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Abstract. Heterogeneous specification becomes more and more important because complex sys-
tems are often specified using multiple viewpoints, involving multiple formalisms. Moreover, a
formal software development process may lead to a change of formalism during the development.
However, current research in integrated formal methods only deals with ad-hoc integrations of
different formalisms.
The heterogeneous tool set (HETS) is a parsing, static analysis and proof management tool com-
bining various such tools for individual specification languages, thus providing a tool for hetero-
geneous multi-logic specification. HETS is based on a graph of logics and languages (formalized
as so-called institutions), their tools, and their translations. This provides a clean semantics of
heterogeneous specifications, as well as a corresponding proof calculus. For proof management,
the calculus of development graphs (known from other large-scale proof management systems)
has been adapted to heterogeneous specification. Development graphs provide an overview of the
(heterogeneous) specification module hierarchy and the current proof state, and thus may be used
for monitoring the overall correctness of a heterogeneous development.
We illustrate the approach with a sample heterogeneous proof proving the correctness of the com-
position table of a qualitative spatial calculus. The proofinvolves two different provers and logics:
an automated first-order prover solving the vast majority ofthe goals, and an interactive higher-
order prover used to prove a few bridge lemmas.

1 Introduction

“As can be seen, a plethora of formalisms for the verificationof programs, and, in particular, for the
verification of concurrent programs has been proposed. . . .there are good reasons to consider all the
mentioned formalisms, and to use whichever one best suits the problem.” [43] (italics in the original)

In the area of formal specification and logics used in computer science, numerous
logics are in use:

– logics for specification of datatypes,
– process calculi and logics for the description of concurrent and reactive behaviour,
– logics for specifying security requirements and policies,
– logics for reasoning about space and time,
– description logics for knowledge bases in artificial intelligence/the semantic web,
– logics capturing the control of name spaces and administrative domains (e.g. the

ambient calculus), etc.

Indeed, at present, it is not imaginable that a combination of all these (and other)
logics would be feasible or even desirable — even if it existed, the combined formal-
ism would lack manageability, if not become inconsistent. Often, even if a combined
logic exists, for efficiency reasons, it is desirable to single out sublogics and study
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translations between these (cf. e.g. [43]). Moreover, the occasional use of a more
complex formalism should not destroy the benefits ofmainlyusing a simpler formal-
ism.

This means that for the specification of large systems, heterogeneous multi-logic
specifications are needed, since complex problems have different aspects that are best
specified in different logics. Moreover, heterogeneous specifications additionally have
the benefit that different approaches being developed at different sites can be related,
i.e. there is a formal interoperability among languages andtools. In many cases, spe-
cialized languages and tools often have their strengths in particular aspects. Using
heterogeneous specification, these strengths can be combined with comparably small
effort.

Current heterogeneous languages and tools do not meet theserequirements. The
heterogeneous language UML [3] deliberately has no formal semantics, and hence
is not a formal method or logic in the sense of the present work. (However, UML
could be integrated in the Heterogeneous Tool Sets as a formalism without semantics,
while the different formal semantics that have been developed for UML would be
represented as logic translations.) Likewise, languages for mathematical knowledge
management like OpenMath and OMDoc [18] are deliberately only semi-formal. Ser-
vice integration approaches like MathWeb [48] are either informal, or based on a
fixed formalism. Moreover, there are many bi- or trilateral combinations of different
formalisms; consider e.g. the integrated formal methods conference series [41]. In-
tegrations of multiple decision procedures and model checkers into theorem provers,
like in the PROSPER toolkit [9], provide a more systematic approach. Still, these ap-
proaches are uni-lateral in the sense that there is one logic(and one theorem prover,
like the HOL prover) which serves as the central integrationdevice, such that the
user is forced to use this central logic, even if this may not be needed for a particular
application (or the user may prefer to work with a different main logic).

