes that the caller of this method (previousActive-
Object) was privileged to access the bArray parameter. If not, a system owned
singleton instance of SecurityException is thrown. The reason for storing sin-
gleton instances of all exceptions is to follow the JAVA CARD paradigm of limiting
the memory consumption, and also to separate system owned exceptions from
applet owned ones. The calling of the method arrayCompare may result in an
ArrayIndexOutOfBoundsException, which is allowed according to the docu-
mentation of partialEquals. The formal specification for this method is the
following:

\programVariables { AID aidInst; boolean result;

byte[] bArray; short offset; byte length; }

(bArray != null -> length >= 0 & offset >= 0 &

offset + length <= bArray.length)

& {\subst AID aid; aidInst}(\includeFile "AID_inv.key";)

-> \<{

result = aidInst.partialEquals(bArray, offset, length)@AID;

}\> (

(bArray = null | length > aidInst._theAID.length -> result = FALSE)

& (bArray != null & length <= aidInst._theAID.length ->

(result = TRUE <-> \forall int i; (i >= 0 & i < length ->

aidInst._theAID[i] = bArray[offset+i])))

& {\subst AID aid; aidInst} (\includeFile "AID_inv.key";))

\modifies {result}

The first part of the precondition guarantees that no ArrayIndexOutOfBounds-

Exception would be thrown. The second part assumes the class invariant (for
easy reuse stored in a separate file) for the execution of the method:

aid._theAID != null & aid._theAID.<created> = TRUE

& aid._theAID.<transient> = JCSystem.NOT_A_TRANSIENT_OBJECT

& aid._theAID.length >= 5 & aid._theAID.length <= 16

148 Wojciech Mostowski

The byte array storing the AID should not be null, should be allocated in the
persistent memory, and its length should be between 5 and 16 according to the
documentation.

The postcondition describes the value of the result in detail. It is true if and
only if the first length bytes in the provided array bArray starting at offset are
equal to length bytes stored in the theAID instance attribute. Additionally the
invariant for the AID class has to be reestablished after the method executes.
Finally, this method does not modify any data, except for the local result

variable.
The second example we want to present is the throwIt method of one of

the JAVA CARD specific exception classes – TransactionException. Although
the implementation and the specification of this and sibling methods are very
simple they are quite important. Such methods are frequently used both in the
rest of our API implementation as well as in many JAVA CARD applets. The
specific feature of these methods is that it only provides exceptional behaviour,
i.e., its sole purpose is to throw a system owned instance of a given exception:

public static void throwIt(short reason) throws TransactionException {

_instance.setReason(reason);

throw _instance; }

The throwIt method is static and its execution is guarded with a corre-
sponding static invariant, which simply says that the static attribute storing the
singleton instance of the exception (instance) is not null. Additionally, for
this particular instance the instance invariant for the exception class should be
maintained, which states that the reason array is properly allocated in tran-
sient memory. Reason codes of exceptions should be cleared every time the card
loses power, so the variable storing the reason code needs to be allocated in a
transient memory. In JAVA CARD only arrays can be allocated in transient mem-
ory. Thus, the reason code has to be stored in a short array of size 1 instead of
a simple short attribute. The static and the instance invariant are part both of
the method’s precondition and postcondition:

(\includeFile "TransactionException_static_inv.key";)

& {\subst TransactionException exc; TransactionException._instance}

(\includeFile "TransactionException_inv.key";)

-> \<{ #catchAll(TransactionException t) {

TransactionException.throwIt(reason)@TransactionException;

} }\>

(t = TransactionException._instance & t._reason[0] = reason

& (\includeFile "TransactionException_static_inv.key";)

& {\subst TransactionException exc; TransactionException._instance}

(\includeFile "TransactionException_inv.key";))

\modifies { TransactionException._instance._reason[0] }

This contract describes the exceptional behaviour of the method. The #catchAll
construct declares that the method can possibly throw an exception of the de-
clared type. The value t representing the thrown exception can be checked in the

Fully Verified JAVA CARD API Reference Implementation 149

postcondition. A null value indicates no exception (normal behaviour), a non-
null value indicates that the exception indeed occurred (exceptional behaviour).
In the postcondition it is required that t is equal to the singleton instance of
the exception, and so is not null by the assumption. Thus, this postcondition
requires the method to throw the exception. Finally, the postcondition also spec-
ifies that the reason code of the thrown exception (a corresponding location is
included in the \modifies clause) is equal to the parameter of the method.

One may argue that the specification for the method throwIt is over-en-
gineered, the contract for the method is actually bigger than the code of the
method itself. In fact, for most of the practical applications, a much simpler
specification would suffice. However, we treat specifications like this as an ex-
ercise for the KeY system. It shows that detailed verification w.r.t. complex
specifications is easily achieved.

4 Verification and Experience

All of the methods have been specified and verified with the KeY system. That
includes the simplest methods that just return a value of an instance attribute,
but also the most complex and elaborate methods, like the buildKey of the
KeyBuilder class or all of the methods of the Cipher implementation. The
proofs were performed in a fully modular way. Whenever a method was calling
another method in the API, a corresponding contract was used to discharge
the method call, i.e., the proofs were always performed by contract application,
instead of in-lining the code of the called method. It turned out in the process
that the approach of applying method contract is the only feasible one. For a case
study like this one in-lining of method calls results in proofs of unmanageable
size.

The level of automation of the proofs is satisfactory, the majority of the
methods are proved fully automatically, most of the rest require minor inter-
actions, like simple quantifier instantiations. The only really heavy spots w.r.t.
user interaction are loops (10 in total). Since our proof obligations require ter-
mination, a suitable specification for each of the loops has to be provided: the
loop invariant, modification set, and loop variant. For at least two of the loops
the loop invariant turned out to be quite complex and far from obvious just by
looking at the code, a careful analysis of the open proof goals was necessary.
Finally, it was not necessary to involve external tools to support verification.
The KeY system allows to employ external decision procedures to discharge first
order logic formulae, e.g., the Simplify theorem prover. For this case study the
KeY prover was able to discharge all proof goals on its own.

On a darker side, some of the proofs were very heavy on computing resources.
It was not uncommon for the prover to use up to 1.5GB of heap space and run
for over an hour to finish a proof for one method. Such performance certainly

150 Wojciech Mostowski

makes the round-trip specification engineering infeasible. For this case study one
possible solution to this problem is to rewrite parts of the API implementation
to improve on the prover performance. It turned out, for example, that the
switch statements sometimes cause large growth of the proof. It is our belief
that rewriting those switch statements into highly optimised if statements
would partly solve the problem. This matter is currently under investigation.
Moreover, for some of the proofs a minor modification of the KeY’s automatic
rule application mechanism was necessary to prevent proof size blowup. The
modification in question is more of a hack that happens to work for this case
study and not yet a proper solution to the problem.

Finally, the careful analysis of the JAVA CARD documentation allowed us to
identify hot spots in the specification, places where actual card implementations
are likely to be incorrect due to, e.g., documentation ambiguity or unusual com-
plexity. Indeed, we did find a bug in one of the commercially sold cards. One of
the firewall rules [12, Section 6.2.8.6] is ignored resulting in granting access to a
shareable object in a situation where it is forbidden by the specification.

5 Conclusions and Future Work

We presented a formally verified reference implementation of the JAVA CARD

API. The level of detail of the implementation is relatively high considering
that the running environment of the implementation is a symbolic execution
environment, the KeY verification system. This API implementation will serve
us as a framework for verifying various JAVA CARD applets in our project. All
of the implementation has been formally specified and verified with KeY. We
found the verification process feasible, however, we do have some reservations
to the performance of the KeY system. After some clean-ups and minor fixes to
the code and the specification we will make the case study available on the web.

For the future we plan to look into the following. First we want to modify the
API implementation code to improve on the verification performance. Secondly,
our experience will be used to rectify the issues and problems we found in the
KeY system (we have already communicated the most pressing issues to the KeY
development team). Next we plan to implement the firewall functionality in the
KeY logic. Then it will be possible to verify the API implementation again to
make sure that the implemented firewall checks are consistent. The fourth step
is to rewrite all of our specifications in JML. Here the work on improving the
KeY’s JML interface has to be finished first. Finally, it could be worthwhile to
update our implementation to the newest stable version of the JAVA CARD API
2.2.2 [13], which introduced some minor updates. At the time we started our
work the version 2.2.2 was not yet official. Moreover, none of the cards on the
market actually implement JAVA CARD 2.2.2, thus, for the practical purpose of
verifying realistic applet code the version 2.2.1 is sufficient.

Fully Verified JAVA CARD API Reference Implementation 151

Acknowledgements This work is supported by the research program Sentinels
(http://www.sentinels.nl). Sentinels is financed by the Technology Founda-
tion STW, the Netherlands Organisation for Scientific Research (NWO), and
the Dutch Ministry of Economic Affairs. We would also like to thank Chris-
tian Haack, Erik Poll, Jesús Ravelo, and anonymous reviewers for their helpful
comments.

References

1. Bernhard Beckert, Reiner Hähnle, and Peter H. Schmitt, editors. Verification of Object-Oriented
Software: The KeY Approach, volume 4334 of LNAI. Springer, 2007.

2. Patrice Chalin, Joseph R. Kiniry, Gary T. Leavens, and Erik Poll. Beyond assertions: Advanced
specification and verification with JML and ESC/JAVA2. In Formal Methods for Components and
Objects (FMCO) 2005, Revised Lectures, volume 4111 of LNCS, pages 342–363. Springer, 2006.

3. Werner Dietl and Peter Müller. Universes: Lightweight ownership for JML. Journal of Object
Technology (JOT), 4(8):5–32, October 2005.

4. Engelbert Hubbers, Wojciech Mostowski, and Erik Poll. Tearing JAVA CARDs. In Proceedings,
e-Smart 2006, Sophia-Antipolis, France, September 20–22, 2006.

5. Engelbert Hubbers and Erik Poll. Transactions and non-atomic API calls in JAVA CARD: Spec-
ification ambiguity and strange implementation behaviours. Department of Computer Science
NIII-R0438, Radboud University Nijmegen, 2004.

6. Bart Jacobs and Erik Poll. JAVA program verification at Nijmegen: Developments and perspective.
In Software Security – Theories and Systems: Second Mext-NSF-JSPS International Symposium,
ISSS 2003, Tokyo, Japan, November 4–6, 2003. Revised Papers, volume 3233 of LNCS, pages
134–153. Springer, 2003.

7. Daniel Larsson and Wojciech Mostowski. Specifying JAVA CARD API in OCL. In Peter H.
Schmitt, editor, OCL 2.0 Workshop at UML 2003, volume 102C of ENTCS, pages 3–19. Elsevier,
November 2004.

8. Gary T. Leavens, Albert L. Baker, and Clyde Ruby. JML: A Notation for Detailed Design. Kluwer
Academic Publishers, 1999.

9. Hans Meijer and Erik Poll. Towards a full formal specification of the JAVA CARD API. In I. Attali
and T. Jensen, editors, Smart Card Programming and Security, International Conference on
Research in Smart Cards, e-Smart 2001, Cannes, France, volume 2140 of LNCS, pages 165–178.
Springer, September 2001.

10. Quang Huy Nguyen and Boutheina Chetali. Certifying native JAVA CARD API by formal refine-
ment. In Smart Card Research and Advanced Applications, 7th IFIP WG 8.8/11.2 International
Conference, CARDIS 2006, Tarragona, Spain, April 19–21, 2006, Proceedings, volume 3928 of
LNCS, pages 313–328. Springer, 2006.

11. Sun Microsystems, Inc., http://www.sun.com. JAVA CARD 2.2.1 API Specification, October 2003.
12. Sun Microsystems, Inc., http://www.sun.com. JAVA CARD 2.2.1 Runtime Environment Specifica-

tion, October 2003.
13. Sun Microsystems, Inc., http://www.sun.com. JAVA CARD 2.2.2 API Specification, March 2006.
14. Jos Warmer and Anneke Kleppe. The Object Constraint Language, Second Edition: Getting Your

Models Ready for MDA. Object Technology Series. Addison-Wesley, Reading/MA, 2003.

Automated Formal Verification of PLC

Programs Written in IL

Olivera Pavlovic1, Ralf Pinger1 and Maik Kollmann2

1 Siemens Transportation Systems,
Ackerstrasse 22, D-38126 Brunswick, Germany,

{Olivera.Jovanovic,Ralf.Pinger}@siemens.com
2 Brunswick Technical University, Institute of Information Systems,

Mühlenpfordtstrasse 23, D-38106 Brunswick, Germany,
M.Kollmann@tu-bs.de

Abstract. Providing proof of correctness is of the utmost importance for safety-critical
systems, many of which are based on Programmable Logic Controllers (PLCs). One
widely used programming language for PLCs is Instruction List (IL). This paper presents
a tool for the fully automated transformation of IL programs into models of the NuSMV
(New Symbolic Model Verifier) model checker. For this, the tool needs a metadescrip-
tion of the IL language. This broadens the scope of the software and allows the tool
be used for programs written in many other low-level languages as well. Its application
is demonstrated using a typical IL program, at the same time providing insights into
the proposed automation of the process of formal verification of PLC programs. This
automatic verification should provide a powerful analysis method with a wide industrial
application.

Key words: automated verification, model checking, NuSMV (New Symbolic Model
Verifier), Programmable Logic Controller (PLC), Instruction List (IL)

1 Introduction

Programmable Logic Controllers (PLCs) are a special type of computer used in
automation systems. Generally speaking, they are based on sensors and actu-
ators, which have the abilty to control, monitor and interact with a particular
process, or collection of processes. These processes are diverse and can be found,
for example, in household appliances, emergency shutdown systems for nuclear
power stations, chemical process control and rail automation systems.

The programming of PLCs is achieved with the help of five languages, stan-
dardised by the International Electrotechnical Commission (IEC) in [IEC93]:
(a) two textual languages: Instruction List (IL) and Structured Text (ST), and
(b) three graphical languages: Function Block Diagram (FBD), Ladder Diagram
(LD) and Sequential Function Chart (SFC). This paper focuses on the formal
verification of programs written in IL, which is a low-level, machine-orientated
language.

The simulation of IL programs and their automated transformation to VHDL
(Very-High-Speed Integrated Circuit Hardware Description Language) are dis-
cussed in [Fig06]. The theoretical basics for the verification of IL programs can

Automated Formal Verification of PLC Programs Written in IL 153

be found in [CCL+00]. Further research on the topic was published in [PPKE07],
which examines in more depth the handling of PLC hardware by the formal ver-
ification of IL programs. For this, a specific PLC is selected, although the same
principles can be applied to any PLC. We present an enhancement of the works
cited above describing how function calls can be handled by the PLC verification
and presenting a tool for the fully automated transformation of IL programs into
the NuSMV models. By applying the tool to a typical IL program, we demon-
strate its successful application and show how the process of formal verification
of PLC programs can be automated. Based on the lessons learnt from the tool,
we also propose an improvement in the verificaton method.

The rest of the paper is structured as follows: Section 2 briefly reviews the
method/formalism of model checking. In Section 3 the structure of an IL pro-
gram is outlined and a detailed description of a behavioural model of the program
also given. Section 4 presents the tool developed for the transformation of IL
programs into NuSMV models. In Section 5 a case study illustrates the verifi-
cation of IL programs. Finally, conclusions are drawn and plans for the future
proposed.

2 Model Checking

Automated verification techniques such as model checking have become a stan-
dard for proving the correctness of state-based systems. Model checking is the
process of checking whether a given model M satisfies a given logical formula ϕ.
Model checking tools such as SPIN [Hol97] and SMV/NuSMV [McM96,CCB+02]
incorporate the ability to illustrate that a model does not satisfy a checking
condition using a textual, tabular or sequence chart-like representation of the
relevant states.

The model M has to be translated into the input language of a model check-
ing tool. For this, a state transition system can be used, which defines a kind of
non-deterministic finite state machine representing the behaviour of a system.
The transition system can be represented by a graph whose nodes represent
the states of the system and whose edges represent state transitions. A state
transition system is defined as follows.

Definition 1. State transition system

A system T = (S, S0, →) with

– S: a non-empty set of states,

– S0 ⊆ S: a non-empty set of initial states,

– →⊆ S × S: a transition relation which is defined for all s ∈ S

is called a state transition system.

154 Olivera Pavlovic, Ralf Pinger, Maik Kollmann

In the sections below we will limit ourselves to transition systems and tem-
poral logic formulas, which are both suitable for capturing the behaviour of
our programs and representing typical checking conditions. The model checking
problem can be stated as follows: Let a checking condition be given by a tem-
poral logic formula ϕ, and a model M with an initial state s, then it must be
decided

M, s |= ϕ.

IfM is finite, the model checking is reduced to a graph search. In our case, Linear
Temporal Logic (LTL) [Pnu77] is suitable for the encoding of the properties. LTL
is a subset of CTL∗ with modalities referring to time (cf. [HR00,CGP00]). The
syntax of the LTL formula is given by the following Backus-Naur-Form (BNF)
definition:

ϕ ::= ⊥ | ⊤ | p | (¬ϕ) | (ϕ ∧ ϕ) | (ϕ U ϕ) | (G ϕ) | (F ϕ) | (X ϕ).

In addition to the propositional logic operators and predicates p, the tempo-
ral operators X, F,G and U are interpreted as follows:

– X ϕ : ϕ must hold at the next state.
– F ϕ : ϕ must hold at some future state.
– G ϕ : ϕ must hold at the current state and all future state (globally).
– ψ U ϕ : ϕ holds at the current or a future state, and ψ must hold up until

this point. From this point, ψ no longer needs to hold.

LTL formulas are evaluated for a certain path π of states. If we let π = s1 → s2 →
. . . be a path of states, then πi is the suffix starting at si: π

i = si → si+1 →
All temporal logic operators can be related to path expressions, e.g. the next-
operator’s semantics are given by π |= Xφ iff π2 |= φ.

Techniques based on Büchi automata have been implemented in SPIN to
check if a system meets its specifications. This is done by synthesising an au-
tomaton which generates all possible models of the given specification and then
checking if the given system refines this most general automaton. SMV and
NuSMV employ tableau-based model checking in order to evaluate whether a
given LTL formula ϕLTL holds. They were originally symbolic model checking
tools relying on binary decision diagrams. The set of states satisfying a CTL for-
mula ϕCTL is computed as the BDD representation of a fixed point of a function.
If all the initial system states are in this set, ϕCTL is a system property.

3 PLCs

As already stated, PLCs are a special type of computer based on sensors and
actuators able to control, monitor and influence a particular process. There

Automated Formal Verification of PLC Programs Written in IL 155

are many standard tools for the configuration of PLCs, depending on the PLC
product family. In these tools, the PLC programming languages standardised in
[IEC93] are usually given different names to those in the IEC standard. Thus,
the tool used for this study supports, among others, the Statement List (STL)
programming language. STL corresponds in its expressiveness one to one to IL,
having instructions with the same functionality. The syntax of the two languages
differs, however. In the remainder of this paper the designation IL will be used
to cover both IL and STL.

3.1 IL Program

An IL program can consist of a number of modules. Each of the modules and
the main program contain variable declarations plus a program body. For the
purpose of verification, we shall consider the program body as a limited set of
lines of code executed in a defined sequence. Let us consider a program P having
maxpc lines of code and n modules P1, . . . ,Pn each having maxpcı, ı = 1, . . . , n
lines of code. The program P can then be represented as follows:

P = {(, statement) | = 1, . . . , maxpc} ∪
⋃

ı≤n

Pı, where

Pı = {(ı, statementı
) | ı = 1, . . . , maxpcı}, for all ı = 1, . . . , n

where statement (statementı
) designates the statement at line (ı) of P (Pı).

