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Abstract. In this paper we propose a method for inferring invariants for loops in
Java programs. An example of a simple while loop is used throughout the paper to
explain our approach. The method is based on a combination of symbolic execution
and computing fixed points via predicate abstraction. It reuses the axiomatisation of
the Java semantics of the KeY system. The method has been implemented within the
KeY system which allows to infer invariants and perform verification within the same
environment. We present in detail the results of a non-trivial example.

1 Introduction

A notorious difficulty in the formal verification of programs is the treatment of
loop constructs. An array of techniques has been developed to address this prob-
lem. Among these techniques the use of loop invariants is particularly attractive
since it does not compromise on the rigour of verification and runs completely
automatically, once the correct invariants are provided. In this paper we will try
to answer the question how to find invariants.

Several techniques for automatically inferring invariants of a program exist.
One general approach is dynamic analysis, i.e., analysing the program by ex-
ecuting it with concrete input values. A tool implementing dynamic invariant
inference is Daikon [10]: to infer invariants for a program, Daikon first instru-
ments it with state saving code at interesting program points. The instrumented
program is then run through a user-specified test suite. Finally, the resulting
data base of program states is analysed for properties which held in all of the
test runs. These properties are somewhat likely to be invariants, but this is not
guaranteed, because the test suite in general cannot cover all cases.

Stronger guarantees can be provided by static analysis, i.e., analysing the
program by examining its source code without actually executing it on concrete
inputs. A common paradigm in static analysis, which is also used in program ver-
ification, is symbolic execution [16]: the analysed program is“executed”, but with
symbolic instead of concrete values for the program variables. Static invariant
inference techniques are usually based on abstract interpretation [7]. Abstract
interpretation can be understood as an approximative (“abstract”) symbolic ex-
ecution of the program, which deals with loops through fixed-point iteration.
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Termination of this fixed-point iteration is ensured by the approximative na-
ture of the used symbolic execution. An example of a tool which uses abstract
interpretation for invariant inference is the static verifier Boogie [17].

Predicate abstraction [12] is a special variant of abstract interpretation, which
has been used for invariant inference [11]. Here, the symbolic execution is itself
not approximative, but as precise as possible (which corresponds to computing
strongest postconditions). Instead, the necessary approximation is performed
by explicit “abstraction” operations, which make use of an arbitrary, finite set
of predicates over the variables of the program. The inferred invariants are con-
structed from these predicates. Thus, the problem of finding invariants is reduced
to the simpler problem of guessing potentially useful predicates, which can be
done heuristically or, when necessary, manually by the user.

In the invariant inference method described in [11], the semantics of the
programming language is implicitly incorporated in the algorithms of the sys-
tem. In our approach we start from the axiomatic semantics for Java Card
developed within the KeY project. Java Card [15] is roughly a subset of Java
which contains all object-oriented features but lacks concurrency, floating-point
arithmetic, and dynamic class loading. The KeY system [1, 3] is a deductive veri-
fication system for Java Card programs. It is based on an axiomatisation of the
Java Card semantics within a program logic calculus, which follows the sym-
bolic execution paradigm. The axiomatisation covers 100% of the Java Card
language specification and a bit more with great precision. It has so far mainly
been used for program verification, e.g., the Demoney case study, an electronic
purse application provided by Trusted Logic S.A. [3, Chapt. 14], the verification
of a Java Card implementation of the Schorr-Waite graph marking algorithm
[3, Chapt. 15], and the verification of a part of a flight management system from
Thales Avionics [14]. The most recent targets of verification with KeY have been
an implementation of the Mondex banking card case study [23, 22] and an im-
plementation of the Java Card API [19]. The KeY symbolic execution rules for
Java Card have lately also been used for model-based test generation [2, 9]. In
this paper we explore the possibility to use the KeY calculus and prover for infer-
ring invariants, by incorporating fixed-point iteration and predicate abstraction.
Besides the obvious benefit of reusing an existing formal semantics, this also has
the advantage that the generation of loop invariants is an integrated part of the
verification effort.