By contrast, the heterogeneous tool set (HETS) is a both flexible, multi-lateraland
formal (i.e. based on a mathematical semantics) integration tool. Unlike other tools,
it treats logic translations (e.g. codings between logics)as first-class citizens. This
can be compared with the treatment oftheory morphismsas first-class citizens, which
is a distinctive feature of formalisms like OMDoc [18] and tools like Specware [17]
and IMPS [12, 11]. A clear referencing of symbols to their theories can distinguish,
for example, the naturals with zero from the naturals without zero, even if they are
denoted with the same symbolNat. Theory morphisms can relate the two different
theories of naturals. In HETS, both theory morphisms and logic comorphisms are first-
class citizens. This means that HETScan also distinguish conjunction in Isabelle/HOL
from conjunction in PVS3 (these actually have two different semantics!) and relate the
underlying logics with a comorphism.

3 At least once a logic for PVS has been added.
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The architecture of the heterogeneous tool set is shown in Fig. 2 on page 123. In
the sequel, we will explain the details of this figure.

2 Heterogeneous Specifications: the Model-Theoretic View

We take a model-theoretic view on specifications [42]. This means that the notion of
logical theory (i.e. collection of axioms) is considered tobe only an auxiliary concept,
and the meaning of a formal specification (of a program module) is given by

– its signature; listing the names of entities that need to be implemented, typically
together with their types, that is, thesyntactic interfaceof the module, and

– its class of models, that is, the set of possiblerealizationsor implementations of
the interface.

This model-theoretic view is even more important when
moving from homogeneous to heterogeneous specifications:
in general, one cannot expect that different formalisms (say,
a specification and a programming language, or a process
algebra and a temporal logic) are related by translating the-
ories — it is themodelsthat are used to link different for-
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Fig. 1: Multiple viewpoints

malisms. This point of view is also expressed by the so-calledviewpoint specifications
(see Fig. 1), which use logical theories in different logical formalisms in order to re-
strict the model class of an overall system from different viewpoints (while a direct
specification of the model class of the overall system would become unmanageably
complex).

The correct mathematical underpinnings to this are given bythe theory ofinsti-
tutions[14]. Institutions capture in a very abstract and flexible way the notion of a
logical system, by leaving open the details of signatures, models, sentences (axioms)
and satisfaction (of sentences in models). The only condition governing the behaviour
of institutions is thesatisfaction condition, stating thattruth is invariant under change
of notation(or enlargement of context):

M′ |=Σ ′ σ(ϕ) ⇔ M′|σ |=Σ ϕ

Here,σ : Σ −→Σ ′ is asignature morphism, relating different signatures (or module
interfaces),σ(ϕ) is the translation of theΣ -sentenceϕ along σ , and M′|σ is the
reduction of theΣ ′-modelM′ to aΣ -model.

The importance of the notion of institutions lies in the factthat a whole body of
specification theory (concerning structuring of specifications, module concepts, pa-
rameterization, implementation, refinement, development, proof calculi) can be de-
veloped independently of the underlying institutions — allthat is needed is captured
by the satisfaction condition.
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Different logical formalisms are related byinstitution comorphisms[13], which
are again governed by the satisfaction condition, this timeexpressing that truth is
invariant also under change of notation across different logical formalisms:

M′ |=J
Φ(Σ ) αΣ (ϕ) ⇔ βΣ (M′) |=I

Σ ϕ.

Here,Φ(Σ) is the translation of signatureΣ from institutionI to institutionJ, αΣ (ϕ)
is the translation of theΣ -sentenceϕ to aΦ(Σ)-sentence, andβΣ (M′) is the transla-
tion (or perhaps: reduction) of theΦ(Σ)-modelM′ to aΣ -model.

Heterogeneous specification is based on some graph of logicsand logic transla-
tions, formalized as institutions and comorphisms. The so-calledGrothendieck insti-
tution [10, 24] is a technical device for giving a semantics to heterogeneous spec-
ifications. This institution is basically a flattening, or disjoint union, of the logic
graph. A signature in the Grothendieck institution consists of a pair(L,Σ) where
L is a logic (institution) andΣ is a signature in the logicL. Similarly, a Grothendieck
signature morphism(ρ,σ) : (L1,Σ1) → (L2,Σ2) consists of a logic translationρ =
(Φ ,α,β ) : L1−→ L2 plus anL2-signature morphismσ : Φ(Σ1)−→Σ2. Sentences,
models and satisfaction in the Grothendieck institution are defined in a component
wise manner.