3.2 Behavioural Model of an IL Program

The behavioural model of an IL program P can be represented using a state
transition system T = (S, S0, →), where S is a set of states, S0 ⊆ S a non-empty
set of initial states and → a transition relation. S, S0 and → are constructed as
follows:

Set of states S. The set of states S = SS × SH × SPC with

SS - a set of states of software-specific variables. Software-specific variables are
variables defined within the program P. Although IL supports a wide range of
data types (relating to its hardware-like nature), in this paper only Booleans and
bounded integers are discussed. Let us consider the main program, P, with nP

variables and each module Pı with nPı
variables, then SS = SSP×SSP1

×. . .×SSPn

where SSP = SPvar1
× . . .×SPvarnP

and SPvar
is a domain of the variable var

for = 1, . . . , nP . For example, for a Boolean variable var, SPvar
= {true,

false}. The sets SSPı
are defined analogously to SSP .

156 Olivera Pavlovic, Ralf Pinger, Maik Kollmann

SH - a set of states of hardware-specific variables. Depending on the PLC family,
various types of CPU register are required for the processing of IL statements.
Some of the registers are not important for the verification of IL programs
([PPKE07]). For this reason, only the following registers are considered here:
three status bits, two accumulators and a nesting stack (used to save certain
items of information before a nesting statement is processed). These registers
are represented in the behavioural model of an IL program by hardware-specific
variables. The set of states of hardware-specific variables SH is constructed as
follows. SH = SHP ×SHP1

× . . .×SHPn
where the sets in the product correspond

to sets of hardware-specific variables of P, P1, . . . , Pn respectively. Because
these sets are equivalent, it is sufficient to define one of them, e.g. SHP . SHP

= HPStatusBits × HPAccumulators × HPNestingStack and HPStatusBits = HPRLO ×
HPOR × HPFC (HPRLO, HPOR and HPFC are domains of status bits RLO,
OR and FC, that is {true, false}) and HPAccumulators = HPACC1

× HPACC2

(HPACC1
and HPACC2

are accumulator domains). If we let HPNestingStack have
l layers, then HPNestingStack = HPStack1

× . . . × HPStackl
. Each of these stacks

contains information to be pushed into the stack before opening a new nesting
operation. These are the status bits RLO and OR, and the identifier of the
operation before nesting. Thus, HPStack

= HPRLO
× HPOR

× HPOperation
,

 = 1, . . . , l, where HPOperation
is a domain of operation identifiers.

SPC - a set of states of program counters. The program counter of each of the
program modules together form the set SPC . Thus, SPC = {1, . . . , maxpc} ×
{1, . . . , maxpc1} × . . .× {1, . . . , maxpcn}.

Set of initial states S0. S0 ⊆ S, or more precisely S0 = SS0
× SH0

× SPC0

with SS0
⊆ SS , SH0

⊆ SH and SPC0
⊆ SPC . Sets SS0

and SS may differ merely
in the ranges of the variables which can have predifined values for P. Only
for this kind of variable can initial values be restricted. For all other software-
specific variables, all possible values have to be considered from the very be-
ginning of verification. The initial values of the hardware-specific variables are
predefined and identical for each P and Pı, ı = 1, . . . , n. These variables are
initialised with all Booleans being set to false and all integers to 0. Thus,
SH0

is defined by SH0
=

∏
ı≤n+1

SHP0
, SHP0

= HPStatusBits0
× HPAccumulators0

×

HPNestingStack0
, HPStatusBits0

= {false, false, false}, HPAccumulators0
= {0, 0}

and HPNestingStack0
=

∏
ı≤l

{false, false, 0}.

Transition relation →. →⊆ S × S describes how the state of the model
changes after the execution of each statement. These changes are reflected in
the fact that new values are assigned to the software and hardware variables,
and the program counter. After each statement, the program counter is given a

Automated Formal Verification of PLC Programs Written in IL 157

new value, pointing to the next statement to be executed. Only one software-
specific variable, which at the same time is the statement argument, can be
changed by a single statement. On the other hand, one statement can change
a number of hardware-specific variables. For more details of, how the transition
relation and behavioural model are constructed, see [PPKE07].

4 Automated Transformation of IL Programs

The automated transformation of IL programs described in [PPKE07] was devel-
oped as a part of a masters thesis [Fen07]. As shown in Fig.1, besides the program
to be transformed, the software also needs a description of the IL language. This
description is supplied in an IL metafile (cf. Fig.2). The result of the automated
transformation of the IL program is a corresponding NuSMV model. In some
cases it is possible to reduce the state space of the resulting NuSMV model by
manual optimisation. More details of the above steps are given in the sections
below. On the basis of the NuSMV model and specification being proven, the
next step in the verification is performed by the NuSMV model checker.

IL metafile IL program

Transformer

NuSMV model

Optional adjustment of

range of variables

NuSMV model

NuSMV

Not OK!OK!

Specification

Fig. 1. Transformation process

158 Olivera Pavlovic, Ralf Pinger, Maik Kollmann

4.1 Metafile

The metadescription of the IL language is defined in a simple text file with
a special format (metafile). Part of the contents of the IL metafile is shown in
Fig.2. This simple description of the language makes the software more universal
and allows us to use it for the transformation of programs written in a number
of other low-level languages as well, provided a metadescription of the language.

As shown in Fig.2, the system hardware variables must be described at the
beginning of the metadescription. This is done using identifier, type, initial value
triples. For example, RLO,0,0 means that the status bit RLO is a Boolean
(type 0) and has the initial value 0, and ACC1,1,0 means that ACC1 is an
integer (type 1) with the initial value 0. In the second part of the metafile,
the IL statements are described. There are four types: 0-statements - with an
argument, 1-statements - with a nesting operation, 2-statements - with an effect
on the program counter, and 3-statements - with no argument. Accordingly, the
conjunction A argument is of type 0 and described by

A, 0,if(FC=1){RLO :=OR||RLO&& ARG);}

else{RLO := ARG ;FC :=1;}

This means: if FC is true, the RLO bit is set to OR ||(RLO && argument),
otherwise RLO is set to argument and FC is set to true.

[variables]

RLO,0,0

OR,0,0

FC,0,0

ACC1,1,0

ACC2,1,0

...[meta]

A,0,if(FC=1){RLO:=OR||(RLO&& ARG);}else{RLO:= ARG ;FC:=1;}

JU,2,PC:= ARG ;

+I,3,ACC1:=ACC2+ACC1;

*I,3,ACC1:=ACC2*ACC1;

>I,3,if(ACC2>ACC1){RLO:=1;OR:=0;FC:=1;}else{RLO:=0;OR:=0;FC:=1;}

<I,3,if(ACC2<ACC1){RLO:=1;OR:=0;FC:=1;}else{RLO:=0;OR:=0;FC:=1;}

...

Fig. 2. Metadescription of the IL language

4.2 Manual Optimisation of the NuSMV Model

In some cases the NuSMV model resulting from the transformation of the IL
program will have an optimisation facility. The model optimisation is optional
and has to be performed manually. An illustration of this will now be given. Let

Automated Formal Verification of PLC Programs Written in IL 159

us consider some integer variables in an IL program having a restricted range of
integer values. Despite the limitation of the variables, a whole range of integers
is reserved for them. These variables do not need the entire range of integers in
the corresponding NuSMV model, and problems may result due the excessive
size of the model’s state space. Provided the ranges of the variables are known,
they can be adjusted accordingly and the space requirement reduced.

5 Case Study

This section takes a closer look at the process of formal verification of IL pro-
grams already described. An IL program and the corresponding NuSMV model
are presented. To show the behavioural equivalence between the IL program and
its NuSMV model, the method proposed in [PH07] can be applied. The most
complex issue in the verification process turns out to be the implementation of
a function call. We have therefore chosen to demonstrate how this is done on
the basis of a sample IL program. For more about IL programming [Gie03] and
[Sie04] should be consulted.

5.1 IL Program

An outline of the program considered here (DemonstrateFormByte) is shown in
Fig.3. This simple IL program demonstrates the call of the function FormByte
which takes 8 bits as input (Bit0, Bit1,. . . , Bit7) and combines them into one
byte (Byte).

5.2 NuSMV Model

A NuSMV program consists of several modules. There must be one module with
the name main and no formal parameters ([CCB+02]). Accordingly, the IL pro-
gram is implemented by the main module in NuSMV and the function called by
a further module, which is instantiated in the main module (cf. Fig.4). For more
information about how IL statements are transformed into NuSMV model, see
[PPKE07].

Let us consider the transitions given in Fig.4. The program DemonstrateForm-
Byte has 2 lines, in the first of which the function FormByte is called. This
call is implemented in the NuSMV model by saying in the main module that
if program counter is equal to 1 and FormByte has not finished executing, the
program counter of the main module does not change its value. Only when Form-
Byte has finished its execution may the main module program counter increment
its value.

160 Olivera Pavlovic, Ralf Pinger, Maik Kollmann

//Program "DemonstrateFormByte"

//8 boolean and 1 integer variables

//program body

CALL "FormByte" (

InputBit0 := Bit0, InputBit1 := Bit1, InputBit2 := Bit2,

InputBit3 := Bit3, InputBit4 := Bit4, InputBit5 := Bit5,

InputBit6 := Bit6, InputBit7 := Bit7, OutputByte := Byte);

//Function "FormByte"

//input: 8 booleans (InputBit0,...,InputBit7)

//output: 1 integer (OutputByte)

//1 temporary variable (Value) which keeps temporary result

//function body

L 0; //Initialise the temporary result

T Value; //Value=0

AN InputBit0; //Check if Bit0 is set

JC BIT1; //if not jump to BIT1

L 1; //Adjust the temporary result by 2**0

T Value; //Value=1

BIT1: AN InputBit1; //Check if Bit1 is set

JC BIT2; //if not jump to BIT2

L Value; //Adjust the temporary result by 2**1

L 2;

+I ;

T Value; //Value=Value+2

...

Fig. 3. An outline of the IL program demonstrating the calling of the function which combines the
eight bits supplied into one byte

MODULE FormByte(param0,param1,param2,param3,param4,param5,param6,param7)

...

MODULE main

//...variable declaration

//the instantiation of the FormByte module is realised in the next

line

CALL FormByte : FormByte(Bit0,Bit1,Bit2,Bit3,Bit4,Bit5,Bit6,Bit7);

ASSIGN

next(PC) :=

case

PC=1 & CALL FormByte.PC<63: 1;

PC=1 & CALL FormByte.PC=63: 2;

1 : PC;

esac;

init(PC) := 1;

...

Fig. 4. An outline of the NuSMV model corresponding to the IL program DemonstrateFormByte

Automated Formal Verification of PLC Programs Written in IL 161

5.3 Specification and Verification Results

To prove the correctness of the NuSMV model we need to check if the byte
value obtained corresponds to the eight bits supplied. This property can be rep-
resented by the following LTL formula:

G(PC = 2 ⇒ Byte = (Bit0 + 2 ∗Bit1 + 4 ∗Bit2 + 8 ∗Bit3 + 16 ∗Bit4+

32 ∗Bit5 + 64 ∗Bit6 + 128 ∗Bit7))

Unfortunately, proving this property by the method described is inefficient.
It took over eight hours to do so. The ultimate aim of this work study, however,
is to apply the proving technique to far more complex case studies. Hence, the
approach needed to be improved. How this was done, is described in the next
section.

5.4 Improvement of the Method

The reason for the inefficiency of the verification lay in the enormous number
of transitions which had to be considered by the NuSMV model checker when
instantiating a new module in a main module. More precisely, all the variables
that formed the state space of the module FormByte ware also part of the state
space of the main module. These variables are, however, of no importance before
and after the module FormByte is referenced in the main module (hereafter this
situation will to be referred to as module FormByte is not active).

Considering the above, a constraint was required in the main module with
the meaning: “if the FormByte module is not active, the model checker only
checks the states in which the FormByte variables are set to their initial val-
ues”. This could be achieved by means of the following invariant:

INVAR (PC!=1 -> (CALL FormByte.PC=1 | CALL FormByte.PC=64) &

CALL FormByte.Bit0=0 & CALL FormByte.Bit1=0 & CALL FormByte.Bit2=0 &

CALL FormByte.Bit3=0 & CALL FormByte.Bit4=0 & CALL FormByte.Bit5=0 &

CALL FormByte.Bit6=0 & CALL FormByte.Bit7=0 & CALL FormByte.Byte=0 &

CALL FormByte.Value=0 & CALL FormByte.RLO=0 & CALL FormByte.OR=0 &

CALL FormByte.ACC1=0 & CALL FormByte.ACC2=0)

Besides the addition of this invariant to the main module, some changes to
FormByte were necessery. In order to enable the FormByte variables to have
their initial values when the module was inactive, some new transitions had
to be added. These transitions needed to set the variables to the predefined
values once execution of the FormByte function had terminated. For this, the
FormByte program counter was incremented by 1. Additionally, for each variable
a new transition was formed, which set the variable to its initial value.

162 Olivera Pavlovic, Ralf Pinger, Maik Kollmann

By adding this invariant to the model we succeeded proving the relevant
property in 113.8 seconds, a vast improvement on the previous result. Thus the
changes described brought about a marked improvement in our method.

6 Conclusion and Future Work

The safety demands of many systems based on PLC are considerable. The formal
verification of the PLC software is thus of great importance. The verification
method demonstrated in this paper is a powerful instrument for analysing safety-
related software.

An approach was presented for the automated transformation of IL programs
into NuSMV models. This is supported by a tool, which was also described. The
efficiency and convenience of the tool were demonstrated by means of a case
study. Because the transformation can be automated, the approach has the
potential for a wide application in industry.

Although the approach is stable there is, however, still scope for improve-
ment. While the tool was being developed aspects for optimisation were identi-
fied and appropriate features implemented directly; others are due to be incor-
porated in the near future (the invariant described in the previous section, for
example, is to be automatically added to the NuSMV model). The aim of the
project is to efficiently verify PLC software of as high a complexity as possible.
In order to achieve this goal we will need to continue refining the technique.
Thus, the development of the approach itself and the accompanying tool are
ongoing. Further work in this field should provide a suitable set of reduction
methods which will allow the state explosion problem, arising from the growing
model size, to be resolved.

References

[CCB+02] Roberto Cavada, Alessandro Cimatti, Marco Benedetti, Emanuele Olivetti, Marco Pis-
tore, Marco Roveri, and Roberto Sebastiani. NuSMV: a new symbolic model checker.
http://nusmv.itc.it/, 2002.

[CCL+00] G. Canet, S. Couffin, J.-J. Lesage, A. Petit, and P. Schnoebelen. Towards the automatic
verification of PLC programs written in Instruction List. In Proc. IEEE Int. Conf. Systems,
Man and Cybernetics (SMC’2000), Nashville, TN, USA, Oct. 2000, pages 2449–2454, 2000.

[CGP00] Edmund M. Clarke, Orna Grumberg, and Doran A. Peled. Model Checking. MIT Press,
2000.

[Fen07] G. Fendoglu. Überführung eines AWL-Modells in ein NuSMV-Modell. Masters thesis.
Technische Universität Braunschweig, 2007.

[Fig06] C. Figura. Überdeckungstests für fehlersichere Funktionspläne auf Basis einer geeigneten
Überführung. Master thesis. Martin-Luther-Universität, 2006.

[Gie03] Walter Giessler. SIMATIC S7 SPS-Einsatzprojektierung und -programmierung. VDE Ver-
lag GMBH, 2003.

[Hol97] Gerard J. Holzmann. The Model Checker SPIN. In IEEE Transactions on Software Engi-
neering, volume 23, pages 279–295, 1997.

Automated Formal Verification of PLC Programs Written in IL 163

[HR00] Michael R. A. Huth and Mark D. Ryan. Logic in Computer Science - Modelling and
Reasoning about Systems. Cambridge University Press, 2000.

[IEC93] IEC. International Electrotechnical Commission Standard 61131-3, Programmable con-
trollers - Part 3, 1993.

[McM96] Kenneth L. McMillan. Symbolic Model Checking. Kluwer Academic Publishers, second
edition, 1996.

[PH07] J. Peleska and E. Haxthausen. Object Code Verification for Safety-Critical Railway
Control Systems. In E. Schnieder and G. Tarnai, editors, Proc. of the 6th Sympo-
sium on Formal Methods for Automation and Safety in Railway and Automotive Systems
(FORMS/FORMAT 2007). GZVB, 2007.

[Pnu77] Amir Pnueli. The temporal logic of programs. In Proceedings of 18th Annual Symposium
on Foundations of Computer Science, pages 46–57. IEEE, 1977.

[PPKE07] O. Pavlovic, R. Pinger, M. Kollmann, and H. D. Ehrich. Principles of Formal Verification
of Interlocking Software. In E. Schnieder and G. Tarnai, editors, Proc. of the 6th Sympo-
sium on Formal Methods for Automation and Safety in Railway and Automotive Systems
(FORMS/FORMAT 2007). GZVB, 2007.

[Sie04] Siemens. SIMATIC Anweisungsliste (AWL) fuer S7-300/400. Referenzhandbuch
(SIMATIC Instruction List for S7-300/400. Reference Manual), 2004.

Combining Deduction and Algebraic

Constraints for Hybrid System Analysis?

André Platzer

University of Oldenburg, Department of Computing Science, Germany
platzer@informatik.uni-oldenburg.de

Abstract. We show how theorem proving and methods for handling real algebraic
constraints can be combined for hybrid system verification. In particular, we highlight
the interaction of deductive and algebraic reasoning that is used for handling the joint
discrete and continuous behaviour of hybrid systems. We illustrate proof tasks that oc-
cur when verifying scenarios with cooperative traffic agents. From the experience with
these examples, we analyse proof strategies for dealing with the practical challenges for
integrated algebraic and deductive verification of hybrid systems, and we propose an
iterative background closure strategy.

Keywords: modular prover combination, analytic tableaux, verification of hybrid sys-
tems, dynamic logic

1 Introduction

Safety-critical systems occurring in traffic scenarios [9, 27] often are hybrid sys-
tems [17, 11], i.e., they combine discrete and continuous behaviour. Discrete
behaviour typically originates from a digital controller, which regulates driving
and switches to various modes in order to react to changes in the traffic situ-
ation. Continuous behaviour is more inherent in the physical process dynamics
and results from continuous changes of quantities such as positions over time.
Models to describe interacting dynamics use differential equations for continuous
evolution and use discrete jumps for discrete state changes [17, 24, 20].

Most verification tools for hybrid systems such as HyTech [3], CheckMate [25],
or PHAVer [14], follow the model checking paradigm [7] and work by successive
computation of images under hybrid transitions [23].

Because of intricacies of complex continuous dynamics, numerical issues dur-
ing computations, and general limits of numerical approximation [23], hybrid
system model checkers are still much more successful in falsification than in ver-
ification. In this work, we are primarily interested in verifying hybrid systems
rather than finding bugs. Consequently, we favour a fully symbolic technique,
and we follow a deductive approach. Further, unlike model checking, deductive
techniques support free parameters [11, 20], which occur in our applications.

We have introduced a family of logics for deductive verification of hybrid
systems [20, 22, 21]. We have introduced [20] a dynamic logic dL and a calculus

? This research was supported by the German Research Council (DFG) as part of the Transregional
Collaborative Research Center (SFB/TR 14 AVACS, see www.avacs.org).

Combining Deduction and Algebraic Constraints for Hybrid System Analysis 165

for verifying hybrid systems. We have also presented [22] an extension with
nominals to investigate compositionality. Moreover, we have introduced [21] a
temporal extension for verifying correct behaviour at intermediate states.

While the theoretical background and technical details of our approach can
be found in [20, 22, 21], here we discuss the practical aspects of combining de-
duction and algebraic constraints techniques. In particular, we highlight the
principles how both techniques interact for verifying hybrid systems. For this,
we analyse the degrees of freedom in implementing our calculus in terms of the
nondeterminisms of our proof procedure. We illustrate the impact that various
choices of proof strategies have on the overall performance. For hybrid system
verification, we observe that the nondeterminisms in the interaction between de-
ductive and real algebraic reasoning have considerable impact on the practical
feasibility. In this paper, we analyse and explain the causes and consequences of
this effect and propose a proof strategy that avoids these complexity pitfalls.

