The Heterogeneous Tool Set

Till Mossakowsk#, Christian Maedét and Klaus LutticR

1 DFKI Lab Bremen and Department of Computer Science, Unityes$ Bremen, Germany
2 SFB/TR 8 and Department of Computer Science, Universityrefiian, Germany

Abstract. Heterogeneous specification becomes more and more impbeeause complex sys-
tems are often specified using multiple viewpoints, inwodvimultiple formalisms. Moreover, a
formal software development process may lead to a changeroBfism during the development.
However, current research in integrated formal methodg dehls with ad-hoc integrations of
different formalisms.

The heterogeneous tool setifs) is a parsing, static analysis and proof management toot com
bining various such tools for individual specification laages, thus providing a tool for hetero-
geneous multi-logic specification.g#itsis based on a graph of logics and languages (formalized
as so-called institutions), their tools, and their tratistes. This provides a clean semantics of
heterogeneous specifications, as well as a correspondiad galculus. For proof management,
the calculus of development graphs (known from other lagge proof management systems)
has been adapted to heterogeneous specification. Develbgnaghs provide an overview of the
(heterogeneous) specification module hierarchy and threrproof state, and thus may be used
for monitoring the overall correctness of a heterogeneevsldpment.

We illustrate the approach with a sample heterogeneous proging the correctness of the com-
position table of a qualitative spatial calculus. The piiagblves two different provers and logics:
an automated first-order prover solving the vast majoritthefgoals, and an interactive higher-
order prover used to prove a few bridge lemmas.

1 Introduction

“As can be seen, a plethora of formalisms for the verificatbiprograms, and, in particular, for the
verification of concurrent programs has been proposethere are good reasons to consider all the
mentioned formalisms, and to use whichever one best seifsrtiblent. [43] (italics in the original)

In the area of formal specification and logics used in conadience, numerous
logics are in use:

— logics for specification of datatypes,

— process calculi and logics for the description of concuragia reactive behaviour,

— logics for specifying security requirements and policies,

— logics for reasoning about space and time,

— description logics for knowledge bases in artificial intgthce/the semantic web,

— logics capturing the control of name spaces and adminigrdbmains (e.g. the
ambient calculus), etc.

Indeed, at present, it is not imaginable that a combinatfail these (and other)
logics would be feasible or even desirable — even if it existke combined formal-
ism would lack manageability, if not become inconsisterite@@ even if a combined
logic exists, for efficiency reasons, it is desirable to Engut sublogics and study

120 Till Mossakowski, Christian Maeder, Klaus Littich

translations between these (cf. e.g. [43]). Moreover, tbeasional use of a more
complex formalism should not destroy the benefitenainlyusing a simpler formal-
ism.

This means that for the specification of large systems, bgésreous multi-logic
specifications are needed, since complex problems haezetitfaspects that are best
specified in different logics. Moreover, heterogeneousifipations additionally have
the benefit that different approaches being developedfatélift sites can be related,
i.e. there is a formal interoperability among languagestant$. In many cases, spe-
cialized languages and tools often have their strengthsiticplar aspects. Using
heterogeneous specification, these strengths can be cednbith comparably small
effort.

Current heterogeneous languages and tools do not meetrdtpseements. The
heterogeneous language UML [3] deliberately has no forraadastics, and hence
is not a formal method or logic in the sense of the present wgtkwever, UML
could be integrated in the Heterogeneous Tool Sets as alisrmaithout semantics,
while the different formal semantics that have been dewsdpr UML would be
represented as logic translations.) Likewise, languagemathematical knowledge
management like OpenMath and OMDoc [18] are deliberatelly sgmi-formal. Ser-
vice integration approaches like MathWeb [48] are eithéorimal, or based on a
fixed formalism. Moreover, there are many bi- or trilaterabinations of different
formalisms; consider e.g. the integrated formal methodgerence series [41]. In-
tegrations of multiple decision procedures and model abyescikto theorem provers,
like in the PROSPER toolkit [9], provide a more systematiprapch. Still, these ap-
proaches are uni-lateral in the sense that there is one (agecone theorem prover,
like the HOL prover) which serves as the central integratiemice, such that the
user is forced to use this central logic, even if this may reohbeded for a particular
application (or the user may prefer to work with a differergimlogic).

By contrast, the heterogeneous tool set(ld is a both flexible, multi-laterand
formal (i.e. based on a mathematical semantics) integratiol. Unlike other tools,
it treats logic translations (e.g. codings between logassJirst-class citizens. This
can be compared with the treatmentioéory morphismas first-class citizens, which
is a distinctive feature of formalisms like OMDoc [18] anak® like Specware [17]
and IMPS [12,11]. A clear referencing of symbols to theiraities can distinguish,
for example, the naturals with zero from the naturals witlmaro, even if they are
denoted with the same symbidat. Theory morphisms can relate the two different
theories of naturals. In Efrs, both theory morphisms and logic comorphisms are first-
class citizens. This means that s can also distinguish conjunction in Isabelle/HOL
from conjunction in PV3(these actually have two different semantics!) and refate t
underlying logics with a comorphism.

3 At least once a logic for PVS has been added.

The Heterogeneous Tool Set 121

The architecture of the heterogeneous tool set is showrgini2Fon page 123. In
the sequel, we will explain the details of this figure.

2 Heterogeneous Specifications: the Model-Theoretic View

We take a model-theoretic view on specifications [42]. Theans that the notion of
logical theory (i.e. collection of axioms) is consideredb&oonly an auxiliary concept,
and the meaning of a formal specification (of a program mqgdsilgiven by

— its signature; listing the names of entities that need tanq@emented, typically
together with their types, that is, tilsgntactic interfacef the module, and

— its class of models, that is, the set of possielalizationsor implementations of
the interface.