The Grothendieck institution can be understood as a flat combination of all of the
involved logics. Here, “flat” means that there is no direct interaction of e.g. logical
connectives from different logics that lead to new sentences; instead, just the disjoint
union of sentences is taken. However, this does not mean thatthe logics just coexist
without any interaction: they interact through the comorphisms. Comorphisms allow
for translating a logical theory into some other logic, and via this translation to interact
with theories in that logic (e.g. by expressing some refinement relation).

We refer the reader to the literature [14, 13, 23, 30] for fullformal details of in-
stitutions and comorphisms. Subsequently, we use the terms“institution” and “logic”
interchangeably, as well as the terms “institution comorphism” and “logic transla-
tion”.

3 Implementation of a Logic

How is a single logic implemented in the Heterogeneous Tool Set? This is depicted
in the left column of Fig. 2.

The syntactic entities of a logic are represented using types for signaturesand
signaturemorphismsforming a category with functions for identity morphisms and
composition of morphisms as well as for extracting domains and codomains. There
is also a type ofsentencesas well as a sentence translation function, allowing for
translation of sentences along a signature morphisms.

In order to model a more verbose and user-friendly input syntax of the logic
we further introduce types for the abstract syntax ofbasic specificationsandsym-
bol maps.
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Architecture of the heterogeneous tool set Hets
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Fig. 2. Architecture of the heterogeneous tool set

class Logic lid sign morphism sentence basic_spec symbol_map
| lid -> sign morphism sentence basic_spec symbol_map where

identity :: lid -> sign -> morphism
compose :: lid -> morphism -> morphism -> morphism
dom, codom :: lid -> morphism -> sign
parse_basic_spec :: lid -> String -> basic_spec
parse_symbol_map :: lid -> String -> symbol_map
parse_sentence :: lid -> String -> sentence
empty_signature :: lid -> sign
basic_analysis :: lid -> sign -> basic_spec -> (sign, [sentence])
stat_symbol_map :: lid -> sign -> symbol_map -> morphism
map_sentence :: lid -> morphism -> sentence -> sentence
provers ::

lid -> [(sign, [sentence]) -> [sentence] -> Proof_status]
cons_checkers :: lid -> [(sign, [sentence]) -> Proof_status]

Fig. 3. The basic ingredients of logics

Each logic has to provideparserstaking an input string and yielding an abstract
syntax tree of either a basic specifications or a symbol map.Static analysistakes the
abstract syntax of a basic specification to atheorybeing a signature with a set of
sentences. Actually, an additional parameter of the analysis, a signature called “local
environment”, corresponds to imported parts of a specification and will be initially
the empty signature. The static analysis also takes symbol maps (written concise and
user-friendly) to signature morphisms (corresponding to mathematical objects, as part
of an institution).
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Models are usually mathematical objects, often infinite, and hence usually not
directly represented as syntactical objects. Still, usually it is possible to represent
all finite models and some of the infinite models finitely. We assume that there is
a syntactically recognizable subset ofconstructivespecifications that are guaranteed
to have a model, and use these as descriptions for models.4 We do not require that a
constructive specification has exactly one model; this covers cases where a uniqueness
property would be achievable only with additional effort (such as recursive function
definitions). Amodel checkerevaluates whether a formula holds in a given model, or
more precisely, in all models of a constructive specification.

Proof theory, more specifically, derivability of sentencesfrom other sentences, is
captured by the notion ofentailment system[23]. In the HETS interface for logics,
this is realized as follows. A theory, where some sentences are marked as axioms
and others as proof goals, can be passed to a (logic-specific)proverwhich computes
the entailment relation. A prover returns a proof-status answer (proved, disproved or
open), together with a proof tree and further prover-specific information. The proof
tree is expected to give at least the information about whichaxioms have been used
in the proof. Amodel findertries to construct models for a given theory, while a
conservativity checkercan check whether a theory extension is conservative (i.e. does
not lead to new theorems).