The organisation of this paper is as follows: in Sect. 2, we review our pro-
gram logic for Java Card and its axiomatisation of the programming language
semantics. In Sect. 3, we introduce a simple example for a program and its invari-
ants. Using this example, we then explain our approach for inferring invariants in
Sect. 4. The implementation of the approach within the KeY system is sketched
in Sect. 5, and the results of initial experiments with the implementation are
documented in Sect. 6. Finally, we conclude in Sect. 7.
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2 Background

Our approach is based on the program logic Java Card DL [3, Chapt. 3], which
is a version of dynamic logic [13]. It extends first-order predicate logic by modal
operators [p] (“box”) and 〈p〉 (“diamond”) for every legal sequence of Java Card
statements p: the formula [p]ψ states that if execution of p terminates in a state
s, then ψ holds in state s; the formula 〈p〉ψ additionally requires that p does
indeed terminate. In the following we only make use of the box modality [p]. The
reason is that in this paper, we are interested in invariants, and invariants are
not concerned with the issue of termination: they are safety properties, whereas
termination is a liveness property.

Formulas of the form ϕ → [p]ψ are similar to Hoare triples {ϕ}p{ψ}: they
express that if p terminates after being started in a state which satisfies ϕ,
then the resulting state satisfies ψ. For example, the meaning of the formula
o.f

.
= 27 → [o.f++;]o.f

.
= 28 is: if the current value of the field f of the object

pointed to by the program variable o is 27, then after executing the statement
o.f++; the value of the field has changed to 28. This formula is valid, i.e., it
holds in all possible states.

Proofs of the validity of Java Card DL formulas can be performed by
means of a sequent calculus. A sequent is a construct Γ ` ∆, where Γ and ∆ are
sets of formulas. Its semantics is the same as that of the formula

∧
Γ → ∨

∆,
and in the following we do not strictly distinguish between sequents and their
equivalent formulas. An example for a sequent calculus rule is andRight:

Γ ` ϕ, ∆ Γ ` ϕ′, ∆
Γ ` ϕ ∧ ϕ′, ∆

andRight

The (schematic) sequents Γ ` ϕ,∆ and Γ ` ϕ′, ∆ are the premisses of the rule,
and the sequent Γ ` ϕ ∧ ϕ′, ∆ is the conclusion of the rule. A rule is sound if
validity of its premisses implies validity of its conclusion. A proof for a sequent
is constructed by applying rules from bottom to top; if all leaves of the resulting
tree are valid, then the root sequent must be valid as well. The particular rule
andRight deals with a conjunction on the right side of the sequent arrow by
splitting the proof tree into two branches.

Formulas with modal operators are handled by rules which perform a sym-
bolic execution of the Java Card program within the modality. These rules
operate on the active statement of the program, i.e., the first basic statement
following a non-active prefix of opening braces, beginnings of try blocks and the
like. This prefix is denoted by π, and the rest of the program behind the active
statement by ω. For example, the active statement of the following program is
i = 0:

{ try {︸ ︷︷ ︸
π

i = 0; i++; } catch(Exception e) { i = 27; } }︸ ︷︷ ︸
ω
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The Java Card DL calculus, as it is implemented in the KeY system,
currently contains approximately 1700 rules, of which about 1300 formalise the
semantics of Java Card. As we cannot describe all of them here, we restrict our
presentation to representative rules for the three basic programming constructs
in imperative languages: assignments, conditional statements, and loops. We
begin with assignments, which can be symbolically executed with

Γ ′, x
.
= e′ ` [π ω]ψ, ∆′

Γ ` [π x = e; ω]ψ, ∆
assignment

where the expression e must not have side effects, and where Γ ′, e′ and ∆′ result
from Γ , e and ∆, respectively, by substituting a fresh program variable x′ for
x. This rule replaces the assumptions about the initial state of the program by
their strongest postcondition under the assignment statement. For example, it
transforms the sequent i

.
= 27 ` [i=i+1;]i

.
= 28 into i′

.
= 27, i

.
= i′ +1 ` i

.
= 28.