In this paper, we study the modular combination in the dL calculus. Our
observations are of more general interest, though, and we conjecture that similar
results hold for other tableaux prover combinations of logics with interpreted
function symbols that are handled using background decision procedures for
computationally expensive theories including real arithmetic, approximations of
natural arithmetic, or arrays.

Related Work. There are a selected number of logics dedicated to hybrid sys-
tems [24, 11, 28]. They focus on other aspects like topological aspects [11] or
parallel composition [24], and they do not provide calculi with a constructive
integration of arithmetic reasoning that can be used easily for practical verifica-
tion. Our calculus, however, can be used for verifying actual operational hybrid
system models [20, 21], which is of considerable practical interest [9, 27, 17, 11].

A few other approaches [19, 1] use deduction for verifying hybrid systems
and actually integrate arithmetic reasoning in STeP [19] or in PVS [1], respec-
tively. Their working principle is, however, quite different from ours. Given a
hybrid automaton [17] and a global system invariant, they compile, in a single
step, a verification condition expressing that the invariant is preserved under all
transitions of the hybrid automaton. Hence, the hybrid aspects and transition
structure vanish completely before the deduction even start. All that remains
is a quantified mathematical formula. In contrast, our dynamic logic works by
symbolic decomposition and preserves the transition structure during the proof,
which simplifies traceability of results considerably. The structure in this sym-
bolic decomposition can be exploited for deriving invariants or parametric con-
straints [20, 21]. Consequently, in dL, invariants do not necessarily need to be
given beforehand.

Several other approaches combine deductive and arithmetic reasoning, e.g. [6,
2]. Their focus, however, is on general mathematical reasoning in classes of

166 André Platzer

higher-order logic and is not tailored to verify hybrid systems. Our work, in-
stead, is intended to make practical verification of hybrid systems possible. For
a discussion of work related to the logic dL itself, we refer to [20].

Structure of this Paper. In Section 2, we summarise the syntax, semantics,
and calculus of the differential logic dL, that we introduced [20]. In Section 3,
we report on the kind of applications that we are interested in, and we illustrate
typical proof tasks. In Section 4, we analyse the principles how the dL calculus
combines deductive with algebraic reasoning and illustrate the consequences of
various proof strategies in our applications from Section 3. Finally, we draw
conclusions and discuss future work in Section 5.

2 Differential Logic

In this section, we briefly recapitulate the differential logic dL that we have
introduced [20] and point out the characteristic traits of dL. We only develop
the theory as far as necessary and refer to [21, 20, 22] for more background. The
logic dL is a dynamic logic [16] with programs extended to hybrid programs [20].

The principle of dynamic logic [16] is to combine system operations and cor-
rectness statements about system states within a single specification language.
By permitting system operations α as actions of a labelled multi-modal logic,
dynamic logic provides formulas of the form [α]φ and 〈α〉φ, where [α]φ expresses
that all (terminating) runs of system α lead to states in which condition φ holds.
Likewise, 〈α〉φ expresses that there is at least one (terminating) run of α after
which φ holds. In dL, hybrid programs play the role of α.

Hybrid programs generalise discrete programs to hybrid change. In addition
to the operations of discrete while programs, they have continuous evolution
along differential equations as a fundamental operation. For example, the evo-
lution of a train with constant braking can be expressed with a system action
for the differential equation z̈ = −b with second time-derivative z̈ of z.

2.1 Syntax of Differential Logic

Terms and Formulas. The formulas of dL are built over a finite set V of real-
valued variables and a signature Σ containing the usual function and predicate
symbols for real arithmetic, such as 0, 1,+, ·,=,≤, <,≥, >. Observe that there
is no need to distinguish between discrete and continuous variables in dL.

The set Trm(V) of terms is defined as in classical first-order logic yield-
ing polynomial expressions. The set Fml(V) of formulas of dL is defined as in
first-order dynamic logic [16]. That is, they are built using propositional connec-
tives ∧,∨,→,¬ and quantifiers ∀,∃ (first-order part). In addition, if φ is a dL
formula and α a hybrid program, then [α]φ, 〈α〉φ are formulas (dynamic part).

Combining Deduction and Algebraic Constraints for Hybrid System Analysis 167

Hybrid Programs. In dL elementary discrete jumps and continuous evolutions
interact using regular control structure to form hybrid programs.

Definition 1 (Hybrid programs). The set HP(V) of hybrid programs is
inductively defined as the smallest set such that

– If x ∈ V and θ ∈ Trm(V), then (x := θ) ∈ HP(V).
– If x ∈ V , θ ∈ Trm(V), then (ẋ = θ) ∈ HP(V).
– If χ ∈ Fml(V) is a quantifier-free first-order formula, then (?χ) ∈ HP(V).
– If α, β ∈ HP(V) then (α; β) ∈ HP(V).
– If α, β ∈ HP(V) then (α ∪ β) ∈ HP(V).
– If α ∈ HP(V) then (α∗) ∈ HP(V).

The effect of x := θ is a discrete jump in state space by an instantaneous assign-
ment. That of ẋ = θ is an ongoing continuous evolution controlled by the differ-
ential equation ẋ = θ. Systems of differential equations, higher-order derivatives,
and evolution invariant regions [20] are defined accordingly.

The test action ?χ is used to define conditions. Its semantics is that of a
no-op if χ is true in the current state, and that of a failure divergence blocking
all further evolution, otherwise. The non-deterministic choice α ∪ β, sequential
composition α; β and non-deterministic repetition α∗ of hybrid programs are as
usual. They can be combined with ?χ to form other control structures, see [16].

2.2 Semantics of Differential Logic

The interpretations of dL consist of states assigning real values to state vari-
ables, which progress along a sequence of states. A potential behaviour of a
hybrid system corresponds to a sequence of states that contain the observable
values of system variables during its hybrid evolution. The semantics of a hybrid
program α is captured by the state transitions that are possible by running α.

A state is a map ν : V → R; the set of all states is denoted by Sta(V).
Further, we use ν[x 7→ d] to denote the modification of a state ν that is identical
to ν except for the interpretation of the symbol x, which is d ∈ R.

For discrete operations, the semantics, ρ(α), of hybrid program α as a state
transition relation in dL is as customary in dynamic logic (Def. 3). For con-
tinuous evolutions, the transition relation holds for pairs of states that can be
interconnected by a continuous system flow respecting the differential equation.

Definition 2 (Valuation of terms and formulas). For terms and formulas,
the valuation val(ν, ·) with respect to state ν is defined as usual for first-order
modal logic (e.g. [16]), i.e., using the following definitions for modal operators

1. val(ν, [α]φ) = true :⇐⇒ val(ω, φ) = true for all ω with (ν, ω) ∈ ρ(α)
2. val(ν, 〈α〉φ) = true :⇐⇒ val(ω, φ) = true for some ω with (ν, ω) ∈ ρ(α)

168 André Platzer

Definition 3 (Semantics of hybrid programs). The valuation, ρ(α), of a
hybrid program α, is a transition relation on states. It specifies which state ω is
reachable from a state ν by operations of the hybrid system α and is defined as

1. (ν, ω) ∈ ρ(x := θ) :⇐⇒ ω = ν[x 7→ val(ν, θ)]
2. (ν, ω) ∈ ρ(ẋ = θ) :⇐⇒ there is a function f : [0, r] → Sta(V) with r ≥ 0 such

that f(0) = ν, f(r) = ω, and val(f(ζ), x) is continuous in ζ on [0, r] and
has a derivative of value val(f(ζ), θ) at each time ζ ∈ (0, r). For y 6= x
and ζ ∈ [0, r], val(f(ζ), y) = val(ν, y). Systems of differential equations are
defined accordingly.

3. ρ(?χ) = {(ν, ν) : val(ν, χ) = true}
4. ρ(α; β) = ρ(α)◦ρ(β) = {(ν, ω) : (ν, z) ∈ ρ(α), (z, ω) ∈ ρ(β) for some state z}
5. ρ(α ∪ β) = ρ(α) ∪ ρ(β)
6. (ν, ω) ∈ ρ(α∗) iff there are n ∈ N and ν=ν0, . . . , νn=ω with (νi, νi+1) ∈ ρ(α)

for all 0 ≤ i < n.

2.3 A Calculus for Differential Logic

In this section, we briefly review the dL sequent calculus that we introduced [20].
It can be used for verifying hybrid systems in dL. With the basic idea being to
perform a symbolic evaluation, it successively transforms hybrid programs into
logical formulas describing their effects.

The dL calculus combines deduction and handling of real algebraic con-
straints modularly. Simply speaking, the purely deductive part of the dL calculus
handles the discrete part, whereas the continuous part is tackled by real alge-
braic constraint techniques. On this basis, hybrid system behaviour of interacting
discrete-continuous dynamics is handled by a modular calculus combination [20].

The dL sequent calculus is summarised in Fig. 1. A sequent is of the form
Γ ` ∆, where Γ and ∆ are finite sets of formulas. Its semantics is that of the
formula

∧
φ∈Γ φ →

∨
ψ∈∆ ψ. Sequents will be treated as an abbreviation. As

usual in sequent calculus—although the direction of entailment is from premisses
(above rule bar) to conclusion (below)—the order of reasoning is goal-directed :
Rules are applied in tableau-style, that is, starting from the desired conclusion
at the bottom (goal) to the premisses (sub-goals).

The rule schemata in Fig. 1 can be applied anywhere in the sequent, in
particular after adding an arbitrary context Γ,∆, see [20] for details. Moreover,
the symmetric schemata D1–D10 can be applied on either side of the sequent.
Finally, in D7 and D8, the schematic modality 〈[·]〉 stands for either [·] or 〈·〉.

For propositional logic, standard rules P1–P9 are listed in Fig. 1. The other
rules transform hybrid programs into simpler logical formulas, thereby relating
the meaning of programs and formulas. Rules D1–D7 are as in discrete dynamic
logic [16, 5]. D8 uses generalised substitutions [5] for handling discrete change.
Unlike in uninterpreted first-order logic [13], quantifiers are dealt with using

Combining Deduction and Algebraic Constraints for Hybrid System Analysis 169

(P1)
` φ
¬φ `

(P2)
φ `
` ¬φ

(P3)
φ ` ψ
` φ→ ψ

(P4)
φ, ψ `
φ ∧ ψ `

(P5)
` φ ` ψ
` φ ∧ ψ

(P6)
` φ ψ `
φ→ ψ `

(P7)
φ ` ψ `
φ ∨ ψ `

(P8)
` φ, ψ
` φ ∨ ψ

(P9)
φ ` φ

(D1)
φ ∧ ψ
〈?φ〉ψ

(D2)
φ→ ψ

[?φ]ψ

(D3)
〈α〉φ ∨ 〈γ〉φ
〈α ∪ γ〉φ

(D4)
[α]φ ∧ [γ]φ

[α ∪ γ]φ

(D5)
φ ∨ 〈α;α∗〉φ

〈α∗〉φ

(D6)
φ ∧ [α;α∗]φ

[α∗]φ

(D7)
〈[α]〉〈[γ]〉φ
〈[α; γ]〉φ

(D8)
φθ

x

〈[x := θ]〉φ

(D9)
∃t≥0 〈x := yx(t)〉φ

〈ẋ = θ〉φ

(D10)
∀t≥0 [x := yx(t)]φ

[ẋ = θ]φ

(D11)
` p ` [α∗](p→ [α]p)

` [α∗]p

(F1)
QE(∀x

V
i(Γi ` ∆i))

Γ ` ∆, ∀xφ

(F2)
QE(∀x

V
i(Γi ` ∆i))

Γ, ∃xφ ` ∆

(F3)
QE(∃x

V
i(Γi ` ∆i))

Γ ` ∆, ∃xφ

(F4)
QE(∃x

V
i(Γi ` ∆i))

Γ, ∀xφ ` ∆

Rule D8 is only applicable if the substitution of x by θ in φθ
x introduces no new bindings. In D9–D10, t

is a fresh variable, and, for any v, yv is the solution of the initial value problem (ẋ = θ, x(0) = v).
In F1–F4, x does not occur in Γ,∆. Further, the Γi ` ∆i are obtained from the resulting sub-goals of
a side deduction. The side deduction is started from the goal Γ ` ∆,φ at the bottom (or Γ, φ ` ∆ for
F2 and F4). In the resulting sub-goals Γi ` ∆i, variable x is assumed to occur in first-order formulas
only, as quantifier elimination (QE) is then applicable.

Fig. 1: Rule schemata of the dL verification calculus.

quantifier elimination [8] over the reals (QE in F1–F4) in a way that is compatible
with dynamic modalities. D9–D10 handle continuous evolution given a first-order
definable flow yx for the differential equation ẋ = θ with symbolic initial value x.
D11 is an induction schema with inductive invariant p.

At this point, the full details of how F1–F4 use side deductions to lift quan-
tifier elimination to dynamic logic are not important (they can be found in [20]).
What is important to note, however, is that quantifier rules and rules for han-
dling modalities need to interact because the actual constraints on quantified
symbols depend on the effect of the hybrid programs within modalities [20].
Thus, at some point, after a number of rule applications that handle the dy-
namic part, rules F1–F4 will be used to discharge (or at least simplify) a proof
obligation over real algebraic or semialgebraic constraints by quantifier elimina-
tion [8]. The remaining sub-goals will be analysed further again using dynamic
rules. The rules F1–F4 constitute the modular interface that combines deduc-
tion for handling dynamic reasoning with algebraic constraint techniques for
handling continuous reasoning about R. We discuss the consequences and prin-
ciples of this combination in Section 4 and analyse proof strategies.

170 André Platzer

3 Analysis of the European Train Control System

In this section, we report on the applications in safety-critical system verification
that we verify in the dL calculus, see [21, 20]. We illustrate the typical kinds
of proof obligations that occur during our deductive analysis of such hybrid
systems. Our experience with verifying these applications forms the basis for our
analysis of prover combinations and will be used for illustration in Section 4.

Train Control Applications. In the European Train Control System (ETCS) [9,
20], trains are only allowed to move within their current movement authority
block (MA). When their MA is not extended before reaching its end, trains al-
ways have to stop within the MA because there can be open gates or other trains
beyond. Here, we identify a single component which is most responsible for the
hybrid characteristics of safe driving. The speed supervision is responsible for
locally controlling the movement of a train such that it always remains within
its MA. Depending on the current driving situation, the speed supervision de-
termines a safety envelope s around the train, within which driving is safe, and
adjusts its acceleration a in accordance with s (called correction in [9]).

We assume that an MA has been granted up to track position m and the
train is located at position z, heading with initial speed v towards m. In this
situation, dL can verify safety properties of speed supervision of the form

ψ → [(corr ; drive)∗]z ≤ m (1)

where corr ≡ (?m− z < s; a :=−b) ∪ (?m− z ≥ s; a := . . .)

drive ≡ τ := 0; (ż = v, v̇ = a, τ̇ = 1; ?v ≥ 0 ∧ τ ≤ ε)

ψ ≡ v2 ≤ 2b(m− z) ∧ b > 0 ∧ ε > 0 . (2)

It expresses that a train will always remain within its MA m, assuming a con-
straint ψ for the parameters. In corr , the train corrects its acceleration or brakes
with force b (as a failsafe recovery manoeuvre [9]) on the basis of the remaining
distance (m−z). Then, the train continues moving according to drive. There, the
position z of the train evolves according to the system ż = v, v̇ = a (i.e., z̈ = a).
The evolution stops when the speed v drops below zero (or earlier). Simulta-
neously, clock τ measures the duration of the current drive phase before the
controllers react to situation changes (we model this to bridge the gap of con-
tinuous-time models and discrete-time control design). Clock τ is reset to zero
when entering drive, constantly evolves along τ̇ = 1, and is bound by the invari-
ant region τ ≤ ε. The effect is that a drive phase is interrupted for reassessing
the driving situation after at most ε seconds, and the corr; drive loop repeats.

Parameter Constraint Discovery. In addition to proof tasks for safety verifica-
tion, the dL approach is also useful for parameter constraint discovery. That is,

Combining Deduction and Algebraic Constraints for Hybrid System Analysis 171

ψ ` [α]φ

Deductive
Prover

QE(Φ)

Φ

R-Algebraic
Elimination

key

QE(key)

Fig. 2: Prover combination of deduction and algebraic constraint elimination.

instead of starting with a concrete instantiation for ψ in formula (1), the dL cal-
culus can be used to identify the required constraints ψ on the free parameters
of (1) during the proof. In particular, the constraint ψ in (2) has been discovered
by a (semi)automatic discovery process with the dL calculus [20].

Finding Inductive Invariants. As a related proof task, the dL calculus can be
useful for identifying inductive invariants that D11 needs during a proof [20] by
analysing partial proofs of individual cases.

4 Combining Deduction and Algebraic Constraints

4.1 Modular Combination of Provers

The principle how the dL calculus in Fig. 1 combines deduction technology
with methods for handling real algebraic constraints complies with the general
background reasoning principles [4, 26, 12]. Unlike in the approaches of Dowek
et al. [12] and Tinelli [26], the information given to the background prover is
not restricted to ground formulas [26] or to atomic formulas as in [12]. From an
abstract perspective, the dL calculus selects a set Φ of (quantified) formulas from
an open branch (Φ is called key) and hands it over to the quantifier elimination
procedure. The resulting formula obtained by applying QE to Φ is then returned
to the main sequent prover as a result, and the main proof continues, see Fig. 2.

In this context, the propositional rules and D-rules (D1–D11) constitute the
foreground rules in the main prover (left box of Fig. 2) and the arithmetic rules
F1–F4 form the set of rules that invoke the background prover (right box).

The tableaux procedure [13] for the dL calculus is presented in Fig. 3. Ob-
serve that the tableaux procedure for our dL calculus has a modified set of
nondeterministic steps (indicated by B, M, and F , respectively in Fig. 4):

B: selectBranch, i.e., which open branch to choose for further rule applications.
M: selectMode, i.e., whether to apply foreground dL rules (P1–P9 and D1–D11)

or background arithmetic rules (F1–F4).
F : selectFormula, i.e., which formula(s) to select for rule applications from the

current branch in the current mode.

172 André Platzer

while tab leaux T has open branches do
B := se l ec tBranch (T) (∗ B−nondeterminism ∗)
M := se lectMode (B) (∗ M−nondeterminism ∗)
F := se l ec tFormu las (B,M) (∗ F−nondeterminism ∗)
i f M = foreground then

B2 := r e s u l t o f apply ing a D−r u l e or P−r u l e to F in B
r ep l a c e B by B2 in T

else
send key F to background d e c i s i o n procedure QE
receive r e s u l t R from QE
apply a ru l e F1−F4 to T with QE−r e s u l t R

end i f
end while

Fig. 3: Tableaux procedure for dL.

ψ ` [α]φ

F
M

B
Deductive Prover

QE(Φ)

Φ

R-Algebraic
Elimination

M

Fig. 4: Nondeterminisms in the tableaux procedure for dL.

A further, but minor, nondeterminism is whether to expand loops using D6 or
to go for an induction by D11. The other dL rules do not produce any conflicts
once a formula has been selected as they apply to formulas of distinct structures.

At this point, notice that, unlike the classical tableaux procedure [13], we
have three rather than four points of nondeterminism, since dL does not need
closing substitutions. The reason for this is that dL has an interpreted domain.
Rather than having to try out instantiations that have been determined by
unification as in uninterpreted first-order logic [13], we can make use of the
structure in the interpreted case of first-order logic over the reals. In particular,
arithmetic formulas can be reduced equivalently by QE to simpler formulas in the
sense that the quantified symbols no longer occur. As this transformation is an
equivalence, there is no loss of information and we do not need to backtrack [13]
or simultaneously keep track of multiple local closing instantiations [15].