Each logic is realized in the programming language Haskell [35] by a set of types
and functions, see Fig. 3, where we present a simplified, stripped down version, where
e.g. error handling is ignored. For technical reasons a logic is taggedwith a unique
identifier type (lid), which is a singleton type the only purpose of which is to de-
termine all other type components of the given logic. In Haskell jargon, the interface
is called a multiparameter type class with functional dependencies [36]. The Haskell
interface for logic translations is realised similarly.

4 Logics Available in Hets

In this section we give a short overview of the logics available in HETS.

Propositional is classical propositional logic, with the zChaff SAT solver [15] con-
nected to it.

CASL extends many sorted first-order logic with partial functions and subsorting. It
also provides induction sentences, expressing the (free) generation of datatypes.
For more details on CASL see [8, 6]. We have implemented the CASL logic in such
a way that much of the implementation can be re-used for CASL extensions as
well; this is achieved via “holes” (realized via polymorphic variables) in the types
for signatures, morphisms, abstract syntax etc. This easesintegration of CASL

extensions and keeps the effort of integrating CASL extensions quite moderate.

4 If necessary, one can always extend the logic with new sentences leading to constructive specifications.
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CoCASL [33] is a coalgebraic extension of CASL, suited for the specification of
process types and reactive systems. The central proof method is coinduction.

ModalCASL is an extension of CASL with multi-modalities and term modalities. It
allows the specification of modal systems with Kripke’s possible worlds seman-
tics. It is also possible to express certain forms of dynamiclogic.

HasCASL [44] is a higher order extension of CASL allowing polymorphic datatypes
and functions. It is closely related to the programming language Haskell and al-
lows program constructs to be embedded in the specification.

Haskell [35] is a modern, pure and strongly typed functional programming language.
It simultaneously is the implementation language of HETS, such that in the future,
HETS might be applied to itself.

OWL DL is the Web Ontology Language (OWL) recommended by the World Wide
Web Consortium (W3C,http://www.w3c.org). It is used for knowledge
representation and the Semantic Web [5].

CASL-DL [20] is an extension of a restriction of CASL, realizing a strongly typed
variant of OWL DL in CASL syntax.

SoftFOL [21] offers three automated theorem proving (ATP) systems for first-order
logic with equality: (1) SPASS [45]; (2) Vampire [39]; and (3) MathServ Broker5

[47]. These together comprise some of the most advanced theorem provers for
first-order logic.

Isabelle [34] is an interactive theorem prover for higher-order logic, and (jointly with
others) marks the frontier of current research in interactive higher-order provers.

Propositional, SoftFOL and Isabelle are the only logics coming with a prover. Proof
support for the other logics can be obtained by using logic translations to a prover-
supported logic.

5 Heterogeneous Specification

Heterogeneous specification is based on some graph of logicsand logic translations.
The graph of currently supported logics is shown in Fig. 2. However, syntax and se-
mantics of heterogeneous specifications as well as their implementation in HETS is
parameterized over an arbitrary such logic graph. Indeed, the HETS modules imple-
menting the logic graph can be compiled independently of theHETS modules imple-
menting heterogeneous specification, and this separation of concerns is essential to
keep the tool manageable from a software engineering point of view.

Heterogeneous CASL (HETCASL; see [26]) includes the structuring constructs
of CASL, such as union and translation. A key feature of CASL is that syntax and
semantics of these constructs are formulated over an arbitrary institution (i.e. also
for institutions that are possibly completely different from first-order logic resp. the
CASL institution). HETCASL extends this with constructs for the translation of spec-
ifications along logic translations.

5 which chooses an appropriate ATP upon a classification of theFOL problem
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SPEC ::= BASIC-SPEC
| SPEC then SPEC
| SPEC then %implies SPEC
| SPEC with SYMBOL-MAP
| SPEC with logic ID

DEFINITION ::= logic ID
| spec ID = SPEC end
| view ID : SPEC to SPEC = SYMBOL-MAP end
| view ID : SPEC to SPEC = with logic ID end

LIBRARY = DEFINITION*

Fig. 4. Syntax of a simple subset of the heterogeneous specificationlanguage.BASIC-SPEC andSYMBOL-MAP
have a logic specific syntax, whileID stands for some form of identifiers.