As formulated here, the assignment rule only works for assignments to local
program variables. Assignments to fields or array slots are more complex be-
cause of aliasing, i.e., the phenomenon that the same memory location may be
referred to by different names. They can nevertheless be handled along the same
lines as assignments to local variables, but this leads to somewhat complicated
formulas containing case distinctions for the possible aliasing situations. For ex-
ample, symbolically executing o1.f

.
= 27 ` [o2.f = 0; ]o1.f

.
= 27 in this way

yields o1.f ′ .
= 27,∀x.(x.f .

= if (x
.
= o2)then(0)else(x.f ′)) ` o1.f

.
= 27. The

KeY system normally avoids these complications as far as possible by treating
assignments in a different way, which is based on a concept called updates [21].
However, for the purpose of inferring invariants, the classical way to handle as-
signments fits our needs better. The details of how this works out for complex
assignments are given in [24]. In the following we restrict ourselves to the sim-
ple case of assignments to local variables, which amply suffices to explain our
method.

Conditional statements can be handled with this rule:

Γ ` (e
.
= true→ [π p ω]ψ) ∧ (¬e .

= true→ [π q ω]ψ), ∆
Γ ` [π if(e) p else q ω]ψ, ∆

ifElse

Again, the occurring Java Card expression must not have side effects. This
restriction is never severe, because a program can always be transformed such
that an expression is separated from its side effects; the Java Card DL calculus
contains rules which perform such transformations. The ifElse rule symbolically
executes a conditional statement by creating two conjuncts which describe the
case that the guard expression is true and the case that it is false, respectively.
Typically, the next step is to split the proof tree by applying the andRight rule.

Loops can be symbolically executed with the loopUnwind rule

Γ ` [π if(e){p while(e) p} ω]ψ, ∆
Γ ` [π while(e) p ω]ψ, ∆

loopUnwind
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where, as usual, the expression e must not have side effects. This is a simplified
version of the actual rule which is sound only if the loop body does not con-
tain break or continue statements. It transforms the loop into a conditional
statement: if the guard expression is satisfied, then the loop body is executed
once before getting to the loop again; otherwise, the loop is not entered. Since
its premiss again contains the loop, the unwind rule on its own only works for
loops which terminate after a statically known and sufficiently small number of
iterations. In the general case, loops cannot be handled by symbolic execution
alone. Instead, an invariant rule can be used, i.e., a rule which makes use of a
loop invariant. This loop invariant normally has to be provided manually from
the outside.

3 Running Example

As a simple example for a program and its invariants, we will use the following
piece of Java Card code, which computes the maximal positive element of an
integer array a:

max = 0;

i = 0;

while(i < a.length) {

if(a[i] > max) max = a[i];

i++;

}

The program is visualised as a control flow graph in Fig. 1. The nodes of
this graph represent the basic commands and guard expressions of the program,
and the edges stand for flow of control between the nodes. Control enters the
program through the node marked entry, and leaves it through the node marked
exit (for the sake of readability, we ignore here that the program terminates
abruptly if a

.
= null holds). The control flow graph is annotated with exemplary

invariants at interesting program points. Note that in this paper we are talking
about invariants in the classical sense, i.e., first-order formulas which always
hold when control flow reaches a specific program point such as a loop entry.
The notion of “class” or “object” invariants for object-oriented programs [18] is
related but lives at a different level of abstraction.

Our example invariants for the program are as follows: at the entry node,
we assume nothing about the program state, so the invariant here is true. After
the first assignment statement, max

.
= 0 always holds–this is the strongest post-

condition of true under the assignment statement. Next is the loop invariant:
every time control flow reaches the loop entry, ∀x.(0 ≤ x < i→ a[x] ≤ max) is
satisfied. Unlike the loop invariant, the remaining invariants can again easily be
derived from their predecessors as strongest postconditions. In particular, the
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false

max=a[i];

i<a.length

max=0;

exit

true

a[i]>max

falsetrue

i++;

i=0;

entry

true

max ≐ 0

8  x:(0     · x  < i ! a[x] ·   max)

8  x:(0     · x ·   i ! a[x] ·   max) ^  i < a.length

8  x:(0    · x  < i ! a[x] ·   max) ^  i < a.length

                         ^ a[i] > max

8  x:(0     · x  < i ! a[x] ·   max) ^  i < a.length

8  x:(0     · x  < i ! a[x] ·   max) ^  i ¸ a.length

Fig. 1. Control flow graph for the example program, annotated with invariants.

invariant attached to the exit node, i.e., the postcondition of the program as a
whole, immediately follows from the loop invariant and the negation of the loop
guard expression.