Despite this, the influence of nondeterminism on the practical prover per-
formance is remarkable. Even though the theory of real arithmetic is decidable
by quantifier elimination [8], its complexity is doubly exponential in the number
of quantifier alternations [10]. While more efficient algorithms exist for linear
fragments [18], the practical performance is an issue in nonlinear cases. The
computational cost of individual rule applications is quite different from the
linear complexity of applying closing substitutions in uninterpreted tableaux.

Combining Deduction and Algebraic Constraints for Hybrid System Analysis 173

In principle, exhaustive fair application of background rules by the nondeter-
minismsM and F remains complete for appropriate fragments of dL. In practice,
however, the complexity of real arithmetic quickly makes this näıve approach
infeasible. In the remainder of this section, we discuss the consequences of the
nondeterminisms and sketch guidelines to overcome the combination problems.

4.2 Nondeterminisms in Branch Selection

In classical uninterpreted tableaux, branch selection has no impact on complete-
ness but can have impact on the proving duration as closing substitutions can
sometimes be found much earlier on one branch than on the others. In the inter-
preted case of dL, branch selection is even less important. As dL has no closing
substitutions, there is no direct interference among multiple branches. Branches
with (explicitly or implicitly) universally quantified variables have to be closed
independently, hence the branch order is not important. For instance, when x is
an implicitly universally quantified variable, the branches in the following proof
can be handled separately (branches are implicitly combined by conjunction and
universal quantifiers distribute over conjunctions):

QE(∀x . . .)
F1Γ, b > 0 ` bx2 ≥ 0

QE(∀x . . .)
F1Γ, b > 0 ` bx4 + x2 ≥ 0

P5 Γ, b > 0 ` (bx2 ≥ 0 ∧ bx4 + x2 ≥ 0)

For existentially quantified variables, the situation is a bit more subtle as
multiple branches interfere indirectly in the sense that a simultaneous solution
needs to be found for all branches at once. In ∃v (v > 0 ∧ v < 0), for instance,
the two branches resulting from the cases v > 0 and v < 0 cannot be handled
separately as the existential quantifier claims the existence of a simultaneous
solution for v > 0 and v < 0, not two different solutions. Thus, when v is an
implicitly existentially quantified variable, the branches in the following proof
need to synchronise before quantifier elimination is applied:

QE(∃v . . .)
b > 2 ` b(v − 1) > 0

D8b > 2 ` [v := v − 1]bv > 0
b > 2 ` (v + 1)2 + bε(v + 1) > 0

D8b > 2 ` [v := v + 1]v2 + bεv > 0
b > 2 ` ([v := v − 1]bv > 0 ∧ [v := v + 1]v2 + bεv > 0)

The order in which the intermediate steps at two branches are handled has no
impact on the proof. Branches like these synchronise on an existential variable v
in the sense that all occurrences of v need to be first-order for quantifier elimina-
tion to work. Consequently, the only fairness assumption for B is that whenever
a formula of a branch is selected that is waiting for synchronisation with another
branch to become first-order, then it propagates its rule application to the other

174 André Platzer

branch. In the above case the left branch synchronises with the right branch
on v. Hence, rule F3 can only be applied to b(v − 1) > 0 on the left branch after
D8 has been applied on the right branch to yield first-order occurrences of v.

4.3 Nondeterminisms in Formula Selection

In background proving mode, it turns out that nondeterminism F is important
for the practical performance. When a branch closes or, at least, can be simplified
significantly by a quantifier elimination call, then the running time of a single
decision procedure call seems to depend strongly on the number of irrelevant
formulas that are selected in addition to the relevant ones by F .

Clearly, when Φ is a set of formulas that yields a tautology such that ap-
plying F1–F4 closes a branch, then selecting any superset Ψ ⊇ Φ of Φ from a
branch yields the same answer in the end (a sequent forms a disjunction of its
formulas hence it can be closed to true when any subset closes). However, the
running time until this result will be found in the larger Ψ is strongly disturbed
by the presence of complicated additional but irrelevant formulas. From our ex-
perience with Mathematica, decision procedures for full real arithmetic seem to
be distracted considerably by such irrelevant additional information.

Yet, such additional information accumulates in tableaux procedures quite
naturally, because the purpose of a proof branch in dL is to keep track of all
that is known about a particular (symbolic) case of the system behaviour. Gen-
erally, not all of this knowledge finally turns out to be relevant for that case
but only plays a role in other branches. Nevertheless, throwing away part of this
knowledge light-heartedly would, of course, endanger completeness.

For instance, the safety statement (1) in Section 3 depends on a constraint
on the safety envelope s that regulates braking versus acceleration by the con-
dition m− z ≥ s in corr . A maximal acceleration of a is permitted in case
m− z ≥ s, when adaptively choosing s depending on the current speed v, max-
imum braking force b, and maximum controller response time ε in accordance
with the following constraint (which can be discovered by the dL calculus [20]):

s ≥ v2

2b
+

(a
b

+ 1
) (a

2
ε2 + εv

)
. (3)

This constraint is necessary for some but not for all cases of the safety analysis,
though. In the case where the braking behaviour of ETCS is analysed, for in-
stance, the constraint on s is irrelevant, because braking is the safest operation
that a train can do to avoid crashing into preceding trains. The unnecessary
presence of several quite complicated constraints like, for instance, (3), however,
can distract quantifier elimination procedures considerably.

A possible solution for this is to iteratively consider more formulas of the
sequent and attempt decision procedure calls. There, only those additional for-
mulas need to be considered that share variables with any of the other selected

Combining Deduction and Algebraic Constraints for Hybrid System Analysis 175

formulas. Further, timeouts can be used to discontinue lengthy decision proce-
dure calls and continue along other choices of the nondeterminisms in Fig. 3. For
complicated cases with a prohibitive complexity, this heuristic process, which we
followed manually, worked well on our examples.

4.4 Nondeterminisms in Mode Selection

In its own right, nondeterminism M has less impact on the prover performance
than F . Every part of a branch could be responsible for closing it. In particular,
the foreground closing rule P9 of the main prover can only close branches for
comparatively trivial reasons like b > 0, ε > 0 ` ε > 0. Hence, mode selection has
to give a chance to the background procedure every once in a while, following
some fair selection strategy. From the observation that some decision procedure
calls can run for hours without terminating, we can see, however, that M needs
to be devised with considerable care.

As the reason for closing a branch can be hidden in any part of the sequent,
some expensive decision procedure calls can be superfluous if the branch can
be closed by continuing dL reasoning on the other parts. For instance, if F
is some complicated algebraic constraint, decision procedure calls triggered by
nondeterminism M can lead to nontermination within any feasible time for

. . . , ε > 0,m− z ≥ s ` F, [drive]ε > 0, . . .

Instead, if M chooses foreground rules, then an analysis of [drive]ε > 0 by dL
rules will quickly discover that the maximum reaction-time ε remains constant
while driving. Then, this part of the induction step closes without the need to
solve constraint F at all. For this reason, proof strategies that eagerly check for
closing branches by background procedure calls are not successful in practice.

Unfortunately, converse strategies that strongly favour foreground dL rule
applications in M, are not appropriate either. There, splitting rules like P5
and P7 can eagerly split the problems onto multiple branches without necessarily
making them any easier to solve. If this happens, then slightly different but
similar arithmetic problems of about the same complexity need to be solved on
multiple branches rather than just one resulting in runtime blow-up.

The reason why this can happen is that there is a syntactic redundancy in
the sequent encoding of formulas. For instance, the sets of sequents before and
after the following rule application are equivalent:

P5
ψ ` v2 ≤ 2b(m− z) ψ ` ε > 0 ψ ` (z ≥ 0 → v ≤ 0)

ψ ` v2 ≤ 2b(m− z) ∧ ε > 0 ∧ (z ≥ 0 → v ≤ 0)

Yet, closing the three sequents above the bar by quantifier elimination is not
necessarily easier than the single sequent below (neither conversely). Even worse,

176 André Platzer

if the sequents close by applying rules to ψ, then similar reasoning has to be
repeated for three branches. This threefold reasoning may not be detected as
identical when ψ is again split differently on the three resulting branches.

Further, the representational equivalence in sequents is purely syntactic, i.e.,
up to permutation, the representations share the same disjunctive normal form.
In the uninterpreted case, this syntactic redundancy is exploited by the rules P1–
P9 in order to transform sequents towards a canonical form with atomic formu-
las, where partial closing situations are more readily identifiable. In the presence
of a background decision procedure, however, reduction to sequents with atomic
formulas is no longer necessary as it will be undone when handing the formulas
over to the background decision procedure.

Even worse, algebraic constraint handling techniques as in Mathematica can
come up with a result that is only a restated version of the input when a
selected (open) formula cannot be simplified or closed. For instance, the se-
quent z < m ` v2 ≤ 2b(m− z) “reduces” to ` b ≥ v2/(2m− 2z) ∨m ≤ z with-
out any progress. Such reformulation can easily lead to infinite proof loops when
the outcome is split by P8 and again handled by the background procedures.

4.5 Iterative Background Closure Strategy

As a strategy to solve the previously addressed issues, we propose the priorities
for rule applications in Fig. 5a (with rules at the top taking precedence over rules
at the bottom). In this strategy, algebraic constraints are left intact as opposed
to being split among multiple branches, because arithmetic rules have a higher
priority than propositional rules on first-order constraints. Further, the result of
the background procedure is only accepted when the number of variables has
decreased to avoid proof loops. Arithmetic background rules have priority 1 or 6.

The effect of using priority 1 is that branches are checked eagerly for closing
conditions or variable reductions. If reasoning about algebraic constraints does
not yield any progress (no variables can be eliminated), then dL rules further
analyse the system. For this choice, it is important to work with timeouts to
prevent lengthy decision procedure calls from blocking dL proof progress.

1. arithmetic rules F1–F4 if variable eliminated
2. propositional rules P1–P4, P8–P9 on modalities
3. dynamic rules D1–D4, D7–D8
4. dynamic evolution rules D9–D10
5. splitting rules P5–P7 on modalities
6. arithmetic rules F1–F4 if variable eliminated
7. propositional rules P1–P9 on first-order formulas

5a: Proof strategy priorities.

1

2 2

4 4

8 8

16 16 16

∗
∗

5b: Iterative background closure.

Combining Deduction and Algebraic Constraints for Hybrid System Analysis 177

This problem is reduced significantly when priority 6 is used for arithmetic
rules instead. The effect of priority 6 is that formulas containing modalities are
analysed as much as possible before arithmetic reasoning is applied to algebraic
constraint formulas. Then, however, the prover can again take too much time
analysing the effects of programs on branches which would already close due to
simple arithmetic facts like in ε > 0, ε < 0 ` [α]φ.

A simple compromise is to use a combination of background rules with pri-
ority 1 for quick linear arithmetic [18] and to fall back to expensive quantifier
elimination calls for nonlinear arithmetic with priority 6.

As a more sophisticated control strategy on top of the static priorities in
Fig. 5a, we propose iterative background closure (IBC). There, the idea is to
periodically apply arithmetic rules with a timeout T that increases by a factor
of 2 after background procedure runs have timed out, see Fig. 5b. Thus, back-
ground rules interleave with other rule applications (triangles in Fig. 5b), and
the timeout for the sub-goals increases as indicated until the background proce-
dure successfully eliminated variables on a branch (marked by ∗). The effect is
that the prover avoids splitting in the average case but is still able to split cases
when combined handling turns out to be prohibitively expensive.

5 Conclusions and Future Work

From the experience of using our dL calculus [20] for verifying parametric hybrid
systems in traffic applications, we have investigated combinations of deductive
and algebraic reasoning from a practical perspective. We have analysed the prin-
ciples of this prover combination, identified the nondeterminisms that remain in
the dL tableaux procedure, and analysed their impact. We have proposed proof
strategies that navigate among these nondeterminisms, including an iterative
background closure strategy. Similar to the huge importance of subsumption in
resolution, background-style tableaux proving requires quick techniques to rule
out branches closing for simple arithmetic reasons. In our preliminary experi-
ments with verifying cooperating traffic agents, our proof strategies significantly
reduced the number of interactions and the overall running time significantly.

Future work includes validation of the IBC strategy by experiments in other
case studies using a full implementation in our verification tool. Further, we
will develop techniques that guide the selection of algebraic constraints by term
weight and variable occurrence to discharge simple cases quickly.

Acknowledgements. I thank the anonymous referees for their helpful comments.

References

1. Ábrahám-Mumm, E., Steffen, M., Hannemann, U.: Verification of hybrid systems: Formalization
and proof rules in PVS. In: ICECCS, IEEE Computer Society (2001) 48–57

178 André Platzer

2. Adams, A., Dunstan, M., Gottliebsen, H., Kelsey, T., Martin, U., Owre, S.: Computer algebra
meets automated theorem proving: Integrating Maple and PVS. In Boulton, R.J., Jackson, P.B.,
eds.: TPHOLs. Volume 2152 of LNCS., Springer (2001) 27–42

3. Alur, R., Henzinger, T.A., Ho, P.H.: Automatic symbolic verification of embedded systems. IEEE
Trans. Software Eng. 22(3) (1996) 181–201

4. Beckert, B.: Equality and other theories. In D’Agostino, M., Gabbay, D., Hähnle, R., Posegga,
J., eds.: Handbook of Tableau Methods. Kluwer, Dordrecht (1999)

5. Beckert, B., Platzer, A.: Dynamic logic with non-rigid functions. In Furbach, U., Shankar, N.,
eds.: IJCAR. Volume 4130 of LNCS., Springer (2006) 266–280

6. Buchberger, B., Jebelean, T., Kriftner, F., Marin, M., Tomuta, E., Vasaru, D.: A survey of the
Theorema project. In: ISSAC. (1997) 384–391

7. Clarke, E.M., Grumberg, O., Peled, D.A.: Model Checking. MIT Press, Cambridge, USA (1999)
8. Collins, G.E., Hong, H.: Partial cylindrical algebraic decomposition for quantifier elimination. J.

Symb. Comput. 12(3) (1991) 299–328
9. Damm, W., Hungar, H., Olderog, E.R.: On the verification of cooperating traffic agents. In

de Boer, F.S., Bonsangue, M.M., Graf, S., de Roever, W.P., eds.: FMCO. Volume 3188 of LNCS.,
Springer (2003) 77–110

10. Davenport, J.H., Heintz, J.: Real quantifier elimination is doubly exponential. J. Symb. Comput.
5(1/2) (1988) 29–35

11. Davoren, J.M., Nerode, A.: Logics for hybrid systems. Proc. IEEE 88(7) (Jul 2000) 985–1010
12. Dowek, G., Hardin, T., Kirchner, C.: Theorem proving modulo. J. Autom. Reasoning 31(1)

(2003) 33–72
13. Fitting, M.: First-Order Logic and Automated Theorem Proving. Second edn. Springer (1996)
14. Frehse, G.: PHAVer: Algorithmic verification of hybrid systems past HyTech. In Morari, M.,

Thiele, L., eds.: HSCC. Volume 3414 of LNCS., Springer (2005) 258–273
15. Giese, M.: Incremental closure of free variable tableaux. In Goré, R., Leitsch, A., Nipkow, T.,

eds.: IJCAR. Volume 2083 of LNCS., Springer (2001) 545–560
16. Harel, D., Kozen, D., Tiuryn, J.: Dynamic logic. MIT Press (2000)
17. Henzinger, T.A.: The theory of hybrid automata. In: LICS, IEEE Computer (1996) 278–292
18. Loos, R., Weispfenning, V.: Applying linear quantifier elimination. Comput. J. 36(5) (1993)

450–462
19. Manna, Z., Sipma, H.: Deductive verification of hybrid systems using STeP. In Henzinger, T.A.,

Sastry, S., eds.: HSCC. Volume 1386 of LNCS., Springer (1998) 305–318
20. Platzer, A.: Differential dynamic logic for verifying parametric hybrid systems. In Olivetti, N.,

ed.: TABLEAUX. Volume 4548 of LNCS., Springer (2007) 216–232
21. Platzer, A.: A temporal dynamic logic for verifying hybrid system invariants. In Artemov, S.,

Nerode, A., eds.: LFCS. Volume 4514 of LNCS., Springer (2007) 457–471
22. Platzer, A.: Towards a hybrid dynamic logic for hybrid dynamic systems. In Blackburn, P.,

Bolander, T., Braüner, T., de Paiva, V., Villadsen, J., eds.: Proc., LICS International Workshop
on Hybrid Logic, HyLo 2006, Seattle, USA. Volume 174 of ENTCS. (Jun 2007) 63–77

23. Platzer, A., Clarke, E.M.: The image computation problem in hybrid systems model checking.
In Bemporad, A., Bicchi, A., Buttazzo, G., eds.: HSCC. Volume 4416 of LNCS., Springer (2007)
473–486

24. Rönkkö, M., Ravn, A.P., Sere, K.: Hybrid action systems. Theor. Comput. Sci. 290(1) (2003)
937–973

25. Silva, B.I., Richeson, K., Krogh, B.H., Chutinan, A.: Modeling and verification of hybrid dynam-
ical system using CheckMate. In: ADPM 2000. (2000)

26. Tinelli, C.: Cooperation of background reasoners in theory reasoning by residue sharing. J.
Autom. Reasoning 30(1) (2003) 1–31

27. Tomlin, C., Pappas, G.J., Sastry, S.: Conflict resolution for air traffic management: a study in
multi-agent hybrid systems. IEEE Transactions on Automatic Control 43(4) (April 1998) 509–521

28. Zhou, C., Ravn, A.P., Hansen, M.R.: An extended duration calculus for hybrid real-time systems.
In Grossman, R.L., Nerode, A., Ravn, A.P., Rischel, H., eds.: Hybrid Systems. Volume 736 of
LNCS., Springer (1992) 36–59

A Sequent Calculus for Integer Arithmetic with

Counterexample Generation

Philipp Rümmer

Department of Computer Science and Engineering,
Chalmers University of Technology and Göteborg University, Sweden

philipp@chalmers.se

Abstract. We introduce a calculus for handling integer arithmetic in first-order logic.
The method is tailored to Java program verification and meant to be used both as a sup-
porting procedure and simplifier during interactive verification and as an automated tool
for discharging (ground) proof obligations. There are four main components: a complete
procedure for linear equations, a complete procedure for linear inequalities, an incom-
plete procedure for nonlinear (polynomial) equations, and an incomplete procedure for
nonlinear inequalities. The calculus is complete for the generation of counterexamples
for invalid ground formula in integer arithmetic. All parts described here have been
implemented as part of the KeY verification system.

1 Introduction

We introduce a Gentzen-style sequent calculus for integer arithmetic that is
tailored to integrated automated and interactive Java software verification. The
calculus was developed for dynamic logic for the Java language [1, Chapter 3] (a
classical first-order logic) and integrates well-known as well as new algorithms,
with the goal to meet the following features:

– Simplification of arithmetic expressions or formulas with the goal to keep
everything small and readable. A calculus for this purpose should always
terminate and should not cause proof splitting; completeness is a secondary.

– Transparency and the ability to create human-readable proofs and sequences
of simplification steps, otherwise it is difficult for a user to resume interac-
tive proving after a number of automated proof steps. The fastest way to
understand a proof goal is often to look at the history that led to the goal.

– Handling of nonlinear arithmetic guided by the user, which is necessary for
programs that happen to contain multiplication or division operations. The
cost of interactive software verification should be justified by the ability to
also handle more complex programs than automatic tools.

– Generation of counterexamples for invalid formulas, which is useful during
specification and when proving with induction and invariants.

– Handling of the actual modular Java integers, which in our system is modelled
by a mapping to the mathematical integers [1, Chapter 12]. Reasoning in
this setting requires good support for simplifying expressions, for instance by

180 Philipp Rümmer

(implicitly) proving the absence of overflows. The methods that we developed
to this end are beyond the scope of the paper, but are based on the presented
calculus.

– Most importantly: it should be easy to use!