The syntax of heterogeneous specifications is given (in verysimplified form) in
Fig. 4. A specification either consists of some basic specification in some logic (which
follows the specific syntax of this logic), or an extension ofa specification by an-
other one (writtenSPEC then SPEC, or, if the extension only adds theorems that
are already implied by the original specification, writtenSPEC then %implies
SPEC). A translation of a specification along a signature morphism is writtenSPEC
with SYMBOL-MAP, where the symbol map is logic-specific (usually abbreviatory)
syntax for a signature morphism. A translation along a logiccomorphism is written
SPEC with logic ID.

A specification library consists of a sequence of definitions. A definition may se-
lect the current logic (logic ID), which is then used for parsing and analysing the
subsequent definitions. It may name a specification, and finally it may also declare a
viewbetween two specifications. A view is a kind of refinement relation between two
specifications, expressing that the first specification (when translated along a signa-
ture morphism or a logic comorphism) is implied by the secondspecification. Indeed,
using the heterogeneous language constructs (including the possibility to add new
logic translations involving e.g. behavioural quotient constructions) it is possible to
capture a large variety of different refinement notions justby heterogeneous views as
explained above.

It should be stressed that the name “HETCASL” only refers to CASL’s structuring
constructs. The individual logics used in connection with HETCASL and HETScan be
completely orthogonal to CASL. Actually, the capabilities of HETS go even beyond
HETCASL, since HETS also supports other module systems. This enables HETS to
directly read in e.g. OWL files, which use a structuring mechanism that is completely
different from CASL’s. Moreover, support of further structuring languages is planned.

The Grothendieck logic (see Sect. 2), which is the semantic basis of HETCASL,
can be implemented as a bunch ofexistentialdatatypes over the type classLogic.
Usually, existential datatypes are used to realize — in a strongly typed language —
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heterogeneous lists, where each element may have a different type. We use lists of
(components of) logics and translations instead. This leads to an implementation of
the Grothendieck institution over a logic graph.

6 Parsing and Analysis of Heterogeneous Specifications

Based on the type classLogic, a number of logics and various comorphisms among
these have been implemented for HETS. We now come to the logic-independent mod-
ules in HETS, which can be found in the right half of Fig. 2. These modules comprise
roughly one third of HETS’ 100.000 lines of Haskell code.

The heterogeneous parser transforms a string conforming tothe syntax in Fig. 4
to an abstract syntax tree, using theParsec combinator parser [19]. Logic and trans-
lation names are looked up in the logic graph — this is necessary to be able to choose
the correct parser for basic specifications. Indeed, the parser has a state that carries
the current logic, and which is updated if an explicit specification of the logic is given,
or if a logic translation is encountered (in the latter case,the state is set to the target
logic of the translation). With this, it is possible to parsebasic specifications by just
using the logic-specific parser of the current logic as obtained from the state.

The static analysis is based on the static analysis of basic specifications, and trans-
forms an abstract syntax tree to a development graph (cf. Sect. 7 below). Starting
with a node corresponding to the empty theory, it successively extends (using the
static analysis of basic specifications) and/or translates(along the intra- and inter-
logic translations) the theory, while simultaneously adding nodes and links to the
development graph.

7 Proof Management with Development Graphs

The central device for structured theorem proving and proofmanagement in HETS is
the formalism ofdevelopment graphs. Development graphs have been used for large
industrial-scale applications with hundreds of specifications [16]. They also support
management of change. The graph structure provides a directvisualization of the
structure of specifications, and it also allows for managinglarge specifications with
hundreds of sub-specifications.

A development graph (see Fig. 7 for an example) consists of a set of nodes (cor-
responding to whole structured specifications or parts thereof), and a set of arrows
calleddefinition links, indicating the dependency of each involved structured specifi-
cation on its subparts. Each node is associated with a signature and some set of local
axioms. The axioms of other nodes are inherited via definition links. Definition links
are usually drawn as black solid arrows, denoting an import of another specification.