4 Our Approach

Our approach is embedded in the overall process of program verification which we
imagine has reached a state where a typical goal ϕ→ [p]ψ has to be proved. The
basic idea is to extend the usual symbolic execution of p in the Java Card DL
calculus by fixed-point iteration and predicate abstraction, and thereby turn the
proving process into a form of abstract interpretation. To help the reader under-
stand how this works out exactly, we outline our approach with the particular
instantiations of ϕ, p and ψ given in Fig. 2(1): the goal is to prove that after
executing the program introduced in Sect. 3, all elements of the array are less
than or equal to max. Symbolic execution of the program begins with applying
the assignment rule to the first two assignments, which leads to the new proof
obligation shown in Fig. 2(2). The effect of the two assignments manifests itself
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in the two additional assumptions max
.
= 0 and i

.
= 0. Now, the active statement

of the program is the while loop.

The guiding principle of our construction is to always view the formula on
the left hand side of the implication as a candidate for an invariant at the
program point reached before the active statement of the program occurring
in the modality on the right hand side of the implication. According to this
principle, the formula ϕ1 in Fig. 2(2) is a first candidate for the loop invariant.

The next step in the symbolic execution has to deal with two cases: the loop
is not entered and the loop is unfolded at least once. Technically, we apply the
loopUnwind rule followed by the ifElse rule, and obtain the conjunction of the
two implications shown in Fig. 2(3).

We refrain from splitting the proof by applying the andRight rule, and for
the moment concentrate on the first conjunct. The active statement of its box
modality on the right hand side is a conditional statement. Thus, the next sym-
bolic execution step is to apply the ifElse rule, which produces two conjuncts
in place of one. Again, we do not split this conjunction with the andRight rule.
Instead, the assignment max = a[i]; in the body of the conditional statement
is executed, yielding the proof goal shown in Fig. 2(4). Notice that for the first
time the assignment rule necessitates the introduction of a new program variable
max ′ to hold the previous value of max.

There is a fundamental difference between the first two conjuncts in Fig. 2(4)
and the third: the first two refer to the same point in program execution. More
precisely, the right hand sides of the first two implications coincide, so we can
apply the merge rule

Γ ` (ϕ ∨ ϕ′) → ψ, ∆
Γ ` (ϕ→ ψ) ∧ (ϕ′ → ψ), ∆

merge

which replaces the first two implications by one, logically equivalent, implica-
tion, Fig. 3(5). This one implication describes the combined effects of the two
execution paths, just like in the control flow graph (Fig. 1) there is only one
node for the assignment i++;, even though it can be reached via several paths.
Making such merging steps possible is the reason why we did not and will not
apply the andRight rule to split the proof.

After symbolic execution of i++;, the last statement of the loop body, we
reach in Fig. 3(6) the same program point again that we had already considered
in Fig. 2(2), namely the loop entry. Now, we have two invariant candidates ϕ1

from (2) and ϕ2 from (6) for the same program point. Naturally, we consider
their disjunction ϕ1 ∨ ϕ2 as our new invariant candidate, which is shown in
Fig. 3(7). Technically this is achieved by applying the loopMerge rule

Γ ` (ϕ ∨ ϕ′) → [π while(e) p ω]ψ, ∆
Γ ` (ϕ→ [π while(e) p ω]ψ) ∧ (ϕ′ ∧ ¬e .