Only some of these points can be solved using external procedures and the-
orem provers (which are, nevertheless, extremely useful for dealing with simpler
proof obligations). As a complementary approach, we have developed a novel cal-
culus for integer arithmetic that is directly implemented in our theorem prover
KeY [1] in form of derived (i.e., verified) proof rules. The rules are deliberately
kept as elementary as possible and are here presented in sequent calculus nota-
tion. The calculus is driven by a proof strategy that controls the rule application
and realises the following components: (i) a simplification procedure that works
on single terms and formulas and is responsible for normalisation of polynomi-
als (Sect. 2), (ii) a complete procedure for systems of linear equations, based
on Gaussian elimination and the Euclidian algorithm (Sect. 3), (iii) a complete
procedure for systems of linear inequalities, based on Fourier-Motzkin variable
elimination (Sect. 4), (iv) an incomplete procedure for nonlinear (polynomial)
equations, based on Gröbner bases (Sect. 5), (v) an incomplete procedure for
nonlinear inequalities using cross-multiplication of inequalities and systematic
case analysis (Sect. 6).

The development of the method was mostly an engineering process with the
goal of handling cases that practically occur in Java program verification. It was
successful in the sense that many proofs that before only were possible with the
help of external provers can now be handled by KeY alone (e.g., the case study
[2]), and that many proofs that before were impossible have become feasible.

We do not consider quantifiers or uninterpreted functions in this paper. The
calculus is proof confluent (cf. [3]) and can basically be used in two different
modes: (i) for simplification, which disables the handling of nonlinear inequal-
ities, prevents case splits and guarantees termination (Procedure 4 in Sect. 5),
and (ii) for proving and countermodel construction, which enables all parts (Pro-
cedure 5 in Sect. 6).

Introductory example. We start with an example and show how the following
statement can be proven within our calculus (in the “full” mode):1

11a + 7b
.
= 1 ⊢ 〈 b=a*c-1; if (c>=a) a=a/b; 〉 true (1)

In Java dynamic logic, this sequent expresses that the program in angle brack-
ets terminates normally, i.e., in particular does not raise exceptions, given the
assumption 11a + 7b

.
= 1. A proof is conducted by rewriting the program follow-

ing the symbolic execution paradigm [4], whereby the calculus presented in this

1 On an Intel Pentium M processor with 1.6 GHz, the KeY implementation of the procedure needs
about 460 inference steps and 2 seconds to find this proof.

A Sequent Calculus for Integer Arithmetic with Counterexample Generation 181

· · ·

· · ·

5c
.
≥ −7e − 8, e

.
≤ −1, c

.
≤ −1, c

.
≥ 7e + 2, 7ce

.
= −2c + 1 ⊢

ce
.
≥ −c − e − 1, e

.
≤ −1, c

.
≤ −1, c

.
≥ 7e + 2, 7ce

.
= −2c + 1 ⊢

e
.
≤ −1, c

.
≤ −1, c

.
≥ 7e + 2, 7ce

.
= −2c + 1 ⊢

c
.
≤ −1, c

.
≥ 7e + 2, 7ce

.
= −2c + 1 ⊢

. . . , c
.
≥ 7e + 2, 7ce

.
= −2c + 1 ⊢

a
.
= 7e + 2, b

.
= −11e − 3, c

.
≥ 7e + 2 ⊢ 7ce + 2c − 1 6

.
= 0

a
.
= 7e + 2, b

.
= −11e − 3, c

.
≥ 7e + 2 ⊢ {b := 7ce + 2c − 1}〈 a=a/b; 〉 true

a
.
= 7e + 2, b

.
= −11e − 3 ⊢ {b := 7ce + 2c − 1}〈 if (c>=a) a=a/b; 〉 true

a
.
= 7e + 2, b

.
= −11e − 3 ⊢ {b := a · c − 1}〈 if (c>=a) a=a/b; 〉 true

a
.
= 7e + 2, b

.
= −11e − 3, d

.
= 3e + 1 ⊢ 〈 b=a*c-1; if (c>=a) a=a/b; 〉 true

3a
.
= 7d − 1, b

.
= −2a + d ⊢ 〈 b=a*c-1; if (c>=a) a=a/b; 〉 true

7b
.
= −11a + 1 ⊢ 〈 b=a*c-1; if (c>=a) a=a/b; 〉 true

11a + 7b
.
= 1 ⊢ 〈 b=a*c-1; if (c>=a) a=a/b; 〉 true

(13)

(12)

(11)

(10)

(9)

(8)

(7)

(6)

(5)

(4)

(3)

(2)

(1)

Fig. 1. Proof tree for the introductory example

paper is permanently applied on the path condition (in (1), 11a + 7b
.
= 1) and

the symbolic variable assignment (in (1), the identity).

The complete proof is shown in Fig. 1. As first step, all formulas are nor-
malised: we choose an arbitrary well-ordering <r on the variables in the problem
(a <r b <r c) and move big variables to the left and small variables to the right

of the relations
.
=,

.
≤,

.
≥, resulting in (2). We then concentrate on the equation

in (2), in order to (eventually) turn the leading coefficient 7 into a 1, by means of
the extended Euclidian algorithm (cf. [5]). A basis transformation is performed
that replaces b with a fresh variable d (such that a <r b <r c <r d). One can min-
imise the coefficient of 11a by choosing b

.
= −2a + d and replace the occurrence

of b in the original equation with −2a + d (afterwards, the equation is again
normalised, sequent (3)). Because the leading coefficient of the first equation is
still not 1, a second basis transformation a → 2d + e is performed (with d <r e).
This turns the leading coefficients of all equations into 1 (sequent (4)).

We can now leave out the equation d
.
= 3e + 1, because d does not occur in

the sequent anymore. No further inferences are possible in the path condition
and the first statement of the program is executed, updating the variable as-
signment accordingly (for simplicity, we assume that no overflows are possible).
The assignment b := 7ce + 2c − 1 is written in front of the program in (5) and
is rewritten and simplified using the equations in (6). The next program state-

ment causes the proof to split on the condition c
.
≥ a. One branch (c

.
< a) can

immediately be closed because the program contains no further statements. On
the other branch (7), we obtain a new assumption c

.
≥ a that can be simplified.

The execution of the last assignment yields a new proof obligation (8) in
order to prevent division by zero. We prove by contradiction and normalise the

182 Philipp Rümmer

new equation in (9) (and also leave out the first two equations, which are no
longer needed for the proof). Because all other possibilities fail in the resulting
situation, a case split on the sign of one of the “independent” variables c or e

is performed. Here, we will choose c and consider the cases c
.
≤ −1, c

.
= 0, and

c
.
≥ 1. The case c

.
= 0 contradicts 7ce

.
= −2c + 1, and the other two cases can be

handled in essentially the same way, so we show only the first one in (10).

By transitivity, from the two inequalities in (10) the inequality 7e + 2
.
≤ −1

can be derived, which is rounded to e
.
≤ −1 in (11). No further linear inference

steps are possible, but we can at this point deduce properties of product ce

by cross-multiplying the inequalities e
.
≤ −1 and c

.
≤ −1, which yields the new

inequality 0
.
≤ (−c − 1) · (−e − 1) in (12). After multiplying this inequality with

7, it can in (13) be rewritten using the equation 7ce
.
= −2c + 1 and turned into

−2c + 1
.
≥ 7 · (−c − e − 1).

Now, a contradiction can be derived by reasoning about linear inequalities.
From 5c

.
≥ −7e − 8 and c

.
≤ −1 we derive 7e

.
≥ −3, which is rounded to e

.
≥ 0

and a contradiction to e
.
≤ −1.

2 Normalisation of Arithmetic Expressions

Before starting a derivation and permanently during a proof, our calculus nor-
malises (atomic) formulas. This was already demonstrated in the introductory
example, and in a proof tree we denote such simplification steps with simp.
We always fully expand polynomial expressions and represent them as a sum
of monomials α1 · m1 + · · ·+ αn · mn, in which α1, . . . , αn are non-zero integer
literals and m1, . . . , mn are pairwise distinct products of variables (possibly 1
as the empty product, and possibly 0 as the empty sum). Full expansion is in
general obviously a bad idea, but we found that it is a reasonable approach in
interactive Java program verification that in the vast majority of cases improves
the readability of formulas.

Sorting Terms. We put polynomial expressions into a canonical form by ordering
the factors in a monomial and the monomials in a polynomial. The ordering <r

that is used in both cases is a strict monomial ordering [6, 7]:

– We assume that a graded monomial ordering <r [6, 7] on products of vari-
ables is given, i.e., a well-ordering (a total, well-founded ordering) with the
properties: (i) deg m < deg m′ implies m <r m′, and (ii) m <r m′ implies
x · m <r x · m′ for all variables x. In practice, we define <r as a graded
lexicographic ordering: we assume that a well-ordering <r on variables2 is
given and then define c1 · · · cn <r d1 · · · dk if and only if n < k or n = k and
{{c1, . . . , cn}} <r {{d1, . . . , dk}} (in the multiset extension of <r, cf. [9]).

2 In reality, instead of variables we have to deal with arbitrary terms whose head-symbol is not +
or ·, which are compared with a lexicographic path ordering [8].

A Sequent Calculus for Integer Arithmetic with Counterexample Generation 183

– We extend <r by constructing a well-ordering on integer literals: 0 <r 1 <r

−1 <r 2 <r −2 <r 3 <r · · · .
– We extend <r on monomials by α · m <r α′ · m′ if and only if m <r m′ or

m = m′ (modulo associativity and commutativity of ·) and α <r α′.
– We extend <r on polynomials by α1m1 + · · ·+ αnmn <r α′

1
m′

1
+ · · ·+ α′

k
m′

k

if and only if {{α1m1, . . . , αnmn}} <r {{α
′

1
m′

1
, . . . , α′

nm
′

n}} (again using the
multiset extension of <r).

For sake of brevity, we will also compare arbitrary terms with <r and im-
plicitly assume that the terms are first normalised.

Normalisation of Formulas. Atomic formulas are always written in the form
αs ∗ t with ∗ ∈ {

.
≤,

.
=,

.
≥}, employing equivalences like s

.
< t ⇔ s + 1

.
≤ t, and

transformed so that the left-hand side αs is the <r-greatest monomial of the
polynomial αs − t and α > 0. Furthermore, all inequalities are moved to the
antecedent, and in case αs − t is a constant polynomial an equation or inequality
is directly replaced with true or false.

We always demand that the coefficients of non-constant terms in an equation
or inequality are coprime (do not have non-trivial factors in common), and oth-
erwise divide all coefficients by the greatest common divisor. This also detects
that equations like 2y

.
= 1 − 6c are unsolvable and equivalent to false, and that

an inequality like 2y
.
≤ 1 − 6c can be simplified and rounded to y

.
≤ −3c thanks

to the discreteness of the integers.
Finally, we add a simple subsumption check for inequalities that eliminates

an inequality s
.
≤ t from the antecedent in case there is a second inequality

s
.
≤ t − β with β ≥ 0 (correspondingly for

.
≥).

3 Equation Handling: Gaussian Variable Elimination

In contrast to many decision procedures or SMT provers, equation and inequality
handling for integers are kept separate in our system. The initial reason for this
was that we believe that a reduction of equations to inequalities is not an option
for interactive proving. Much later we became aware that we also can design
more efficient, elegant and practical calculi for linear integer equations than for
inequalities, which afterwards justifies the decision. We believe that this is also
an important insight when working with the modular Java arithmetic, where
the handling of such equations is essential. The sequent calculus described in
this section is based on Gaussian elimination and the Euclidian algorithm.3 It
is complete, does not involve proof splitting, and is fast for all problems and
benchmarks that we so far have looked at.

3 The calculus is in parts inspired by [5, Chapter 4.5.2], but in contrast to [5] we perform both row
and column operations.

184 Philipp Rümmer

Row Operations. The primary rule of the calculus reduces an expression with
the help of an equation in the antecedent. The application of the rule is only
allowed if s′ is not a subterm of s

.
= t (u is an arbitrary term):4

Γ, s
.
= t ⊢ φ[s′ + u · (s − t)], ∆

Γ, s
.
= t ⊢ φ[s′], ∆

red
if s′ + u · (s − t) <r s′

Example 1. We show how the rules red and simp are used to solve a system of
linear equations (with the ordering x <r y):

∗
x

.
= −5, y

.
= −1 ⊢ x

.
= −5

3y
.
= x + 2, y

.
= −1 ⊢ x

.
= −5

red, simp

3y
.
= x + 2, 5y − (3y − x − 2)

.
= x ⊢ x

.
= −5

simp

3y
.
= x + 2, 5y

.
= x ⊢ x

.
= −5

red

Column Operations. It is well-known that this kind of reduction alone does
not yield a complete calculus for integer equations. An example is the formula
11a + 7b

.
= 1 in the introductory example, for which no reduction steps are possi-

ble. To obtain a complete calculus, we also perform column operations—referring
to the usual matrix representation of the Gaussian elimination method. Assum-
ing that no more applications of red are possible in a sequent, and given an
equation αx

.
= s of the antecedent, we introduce a fresh unknown x′ and perform

a basis transformation x → u + x′:

Γ, α · (u + x′)
.
= s, x

.
= u + x′ ⊢ ∆

Γ, αx
.
= s ⊢ ∆

col-red

if: x a variable, α > 1, (s − αu) = min<r
{s − αu′ | u′ a term},

x′ a fresh variable, <r-smaller than all previous symbols

The term u is chosen such that the difference s − αu becomes <r-minimal. One
subsequent application of simp will thus turn the new equation α(u + x′)

.
= s

into a formula βy
.
= t with β <r α. Likewise, βy is <r-smaller than the left-hand

sides of other equations β ′y = t′, because red was applied exhaustively prior to
col-red. This ensures the overall termination of the procedure (Lem. 1 below)
and allows to continue with reduction steps as long as linear equations are present
whose left-hand side has a non-unit-coefficient.

We do not apply the rule col-red to nonlinear equations, due to the expe-
rience that the basis transformations performed by col-red cause more harm
than good in the nonlinear setting. This is because the usage of a good monomial
ordering <r becomes far more important than in the linear setting (col-red

effectively alters the ordering by introducing a new smallest variable, possibly
in a harmful way). We further discuss this issue in Sect. 5.

4 In the rule, we write φ[s′] in the succedent to denote that the term s′ can occur in an arbitrary
position in the sequent, in particular also in the antecedent.

A Sequent Calculus for Integer Arithmetic with Counterexample Generation 185

Procedure 1. Apply simp with the highest priority, red with second-highest
priority, and col-red with the lowest priority.

Lemma 1. Procedure 1 terminates (for sequents containing arbitrary equations
and inequalities). For sequents that only contain linear equations, it is complete
and proof confluent.

Example 2. If a proof branch does not get closed by this procedure, the remain-
ing equations are an explicit description of all solutions (counterexamples) of
the equations:

x0

.
= 125x′′

3
− 4, x1

.
= 25x′′

3
− 1, x2

.
= 20x′′

3
− 1, x3

.
= 16x′′

3
− 1,

x′

0

.
= 16x′′

3
, x′

3

.
= −3x′′

3

⊢

....
x0

.
= 5x1 + 1, 4x1

.
= 5x2 + 1, 4x2

.
= 5x3 + 1 ⊢

The equations that define x′

0
and x′

3
can be removed afterwards, because these

symbols do not occur in the original problem and have no impact on its valid-
ity. A concrete counterexample is obtained by assigning arbitrary values to the
variables that only occur in the right-hand sides of equations (x′′

3
).

4 Handling of Linear Inequalities:
Fourier-Motzkin Variable Elimination and Case Splits

Although Fourier-Motzkin variable elimination (cf. [10]) generally has a high
complexity, it is one of the most popular methods to handle linear inequalities
and used in proof assistants like PVS [11], Coq [12] or ACL2 [13, 14]. We found
Fourier-Motzkin to be a suitable base method both for linear and nonlinear in-
equality handling: most reasoning during verification is rather shallow and most
inequalities only share symbols with a small number of other inequalities (sparse
constraints), which is a situation where Fourier-Motzkin works well. At the same
time, the Fourier-Motzkin elimination rule is suited for interactive proving due
to its simplicity and the fact that it directly works on integers, in contrast to
more efficient linear programming techniques. The full procedure given in this
section is complete over the integers, but it involves proof splitting and does usu-
ally not terminate for invalid sequents, which means that it cannot (directly) be
used as a simplifier for interactive proving. We therefore also identify a subset
of the method that does not cause splitting and always terminates, but which
is no longer complete (which hardly ever matters in practice). An example for
a program that can be verified using the incomplete procedure (together with
axioms for division, modulo and Java arithmetic) is shown in Fig. 2.

186 Philipp Rümmer

The Incomplete Procedure. As equations have already been handled in the previ-
ous section, we can implement Fourier-Motzkin with a single rule for “cancelling”
two inequalities:

Γ, αs
.
≥ t, βs

.
≤ t′, βt

.
≤ αt′ ⊢ ∆

Γ, αs
.
≥ t, βs

.
≤ t′ ⊢ ∆

fm-elim

if α > 0, β > 0

The resulting inequality βt
.
≤ αt′ does no longer contain the monomial s and is

therefore <r-smaller than both previous inequalities (after a subsequent appli-
cation of simp). To ensure termination, the rule must never be applied twice on
a proof branch to the same pair of inequalities.

The performance of Fourier-Motzkin can be improved by adding a rule that
turns two inequalities into an equation, based on the law of anti-symmetry:

Γ, s
.
= t ⊢ ∆

Γ, s
.
≤ t, s

.
≥ t ⊢ ∆

anti-symm

Procedure 2. Apply Procedure 1 (linear equations) with the highest priority,
the rule anti-symm with second highest priority and the rule fm-elim with
lowest priority.

Lemma 2. The procedure obtained in this way terminates when applied to a
sequent containing arbitrary equations and inequalities.

The Complete Procedure. Fourier-Motzkin is complete for rationals, but incom-
plete for integers. Our calculus is already more complete than pure Fourier-
Motzkin due to the normalisation from Sect. 2 (rounding of inequalities) and the
different equation handling of Procedure 1, which are enough to handle many
cases that occur in practice (e.g., to show the inconsistency of 4x

.
≥ 5 ∧ 4x

.
≤ 7).

Making the calculus actually complete has therefore not been of great impor-
tance for us. The following approach to this end is rather simplistic, but it has
a counterexample generation property that is practically more relevant.

Our calculus becomes complete by performing a systematic case analysis,
i.e., by doing proof splitting, in a way similar to Gomory’s cutting-planes (cf.
[10]). This is realised by the following rule for investigating the borderline case
of an inequality:

Γ, s
.
< t ⊢ ∆ Γ, s

.
= t ⊢ ∆

Γ, s
.
≤ t ⊢ ∆

strengthen

There is a corresponding rule for
.
≥. The application of these rules does obviously

not terminate in general, but it does for valid sequents (of linear inequalities),
provided that a fair application strategy5 is used and the rule is combined with

5 In the presence of subsumption checks (Sect. 2), we consider a strategy as fair if strengthen is
eventually applied to each inequality or to any subsuming inequality.

A Sequent Calculus for Integer Arithmetic with Counterexample Generation 187

/*@

@ normal_behavior
@ requires -Decimal.PRECISION < f && f < Decimal.PRECISION

@ && e + intPart < 32767 && -32768 < e + intPart;

@ requires -Decimal.PRECISION < decPart && decPart < Decimal.PRECISION;

@ modifiable intPart, decPart;

@ ensures intPart * Decimal.PRECISION + decPart ==

@ (\old(intPart) + e) * Decimal.PRECISION + \old(decPart) + f;

@ ensures -Decimal.PRECISION < decPart && decPart < Decimal.PRECISION;

@*/publi void add(short e, short f) {

intPart += e;if (intPart > 0 && decPart < 0) {

intPart--; decPart = (short)(decPart + PRECISION);

} else if (intPart < 0 && decPart > 0) {

intPart++; decPart = (short)(decPart - PRECISION); }

decPart += f;if (intPart > 0 && decPart < 0) {

intPart--; decPart = (short)(decPart + PRECISION);

} else if (intPart < 0 && decPart > 0) {

intPart++; decPart = (short)(decPart - PRECISION);

} else {short retenue = 0; short signe = 1;if (decPart < 0) {

signe = -1; decPart = (short)(-decPart); }

retenue = (short)(decPart / PRECISION);

decPart = (short)(decPart % PRECISION);

retenue *= signe; decPart *= signe; intPart += retenue;

} }

Fig. 2. Addition method of class Decimal taken from [15], where it was verified using the Loop tool
and PVS [11]. This method is part of the JavaCard Purse applet by Gemplus [16]. Using the KeY
implementation of our calculus, it takes about 200 seconds and 26000 rule applications to automatically
verify that the method adheres to its specification, reasoning about the modular arithmetic of Java.