Complementary to definition links, whichdefinethe theories of related nodes,the-
orem linksserve forpostulatingrelations between different theories. Theorem links
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are the central data structure to represent proof obligations arising in formal develop-
ments. Theorem links can beglobal(drawn as solid arrows) orlocal (drawn as dashed
arrows): a global theorem link postulates that all axioms ofthe source node (including
the inherited ones) hold in the target node, while a local theorem link only postulates
that the local axioms of the source node hold in the target node.

Both definition and theorem links can behomogeneous, i.e. stay within the same
logic, or heterogeneous, i.e. the logic changes along the arrow. Technically, this is
the case for Grothendieck signature morphisms(ρ,σ) whereρ 6= id. This case is
indicated with double arrows.

Theorem links are initially displayed in red in the tool. (InFig. 7, they are dis-
played using thin lines and non-filled arrow heads.) Theproof calculusfor devel-
opment graphs [28, 31, 27] is given by rules that allow for proving global theorem
links by decomposing them into simpler (local and global) ones. Theorem links that
have been proved with this calculus are drawn in green. Localtheorem links can be
proved by turning them intolocal proof goals. The latter can be discharged using
a logic-specific calculus as given by an entailment system (see Sect. 3). Open lo-
cal proof goals are indicated by marking the corresponding node in the development
graph as red; if all local implications are proved, the node is turned into green. This
implementation ultimately is based on a theorem [27] stating soundness and relative
completeness of the proof calculus for heterogeneous development graphs.

While the semantics of theorem links is explained in entirely model-theoretic
terms, theorem links can ultimately be reduced to local proof obligations (and con-
servativity checks) of a proof-theoretic nature, amenableto machine implementation.
Note however, that this approach is quite different from that of logical frameworks.
Suppose that we have a global theorem linkσ : N1−→N2 between two nodesN1 and
N2 in a development graph. Note that the logics ofN1 andN2 may be different. The
logical framework approach assumes that the theories ofN1 andN2 are encoded into
some logic that is fixed once and forall. By contrast, in HETS we can rather flexibly
find a logic that is a “common upper bound” of the logics of bothN1 andN2 and that
moreover has best possible tool support. This freedom allows us to exploit specialized
tools. This is also complemented by a sublogic analysis, which is required for each of
the logics in HETS, and which allows for an even more fine-grained determination of
available tools.

8 An Example

In the domain of qualitative constraint reasoning, a subfield of AI which has evolved
in the past 25 years, a large number of calculi for efficient reasoning about spatial and
temporal entities have been developed. A prominent exampleof that kind are the var-
ious region connection calculi [38]. In the region connection calculus RCC8, which
also has become a GIS standard, it is possible to express relations between regions
(= regular closed sets) in a metric space. The set of RCC8 baserelations consists
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of the relations DC (“DisConnected”), EC (“Externally Connected”), PO (“Partially
Overlap”), TPP (“Tangential Proper Part”), NTPP (“Non-Tangential Proper Part”),
the converses of the latter two relations (TPPi and NTPPi, resp.) and EQ (“EQals”)
(see Fig. 5 for a pictorial representation). The RCC5 calculus is similar, but does
not distinguish between tangential and non-tangential parts; it hence has only 5 basic
relations.

X DCY X ECY X TPPY X NTPPY

X POY X EQY X TPPiY X NTPPiY

Fig. 5.The RCC-8 relations

For efficiency and feasibility reasons, qualitative spatial and temporal reasoning is
not directly done in a (typically infinite) metric space, butrather at the abstract level of
a (finite) relation algebra, for example, using the so-called path consistency algorithm.
The heart of this approach is the composition table, which captures composition of
relations at the abstract and finitary level of the relation algebra.

Composition tables need to be set up only once and for all. Still, this process
is error-prone, and we already have found errors in published composition tables.
Hence, formal verification of composition tables (w.r.t. their semantic interpretation)
is an important task. In [46], we present a heterogeneous verification of the RCC8
composition table w.r.t. the interpretation in metric spaces. This verification goal can
be split into two subgoals:

1. Verification that closed discs in a metric (cf. nodeRCC FO in Fig. 7) satisfy
some of Bennett’s connectedness axioms [4] (cf. nodeMetricSpace in Fig. 7).
RCC FO consists of veryfew (actually, 4) theorems, so-calledbridge lemmas.
SinceMetricSpace is a higher-order theory, they need to be translated to higher-
order logic, and can then be proved using theinteractivetheorem prover Isabelle.