This model-theoretic view is even more important whe
moving from homogeneous to heterogeneous specification
in general, one cannot expect that different formalismg (sa
a specification and a programming language, or a process
algebra and a temporal logic) are related by translating the
ories — it is themodelsthat are used to link different for- Fig- 1: Multiple viewpoints
malisms. This point of view is also expressed by the so-@ailwvpoint specifications
(see Fig. 1), which use logical theories in different logfcamalisms in order to re-
strict the model class of an overall system from differeinpoints (while a direct
specification of the model class of the overall system woelcbime unmanageably
complex).

The correct mathematical underpinnings to this are givethbytheory ofinsti-
tutions[14]. Institutions capture in a very abstract and flexibleywlae notion of a
logical system, by leaving open the details of signaturesjets, sentences (axioms)
and satisfaction (of sentences in models). The only canmdgoverning the behaviour
of institutions is thesatisfaction conditiopstating thatruth is invariant under change
of notation(or enlargement of context):

M s 0(9) & Mo =5 ¢

Here,o: ~Z — X' is asignature morphisnrelating different signatures (or module
interfaces),o(¢) is the translation of th&-sentencep along o, andM’|; is the
reduction of the’-modelM’ to aZ-model.

The importance of the notion of institutions lies in the fwt a whole body of
specification theory (concerning structuring of specifara, module concepts, pa-
rameterization, implementation, refinement, developmamtof calculi) can be de-
veloped independently of the underlying institutions —thdt is needed is captured
by the satisfaction condition.

122 Till Mossakowski, Christian Maeder, Klaus Littich

Different logical formalisms are related hystitution comorphismgL3], which
are again governed by the satisfaction condition, this taxgressing that truth is
invariant also under change of notation across differegitkd formalisms:

M’ =3 s) a5 (9) < B (M) 5 ¢

Here,®(X) is the translation of signatue from institutionl to institutiond, as(¢)
is the translation of th&-sentence to a ®(X)-sentence, anfis(M’) is the transla-
tion (or perhaps: reduction) of the(X)-modelM’ to a >-model.

Heterogeneous specification is based on some graph of lagetc$ogic transla-
tions, formalized as institutions and comorphisms. TheatedGrothendieck insti-
tution [10, 24] is a technical device for giving a semantics to h@eneous spec-
ifications. This institution is basically a flattening, orsgiint union, of the logic
graph. A signature in the Grothendieck institution corssist a pair(L,2) where
L is a logic (institution) and is a signature in the logic. Similarly, a Grothendieck
signature morphisnip,o) : (L1,21) — (L2,22) consists of a logic translatiop =
(®@,a,B): L1 — Ly plus anLy-signature morphisno: ®(%;) — 2,. Sentences,
models and satisfaction in the Grothendieck institutica @efined in a component
wise manner.

The Grothendieck institution can be understood as a flat aatibn of all of the
involved logics. Here, “flat” means that there is no dire¢eraction of e.g. logical
connectives from different logics that lead to new senteniostead, just the disjoint
union of sentences is taken. However, this does not meathbabgics just coexist
without any interaction: they interact through the comaspts. Comorphisms allow
for translating a logical theory into some other logic, araitiiis translation to interact
with theories in that logic (e.g. by expressing some refimrgmadation).

We refer the reader to the literature [14, 13, 23, 30] for fatimal details of in-
stitutions and comorphisms. Subsequently, we use the témstgution” and “logic”
interchangeably, as well as the terms “institution comapfi and “logic transla-
tion”.

3 Implementation of a Logic

How is a single logic implemented in the Heterogeneous Tet? Shis is depicted
in the left column of Fig. 2.

The syntactic entities of a logic are represented usingstypesignaturesand
signaturemorphismgorming a category with functions for identity morphismsdan
composition of morphisms as well as for extracting domaims @odomains. There
is also a type okentencess well as a sentence translation function, allowing for
translation of sentences along a signature morphisms.

In order to model a more verbose and user-friendly inputaymtf the logic
we further introduce types for the abstract syntabasic specificationand sym-
bol maps

The Heterogeneous Tool Set 123

Architecture of the heterogeneous tool set Hets

Tools for specific logics Logic graph Tools for heterogeneous
specifications
/ Text \ / \
| Haske]l / ~
Parser — — | | A Isabelle Te‘xt
Abstra?t syntax 1> $\> Pa;ser
Static A‘nalysls | HaSCASL Abstract syntax
v] \
(Signature, Sentences) SOftFOL COCASL [Static Analysis
Interfaces — | Global Environment
] CASL | AR,
XML, Aterm [» Interfaces
’ / ¥ N
| CASL DL \ XML Aterms | www, cul_J
ModalCASL - N
v
Theorem.provers . OWL-DL P eteronmneous
Rewriters \ / development graphs
|
¢ $\~> Heterogeneous inference engine
Va N Decomposition of proof obligations
:F Management of proofs & change

. Grothendieck logic |
Conservativity and (Flattened logi) " N
a ene OgIC grap leterogeneous proof trees
Model checkers L _

_/

Fig. 2. Architecture of the heterogeneous tool set

class Logic lid sign nmorphi smsentence basic_spec synbol _map
| lid -> sign norphismsentence basic_spec synbol _map where

identity :: lid -> sign -> norphism
conpose :: lid -> norphism-> norphi sm-> norphism
dom codom:: lid -> norphism-> sign
parse_basic_spec :: lid -> String -> basic_spec
parse_synbol _map :: lid -> String -> synbol _map
par se_sent ence c2 lid -> String -> sentence
enpty_signature :: lid -> sign
basic_analysis :: lid -> sign -> basic_spec -> (sign, [sentence])
stat_synbol _map :: lid -> sign -> synbol _map -> norphi sm
map_sentence :: lid -> norphism-> sentence -> sentence
provers ::

lid -> [(sign, [sentence]) -> [sentence] -> Proof_status]
cons_checkers :: lid -> [(sign, [sentence]) -> Proof_status]

Fig. 3. The basic ingredients of logics

Each logic has to providearserstaking an input string and yielding an abstract
syntax tree of either a basic specifications or a symbol i&tgtic analysigakes the
abstract syntax of a basic specification tthaory being a signature with a set of
sentences. Actually, an additional parameter of the aisalgsignature called “local
environment”, corresponds to imported parts of a specifinand will be initially
the empty signature. The static analysis also takes symapsrwritten concise and
user-friendly) to signature morphisms (correspondingabhrematical objects, as part
of an institution).