= true→ [π ω]ψ), ∆
loopMerge
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true → [{ max = 0;

i = 0;

while(i < a.length) {

if(a[i] > max) max = a[i];

i++;

}

}] ∀x.(0 ≤ x < a.length→ a[x] ≤ max)︸ ︷︷ ︸
ψ0

(1)

max
.
= 0 ∧ i

.
= 0︸ ︷︷ ︸

ϕ1

→ [{ while(i < a.length) {

if(a[i] > max) max = a[i];

i++;

}

}]ψ0

(2)

(
max

.
= 0 ∧ i

.
= 0 ∧ i < a.length→ [{ if(a[i] > max) max = a[i];

i++;

while(i < a.length) {

if(a[i] > max) max = a[i];

i++;

}

}]ψ0

)
∧

(
max

.
= 0 ∧ i

.
= 0 ∧ i ≥ a.length→ [{}]ψ0

)
(3)

(
max ′ .= 0 ∧ i

.
= 0 ∧ i < a.length ∧ a[i] > max ′ ∧ max

.
= a[i]

→ [{ i++;

while(i < a.length) {

if(a[i] > max) max = a[i];

i++;

}

}]ψ0

)
∧

(
max

.
= 0 ∧ i

.
= 0 ∧ i < a.length ∧ a[i] ≤ max

→ [{ i++;

while(i < a.length) {

if(a[i] > max) max = a[i];

i++;

}

}]ψ0

)
∧

(
max

.
= 0 ∧ i

.
= 0 ∧ i ≥ a.length→ [{}]ψ0

)

(4)

Fig. 2. Invariant inference for the example program (first part).
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(
(max ′ .= 0 ∧ i

.
= 0 ∧ i < a.length ∧ a[i] > max ′ ∧ max

.
= a[i]

∨ max
.
= 0 ∧ i

.
= 0 ∧ i < a.length ∧ a[i] ≤ max)

→ [{ i++;

while(i < a.length) {

if(a[i] > max) max = a[i];

i++;

}

}]ψ0

)
∧

(
max

.
= 0 ∧ i

.
= 0 ∧ i ≥ a.length→ [{}]ψ0

)
(5)

(
(max ′ .= 0 ∧ i′ .= 0 ∧ i′ < a.length ∧ a[i′] > max ′ ∧ max

.
= a[i′]

∨ max
.
= 0 ∧ i′ .= 0 ∧ i′ < a.length ∧ a[i′] ≤ max)

∧ i
.
= i′ + 1

→ [{ while(i < a.length) {

if(a[i] > max) max = a[i];

i++;

}

}]ψ0

)
∧

(
max

.
= 0 ∧ i

.
= 0︸ ︷︷ ︸

ϕ1

∧ i ≥ a.length→ [{}]ψ0

)

}
ϕ2

(6)

ϕ1 ∨ ϕ2 → [{ while(i < a.length) {

if(a[i] > max) max = a[i];

i++;

}

}]ψ0

(7)

0 ≤ i ∧ i ≤ 1 ∧ ∀x.(0 ≤ x < i→ a[x] ≤ max)
→ [{ while(i < a.length) {

if(a[i] > max) max = a[i];

i++;

}

}]ψ0

(8)

0 ≤ i ∧ ∀x.(0 ≤ x < i→ a[x] ≤ max) ∧ i ≥ a.length→ [{}]ψ0 (9)

Fig. 3. Invariant inference for the example program (second part).
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where e must not have side effects. The same principle guides both the merge
and the loopMerge rule: the effects of several execution paths are combined in
one implication.

If ϕ1 was logically equivalent to ϕ1 ∨ ϕ2, we could stop here and declare ϕ1

to be our prime candidate for the loop invariant: it would be a fixed point of
our iterative inference process. But as you can easily see, this is not the case in
our example. So, we have to go on, unfold the loop body once more, obtain a
loop invariant candidate ϕ3 after the second iteration, check whether ϕ1 ∨ ϕ2

is logically equivalent to ϕ1 ∨ ϕ2 ∨ ϕ3, and then stop or go on accordingly. The
problem with this plan of action is that it might (and, in the example, would)
not terminate. This is where predicate abstraction as it is, e.g., described in [12],
comes into play. To apply this method we first need to fix a set P of predicates.
For the example, we choose

P = {i .
= 0︸ ︷︷ ︸
p1

, 0 ≤ i︸ ︷︷ ︸
p2

, i ≤ 1︸ ︷︷ ︸
p3

, ∀x.(0 ≤ x < i→ a[x] ≤ max)︸ ︷︷ ︸
p4

} .