2. Verification that Bennett’s connectedness axioms imply the standard RCC axioms
(cf. nodesExtRCCByRCC5Rels andExtRCCByRCC8Rels in Fig. 7). The
latter aremany(actually, 95) first-order theorems, and can be proved usingthe
automatedtheorem proving system SPASS.
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view RCC FO IN METRICSPACE:
RCC FO to
{EXTMETRICSPACEBYCLOSEDBALLS[M ETRICSPACE]
then %def

pred C : ClosedBall× ClosedBall;
nonempty(x : ClosedBall) ⇔ x C x

∀ x, y : ClosedBall
• x C y⇔ ∃ s : S• rep x s∧ rep y s % (C def)%

} =
QReg7→ ClosedBall

end

Fig. 6. Specification of a heterogeneous refinement expressing correctness of the RCC8 composition table

MetricSpaceExtMetricSpaceByClosedBallsRCC_FO

ExtRCC_FO

ExtRCCByRCC5Rels ExtRCCByRCC8Rels

Fig. 7. Development graph for correctness proof of RCC8 composition table in CASL and HASCASL

9 Theorem Proving with HETS

Fig. 6 contains the heterogeneous refinement expressing thecorrectness of the RCC8
composition table. After parsing and static analysis of an heterogeneous specification
(see Sect. 6), HETS constructs a heterogeneous development graph, see Fig. 7. This
graph can be inspected, e.g. theories of nodes or signature morphisms of links can be
displayed. Using the calculus mentioned in Sect. 7, the proof obligations in the graph
can be (in most cases automatically) reduced to local proof goals at the individual
nodes. Nodes with local proof goals are marked with a grey color in Fig. 7, while
in the tool, red is used. The thick edges in the development graph are definition links
and the thin ones are theorem links. A double arrow denotes a heterogeneous link (e.g.
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between RCCFO and the extension of EXTMETRICSPACEBYCLOSEDBALLS). Un-
named nodes show intermediate structuring of specifications and box-shaped nodes
are imported from a different specification library, while the round nodes are theories
specified locally.

Fig. 8. Hets Goal and Prover Interface Fig. 9. Interface of the SPASS prover

The graphical user interface (GUI) for calling a prover is shown in Fig. 8. The list
on the left shows all goal names prefixed with the proof statusin square brackets. A
proved goal is indicated by a ‘+’, a ‘-’ indicates a disprovedgoal and a space denotes
an open goal. Within this list, one can select those goals that should be inspected or
proved. A button ‘Display’ shows the selected goals in the syntax of this theory’s
logic.

The list ‘Pick Theorem Prover:’ lets you choose one of the connected provers.
By pressing ‘Prove’ the selected prover is launched and the theory along with the
selected goals is translated via the shortest possible pathof comorphisms into the
prover’s logic. However, the shortest path need not always be the best one. Therefore,
the button ‘More fine grained selection...’ lets you pick a specific path of comorphisms
in the logic graph that leads into a prover supported logic. It is assumed that all co-
morphisms are model-expansive, which means that borrowingof entailment systems
along the composite comorphismρ = (Φ ,α,β ) is sound and complete [7, 27]:
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(Σ ,Γ ) |=I
Σ ϕ iff (Φ(Σ),α(Γ )) |=J αΣ (ϕ).

That is, if the entailment⊢ generated by the prover captures semantic consequence
|=, we can re-use the prover along the (composite) comorphism.In the terminology
of [1], (Σ ,Γ ) |=I

Σ ϕ in institutionI captures thewhat to prove, while its translation to
institutionJ captures thehow to prove.

Additionally, this interface offers to select in detail theaxioms and proven theo-
rems which are included in the theory for the next proof attempt. Among the axioms
theorems imported from other specifications are marked withthe prefix ‘(Th)’. This
is particularly useful for large theories with problematictheorems that blow up the
search space of ATP systems. A detailed discussion of using ATPs for CASL can be
found in [21].