124 Till Mossakowski, Christian Maeder, Klaus Littich

Models are usually mathematical objects, often infinited Aence usually not
directly represented as syntactical objects. Still, Ugualis possible to represent
all finite models and some of the infinite models finitely. Wewase that there is
a syntactically recognizable subsetooinstructivespecifications that are guaranteed
to have a model, and use these as descriptions for mbdféésdo not require that a
constructive specification has exactly one model; this owases where a uniqueness
property would be achievable only with additional effori¢k as recursive function
definitions). Amodel checkeevaluates whether a formula holds in a given model, or
more precisely, in all models of a constructive specifigatio

Proof theory, more specifically, derivability of senten&esn other sentences, is
captured by the notion a#ntailment systerf23]. In the HETs interface for logics,
this is realized as follows. A theory, where some sentencesrarked as axioms
and others as proof goals, can be passed to a (logic-spguidgrwhich computes
the entailment relation. A prover returns a proof-statusiagr (proved, disproved or
open), together with a proof tree and further prover-speaifiormation. The proof
tree is expected to give at least the information about whisgbms have been used
in the proof. Amodel findertries to construct models for a given theory, while a
conservativity checkezan check whether a theory extension is conservative Ges d
not lead to new theorems).

Each logic is realized in the programming language Haskéll py a set of types
and functions, see Fig. 3, where we present a simplifiegstd down version, where
e.g. error handling is ignored. For technical reasons alsgaggedwith a unique
identifier type (i d), which is a singleton type the only purpose of which is to de-
termine all other type components of the given logic. In Hdiglargon, the interface
is called a multiparameter type class with functional deleecies [36]. The Haskell
interface for logic translations is realised similarly.

4 Logics Available in Hets
In this section we give a short overview of the logics avddab HETS.

Propositional is classical propositional logic, with the zChaff SAT saly&5] con-
nected to it.

CASL extends many sorted first-order logic with partial funci@md subsorting. It
also provides induction sentences, expressing the (freegrgtion of datatypes.
For more details on £sL see [8, 6]. We have implemented tha<l logic in such
a way that much of the implementation can be re-used fgLCextensions as
well; this is achieved via “holes” (realized via polymorplvariables) in the types
for signatures, morphisms, abstract syntax etc. This dasegration of Q\sL
extensions and keeps the effort of integratimgsC extensions quite moderate.

4 If necessary, one can always extend the logic with new seegeleading to constructive specifications.

The Heterogeneous Tool Set 125

CoCASL [33] is a coalgebraic extension ofaGL, suited for the specification of
process types and reactive systems. The central proof chetlwoinduction.

ModalCASL is an extension of €sL with multi-modalities and term modalities. It
allows the specification of modal systems with Kripke’s plolgsworlds seman-
tics. It is also possible to express certain forms of dyndogcc.

HasCASL [44]is a higher order extension ofASL allowing polymorphic datatypes
and functions. It is closely related to the programming leage Haskell and al-
lows program constructs to be embedded in the specification.

Haskell [35] is a modern, pure and strongly typed functional prograng language.
It simultaneously is the implementation language @frid, such that in the future,
HETS might be applied to itself.

OWL DL is the Web Ontology Language (OWL) recommended by the WoildeW
Web Consortium (W3Cht t p: // www. w3c. or g). It is used for knowledge
representation and the Semantic Web [5].

CASL-DL [20] is an extension of a restriction ofASL, realizing a strongly typed
variant of OWL DL in CasL syntax.

SoftFOL [21] offers three automated theorem proving (ATP) systewnéiffst-order
logic with equality: (1) SPASS [45]; (2) Vampire [39]; and) (8lathServ Broket
[47]. These together comprise some of the most advancedetimeprovers for
first-order logic.

Isabelle [34] is an interactive theorem prover for higher-order &ygind (jointly with
others) marks the frontier of current research in intevadtigher-order provers.

Propositional, SoftFOL and Isabelle are the only logics ic@with a prover. Proof
support for the other logics can be obtained by using logingiations to a prover-
supported logic.

5 Heterogeneous Specification

Heterogeneous specification is based on some graph of lagickgic translations.
The graph of currently supported logics is shown in Fig. 2wigeer, syntax and se-
mantics of heterogeneous specifications as well as thelemmgntation in HTS is
parameterized over an arbitrary such logic graph. InddedHETS modules imple-
menting the logic graph can be compiled independently oHtbes modules imple-
menting heterogeneous specification, and this separatioonzerns is essential to
keep the tool manageable from a software engineering pbinéw.

Heterogeneous AL (HETCASL; see [26]) includes the structuring constructs
of CAsL, such as union and translation. A key feature @fsC is that syntax and
semantics of these constructs are formulated over an anpitnstitution (i.e. also
for institutions that are possibly completely differerarfr first-order logic resp. the
CAsL institution). HETCASL extends this with constructs for the translation of spec-
ifications along logic translations.

5 which chooses an appropriate ATP upon a classification df@ie problem

126 Till Mossakowski, Christian Maeder, Klaus Littich

SPEC :: = BASI C- SPEC
| SPEC then SPEC
| SPEC then % nplies SPEC
| SPEC with SYMBOL- MAP
| SPECwith logic ID
DEFINITION ::= logic ID

| spec ID = SPEC end
| viewID: SPEC to SPEC = SYMBOL- MAP end
I

with logic ID end

view ID: SPEC to SPEC

LI BRARY = DEFI NI TI ON«

Fig. 4. Syntax of a simple subset of the heterogeneous specifidatignage BASI C- SPEC andSYMBOL- VAP
have a logic specific syntax, whileD stands for some form of identifiers.