In general P might be chosen by following heuristics, e.g., include all parts of
the invariant candidate accumulated before the first unfolding of the loop, the
loop guard, and parts of the postcondition ψ. In addition one might include in P
all the usual suspect invariants, as is, e.g., done in [10]. As a final resort P could
be customised by user interaction and trial and error. Once P is agreed upon we
continue in the above example by replacing ϕ1 ∨ ϕ2 with its abstraction, which
is the conjunction of all predicates p ∈ P for which (ϕ1∨ϕ2) → p is a tautology.
Formally, we apply the abstraction rule

Γ ` ϕ′ → ψ, ∆
Γ ` ϕ→ ψ, ∆

abstraction

where ϕ′ =
∧{p ∈ P | ϕ→ p is valid}. In our example we get ϕ′ = p2∧p3∧p4,

see Fig. 3(8).
After symbolically executing the loop body for the second time and again

applying loopMerge and abstraction, we arrive at p2∧p4. Since P is of finite size,
this process of eliminating predicates must eventually terminate. In the example,
it does so after just one more iteration: if we symbolically execute the loop body
a third time, the new invariant candidate reached after applying loopMerge and
abstraction is again p2 ∧ p4. We have reached a fixed point and stop iterating
the while loop. Technically speaking, instead of applying the loopUnwind rule we
apply

Γ ` ϕ ∧ ¬e .
= true→ [π ω]ψ, ∆

Γ ` ϕ→ [π while(e)p ω]ψ, ∆
loopEnd

where e must not have side effects. In our running example this rule application
results in Fig. 3(9).
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There is one problem with the loopEnd rule: Unlike the other rules introduced
in this section, it is not sound, as you can easily see. Applying it is sound if the
formula ϕ is an invariant for the loop. In situations like the one in the example, we
have good reason to believe that this is the case: ϕ is a fixed point of accumulated
symbolic executions of the loop body, so it should hold at the loop entry in all
possible concrete executions. This is however not quite guaranteed; for example,
non-symbolic-execution rules might have been applied in between, disrupting
the inference process. Formally prohibiting the application of the loopEnd rule
in such situations is conceivable, but complicated. In our context, this is not
a necessity: Our implementation prevents unsound applications in a heuristic
manner, and if in very rare cases these heuristics should fail and an inferred
“invariant” not really be an invariant, this error would be caught when trying to
use the false invariant for a regular proof with the invariant rule.

What is a good loop invariant? After all the logical constant true is always
an invariant. In our scenario where invariant inference is just one part of an
overall program verification effort the answer is easy: a loop invariant is good if
it allows to successfully complete the overall proof goal. This is the case in our
example, since Fig. 3(9) can easily be seen to be universally valid.

In summary, our approach is as follows. The analysed program is symbolically
executed with the program rules of the Java Card DL calculus, but without
intertwining this process with applications of other rules such as andRight. The
symbolic execution is coordinated such that it follows the structure of the control
flow graph; in particular, at confluences in the graph, the conjuncts describing
the predecessors are combined using the merge and loopMerge rules. Each appli-
cation of loopMerge is followed by an application of the abstraction rule. After
applying abstraction, it is checked whether the resulting abstracted loop invariant
candidate is a fixed point, i.e., whether the previous such candidate consisted of
the same predicates. If so, it is taken as the inferred loop invariant, and loopEnd
is applied. Otherwise, the loop is symbolically executed once again. This process
works completely automatically, except that the user may choose to help it find
better invariants by specifying predicates for each loop once in the beginning.

5 Implementation

We have implemented our method as an extension of the KeY system. The core
element of this implementation are the rules introduced in Sect. 4. The bottleneck
of the approach clearly lies in the abstraction rule: it requires checking for each
predicate p ∈ P whether p is implied by the invariant candidate. These checks
are implemented as calls to an external automated first-order theorem prover
such as Simplify [8]. Decision procedures which support input in the SMT-LIB
format [20] can also be used. Of course, such theorem prover calls are neither
always successful nor computationally cheap. The lack of completeness is miti-
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gated by the fact that the predicates tend to be simple and thus manageable by
the theorem prover. Acceptable performance can only be achieved by employing
optimisations which reduce the number of necessary calls. Our implementation
features several such optimisations. For example, it exploits implication rela-
tionships between predicates: if p1 → p2 is known to be valid, and the theorem
prover has not been able to prove ϕ→ p2, then there is no point in checking the
validity of ϕ→ p1. Possibly, performance could be improved further by using an
existing predicate abstraction algorithm such as the one from [11] at this place.