Procedure 2. For an invalid sequent, a fair strategy eventually produces goals in
which all inequalities have been replaced with equations and where Procedure 1
can take over and produce a counterexample.

Case distinctions are also necessary to handle equations in the succedent:

Γ ⊢ s
.
≤ t, ∆ Γ ⊢ s

.
≥ t, ∆

Γ ⊢ s
.
= t, ∆

split-eq

Procedure 3. Apply Procedure 2 (the incomplete method) with the highest pri-
ority, the rule split-eq with second highest priority, and the rule strengthen

with lowest priority and in a fair manner.

Lemma 3. This procedure is complete and proof confluent, and it eventually
produces a counterexample for an invalid sequent.

188 Philipp Rümmer

Example 3. Consider the following example taken from [17]: Because Proce-

dure 2 is not able to derive a contraction, we apply strengthen to x
.
≤ 2

and obtain two cases x
.
= 1, x

.
= 2 (thanks to anti-symm), the second of which

leads to a counterexample:

∗

y
.
≥ 1, y

.
≤ 0, x

.
= 1 ⊢

fm-elim

....
4y

.
≥ x + 1, 4y

.
≤ x + 2, x

.
= 1 ⊢

y
.
= 1, x

.
= 2 ⊢

y
.
≥ 1, y

.
≤ 1, x

.
= 2 ⊢

anti-symm

....
4y

.
≥ x + 1, 4y

.
≤ x + 2, x

.
= 2 ⊢

....

4y
.
≥ x + 1, 4y

.
≤ x + 2, x

.
≤ 2, x

.
≥ 1 ⊢

strengthen

5 Handling of Nonlinear Polynomial Equations:

Pseudo-Reduction and Gröbner Bases

The validity of equations or inequalities over arbitrary (possibly nonlinear) poly-
nomials over the integers is known to be undecidable [18]. This means that all
rules and procedures that we give from now on can never be complete and have
been employed or developed with the aim of handling the common cases: when
verifying programs, a large amount of the occurring nonlinear proof obligations
can and should be taken care of automatically by incomplete calculi. The most
important step to this end is to normalise nonlinear expressions (Sect. 2). We
describe a comparatively cheap extension—that does not cause any proof split-
ting and is suited for interactive proving—of Procedure 1 to deal with nonlinear
equation.

Pseudo-Reduction. As in Sect. 3, the primary rule for rewriting with (non-
linear) equations is red. Because we do not apply the rule col-red to non-
linear equations, however, there are cases where equations αs

.
= t with α > 1

remain in the antecedent that cannot be simplified further. In the sequent
x

.
≥ 1, y

.
≥ 1, 2z2 .

= y ⊢ xz2
.
≤ xy, for instance, none of the rules so far can

be applied. In order to handle such cases, we introduce a further reduction rule
that is based on pseudo-division and works by first multiplying the target ex-
pression with a constant (cf. [5]). The rule must only be applied if αs

.
= t and

u · t
.
= αt′ are different equations:

Γ, αs
.
= t ⊢ φ[u · t

.
= αt′], ∆

Γ, αs
.
= t ⊢ φ[s′

.
= t′], ∆

pseudo-red
if deg s > 1, α > 1, s′ = u · s

There are similar rules for inequalities s′
.
≤ t′, s′

.
≥ t′. We apply pseudo-red

only if the left-hand side of the equation αs
.
= t is nonlinear and α > 1. Other-

wise, the normal reduction rule red can be used, possibly after turning α into
1 with help of col-red.

A Sequent Calculus for Integer Arithmetic with Counterexample Generation 189

Gröbner Bases. Rewriting with nonlinear equations using the rules red and
pseudo-red is not confluent and is not able to decide ideal membership in a ring
of polynomials. Ideal membership is an approximation of semantic entailment
of (nonlinear) equations that we can practically decide: we complete the set of
antecedent equations by computing a Gröbner basis [6].

The simplest way to generate a Gröbner basis is to saturate the antecedent
with “S-polynomial”-equations by considering all critical pairs of existing integer
equations—the Buchberger algorithm [6]. Our calculus produces a non-reduced
Gröbner basis over the field of rational numbers that only consists of polyno-
mial equations with integer coefficients, which are easier to compute and almost
as useful for reduction as actual Gröbner bases over the integers. Given two
equations with overlapping left-hand sides, S-polynomials are added as follows:

Γ, s
.
= t, s′

.
= t′, s′r · t

.
= sr · t

′ ⊢ ∆

Γ, s
.
= t, s′

.
= t′ ⊢ ∆

s-poly

s = gcd(s, s′) · sr,

s′ = gcd(s, s′) · s′r,
0 < deg sr < deg s,

0 < deg s′r < deg s′

Similarly to the Fourier-Motzkin elimination rule, this rule must not be applied
repeatedly for the same pair of equations to ensure termination. The performance
of this naive implementation of Buchberger’s algorithm is not comparable with
more advanced methods, of course. We have yet to find, however, a verification
problem where this would be a problem.

Procedure 4. Apply Procedure 1 (linear equations) with highest priority, the
rule pseudo-red with second highest priority, the rule s-poly with third highest
priority, and Procedure 2 (linear inequalities) with lowest priority.

Lemma 4. Procedure 4 terminates when applied to a sequent containing arbi-
trary equations and inequalities.

6 Handling of Nonlinear Polynomial Inequalities:
Cross-Multiplication and Case Splits

The handling of nonlinear polynomial inequalities is realised as an extension of
the linear inequality handling (Sect. 4). In order to apply linear reasoning to non-
linear arithmetic, we generate linear approximations of products and incremen-
tally strengthen the precision of the approximations through case distinctions.
Likewise, case splits are used to ensure the existence of linear approximations.
Our method has been developed as a heuristic, and we do not have an exact
description of the fragment of nonlinear arithmetic that it can handle. The main
application areas where the method has proven to be extremely useful are cor-
rectness proofs for lemma rules that can be loaded by the prover KeY [1], and
the verification of programs with the actual modular integer semantics of Java.

190 Philipp Rümmer

Similarly to the approach in ACL2 [14, 19] (and using their terminology), the
primary rule to handle nonlinear inequalities is cross-multiplication:

Γ, s
.
≤ t, s′

.
≤ t′, 0

.
≤ (t − s) · (t′ − s′) ⊢ ∆

Γ, s
.
≤ t, s′

.
≤ t′ ⊢ ∆

cross-mult

There are corresponding rules for
.
≥ and for mixed pairs of inequalities. As usual

in order to ensure termination, cross-mult must not be applied repeatedly to
the same pair of inequalities.

We can give a geometric interpretation of cross-multiplication: for two linear
inequalities x

.
≤ α, y

.
≤ β, cross-multiplication introduces a linear approximation

of the product (the bilinear term) xy. In this particular case, the right-hand side

of the new inequality xy
.
≥ βx + αy − αβ is the greatest plane that bounds the

expression xy from below (under the assumptions x
.
≤ α, y

.
≤ β). More generally,

the result of cross-multiplication is a bound on the value of a monomial in
terms of <r-smaller monomials. Deriving such bounds is, in practical cases,
often sufficient to prove statements in nonlinear arithmetic.

Restricting Cross-Multiplication. An unrestricted application of the rule cross-

mult can produce arbitrarily many inequalities and does not terminate. As a
heuristic, we only use cross-mult if the product s · s′ already occurs as a factor
within a left-hand side of an equation or inequality (ignoring the coefficient of
s · s′). Although this is not strong enough to ensure termination, it guarantees
that the total degree of occurring monomials is bounded. We found this heuristic
to work reasonably well for most cases (a counterexample is Ex. 5 below).

Case Splits. For two reasons, it is crucial to combine cross-multiplication with
case distinctions: (i) nonlinear monomials over the complete set of integers do
in general not have linear bounds (observe, for instance, that the term xy is not
bounded from above or below by any linear expression in x and y). (ii) case
distinctions are in general the only way to strengthen linear bounds (again,

consider the term xy under the assumptions x
.
≤ α, y

.
≤ β, for which no more

precise linear lower bound exists than βx + αy − αβ).

To account for (i), we introduce a rule that splits over the sign of the value
of a term. We apply this rule for variables x that occur in the left-hand side of
equations or inequalities:

Γ, x
.
< 0 ⊢ ∆ Γ, x

.
= 0 ⊢ ∆ Γ, x

.
> 0 ⊢ ∆

Γ ⊢ ∆
sign-cases

Ternary splits are motivated by the observation that the case x
.
= 0 usually

is easy to handle (significantly easier than the original problem), while at the

A Sequent Calculus for Integer Arithmetic with Counterexample Generation 191

same time a strict inequality x
.
> 0 appears to be of much greater use in cross-

multiplication than x
.
≥ 0 (and correspondingly for x

.
< 0). In our experience,

the rule sign-cases outperforms binary cuts.
Point (ii) is accommodated by using the rule strengthen from Sect. 4,

which we apply to linear inequalities in order to incrementally restrict the domain
of a variable. For the example above, after strengthening the inequality x

.
≤ α

to x
.
≤ α − 1, we can also derive a better bound βx + (α − 1)y − αβ + β for the

value of xy.

Procedure 5. Apply Procedure 4 (equations handling and the incomplete proce-
dure for linear inequalities) with the highest priority, the rule split-eq with sec-
ond highest priority, and the rules cross-mult, sign-cases and strengthen

with the lowest priority and in a fair manner.

Example 4. We give three further examples that can be proven using Proce-
dure 5 (the last two ones are taken from [14, 19]). In practice, it can often be
observed that Procedure 5 is able to solve nonlinear equational problems that
cannot be proven using Procedure 4 (only using Gröbner bases).

xy
.
= 0 ⊢ x

.
= 0, y

.
= 0 x2 .

= 2 ⊢ 0
.
< ab, 0

.
< cd, 0

.
< ac ⊢ 0

.
< bd

Example 5. A valid sequent that is not provable due to the restriction on the
application of cross-mult is ac

.
≤ bd − 1, de

.
≤ a, c

.
≥ 1, ce

.
= b ⊢ . The prob-

lem can be solved by cross-multiplying de
.
≤ a and c

.
≥ 1.

Lemma 5. When applied to an invalid sequent (containing arbitrary equations
and inequalities), Procedure 5 will eventually produce a counterexample.

7 Related Work

Most similar to our approach is the arithmetic handling in ACL2 [13, 14], which
also employs Fourier-Motzkin for linear and cross-multiplication for nonlinear
arithmetic. Concerning differences, ACL2 runs arithmetic handling as a purely
automated procedure, supports also rationals, does not have separate procedures
for equations and does not seem to perform a systematic case analysis.

An method for handling linear equations and inequalities similar to our ap-
proach (but lacking counterexample generation) is described in [17] and imple-
mented in the Tecton tool. Related is also [20] about the extension of linear
reasoning to nonlinear reasoning.

Higher-order proof assistants usually support integer arithmetic and are so
general that arbitrary procedures can be implemented on top of them, often
targeting mathematical proofs. In comparison, we tried to develop a simple cal-
culus/procedure specifically for Java verification that works “out of the box”

192 Philipp Rümmer

and requires little expertise. The PVS proof assistant [11] can handle linear
integer arithmetic and can simplify nonlinear expressions (involving multiplica-
tion and division) to some degree, but does (apparently) not go as far as our
approach or ACL2. The Coq system [12] implements an incomplete version of
the Omega method for deciding Presburger arithmetic (linear integer arithmetic
with quantifiers) that essentially boils down to Fourier-Motzkin. Coq can also
simplify ring expressions like polynomials. For HOL light [21], a number of tac-
tics and decision procedures for arithmetic have been implemented, including
Cooper’s method for deciding Presburger arithmetic, handling of congruences
and simplification of polynomial expressions.

Linear arithmetic is one of the most important theories supported by SMT
solvers (which generally provide incomparably better performance for linear
arithmetic than our implementation based on a general theorem prover frame-
work), see [22] for a list. To the best of our knowledge, no SMT solver offers
support for nonlinear arithmetic similar to our approach or ACL2. SMT solvers
typically use linear programming techniques like Simplex, combined with meth-
ods like branch-and-bound or Gomory’s cutting planes to realise completeness
on the integers.

8 Conclusions and Future Work

We have presented the main components of a proof procedure for linear and
nonlinear integer arithmetic, represented as sequent calculus rules together with
application strategies. The procedure is completely implemented, and the sound-
ness of the implementation is verified in the prover KeY itself. In addition to
the calculus shown here, KeY also supports division and modulo operations and
provides further methods like polynomial division. Based on this, we have for-
malised the Java semantics of integer operations.

For the future, we are considering a more efficient stand-alone implemen-
tation of the calculus, possibly based on the DPLL(T) framework. As a more
conceptual extension, we plan to combine the calculus with free-variable rea-
soning for handling quantifiers. The general approach for this is described in
[23], but needs to be investigated more carefully. Finally, we would like to add
support for bit-wise operations (as they can be found in Java).

Acknowledgements. I want to thank Wolfgang Ahrendt and Richard Bubel for
many inspiring discussions and comments on this paper. Thanks are also due to
the anonymous referees for helpful comments.

References

1. Beckert, B., Hähnle, R., Schmitt, P.H., eds.: Verification of Object-Oriented Software: The KeY
Approach. LNCS 4334. Springer-Verlag (2007)

A Sequent Calculus for Integer Arithmetic with Counterexample Generation 193

2. Mostowski, W.: Fully verified JavaCard API reference implementation. In: 4th International
Verification Workshop. (2007) To appear.

3. Fitting, M.C.: First-Order Logic and Automated Theorem Proving. 2nd edn. Springer-Verlag,
New York (1996)

4. King, J.C.: Symbolic execution and program testing. Communications of the ACM 19 (1976)
385–394

5. Knuth, D.E.: The Art of Computer Programming: Seminumerical Algorithms. Addison-Wesley
(1997) Third edition.

6. Buchberger, B.: An algorithmical criterion for the solvability of algebraic systems. Aequationes
Mathematicae 4 (1970) 374–383 (German).

7. Buchberger, B.: A critical-pair/completion algorithm for finitely generated ideals in rings. In: Pro-
ceedings of the Symposium ”Rekursive Kombinatorik” on Logic and Machines: Decision Problems
and Complexity, London, UK, Springer-Verlag (1984) 137–161

8. Dershowitz, N.: Termination of rewriting. J. Symb. Comput. 3 (1987) 69–116
9. Dershowitz, N., Manna, Z.: Proving termination with multiset orderings. Commun. ACM 22

(1979) 465–476
10. Schrijver, A.: Theory of Linear and Integer Programming. Wiley (1986)
11. Owre, S., Rajan, S., Rushby, J., Shankar, N., Srivas, M.: PVS: Combining specification, proof

checking, and model checking. In Alur, R., Henzinger, T.A., eds.: Proceedings, CAV. Volume
1102 of LNCS., Springer (1996) 411–414

12. Dowek, G., Felty, A., Herbelin, H., Huet, G., Murthy, C., Parent, C., Paulin-Mohring, C., Werner,
B.: The Coq proof assistant user’s guide. Rapport Techniques 154, INRIA, Rocquencourt, France
(1993) Version 5.8.

13. Kaufmann, M., Moore, J.S.: ACL2: An industrial strength version of nqthm. In: Compass’96:
Eleventh Annual Conference on Computer Assurance, Gaithersburg, Maryland, National Institute
of Standards and Technology (1996)

14. Warren A. Hunt, J., Krug, R.B., Moore, J.S.: Linear and nonlinear arithmetic in ACL2. In Geist,
D., Tronci, E., eds.: CHARME. Volume 2860 of Lecture Notes in Computer Science., Springer
(2003) 319–333

15. Breunesse, C.B., Jacobs, B., van den Berg, J.: Specifying and verifying a decimal representa-
tion in java for smart cards. In: Proceedings of the 9th International Conference on Algebraic
Methodology and Software Technology, London, UK, Springer-Verlag (2002) 304–318

16. : Gemplus purse applet. (http://www.gemplus.com/smart/r d/publications/case-study/)
17. Kapur, D., Nie, X.: Reasoning about numbers in tecton. In: International Symposium on Method-

ologies for Intelligent Systems, Charlotte, North Carolina. (1994)
18. Matijasevic, Y.: Enumerable sets are diophantine (Russian). Dokl. Akad. Nauk SSSR 191 (1970)

279–282 Translation in Soviet Math Doklady, Vol 11, 1970.
19. Warren A. Hunt, J., Krug, R.B., Moore, J.S.: Integrating nonlinear arithmetic into into ACL2. In:

Fifth International Workshop on the ACL2 Theorem Prover and Its Applications (ACL2-2004).
(2004)

20. Kapur, D., Cyrluk, D.: Reasoning about nonlinear inequality constraints: a multi-level approach.
In: Proceedings of a workshop on Image understanding workshop, San Francisco, CA, USA,
Morgan Kaufmann Publishers Inc. (1989) 904–915

21. Harrison, J.: The HOL light manual (1.1) (2000)
22. Ranise, S., Tinelli, C.: The Satisfiability Modulo Theories Library (SMT-LIB). www.SMT-LIB.org

(2006)
23. Rümmer, P., Shah, M.A.: Proving programs incorrect using a sequent calculus for Java Dynamic

Logic. In: International Conference on Tests And Proofs (TAP). LNCS, Springer (2007) To
appear.

A Proofs (-Sketches)

Proof. (Lem. 1) Termination: the termination of simp and red is immediate.
We call the left-hand sides x of equations x

.
= s (x a variable) in the antecedent

194 Philipp Rümmer

“defined variables,” and all other variables “independent variables.” When ap-
plying red exhaustively, each defined variable will eventually occur in exactly
one place in the sequent (namely, in the defining equation).

For proving termination when col-red is added, we show that the leading
coefficients α > 1 of equations αx

.
= s constantly get smaller. We introduce a

well-founded ordering on the set of multisets over N ∪ {∞} by lexicographic
comparison: for a1 ≤ · · · ≤ an, b1 ≤ · · · ≤ bm, we define:

{{a1, . . . , an}} <m {{b1, . . . , bm}} iff

n < m or (n = m and (a1, . . . , an) <lex (b1, . . . , bm))

For a sequent and an independent variable x, we then consider the divisors
gcd(α1, . . . , αn) ∈ N ∪ {∞}, where α1, . . . , αn are all coefficients of equations
αix

.
= si in the antecedent (we define gcd() = ∞). The multiset of such gcds for

all independent variables gets <m-smaller for each application of col-red, and
it gets <m-smaller or stays the same when red is applied (each time potentially
followed by an application of simp). This proves termination.

Completeness and proof confluence: assume that no further rules can be ap-
plied, but the proof branch at hand is not closed. This implies that the coefficient
of the left-hand side of all equations is 1 (otherwise, simp or col-red can be
applied), and that no left-hand side term occurs in two places in the sequent (oth-
erwise, red can be applied). Due to the fact that 0 is the only polynomial whose
value is constantly 0 (and correspondingly for tuples of polynomials), there is a
countermodel for the equations in the succedent (a valuation of the independent
variables). We extend this valuation on the defined variables according to the
equations in the antecedent. When investigating red and col-red, it can be
seen that this countermodel also is a countermodel of the original sequent.