The syntax of heterogeneous specifications is given (in senplified form) in
Fig. 4. A specification either consists of some basic spatifin in some logic (which
follows the specific syntax of this logic), or an extensionao$pecification by an-
other one (writterBPEC t hen SPEC, or, if the extension only adds theorems that
are already implied by the original specification, writteBEC t hen % npl i es
SPEC). A translation of a specification along a signature monphis written SPEC
w t h SYMBOL- MAP, where the symbol map is logic-specific (usually abbrevigto
syntax for a signature morphism. A translation along a l@giciorphism is written
SPEC with logic ID.

A specification library consists of a sequence of definitigndefinition may se-
lect the current logicl(ogi ¢ | D), which is then used for parsing and analysing the
subsequent definitions. It may name a specification, andyfinahay also declare a
viewbetween two specifications. A view is a kind of refinementtrefabetween two
specifications, expressing that the first specification (winenslated along a signa-
ture morphism or a logic comorphism) is implied by the secgpeLification. Indeed,
using the heterogeneous language constructs (includmgaisibility to add new
logic translations involving e.g. behavioural quotienhstuctions) it is possible to
capture a large variety of different refinement notions lpysheterogeneous views as
explained above.

It should be stressed that the namee“HCASL” only refers to Q\sL’s structuring
constructs. The individual logics used in connection witTBASL and HETS can be
completely orthogonal to &sL. Actually, the capabilities of HTS go even beyond
HETCASL, since HTs also supports other module systems. This enablessHo
directly read in e.g. OWL files, which use a structuring mex$a that is completely
different from CGasL’s. Moreover, support of further structuring languagedasped.

The Grothendieck logic (see Sect. 2), which is the semaiaiscstof HETCASL,
can be implemented as a bunchexistentialdatatypes over the type claksgi c.
Usually, existential datatypes are used to realize —in @ngty typed language —

The Heterogeneous Tool Set 127

heterogeneous lists, where each element may have a dtftgpan We use lists of
(components of) logics and translations instead. Thisdéadn implementation of
the Grothendieck institution over a logic graph.

6 Parsing and Analysis of Heterogeneous Specifications

Based on the type clag®gi ¢, a number of logics and various comorphisms among
these have been implemented fag 6. We now come to the logic-independent mod-
ules in HETs, which can be found in the right half of Fig. 2. These moduta®sprise
roughly one third of HTS 100.000 lines of Haskell code.

The heterogeneous parser transforms a string conformitigeteyntax in Fig. 4
to an abstract syntax tree, using e sec combinator parser [19]. Logic and trans-
lation names are looked up in the logic graph — this is necg$sde able to choose
the correct parser for basic specifications. Indeed, theepdras a state that carries
the current logic, and which is updated if an explicit speation of the logic is given,
or if a logic translation is encountered (in the latter céise,state is set to the target
logic of the translation). With this, it is possible to patsssic specifications by just
using the logic-specific parser of the current logic as olet@ifrom the state.

The static analysis is based on the static analysis of bpsaifecations, and trans-
forms an abstract syntax tree to a development graph (ct. 3dwelow). Starting
with a node corresponding to the empty theory, it succelysextends (using the
static analysis of basic specifications) and/or transléiksg the intra- and inter-
logic translations) the theory, while simultaneously adgdnodes and links to the
development graph.

7 Proof Management with Development Graphs

The central device for structured theorem proving and pnoeafiagement in ETS s

the formalism ofdevelopment graph®evelopment graphs have been used for large
industrial-scale applications with hundreds of speciitcet [16]. They also support
management of change. The graph structure provides a disealization of the
structure of specifications, and it also allows for manadange specifications with
hundreds of sub-specifications.

A development graph (see Fig. 7 for an example) consists ef afsiodes (cor-
responding to whole structured specifications or partsetifgrand a set of arrows
calleddefinition links indicating the dependency of each involved structuredifpe
cation on its subparts. Each node is associated with a signahd some set of local
axioms. The axioms of other nodes are inherited via defimititks. Definition links
are usually drawn as black solid arrows, denoting an imgaxhother specification.

Complementary to definition links, whiatefinethe theories of related nodé¢ke-
orem linksserve forpostulatingrelations between different theories. Theorem links

128 Till Mossakowski, Christian Maeder, Klaus Littich

are the central data structure to represent proof obliga@woising in formal develop-
ments. Theorem links can lggobal (drawn as solid arrows) docal (drawn as dashed
arrows): a global theorem link postulates that all axiomthefsource node (including
the inherited ones) hold in the target node, while a locabtéw link only postulates
that the local axioms of the source node hold in the targe¢nod

Both definition and theorem links can hemogeneoys.e. stay within the same
logic, or heterogeneoys.e. the logic changes along the arrow. Technically, this i
the case for Grothendieck signature morphismso) wherep # id. This case is
indicated with double arrows.

Theorem links are initially displayed in red in the tool. ffg. 7, they are dis-
played using thin lines and non-filled arrow heads.) Pheof calculusfor devel-
opment graphs [28, 31, 27] is given by rules that allow forvprg global theorem
links by decomposing them into simpler (local and globak®rrheorem links that
have been proved with this calculus are drawn in green. Libegirem links can be
proved by turning them intéocal proof goals The latter can be discharged using
a logic-specific calculus as given by an entailment systeza Gect. 3). Open lo-
cal proof goals are indicated by marking the correspondoudgrin the development
graph as red; if all local implications are proved, the naleiined into green. This
implementation ultimately is based on a theorem [27] stesioundness and relative
completeness of the proof calculus for heterogeneous a@veint graphs.