If an ATP is selected, a new window is opened, which controls the prover calls
(Fig. 9). Here we use the connection to SPASS [45], for the other ATPs listed (Math-
Serv Broker and Vampire) see [21]. Isabelle [34], a semi automatic theorem prover,
is started with ProofGeneral [2] in a separate Emacs from theGUI.

The ’Close’ button allows for integrating the status of the goals’ list back into the
development graph. If all goals have been proved, this theory’s node turns from red
into green.

For the example presented in Sect. 8 we successfully used SPASS for proving the
CASL proof obligations in the unnamed grey nodes between the nodes “RCC FO”
and “ExtRCCFO” and below “ExtRCCFO”. To discharge the proof obligations in
the node below “RCCFO” with incoming heterogeneous theorem links on the right
of the center of Fig. 7 the higher-order proof assistance system Isabelle was applied.
The most interesting point here is that we used a first-order specification, namely
RCC FO, to prove as much as possible by the ATP SPASS (thus minimizing the
number of proof obligations to be proven by a semi-automaticreasoner).

10 Conclusion

The Heterogeneous Tool Set is available athttp://www.dfki.de/sks/hets;
some specification libraries and example specifications (including those of this pa-
per) underhttp://www.cofi.info/Libraries. A user guide is also avail-
able there. Brief introductions into HETS are given in [32] and [6].

There is related work about generic parsers, user interfaces, theorem provers etc.
[34, 2]. However, these approaches are mostly limited togenericity, and do not sup-
port realheterogeneity, that is the simultaneous use of different formalisms. Techni-
cally, genericity often is implemented with generic modules that can be instantiated
many times. Here, we deal with a potentially unlimited number of such instantiations,
and also with translations between them.



The Heterogeneous Tool Set 133

logic CSP-CASL

spec BUFFER=
data L IST

channels read,write : Elem
process letBuf(l : List[Elem]) =

read?x → Buf(cons(x,nil))
� if l = nil then STOP

else write!last(l) → Buf(rest(l))
in Buf(nil)

with logic → MODALCASL

then %implies • AGF∃x : Elem. 〈write.x〉 true
end

Fig. 10.A specification of fair buffers in CASL, CSP-CASL and MODALCASL.

It may appear that HETS just provides a combination of some first-order provers
and Isabelle, and the reader may wonder what the advantage ofHETS is when com-
pared to an ad-hoc combination of Isabelle and such provers,like [22]. But already
now, HETS provides proof support for modal logic (via the translationto CASL, and
then further to either SPASS or Isabelle), as well as for COCASL. Hence, it is quite
easy to provide proof support for new logics by just implementing logic translations,
which is at least an order of magnitude simpler than integrating a theorem prover.
Although this can be compared to embedding the new logic in a HOL prover, our
translational approach has the major advantage that several translations may exist in
parallel (think of the standard and functional translations of modal logic), and the best
one may be chosen depending on the theory at hand.

Future work will integrate more logics and interface more existing theorem prov-
ing tools with specific institutions in HETS. In [25], we have presented a heteroge-
neous specification with more diverse formalisms, namely CSP-CASL [40] (a com-
bination of CASL with the process algebra CSP), and a temporal logic (as part of
MODALCASL). An example is shown in Fig. 10. CSP-CASL is used to describe the
system (a buffer implemented as a list), and some temporal logic is used to state
fairness or eventuality properties that go beyond the expressiveness of the process
algebra (here, we express the fairness property that the buffer cannot read infinitely
often without writing).

In [29] we describe how heterogeneous specification and HETS could be used
for proving a refinement of a specification in CASL into a Haskell-program. Another
challenge is the integration of proof planners into HETS. Finally, there is work in
progress about the meta-level specification of institutions and their comorphisms in
Twelf [37], which shall lead to correctness proofs for the comorphisms integrated into
HETS.
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mann, Wiebke Herding, Hendrik Iben, Cui “Ken” Jian, Heng Jiang, Anton Kirilov,
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20. K. Lüttich, T. Mossakowski, and B. Krieg-Brückner. Ontologies for the Semantic Web in CASL. In José

Fiadeiro, editor,WADT 2004, LNCS 3423, pages 106–125. Springer, 2005.
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