Besides the rules themselves, the implementation also comprises a heuris-
tic predicate generator, which automatically creates many of the “usual sus-
pect” invariant elements, such as ordering comparisons between integer program
variables, or equality and inequality between variables of a reference type. The
predicate generator is complemented by the possibility to manually enter pred-
icates. No quantified formulas are generated automatically, as the number of
predicates would get too large to be manageable. However, manually entered
predicates are allowed to contain free variables; such predicates are then uni-
versally closed by the predicate generator, using various guards. For example,
if the user specifies the predicate a[x] ≤ max, the predicate generator adds
∀x.(0 ≤ x < i→ a[x] ≤ max), together with many other similar predicates.

The final element of the implementation is a proof search strategy, which
controls the automatic application of the rules as it is necessary for invariant
inference. In particular, the strategy prohibits the application of non-symbolic-
execution rules, and it coordinates symbolic execution of several modalities
such that it follows the control flow graph: if, e.g., the current proof goal is
(ϕ1 → [max = a[i]; i++;]ψ) ∧ (ϕ2 → [i++;]ψ), symbolic execution of the sec-
ond conjunct is stopped until max = a[i]; has been symbolically executed in
the first conjunct and the merge rule can be applied.

6 Experiments

We tested our implementation on selection sort, a well-known and comparatively
simple sorting algorithm with quadratic time complexity. The basic idea of the
algorithm is to find the smallest element of the array to be sorted, swap it with
the first element, and iteratively repeat this process on the subarray starting
at the second position. The exact proof obligation supplied to the KeY system
is shown in Fig. 4. It states that, after invoking the program contained in the
box modality on an integer array a which is not null and which has a positive
length, the array is sorted. This specification is not strong enough to ensure
that the program actually sorts the array; for example, a program could satisfy
it by simply setting all array elements to zero. It is however sufficient for our
purposes. The program itself is a straightforward Java Card rendering of selec-
tion sort. The temporary boolean variables condOuter and condInner are used
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to buffer the values of the loop guard expressions, which is necessary because
our implementation of the invariant inference currently requires that the guard
expressions must be simple program variables.

a 6 .= null ∧ a.length > 0 → [{ i = 0;

condOuter = i < a.length;

while(condOuter) {

minIndex = i;

j = i + 1;

condInner = j < a.length;

while(condInner) {

if(a[j] < a[minIndex]) minIndex = j;

j++;

condInnder = j < a.length;

}

temp = a[i];

a[i] = a[minIndex];

a[minIndex] = temp;

i++;

condOuter = i < a.length;

}

}]∀x.(0 < x ∧ x < a.length→ a[x− 1] ≤ a[x])

Fig. 4. Java Card DL proof obligation for selection sort.

We manually entered the predicates (condOuter
.
= true ↔ i < a.length),

(condInner
.
= true ↔ j < a.length), (a[x] ≤ a[y]), and (a[minIndex] ≤

a[x]), where x and y are free variables. The first two of these are necessary only
because of the introduction of condInner and condOuter, and their generation
could easily be automated. The other two require more ingenuity, but are still
significantly easier to guess than the loop invariants themselves. Together with
the automatically generated predicates, this lead to 8794 predicates for the inner
loop and 16950 predicates for the outer loop.

Using Simplify as the external first-order theorem prover, the invariant infer-
ence process terminated after 3 iterations for the outer loop, containing 4, 4 and
2 iterations for the inner loop, respectively. 652 rules were applied in total. The
overall running time on a 1.5 GHz Pentium M machine was about 8.5 minutes.
Approximately 65% of this time was spent running Simplify, which was called
exactly 800 times. The resulting loop invariants for the inner and the outer loop
are shown in Fig. 5 and Fig. 6.