While the semantics of theorem links is explained in entir@lodel-theoretic
terms, theorem links can ultimately be reduced to local poidigations (and con-
servativity checks) of a proof-theoretic nature, amen#blaachine implementation.
Note however, that this approach is quite different front thfdogical frameworks.
Suppose that we have a global theorem knkN; — N between two nodeld; and
N in a development graph. Note that the logicdNafandN, may be different. The
logical framework approach assumes that the theori®§ @ndN, are encoded into
some logic that is fixed once and forall. By contrast, iBTid we can rather flexibly
find a logic that is a “common upper bound” of the logics of b{handN, and that
moreover has best possible tool support. This freedom alimito exploit specialized
tools. This is also complemented by a sublogic analysisghwisirequired for each of
the logics in HETS, and which allows for an even more fine-grained determinatio
available tools.

8 An Example

In the domain of qualitative constraint reasoning, a suthfa¢lAl which has evolved
in the past 25 years, a large number of calculi for efficieasoming about spatial and
temporal entities have been developed. A prominent exaafphat kind are the var-
ious region connection calculi [38]. In the region connactcalculus RCC8, which
also has become a GIS standard, it is possible to expres®nsldetween regions
(= regular closed sets) in a metric space. The set of RCCS8 fiedesons consists

The Heterogeneous Tool Set 129

of the relations DC (“DisConnected”), EC (“Externally Cauted”), PO (“Partially
Overlap”), TPP (“Tangential Proper Part”), NTPP (“Non-@antial Proper Part”),
the converses of the latter two relations (TPPi and NTPBp.jeand EQ (“EQals”)
(see Fig. 5 for a pictorial representation). The RCC5 cakus similar, but does
not distinguish between tangential and non-tangentiaspeéthence has only 5 basic

relations.
XDCY XECY XTPPY XNTPPY
X POY XEQY X TPPiY XNTPPiY

Fig. 5. The RCC-8 relations

For efficiency and feasibility reasons, qualitative spaina temporal reasoning is
not directly done in a (typically infinite) metric space, batther at the abstract level of
a (finite) relation algebra, for example, using the so-cgtlath consistency algorithm.
The heart of this approach is the composition table, whigitwwas composition of
relations at the abstract and finitary level of the relatilgehra.

Composition tables need to be set up only once and for all, Biis process
is error-prone, and we already have found errors in puldistenposition tables.
Hence, formal verification of composition tables (w.r.eittrsemantic interpretation)
is an important task. In [46], we present a heterogeneouBcation of the RCC8
composition table w.r.t. the interpretation in metric gmcThis verification goal can
be split into two subgoals:

1. Verification that closed discs in a metric (cf. noBEC FO in Fig. 7) satisfy
some of Bennett's connectedness axioms [4] (cf. deker i cSpace in Fig. 7).
RCC_FO consists of veryfew (actually, 4) theorems, so-calldatidge lemmas
SinceMet r i cSpace is a higher-order theory, they need to be translated to highe
order logic, and can then be proved usingititeractivetheorem prover Isabelle.

2. Verification that Bennett's connectedness axioms intfpystandard RCC axioms
(cf. nodesExt RCCBy RCC5Rel s and Ext RCCByRCC8Rel s in Fig. 7). The
latter aremany (actually, 95) first-order theorems, and can be proved ufiag
automatedheorem proving system SPASS.

130 Till Mossakowski, Christian Maeder, Klaus Littich

view RCC_FOLIN_METRICSPACE:
RCC.FOto
{EXTMETRICSPACEBY CLOSEDBALLS[METRICSPACH|
then %def
pred __C__: ClosedBallx ClosedBalj
nonemptgx : ClosedBal) < x C x
Vv x,y: ClosedBall
eXCy&s Is:SerepXsArepys % (C_def)%o
} =
QReg— ClosedBall
end

Fig. 6. Specification of a heterogeneous refinement expressingatness of the RCC8 composition table

I

MetricSpace

RCC_FO ExtMetricSpaceByClosedBall

2

EXtRCC_FO

ExtRCCBYRCC5Rels ExtRCCBYRCC8Rels

Fig. 7. Development graph for correctness proof of RCC8 compasttble in GsL and HASCASL

9 Theorem Proving with HETS

Fig. 6 contains the heterogeneous refinement expressimgtrectness of the RCC8
composition table. After parsing and static analysis of @efogeneous specification
(see Sect. 6), HTs constructs a heterogeneous development graph, see Figis7. T
graph can be inspected, e.g. theories of nodes or signatuyghiasms of links can be
displayed. Using the calculus mentioned in Sect. 7, thefbligations in the graph
can be (in most cases automatically) reduced to local proafsgat the individual
nodes. Nodes with local proof goals are marked with a gregrdol Fig. 7, while

in the tool, red is used. The thick edges in the developmetgare definition links
and the thin ones are theorem links. A double arrow denoteteadgeneous link (e.g.

The Heterogeneous Tool Set 131

between RCOFO and the extension ob&E METRICSPACEBY CLOSEDBALLS). Un-
named nodes show intermediate structuring of specifica@ma box-shaped nodes
are imported from a different specification library, whiretround nodes are theories
specified locally.

7@ Cs Q Calculi/Space/RCCDagstuhl2_ExtRCCByRCCBRels_E1 - Select Goa...
Selected Goal(s):

Goals:

JDR_eq_DC_or_EC e
] PP_eq_TPP_or_NTPP (_Display) Prove) Show proof details) _® O O Calculi/Space /RCCDagstuhl2_ExtRCCBYRCCSRels_E1 ~ SPASS Praver
1PPLeq_TPPLOr NTPPI W Goals: Options:
[17 RCca B~ [+] cmps_PODC - E—
[] 7_RCC5_RCC8 No Prover Running [+] cmps_POEC TimelLimit =l
[]sym_DC [+] cmps_POPO_one Extra Options:
[135"'!17&: Sublogic of Currently Selected Theory: [+] cmps_POTPP
[]disj_DC [+] cmps_PONTPP
[] disj_EC CASL.SulFOL= [+] cmps_POTPPI - :
[] disj_PO_1 [+] cmps_PONTPPI (Save dfg File) Prove)
[] disj_TPP Pick Thearem Prover: [+] emps_TPPDC Results:
disj_NTPP [+] cmps_TPPEC -
L] St Isabelle L] cmps_TPPPO || status
[] disj_ MathServe Broker | Used Axioms nTP_def
[] dis]_NTPPi [+] cmps_TPPTPP i m
- SPASS [] cmps_TPPNTPP c_non_triv
[Selectall |(Deselectall) ampire [] cmps_TPPTPPI p_def
o : . . [] cmps_TPPNTPPI declaration0
[Select open goals | [_More fine grained selection... [+] cmps_NTPPDC axone_one_one
[+] cmps_NTPPEC gxone
Fine grained composition of theory: [] cmps_NTPPPO (_Show Details)

Axioms to include:

Theorems to include if proven:

IC_non_null

m DR_eq_DC_or_EC m

SPASS Batch Mode:

Ic_sym PP_eq_TPP_or_NTPP Options: - —
IC_id PPi_eq_TPPi_or_NTPPI T =1 daie) il]
lc_non_triv ? RCCE TimeLio (i = Batch wiode stapped
P_def ?_RCC5_RCC8 Extra Options:
[0_def lsym_DC
INTP_def lsym_EC
1Ax 1 dis]_DC)
(Th) O_sym ldisj_EC - Global Options:
(Th) cmps_PP disj_PO_1 _linclude preceeding proven therorems in next proof attempt
[Selectafl | Deselectall | d\s!_TPP : ; > z
. I disi NTPP - [Help) [Save Prover Configuration | [Exit Prover |
(Deselect former theorems | [Selectall | Deselectall | i -

| Show theory 'u_ Show selected theory)

Fig. 8. Hets Goal and Prover Interface

(Close |
—J

Fig. 9. Interface of the SPASS prover

The graphical user interface (GUI) for calling a prover iswh in Fig. 8. The list
on the left shows all goal names prefixed with the proof statissjuare brackets. A
proved goal is indicated by a ‘+’, a -’ indicates a disprogahl and a space denotes
an open goal. Within this list, one can select those goalsstinauld be inspected or
proved. A button ‘Display’ shows the selected goals in thetay of this theory’s

logic.

The list ‘Pick Theorem Prover:’ lets you choose one of thenemted provers.
By pressing ‘Prove’ the selected prover is launched andhbkery along with the
selected goals is translated via the shortest possiblegiatbmorphisms into the
prover’s logic. However, the shortest path need not alwaythe best one. Therefore,
the button ‘More fine grained selection...’ lets you pick adfic path of comorphisms
in the logic graph that leads into a prover supported logis assumed that all co-
morphisms are model-expansive, which means that borroefiegtailment systems
along the composite comorphigm= (@, a,) is sound and complete [7, 27]:

132 Till Mossakowski, Christian Maeder, Klaus Littich

(Z,7) Es ¢ iff (@(2),a(N)) E az(¢).

Thatis, if the entailmerit generated by the prover captures semantic consequence
=, we can re-use the prover along the (composite) comorphisthe terminology
of [1], (£,I) =5 ¢ ininstitution| captures thevhat to provewhile its translation to
institutionJ captures théow to prove

Additionally, this interface offers to select in detail tagioms and proven theo-
rems which are included in the theory for the next proof aggerAmong the axioms
theorems imported from other specifications are marked thetprefix ‘(Th)'. This
is particularly useful for large theories with problematieorems that blow up the
search space of ATP systems. A detailed discussion of usiig Aor CAsL can be
found in [21].

If an ATP is selected, a new window is opened, which contrieésgrover calls
(Fig. 9). Here we use the connection to SPASS [45], for theroTPs listed (Math-
Serv Broker and Vampire) see [21]. Isabelle [34], a semimaatic theorem prover,
is started with ProofGeneral [2] in a separate Emacs fronGide

The 'Close’ button allows for integrating the status of tloalg’ list back into the
development graph. If all goals have been proved, this jfeapde turns from red
into green.

For the example presented in Sect. 8 we successfully use8 SRX proving the
CasL proof obligations in the unnamed grey nodes between thesntiR€ C_FO”
and “ExtRCCFO” and below “ExtRCCFO”. To discharge the proof obligations in
the node below “RCG-0O” with incoming heterogeneous theorem links on the right
of the center of Fig. 7 the higher-order proof assistanctesys$sabelle was applied.
The most interesting point here is that we used a first-orgeciication, namely
RCC.FO, to prove as much as possible by the ATP SPASS (thus mimigthe
number of proof obligations to be proven by a semi-autonraasoner).

10 Conclusion

The Heterogeneous Tool Set is availablé@t p: / / ww. df ki . de/ sks/ het s;
some specification libraries and example specificationdu@ing those of this pa-
per) undemt t p: / / www. cofi . i nfo/ Li brari es. A user guide is also avail-
able there. Brief introductions intosH's are given in [32] and [6].

There is related work about generic parsers, user intesfélseorem provers etc.
[34, 2]. However, these approaches are mostly limitegetoericity and do not sup-
port realheterogeneitythat is the simultaneous use of different formalisms. Tiech
cally, genericity often is implemented with generic modutleat can be instantiated
many times. Here, we deal with a potentially unlimited numdfesuch instantiations,
and also with translations between them.

The Heterogeneous Tool Set 133

logic Csp-CasL
spec BUFFER=
data LisT
channels read, write : Elem
process letBuf(l : List[Elen]) =
read?x — Buf(congx, nil))
gif | = nil then STOP
else writélast(l) — Buf(rest(l))
in Buf(nil)
with logic — MODALCASL
then %implies e AGF3x: Elem. (write.x) true
end

Fig. 10. A specification of fair buffers in @sL, Csp-CAsL and MODAL CASL.