Proof. (Lem. 2) To see that the application of fm-elim terminates, consider
the multiset of pairs of inequalities in the antecedent to which fm-elim can but
has not yet been applied. Pairs of inequalities can be compared lexicographically
using <r, and multisets of pairs can be compared using the multiset extension
of this ordering. As the multiset gets smaller in this well-founded ordering each
time fm-elim is applied, termination is guaranteed.

The rule anti-symm can introduce new equations. Such a new equation is
either trivially true and is eliminated, or it is a contradiction and the proof
branch is closed, or it reduces the number of independent variables by one. In
the last case, Fourier-Motzkin basically has to start over once Procedure 1 has
done its job, but this can only happen a finite number of times.

Inferring Invariants by Symbolic Execution

Peter H. Schmitt and Benjamin Weiß

University of Karlsruhe
Institute for Theoretical Computer Science

D-76128 Karlsruhe, Germany
{pschmitt,bweiss}@ira.uka.de

Abstract. In this paper we propose a method for inferring invariants for loops in
Java programs. An example of a simple while loop is used throughout the paper to
explain our approach. The method is based on a combination of symbolic execution
and computing fixed points via predicate abstraction. It reuses the axiomatisation of
the Java semantics of the KeY system. The method has been implemented within the
KeY system which allows to infer invariants and perform verification within the same
environment. We present in detail the results of a non-trivial example.

1 Introduction

A notorious difficulty in the formal verification of programs is the treatment of
loop constructs. An array of techniques has been developed to address this prob-
lem. Among these techniques the use of loop invariants is particularly attractive
since it does not compromise on the rigour of verification and runs completely
automatically, once the correct invariants are provided. In this paper we will try
to answer the question how to find invariants.

Several techniques for automatically inferring invariants of a program exist.
One general approach is dynamic analysis, i.e., analysing the program by ex-
ecuting it with concrete input values. A tool implementing dynamic invariant
inference is Daikon [10]: to infer invariants for a program, Daikon first instru-
ments it with state saving code at interesting program points. The instrumented
program is then run through a user-specified test suite. Finally, the resulting
data base of program states is analysed for properties which held in all of the
test runs. These properties are somewhat likely to be invariants, but this is not
guaranteed, because the test suite in general cannot cover all cases.

Stronger guarantees can be provided by static analysis, i.e., analysing the
program by examining its source code without actually executing it on concrete
inputs. A common paradigm in static analysis, which is also used in program ver-
ification, is symbolic execution [16]: the analysed program is“executed”, but with
symbolic instead of concrete values for the program variables. Static invariant
inference techniques are usually based on abstract interpretation [7]. Abstract
interpretation can be understood as an approximative (“abstract”) symbolic ex-
ecution of the program, which deals with loops through fixed-point iteration.

196 Peter H. Schmitt, Benjamin Weiß

Termination of this fixed-point iteration is ensured by the approximative na-
ture of the used symbolic execution. An example of a tool which uses abstract
interpretation for invariant inference is the static verifier Boogie [17].

Predicate abstraction [12] is a special variant of abstract interpretation, which
has been used for invariant inference [11]. Here, the symbolic execution is itself
not approximative, but as precise as possible (which corresponds to computing
strongest postconditions). Instead, the necessary approximation is performed
by explicit “abstraction” operations, which make use of an arbitrary, finite set
of predicates over the variables of the program. The inferred invariants are con-
structed from these predicates. Thus, the problem of finding invariants is reduced
to the simpler problem of guessing potentially useful predicates, which can be
done heuristically or, when necessary, manually by the user.

In the invariant inference method described in [11], the semantics of the
programming language is implicitly incorporated in the algorithms of the sys-
tem. In our approach we start from the axiomatic semantics for Java Card
developed within the KeY project. Java Card [15] is roughly a subset of Java
which contains all object-oriented features but lacks concurrency, floating-point
arithmetic, and dynamic class loading. The KeY system [1, 3] is a deductive veri-
fication system for Java Card programs. It is based on an axiomatisation of the
Java Card semantics within a program logic calculus, which follows the sym-
bolic execution paradigm. The axiomatisation covers 100% of the Java Card
language specification and a bit more with great precision. It has so far mainly
been used for program verification, e.g., the Demoney case study, an electronic
purse application provided by Trusted Logic S.A. [3, Chapt. 14], the verification
of a Java Card implementation of the Schorr-Waite graph marking algorithm
[3, Chapt. 15], and the verification of a part of a flight management system from
Thales Avionics [14]. The most recent targets of verification with KeY have been
an implementation of the Mondex banking card case study [23, 22] and an im-
plementation of the Java Card API [19]. The KeY symbolic execution rules for
Java Card have lately also been used for model-based test generation [2, 9]. In
this paper we explore the possibility to use the KeY calculus and prover for infer-
ring invariants, by incorporating fixed-point iteration and predicate abstraction.
Besides the obvious benefit of reusing an existing formal semantics, this also has
the advantage that the generation of loop invariants is an integrated part of the
verification effort.

The organisation of this paper is as follows: in Sect. 2, we review our pro-
gram logic for Java Card and its axiomatisation of the programming language
semantics. In Sect. 3, we introduce a simple example for a program and its invari-
ants. Using this example, we then explain our approach for inferring invariants in
Sect. 4. The implementation of the approach within the KeY system is sketched
in Sect. 5, and the results of initial experiments with the implementation are
documented in Sect. 6. Finally, we conclude in Sect. 7.

Inferring Invariants by Symbolic Execution 197

2 Background

Our approach is based on the program logic Java Card DL [3, Chapt. 3], which
is a version of dynamic logic [13]. It extends first-order predicate logic by modal
operators [p] (“box”) and 〈p〉 (“diamond”) for every legal sequence of Java Card
statements p: the formula [p]ψ states that if execution of p terminates in a state
s, then ψ holds in state s; the formula 〈p〉ψ additionally requires that p does
indeed terminate. In the following we only make use of the box modality [p]. The
reason is that in this paper, we are interested in invariants, and invariants are
not concerned with the issue of termination: they are safety properties, whereas
termination is a liveness property.

Formulas of the form ϕ → [p]ψ are similar to Hoare triples {ϕ}p{ψ}: they
express that if p terminates after being started in a state which satisfies ϕ,
then the resulting state satisfies ψ. For example, the meaning of the formula
o.f

.
= 27 → [o.f++;]o.f

.
= 28 is: if the current value of the field f of the object

pointed to by the program variable o is 27, then after executing the statement
o.f++; the value of the field has changed to 28. This formula is valid, i.e., it
holds in all possible states.

Proofs of the validity of Java Card DL formulas can be performed by
means of a sequent calculus. A sequent is a construct Γ ` ∆, where Γ and ∆ are
sets of formulas. Its semantics is the same as that of the formula

∧
Γ → ∨

∆,
and in the following we do not strictly distinguish between sequents and their
equivalent formulas. An example for a sequent calculus rule is andRight:

Γ ` ϕ, ∆ Γ ` ϕ′, ∆
Γ ` ϕ ∧ ϕ′, ∆

andRight

The (schematic) sequents Γ ` ϕ,∆ and Γ ` ϕ′, ∆ are the premisses of the rule,
and the sequent Γ ` ϕ ∧ ϕ′, ∆ is the conclusion of the rule. A rule is sound if
validity of its premisses implies validity of its conclusion. A proof for a sequent
is constructed by applying rules from bottom to top; if all leaves of the resulting
tree are valid, then the root sequent must be valid as well. The particular rule
andRight deals with a conjunction on the right side of the sequent arrow by
splitting the proof tree into two branches.

Formulas with modal operators are handled by rules which perform a sym-
bolic execution of the Java Card program within the modality. These rules
operate on the active statement of the program, i.e., the first basic statement
following a non-active prefix of opening braces, beginnings of try blocks and the
like. This prefix is denoted by π, and the rest of the program behind the active
statement by ω. For example, the active statement of the following program is
i = 0:

{ try {︸ ︷︷ ︸
π

i = 0; i++; } catch(Exception e) { i = 27; } }︸ ︷︷ ︸
ω

198 Peter H. Schmitt, Benjamin Weiß

The Java Card DL calculus, as it is implemented in the KeY system,
currently contains approximately 1700 rules, of which about 1300 formalise the
semantics of Java Card. As we cannot describe all of them here, we restrict our
presentation to representative rules for the three basic programming constructs
in imperative languages: assignments, conditional statements, and loops. We
begin with assignments, which can be symbolically executed with

Γ ′, x
.
= e′ ` [π ω]ψ, ∆′

Γ ` [π x = e; ω]ψ, ∆
assignment

where the expression e must not have side effects, and where Γ ′, e′ and ∆′ result
from Γ , e and ∆, respectively, by substituting a fresh program variable x′ for
x. This rule replaces the assumptions about the initial state of the program by
their strongest postcondition under the assignment statement. For example, it
transforms the sequent i

.
= 27 ` [i=i+1;]i

.
= 28 into i′

.
= 27, i

.
= i′ +1 ` i

.
= 28.

As formulated here, the assignment rule only works for assignments to local
program variables. Assignments to fields or array slots are more complex be-
cause of aliasing, i.e., the phenomenon that the same memory location may be
referred to by different names. They can nevertheless be handled along the same
lines as assignments to local variables, but this leads to somewhat complicated
formulas containing case distinctions for the possible aliasing situations. For ex-
ample, symbolically executing o1.f

.
= 27 ` [o2.f = 0;]o1.f

.
= 27 in this way

yields o1.f ′ .
= 27,∀x.(x.f .

= if (x
.
= o2)then(0)else(x.f ′)) ` o1.f

.
= 27. The

KeY system normally avoids these complications as far as possible by treating
assignments in a different way, which is based on a concept called updates [21].
However, for the purpose of inferring invariants, the classical way to handle as-
signments fits our needs better. The details of how this works out for complex
assignments are given in [24]. In the following we restrict ourselves to the sim-
ple case of assignments to local variables, which amply suffices to explain our
method.

Conditional statements can be handled with this rule:

Γ ` (e
.
= true→ [π p ω]ψ) ∧ (¬e .

= true→ [π q ω]ψ), ∆
Γ ` [π if(e) p else q ω]ψ, ∆

ifElse

Again, the occurring Java Card expression must not have side effects. This
restriction is never severe, because a program can always be transformed such
that an expression is separated from its side effects; the Java Card DL calculus
contains rules which perform such transformations. The ifElse rule symbolically
executes a conditional statement by creating two conjuncts which describe the
case that the guard expression is true and the case that it is false, respectively.
Typically, the next step is to split the proof tree by applying the andRight rule.

Loops can be symbolically executed with the loopUnwind rule

Γ ` [π if(e){p while(e) p} ω]ψ, ∆
Γ ` [π while(e) p ω]ψ, ∆

loopUnwind

Inferring Invariants by Symbolic Execution 199

where, as usual, the expression e must not have side effects. This is a simplified
version of the actual rule which is sound only if the loop body does not con-
tain break or continue statements. It transforms the loop into a conditional
statement: if the guard expression is satisfied, then the loop body is executed
once before getting to the loop again; otherwise, the loop is not entered. Since
its premiss again contains the loop, the unwind rule on its own only works for
loops which terminate after a statically known and sufficiently small number of
iterations. In the general case, loops cannot be handled by symbolic execution
alone. Instead, an invariant rule can be used, i.e., a rule which makes use of a
loop invariant. This loop invariant normally has to be provided manually from
the outside.

3 Running Example

As a simple example for a program and its invariants, we will use the following
piece of Java Card code, which computes the maximal positive element of an
integer array a:

max = 0;

i = 0;

while(i < a.length) {

if(a[i] > max) max = a[i];

i++;

}

The program is visualised as a control flow graph in Fig. 1. The nodes of
this graph represent the basic commands and guard expressions of the program,
and the edges stand for flow of control between the nodes. Control enters the
program through the node marked entry, and leaves it through the node marked
exit (for the sake of readability, we ignore here that the program terminates
abruptly if a

.
= null holds). The control flow graph is annotated with exemplary

invariants at interesting program points. Note that in this paper we are talking
about invariants in the classical sense, i.e., first-order formulas which always
hold when control flow reaches a specific program point such as a loop entry.
The notion of “class” or “object” invariants for object-oriented programs [18] is
related but lives at a different level of abstraction.

Our example invariants for the program are as follows: at the entry node,
we assume nothing about the program state, so the invariant here is true. After
the first assignment statement, max

.
= 0 always holds–this is the strongest post-

condition of true under the assignment statement. Next is the loop invariant:
every time control flow reaches the loop entry, ∀x.(0 ≤ x < i→ a[x] ≤ max) is
satisfied. Unlike the loop invariant, the remaining invariants can again easily be
derived from their predecessors as strongest postconditions. In particular, the

200 Peter H. Schmitt, Benjamin Weiß

false

max=a[i];

i<a.length

max=0;

exit

true

a[i]>max

falsetrue

i++;

i=0;

entry

true

max ≐ 0

8 x:(0 · x < i ! a[x] · max)

8 x:(0 · x · i ! a[x] · max) ^ i < a.length

8 x:(0 · x < i ! a[x] · max) ^ i < a.length

 ^ a[i] > max

8 x:(0 · x < i ! a[x] · max) ^ i < a.length

8 x:(0 · x < i ! a[x] · max) ^ i ¸ a.length

Fig. 1. Control flow graph for the example program, annotated with invariants.

invariant attached to the exit node, i.e., the postcondition of the program as a
whole, immediately follows from the loop invariant and the negation of the loop
guard expression.

4 Our Approach

Our approach is embedded in the overall process of program verification which we
imagine has reached a state where a typical goal ϕ→ [p]ψ has to be proved. The
basic idea is to extend the usual symbolic execution of p in the Java Card DL
calculus by fixed-point iteration and predicate abstraction, and thereby turn the
proving process into a form of abstract interpretation. To help the reader under-
stand how this works out exactly, we outline our approach with the particular
instantiations of ϕ, p and ψ given in Fig. 2(1): the goal is to prove that after
executing the program introduced in Sect. 3, all elements of the array are less
than or equal to max. Symbolic execution of the program begins with applying
the assignment rule to the first two assignments, which leads to the new proof
obligation shown in Fig. 2(2). The effect of the two assignments manifests itself

Inferring Invariants by Symbolic Execution 201

in the two additional assumptions max
.
= 0 and i

.
= 0. Now, the active statement

of the program is the while loop.

The guiding principle of our construction is to always view the formula on
the left hand side of the implication as a candidate for an invariant at the
program point reached before the active statement of the program occurring
in the modality on the right hand side of the implication. According to this
principle, the formula ϕ1 in Fig. 2(2) is a first candidate for the loop invariant.

The next step in the symbolic execution has to deal with two cases: the loop
is not entered and the loop is unfolded at least once. Technically, we apply the
loopUnwind rule followed by the ifElse rule, and obtain the conjunction of the
two implications shown in Fig. 2(3).

We refrain from splitting the proof by applying the andRight rule, and for
the moment concentrate on the first conjunct. The active statement of its box
modality on the right hand side is a conditional statement. Thus, the next sym-
bolic execution step is to apply the ifElse rule, which produces two conjuncts
in place of one. Again, we do not split this conjunction with the andRight rule.
Instead, the assignment max = a[i]; in the body of the conditional statement
is executed, yielding the proof goal shown in Fig. 2(4). Notice that for the first
time the assignment rule necessitates the introduction of a new program variable
max ′ to hold the previous value of max.

There is a fundamental difference between the first two conjuncts in Fig. 2(4)
and the third: the first two refer to the same point in program execution. More
precisely, the right hand sides of the first two implications coincide, so we can
apply the merge rule

Γ ` (ϕ ∨ ϕ′) → ψ, ∆
Γ ` (ϕ→ ψ) ∧ (ϕ′ → ψ), ∆

merge

which replaces the first two implications by one, logically equivalent, implica-
tion, Fig. 3(5). This one implication describes the combined effects of the two
execution paths, just like in the control flow graph (Fig. 1) there is only one
node for the assignment i++;, even though it can be reached via several paths.
Making such merging steps possible is the reason why we did not and will not
apply the andRight rule to split the proof.

After symbolic execution of i++;, the last statement of the loop body, we
reach in Fig. 3(6) the same program point again that we had already considered
in Fig. 2(2), namely the loop entry. Now, we have two invariant candidates ϕ1

from (2) and ϕ2 from (6) for the same program point. Naturally, we consider
their disjunction ϕ1 ∨ ϕ2 as our new invariant candidate, which is shown in
Fig. 3(7). Technically this is achieved by applying the loopMerge rule

Γ ` (ϕ ∨ ϕ′) → [π while(e) p ω]ψ, ∆
Γ ` (ϕ→ [π while(e) p ω]ψ) ∧ (ϕ′ ∧ ¬e .

= true→ [π ω]ψ), ∆
loopMerge

202 Peter H. Schmitt, Benjamin Weiß

true → [{ max = 0;

i = 0;

while(i < a.length) {

if(a[i] > max) max = a[i];

i++;

}

}] ∀x.(0 ≤ x < a.length→ a[x] ≤ max)︸ ︷︷ ︸
ψ0

(1)

max
.
= 0 ∧ i

.
= 0︸ ︷︷ ︸

ϕ1

→ [{ while(i < a.length) {

if(a[i] > max) max = a[i];

i++;

}

}]ψ0

(2)

(
max

.
= 0 ∧ i

.
= 0 ∧ i < a.length→ [{ if(a[i] > max) max = a[i];

i++;

while(i < a.length) {

if(a[i] > max) max = a[i];

i++;

}

}]ψ0

)
∧

(
max

.
= 0 ∧ i

.
= 0 ∧ i ≥ a.length→ [{}]ψ0

)
(3)

(
max ′ .= 0 ∧ i

.
= 0 ∧ i < a.length ∧ a[i] > max ′ ∧ max

.
= a[i]

→ [{ i++;

while(i < a.length) {

if(a[i] > max) max = a[i];

i++;

}

}]ψ0

)
∧

(
max

.
= 0 ∧ i

.
= 0 ∧ i < a.length ∧ a[i] ≤ max

→ [{ i++;

while(i < a.length) {

if(a[i] > max) max = a[i];

i++;

}

}]ψ0

)
∧

(
max

.
= 0 ∧ i

.
= 0 ∧ i ≥ a.length→ [{}]ψ0

)

(4)

Fig. 2. Invariant inference for the example program (first part).

Inferring Invariants by Symbolic Execution 203

(
(max ′ .= 0 ∧ i

.
= 0 ∧ i < a.length ∧ a[i] > max ′ ∧ max

.
= a[i]

∨ max
.
= 0 ∧ i

.
= 0 ∧ i < a.length ∧ a[i] ≤ max)

→ [{ i++;

while(i < a.length) {

if(a[i] > max) max = a[i];

i++;

}

}]ψ0

)
∧

(
max

.
= 0 ∧ i

.
= 0 ∧ i ≥ a.length→ [{}]ψ0

)
(5)

(
(max ′ .= 0 ∧ i′ .= 0 ∧ i′ < a.length ∧ a[i′] > max ′ ∧ max

.
= a[i′]

∨ max
.
= 0 ∧ i′ .= 0 ∧ i′ < a.length ∧ a[i′] ≤ max)

∧ i
.
= i′ + 1

→ [{ while(i < a.length) {

if(a[i] > max) max = a[i];

i++;

}

}]ψ0

)
∧

(
max

.
= 0 ∧ i

.
= 0︸ ︷︷ ︸

ϕ1

∧ i ≥ a.length→ [{}]ψ0

)

}
ϕ2

(6)

ϕ1 ∨ ϕ2 → [{ while(i < a.length) {

if(a[i] > max) max = a[i];

i++;

}

}]ψ0

(7)

0 ≤ i ∧ i ≤ 1 ∧ ∀x.(0 ≤ x < i→ a[x] ≤ max)
→ [{ while(i < a.length) {

if(a[i] > max) max = a[i];

i++;

}

}]ψ0

(8)

0 ≤ i ∧ ∀x.(0 ≤ x < i→ a[x] ≤ max) ∧ i ≥ a.length→ [{}]ψ0 (9)

Fig. 3. Invariant inference for the example program (second part).