In addition to loop invariants, the invariant rule of the Java Card DL
calculus [4] makes use of modifier sets for loops, i.e., information about which
memory locations may be modified by a loop. In the case of selection sort,
appropriate modifier sets are {minIndex, j, condInner} for the inner loop, and
{minIndex, j, condInner, temp, a[*], i, condOuter} for the outer loop. When
supplied with these modifier sets (which are quite obvious from the program
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∀x.∀y.(0 ≤ x ∧ x < y ∧ y ≤ i→ a[x] ≤ a[y])

∧ ∀x.(i ≤ x ∧ x < minIndex→ a[minIndex] ≤ a[x])

∧ ∀x.(i < x ∧ x < j→ a[minIndex] ≤ a[x])

∧ ∀x.(minIndex < x ∧ x < j→ a[minIndex] ≤ a[x])

∧ a[0] ≤ a[i]

∧ a[minIndex] ≤ a[i]

∧ 0 < a.length

∧ j ≤ a.length

∧ 0 < j

∧ minIndex < a.length

∧ 0 ≤ minIndex

∧ minIndex < j

∧ i < a.length

∧ 0 ≤ i

∧ i < j

∧ i ≤ minIndex

∧ ∀x.∀y.(0 ≤ x ∧ x < i ∧ i ≤ y ∧ y < a.length→ a[x] ≤ a[y])

∧ ∀x.∀y.(0 ≤ x ∧ x < i ∧ i ≤ y ∧ y < j→ a[x] ≤ a[y])

∧ ∀x.∀y.(0 ≤ x ∧ x < i ∧ i ≤ y ∧ y < minIndex→ a[x] ≤ a[y])

∧ a 6 .= null

∧ condOuter
.
= true

∧ (condOuter
.
= true↔ i < a.length)

∧ (condInner
.
= true↔ j < a.length)

Fig. 5. Inferred invariant for the inner loop of selection sort.

∀x.∀y.(0 ≤ x ∧ x < y ∧ y < i→ a[x] ≤ a[y])

∧ 0 < a.length

∧ i ≤ a.length

∧ 0 ≤ i

∧ ∀x.∀y.(0 ≤ x ∧ x < i ∧ i ≤ y ∧ y < a.length→ a[x] ≤ a[y])

∧ (condOuter
.
= true↔ i < a.length)

∧ a 6 .= null

Fig. 6. Inferred invariant for the outer loop of selection sort.
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code), and, crucially, the loop invariants from Fig. 5 and Fig. 6, the KeY system
(in normal mode) was able to automatically prove the validity of the formula
from Fig. 4 in about 2 minutes.

7 Conclusions

We have presented a method for inferring invariants for while loops in Java
programs that can seamlessly be integrated in program verification based on
the symbolic execution paradigm. To do so this paradigm had to be adapted
in two aspects. First, when using symbolic execution for program verification,
intermediate proof goals that involve a case distinction are split into subgoals
that are then proved separately. For invariant inference we have to avoid this
splitting. Second, the ideas of fixed-point iteration and approximation are not
present in the symbolic execution paradigm for program verification. So, we had
to introduce them.

The approach has been implemented as an addition to the KeY verification
system. The results of first experiments are very encouraging. But, since the
success to a great deal depends on the heuristic choice of the set P of abstraction
predicates, much more experience is needed to arrive at a dependable evaluation.

Approximation in static analysis typically takes the form of“erring on the safe
side”, i.e., precision may be lost, but not correctness. In principle, our invariant
inference is no exception: the inferred invariants may sometimes not be useful,
but they should always indeed be invariants. However, since we introduced a rule
which is not strictly sound, this is not guaranteed with the same high degree of
confidence that is carried by the axioms from the KeY calculus. Remedying this
imperfectness is one direction for future work. Nevertheless, the success rate
of suggesting true invariants is already a lot higher than in dynamic analysis
methods such as Daikon.

Another line of future work, which is more speculative, concerns the gen-
eration of the abstraction predicates. One could investigate the use of CEGAR
(counterexample-guided abstraction refinement) techniques [6, 5] to arrive at use-
ful predicates in a less heuristic, more systematic manner.

References
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