It may appear that ETS just provides a combination of some first-order provers
and Isabelle, and the reader may wonder what the advantageTsfis when com-
pared to an ad-hoc combination of Isabelle and such prolikes,22]. But already
now, HETS provides proof support for modal logic (via the translatiorCAsL, and
then further to either SPASS or Isabelle), as well as foC&sL. Hence, it is quite
easy to provide proof support for new logics by just impletirgnlogic translations,
which is at least an order of magnitude simpler than intéggad theorem prover.
Although this can be compared to embedding the new logic irOd. igrover, our
translational approach has the major advantage that $ésaralations may exist in
parallel (think of the standard and functional translatsiohmodal logic), and the best
one may be chosen depending on the theory at hand.

Future work will integrate more logics and interface moresemng theorem prov-
ing tools with specific institutions in Ers. In [25], we have presented a heteroge-
neous specification with more diverse formalisms, namedy-CAasL [40] (a com-
bination of CAsL with the process algebra CSP), and a temporal logic (as part o
MODALCASL). An example is shown in Fig. 10.8B-CAsL is used to describe the
system (a buffer implemented as a list), and some tempogit s used to state
fairness or eventuality properties that go beyond the egoreness of the process
algebra (here, we express the fairness property that tHertm#nnot read infinitely
often without writing).

In [29] we describe how heterogeneous specification aaadstould be used
for proving a refinement of a specification immEL into a Haskell-program. Another
challenge is the integration of proof planners inted. Finally, there is work in
progress about the meta-level specification of institiand their comorphisms in
Twelf [37], which shall lead to correctness proofs for thexoophisms integrated into
HETS.

Acknowledgement

This work has been supported by the project MULTIPLE offfeeitsche Forschungs-
gemeinschaftinder grant KR 1191/5-2. We thank Katja Abu-Dib, Mihai Catles

134 Till Mossakowski, Christian Maeder, Klaus Littich

Carsten Fischer, Jorina Freya Gerken, Rainer Grabbe, &jaing, Daniel Haus-
mann, Wiebke Herding, Hendrik Iben, Cui “Ken” Jian, HengngiaAnton Kirilov,
Tina Krausser, Martin Kuihl, Mingyi Liu, Dominik Liucke, M@k Makowski, Im-
manuel Normann, Razvan Pascanu, Daniel Pratsch, FelixdRedWdarkus Roggen-
bach, Pascal Schmidt, Lutz Schroder, Paolo Torrini, Réagner, Jian Chun Wang
and Thiemo Wiedemeyer for help with the implementation &t and Erwin R.
Catesbeiana for testing the consistency checker.

References

1. Jean-Raymond Abrial and Dominique Cansell. Click’'n prolnteractive proofs within set theory. In
David A. Basin and Burkhart Wolff, editor§;heorem Proving in Higher Order Logics, 16th International
Conference, TPHOLs 2003, Rom, Italy, September 8-12, R@8eedingsvolume 2758 ol ecture Notes
in Computer Scien¢gages 1-24. Springer, 2003.

2. David Aspinall. Proof general: A generic tool for proofvéddpment. In Susanne Graf and Michael I.
Schwartzbach, editorSACAS LNCS 1785, pages 38—42. Springer, 2000.

3. Thomas Baar, Alfred Strohmeier, Ana M. D. Moreira, andp8tn J. Mellor, editors.UML 2004 LNCS
3273. Springer, 2004.

4. B. Bennett. Logical Representations for Automated Reasoning aboutiédgelationships PhD thesis,
School of Computer Studies, The University of Leeds, 1997.

5. T.Berners-Lee, J. Hendler, and O. Lassila. The Semangig. Btientific AmericanMay 2001.

6. M. Bidoit and P. D. Mosses. &L User Manua) volume 2900 of NCS Springer, 2004.

7. M. Cerioli and J. Meseguer. May | borrow your logic? (tnamging logical structures along map3heoret-
ical Computer Sciencel 73:311-347, 1997.

8. CoFl (The Common Framework Initiative). AGL Reference ManualLNCS 2960 (IFIP Series). Springer,
2004.

9. Louise A. Dennis, Graham Collins, Michael Norrish, Riehd. Boulton, Konrad Slind, and Thomas F.
Melham. The prosper toolkiSTTT 4(2):189-210, 2003.

10. R. Diaconescu. Grothendieck institutio#gplied categorical structured0:383—-402, 2002.

11. William M. Farmer. An infrastructure for intertheoryasoning. IPAutomated Deduction - CADE-1ZNCS
1831, pages 115-131. Springer, 2000.

12. William M. Farmer, Joshua D. Guttman, and F. Javier Thay®IPS: An interactive mathematical proof
system.Journal of Automated Reasoninbl(2):213-248, 1993.

13. J. Goguen and G. Rosu. Institution morphisfrermal aspects of computin@3:274—-307, 2002.

14. J. A. Goguen and R. M. Burstall. Institutions: Abstraadal theory for specification and programming.
Journal of the Assaociation for Computing Maching®®:95-146, 1992. Predecessor in: LNCS 164, 221—
256, 1984.

15. Marc Herbstritt. zChaff: Modifications and extension@port00188, Institut fur Informatik, Universitat
Freiburg, July 17 2003. Thu, 17 Jul 2003 17:11:37 GET.

16. Dieter Hutter, Bruno Langenstein, Claus Sengler, Bbr§iekmann, Werner Stephan, and Wolpers Wolpers.
Verification support environment (VSERigh Integrity Systemd (6):523-530, 1996.

17. Kestrel Development Corporation. Specware 4.1 languaanual.ht t p: / / www. specwar e. or g/ .

18. Michael KohlhaseOMDoc - An Open Markup Format for Mathematical Documentsdign 1.2] LNCS
4180. Springer, 2006.

19. Daan Leijen and Erik Meijer. Parsec: Direct style moogudirser combinators for the real world. Technical
report. UU-CS-2001-35.