204 Peter H. Schmitt, Benjamin Weiß

where e must not have side effects. The same principle guides both the merge
and the loopMerge rule: the effects of several execution paths are combined in
one implication.

If ϕ1 was logically equivalent to ϕ1 ∨ ϕ2, we could stop here and declare ϕ1

to be our prime candidate for the loop invariant: it would be a fixed point of
our iterative inference process. But as you can easily see, this is not the case in
our example. So, we have to go on, unfold the loop body once more, obtain a
loop invariant candidate ϕ3 after the second iteration, check whether ϕ1 ∨ ϕ2

is logically equivalent to ϕ1 ∨ ϕ2 ∨ ϕ3, and then stop or go on accordingly. The
problem with this plan of action is that it might (and, in the example, would)
not terminate. This is where predicate abstraction as it is, e.g., described in [12],
comes into play. To apply this method we first need to fix a set P of predicates.
For the example, we choose

P = {i .
= 0︸ ︷︷ ︸
p1

, 0 ≤ i︸ ︷︷ ︸
p2

, i ≤ 1︸ ︷︷ ︸
p3

, ∀x.(0 ≤ x < i→ a[x] ≤ max)︸ ︷︷ ︸
p4

} .

In general P might be chosen by following heuristics, e.g., include all parts of
the invariant candidate accumulated before the first unfolding of the loop, the
loop guard, and parts of the postcondition ψ. In addition one might include in P
all the usual suspect invariants, as is, e.g., done in [10]. As a final resort P could
be customised by user interaction and trial and error. Once P is agreed upon we
continue in the above example by replacing ϕ1 ∨ ϕ2 with its abstraction, which
is the conjunction of all predicates p ∈ P for which (ϕ1∨ϕ2) → p is a tautology.
Formally, we apply the abstraction rule

Γ ` ϕ′ → ψ, ∆
Γ ` ϕ→ ψ, ∆

abstraction

where ϕ′ =
∧{p ∈ P | ϕ→ p is valid}. In our example we get ϕ′ = p2∧p3∧p4,

see Fig. 3(8).
After symbolically executing the loop body for the second time and again

applying loopMerge and abstraction, we arrive at p2∧p4. Since P is of finite size,
this process of eliminating predicates must eventually terminate. In the example,
it does so after just one more iteration: if we symbolically execute the loop body
a third time, the new invariant candidate reached after applying loopMerge and
abstraction is again p2 ∧ p4. We have reached a fixed point and stop iterating
the while loop. Technically speaking, instead of applying the loopUnwind rule we
apply

Γ ` ϕ ∧ ¬e .
= true→ [π ω]ψ, ∆

Γ ` ϕ→ [π while(e)p ω]ψ, ∆
loopEnd

where e must not have side effects. In our running example this rule application
results in Fig. 3(9).

Inferring Invariants by Symbolic Execution 205

There is one problem with the loopEnd rule: Unlike the other rules introduced
in this section, it is not sound, as you can easily see. Applying it is sound if the
formula ϕ is an invariant for the loop. In situations like the one in the example, we
have good reason to believe that this is the case: ϕ is a fixed point of accumulated
symbolic executions of the loop body, so it should hold at the loop entry in all
possible concrete executions. This is however not quite guaranteed; for example,
non-symbolic-execution rules might have been applied in between, disrupting
the inference process. Formally prohibiting the application of the loopEnd rule
in such situations is conceivable, but complicated. In our context, this is not
a necessity: Our implementation prevents unsound applications in a heuristic
manner, and if in very rare cases these heuristics should fail and an inferred
“invariant” not really be an invariant, this error would be caught when trying to
use the false invariant for a regular proof with the invariant rule.

What is a good loop invariant? After all the logical constant true is always
an invariant. In our scenario where invariant inference is just one part of an
overall program verification effort the answer is easy: a loop invariant is good if
it allows to successfully complete the overall proof goal. This is the case in our
example, since Fig. 3(9) can easily be seen to be universally valid.

In summary, our approach is as follows. The analysed program is symbolically
executed with the program rules of the Java Card DL calculus, but without
intertwining this process with applications of other rules such as andRight. The
symbolic execution is coordinated such that it follows the structure of the control
flow graph; in particular, at confluences in the graph, the conjuncts describing
the predecessors are combined using the merge and loopMerge rules. Each appli-
cation of loopMerge is followed by an application of the abstraction rule. After
applying abstraction, it is checked whether the resulting abstracted loop invariant
candidate is a fixed point, i.e., whether the previous such candidate consisted of
the same predicates. If so, it is taken as the inferred loop invariant, and loopEnd
is applied. Otherwise, the loop is symbolically executed once again. This process
works completely automatically, except that the user may choose to help it find
better invariants by specifying predicates for each loop once in the beginning.

5 Implementation

We have implemented our method as an extension of the KeY system. The core
element of this implementation are the rules introduced in Sect. 4. The bottleneck
of the approach clearly lies in the abstraction rule: it requires checking for each
predicate p ∈ P whether p is implied by the invariant candidate. These checks
are implemented as calls to an external automated first-order theorem prover
such as Simplify [8]. Decision procedures which support input in the SMT-LIB
format [20] can also be used. Of course, such theorem prover calls are neither
always successful nor computationally cheap. The lack of completeness is miti-

206 Peter H. Schmitt, Benjamin Weiß

gated by the fact that the predicates tend to be simple and thus manageable by
the theorem prover. Acceptable performance can only be achieved by employing
optimisations which reduce the number of necessary calls. Our implementation
features several such optimisations. For example, it exploits implication rela-
tionships between predicates: if p1 → p2 is known to be valid, and the theorem
prover has not been able to prove ϕ→ p2, then there is no point in checking the
validity of ϕ→ p1. Possibly, performance could be improved further by using an
existing predicate abstraction algorithm such as the one from [11] at this place.

Besides the rules themselves, the implementation also comprises a heuris-
tic predicate generator, which automatically creates many of the “usual sus-
pect” invariant elements, such as ordering comparisons between integer program
variables, or equality and inequality between variables of a reference type. The
predicate generator is complemented by the possibility to manually enter pred-
icates. No quantified formulas are generated automatically, as the number of
predicates would get too large to be manageable. However, manually entered
predicates are allowed to contain free variables; such predicates are then uni-
versally closed by the predicate generator, using various guards. For example,
if the user specifies the predicate a[x] ≤ max, the predicate generator adds
∀x.(0 ≤ x < i→ a[x] ≤ max), together with many other similar predicates.

The final element of the implementation is a proof search strategy, which
controls the automatic application of the rules as it is necessary for invariant
inference. In particular, the strategy prohibits the application of non-symbolic-
execution rules, and it coordinates symbolic execution of several modalities
such that it follows the control flow graph: if, e.g., the current proof goal is
(ϕ1 → [max = a[i]; i++;]ψ) ∧ (ϕ2 → [i++;]ψ), symbolic execution of the sec-
ond conjunct is stopped until max = a[i]; has been symbolically executed in
the first conjunct and the merge rule can be applied.

6 Experiments

We tested our implementation on selection sort, a well-known and comparatively
simple sorting algorithm with quadratic time complexity. The basic idea of the
algorithm is to find the smallest element of the array to be sorted, swap it with
the first element, and iteratively repeat this process on the subarray starting
at the second position. The exact proof obligation supplied to the KeY system
is shown in Fig. 4. It states that, after invoking the program contained in the
box modality on an integer array a which is not null and which has a positive
length, the array is sorted. This specification is not strong enough to ensure
that the program actually sorts the array; for example, a program could satisfy
it by simply setting all array elements to zero. It is however sufficient for our
purposes. The program itself is a straightforward Java Card rendering of selec-
tion sort. The temporary boolean variables condOuter and condInner are used

Inferring Invariants by Symbolic Execution 207

to buffer the values of the loop guard expressions, which is necessary because
our implementation of the invariant inference currently requires that the guard
expressions must be simple program variables.

a 6 .= null ∧ a.length > 0 → [{ i = 0;

condOuter = i < a.length;

while(condOuter) {

minIndex = i;

j = i + 1;

condInner = j < a.length;

while(condInner) {

if(a[j] < a[minIndex]) minIndex = j;

j++;

condInnder = j < a.length;

}

temp = a[i];

a[i] = a[minIndex];

a[minIndex] = temp;

i++;

condOuter = i < a.length;

}

}]∀x.(0 < x ∧ x < a.length→ a[x− 1] ≤ a[x])

Fig. 4. Java Card DL proof obligation for selection sort.

We manually entered the predicates (condOuter
.
= true ↔ i < a.length),

(condInner
.
= true ↔ j < a.length), (a[x] ≤ a[y]), and (a[minIndex] ≤

a[x]), where x and y are free variables. The first two of these are necessary only
because of the introduction of condInner and condOuter, and their generation
could easily be automated. The other two require more ingenuity, but are still
significantly easier to guess than the loop invariants themselves. Together with
the automatically generated predicates, this lead to 8794 predicates for the inner
loop and 16950 predicates for the outer loop.

Using Simplify as the external first-order theorem prover, the invariant infer-
ence process terminated after 3 iterations for the outer loop, containing 4, 4 and
2 iterations for the inner loop, respectively. 652 rules were applied in total. The
overall running time on a 1.5 GHz Pentium M machine was about 8.5 minutes.
Approximately 65% of this time was spent running Simplify, which was called
exactly 800 times. The resulting loop invariants for the inner and the outer loop
are shown in Fig. 5 and Fig. 6.

In addition to loop invariants, the invariant rule of the Java Card DL
calculus [4] makes use of modifier sets for loops, i.e., information about which
memory locations may be modified by a loop. In the case of selection sort,
appropriate modifier sets are {minIndex, j, condInner} for the inner loop, and
{minIndex, j, condInner, temp, a[*], i, condOuter} for the outer loop. When
supplied with these modifier sets (which are quite obvious from the program

208 Peter H. Schmitt, Benjamin Weiß

∀x.∀y.(0 ≤ x ∧ x < y ∧ y ≤ i→ a[x] ≤ a[y])

∧ ∀x.(i ≤ x ∧ x < minIndex→ a[minIndex] ≤ a[x])

∧ ∀x.(i < x ∧ x < j→ a[minIndex] ≤ a[x])

∧ ∀x.(minIndex < x ∧ x < j→ a[minIndex] ≤ a[x])

∧ a[0] ≤ a[i]

∧ a[minIndex] ≤ a[i]

∧ 0 < a.length

∧ j ≤ a.length

∧ 0 < j

∧ minIndex < a.length

∧ 0 ≤ minIndex

∧ minIndex < j

∧ i < a.length

∧ 0 ≤ i

∧ i < j

∧ i ≤ minIndex

∧ ∀x.∀y.(0 ≤ x ∧ x < i ∧ i ≤ y ∧ y < a.length→ a[x] ≤ a[y])

∧ ∀x.∀y.(0 ≤ x ∧ x < i ∧ i ≤ y ∧ y < j→ a[x] ≤ a[y])

∧ ∀x.∀y.(0 ≤ x ∧ x < i ∧ i ≤ y ∧ y < minIndex→ a[x] ≤ a[y])

∧ a 6 .= null

∧ condOuter
.
= true

∧ (condOuter
.
= true↔ i < a.length)

∧ (condInner
.
= true↔ j < a.length)

Fig. 5. Inferred invariant for the inner loop of selection sort.

∀x.∀y.(0 ≤ x ∧ x < y ∧ y < i→ a[x] ≤ a[y])

∧ 0 < a.length

∧ i ≤ a.length

∧ 0 ≤ i

∧ ∀x.∀y.(0 ≤ x ∧ x < i ∧ i ≤ y ∧ y < a.length→ a[x] ≤ a[y])

∧ (condOuter
.
= true↔ i < a.length)

∧ a 6 .= null

Fig. 6. Inferred invariant for the outer loop of selection sort.

Inferring Invariants by Symbolic Execution 209

code), and, crucially, the loop invariants from Fig. 5 and Fig. 6, the KeY system
(in normal mode) was able to automatically prove the validity of the formula
from Fig. 4 in about 2 minutes.

7 Conclusions

We have presented a method for inferring invariants for while loops in Java
programs that can seamlessly be integrated in program verification based on
the symbolic execution paradigm. To do so this paradigm had to be adapted
in two aspects. First, when using symbolic execution for program verification,
intermediate proof goals that involve a case distinction are split into subgoals
that are then proved separately. For invariant inference we have to avoid this
splitting. Second, the ideas of fixed-point iteration and approximation are not
present in the symbolic execution paradigm for program verification. So, we had
to introduce them.

The approach has been implemented as an addition to the KeY verification
system. The results of first experiments are very encouraging. But, since the
success to a great deal depends on the heuristic choice of the set P of abstraction
predicates, much more experience is needed to arrive at a dependable evaluation.

Approximation in static analysis typically takes the form of“erring on the safe
side”, i.e., precision may be lost, but not correctness. In principle, our invariant
inference is no exception: the inferred invariants may sometimes not be useful,
but they should always indeed be invariants. However, since we introduced a rule
which is not strictly sound, this is not guaranteed with the same high degree of
confidence that is carried by the axioms from the KeY calculus. Remedying this
imperfectness is one direction for future work. Nevertheless, the success rate
of suggesting true invariants is already a lot higher than in dynamic analysis
methods such as Daikon.

Another line of future work, which is more speculative, concerns the gen-
eration of the abstraction predicates. One could investigate the use of CEGAR
(counterexample-guided abstraction refinement) techniques [6, 5] to arrive at use-
ful predicates in a less heuristic, more systematic manner.

References

1. B. Beckert, M. Giese, R. Hähnle, V. Klebanov, P. Rümmer, S. Schlager, and P. H. Schmitt. The
KeY System 1.0 (deduction component). In F. Pfenning, editor, Proceedings, 21st International
Conference on Automated Deduction (CADE), LNCS. Springer, 2007. To appear.

2. B. Beckert and C. Gladisch. White-box testing by combining deduction-based specification ex-
traction and black-box testing. In Y. Gurevich, editor, Proceedings, International Conference on
Tests and Proofs (TAP), Zürich, Switzerland, LNCS. Springer, 2007. To appear.

3. B. Beckert, R. Hähnle, and P. H. Schmitt, editors. Verification of Object-Oriented Software: The
KeY Approach, volume 4334 of LNCS. Springer, 2007.

210 Peter H. Schmitt, Benjamin Weiß

4. B. Beckert, S. Schlager, and P. H. Schmitt. An improved rule for while loops in deductive
program verification. In K.-K. Lau, editor, Proceedings, 7th International Conference on Formal
Engineering Methods (ICFEM), volume 3785 of LNCS, pages 315–329. Springer, 2005.

5. D. Beyer, T. A. Henzinger, R. Jhala, and R. Majumdar. Checking memory safety with Blast.
In M. Cerioli, editor, Proceedings, 8th International Conference on Fundamental Approaches to
Software Engineering (FASE), volume 3442 of LNCS, pages 2–18. Springer, 2005.

6. E. M. Clarke, O. Grumberg, S. Jha, Y. Lu, and H. Veith. Counterexample-guided abstraction
refinement. In Proceedings, 12th International Conference on Computer Aided Verification (CAV),
pages 154–169. Springer, 2000.

7. P. Cousot and R. Cousot. Abstract interpretation: A unified lattice model for static analysis
of programs by construction or approximation of fixpoints. In Proceedings, 4th Annual ACM
Symposium on Principles of Programming Languages (POPL), pages 238–252. ACM Press, 1977.

8. D. Detlefs, G. Nelson, and J. B. Saxe. Simplify: A theorem prover for program checking. Technical
Report HPL-2003-148, HP Laboratories Palo Alto, 2003.

9. C. Engel and R. Hähnle. Generating unit tests from formal proofs. In Y. Gurevich, editor,
Proceedings, International Conference on Tests and Proofs (TAP), Zürich, Switzerland, LNCS.
Springer, 2007. To appear.

10. M. D. Ernst, J. Cockrell, W. G. Griswold, and D. Notkin. Dynamically discovering likely program
invariants to support program evolution. IEEE Transactions on Software Engineering, 27(2):99–
123, 2001.

11. C. Flanagan and S. Qadeer. Predicate abstraction for software verification. In Proceedings, 29th
Annual ACM Symposium on Principles of Programming Languages (POPL), pages 191–202. ACM
Press, 2002.

12. S. Graf and H. Säıdi. Construction of abstract state graphs with PVS. In Proceedings, 9th
International Conference on Computer Aided Verification (CAV), pages 72–83. Springer, 1997.

13. D. Harel, D. Kozen, and J. Tiuryn. Dynamic Logic. MIT Press, 2000.
14. J. J. Hunt, E. Jenn, S. Leriche, P. Schmitt, I. Tonin, and C. Wonnemann. A case study of

specification and verification using JML in an avionics application. In M. Rochard-Foy and
A. Wellings, editors, Proceedings, 4th Workshop on Java Technologies for Real-time and Embedded
Systems (JTRES). ACM Press, 2006.

15. Java Card platform specification 2.2.1. Sun Microsystems, Inc., October 2003.
16. J. C. King. Symbolic execution and program testing. Communications of the ACM, 19(7):385–394,

1976.
17. K. R. M. Leino and F. Logozzo. Loop invariants on demand. In K. Yi, editor, Proceedings, 3rd

Asian Symposium on Programming Languages and Systems (APLAS), volume 3780 of LNCS,
pages 119–134. Springer, 2005.

18. B. Meyer. Applying ”design by contract”. Computer, 25(10):40–51, 1992.
19. W. Mostowski. Fully verified Java Card API reference implementation. In Proceedings, 4th

International Verification Workshop (VERIFY’07), Workshop at CADE-21, Bremen, Germany.
CEUR Workshop Proceedings, 2007. To appear.

20. S. Ranise and C. Tinelli. The SMT-LIB standard: Version 1.2. Technical report, University of
Iowa, 2006.

21. P. Rümmer. Sequential, parallel, and quantified updates of first-order structures. In Proceedings,
13th International Conference on Logic for Programming, Artificial Intelligence and Reasoning
(LPAR), volume 4246 of LNCS, pages 422–436. Springer, 2006.

22. P. H. Schmitt and I. Tonin. Verifying the Mondex case study. In M. Hinchey and T. Margaria,
editors, Proceedings, 5th IEEE International Conference on Software Engineering and Formal
Methods (SEFM). IEEE Press, 2007. To appear.

23. S. Stepney, D. Cooper, and J. Woodcock. An electronic purse: Specification, refinement, and
proof. Technical monograph PRG-126, Oxford University Computing Laboratory, July 2000.

24. B. Weiß. Inferring invariants by static analysis in KeY. Diplomarbeit, University of Karlsruhe,
March 2007.

Author Index

Alkassar, Eyad, 4

Filali, Mamoun, 21

Fontaine, Pascal, 37

Gajanovic, Borislav, 55

Hähnle, Reiner, 85

Hillebrand, Mark, 4

Klein, Gerwin, 104

Knapp, Steffen, 4

Kollmann, Maik, 152

Langenstein, Bruno, 70

Larsson, Daniel, 85

Lüttich, Klaus, 119

Maeder, Christian, 119

Meng, Jia, 104

Mossakowski, Till, 119

Mostowski, Wojciech, 136

Nipkow, Tobias, 1

Nonnengart, Andreas, 70

Paulson, Lawrence C., 104

Pavlovic, Olivera, 152

Pinger, Ralf, 152

Platzer, Andre, 164

Rock, Georg, 70

Rümmer, Philipp, 179

Rumpe, Bernhard, 55

Rusev, Rostislav, 4

Schmitt, Peter H., 195

Stephan, Werner, 70

Stump, Aaron, 2

Tinelli, Cesare, 3

Tverdyshev, Sergey, 4

Weiß, Benjamin, 195