20. K. Luttich, T. Mossakowski, and B. Krieg-Briickner. ©logies for the Semantic Web in CASL. In José
Fiadeiro, editorWADT 2004 LNCS 3423, pages 106—125. Springer, 2005.

21. Klaus Littich and Till Mossakowski. Reasoning SupgortCASL with Automated Theorem Proving Sys-
tems. WADT 2006, Springer LNCS, to appear.

22. Jia Meng, Claire Quigley, and Lawrence C. Paulson. Aatam for interactive proof: First prototypenf.
Comput 204(10):1575-1596, 2006.

23.
24,

25.

26.
27.

28.

29.

30.

31.

32.

33.

34.

35.

36.

37.

38.

39.

40.

41.

42.

43.

44,

45,

46.

47.

48.

The Heterogeneous Tool Set 135

J. Meseguer. General logics. lagic Colloquium 87pages 275-329. North Holland, 1989.

T. Mossakowski. Comorphism-based Grothendieck lodit&. Diks and W. Rytter, editorsylFCS LNCS
2420, pages 593-604. Springer, 2002.

T. Mossakowski. Foundations of heterogeneous speaaiicdn M. Wirsing, D. Pattinson, and R. Hennicker,
editors, WADT 2002LNCS Vol. 2755, pages 359-375. Springer, 2003.

T. Mossakowski. HetCASL - heterogeneous specificatimmguage summary, 2004.

T. Mossakowski. Heterogeneous specification and trezdgneous tool set. Habilitation thesis, University
of Bremen, 2005.

T. Mossakowski, S. Autexier, and D. Hutter. Developngraphs — proof management for structured speci-
fications.Journal of Logic and Algebraic Programming7(1-2):114-145, 2006.

Till Mossakowski. Institutional 2-cells and Grotheack institutions. In K. Futatsugi, J.-P. Jouannaud, and
J. Meseguer, editordlgebra, Meaning and Computation. Essays Dedicated toploge Goguen on the
Occasion of His 65th Birthday-NCS 4060, pages 124-149. Springer, 2006.

Till Mossakowski, Joseph Goguen, Razvan DiaconesclAadrzej Tarlecki. What is a logic? In Jean-Yves
Beziau, editorLogica Universalispages 113—-133. Birkhauser, 2005.

Till Mossakowski, Piotr Hoffman, Serge Autexier, anci@ir Hutter. CASL logic. In Peter D. Mosses, editor,
CASL Reference ManydINCS 2960, part IV. Springer Verlag, 2004.

Till Mossakowski, Christian Maeder, and Klaus Luttidlne Heterogeneous Tool Set. In Orna Grumberg and
Michael Huth, editorsTACAS 2007volume 4424 of_ecture Notes in Computer Sciengages 519-522.
Springer-Verlag Heidelberg, 2007.

Till Mossakowski, Lutz Schroder, Markus Roggenbactd Elorst Reichel. Algebraic-co-algebraic specifi-
cation in CoCASL.Journal of Logic and Algebraic Programmin§7(1-2):146-197, 2006.

T. Nipkow, L. C. Paulson, and M. Wenzelsabelle/HOL — A Proof Assistant for Higher-Order Logic
Springer Verlag, 2002.

S. Peyton-Jones, editdtaskell 98 Language and Libraries — The Revised Re@aibridge, 2003. also:
J. Funct. Programming3 (2003).

Simon Peyton Jones, Mark Jones, and Erik Meijer. Typssek exploring the design space. Haskell
Workshop 1997.

Frank Pfenning and Carsten Schirmann. System desariptvelf - a meta-logical framework for deductive
systems. pages 202—-206.

D. A. Randell, Z. Cui, and A. G. Cohn. A spatial logic basedregions and connection. In B. Nebel,
W. Swartout, and C. Rich, editorBrinciples of Knowledge Representation and Reasoningcé&dings of
the 3rd International Conference (KR-9Pages 165-176. Morgan Kaufmann, 1992.

Alexandre Riazanov and Andrei Voronkov. The design amaémentation of VAMPIRE Al Communica-
tions 15(2-3):91-110, 2002.

Markus Roggenbach. Csp-casl - a new integration of pgafgebra and algebraic specificatiohheor.
Comput. Scj.354(1):42-71, 2006.

Judi Romijn, Graeme Smith, and Jaco van de Pol, edittegrated Formal Methods, 5th International
Conference, IFM 2005, Eindhoven, The Netherlands, NoveRtbeDecember 2, 2005, Proceedingslume
3771 ofLecture Notes in Computer Scien&pringer, 2005.

Donald Sannella and Andrzej Tarlecki. Essential corscepalgebraic specification and program develop-
ment. Formal Aspects of Computing:229-269, 1997.

Klaus Schneideberification of Reactive SystenSpringer Verlag, 2004.

L. Schroder and T. Mossakowski. Has<l: Towards integrated specification and development of Haske
programs. In H. Kirchner and C. Reingeissen, editBMAST, 2002LNCS 2422, pages 99-116. Springer,
2002.

C. Weidenbach, U. Brahm, T. Hillenbrand, E. Keen, C. Ba¢tpand D. Topic. SPASS version 2.0. In Andrei
Voronkov, editorAutomated Deduction — CADE-1BNCS 2392, pages 275-279. Springer-Verlag, 2002.
Stefan Wolfl, Till Mossakowski, and Lutz Schroder. (asive constraint calculi: Heterogeneous verification
of composition tables. 120th International FLAIRS Conferenc2007.

Jurgen Zimmer and Serge Autexier. The MathServe SyfterBemantic Web Reasoning Services. In
U. Furbach and N. Shankar, editoBsd IJCAR LNCS 4130. Springer, 2006.

Jurgen Zimmer and Michael Kohlhase. System descniplibe mathweb software bus for distributed math-
ematical reasoning. In Andrei Voronkov, editdéBth CADE LNCS 2392, pages 139-143. Springer, 2002.

