
Formal Device and Programming Model
for a Serial Interface

Eyad Alkassar1,?, Mark Hillebrand2,?, Steffen Knapp1,?,
Rostislav Rusev1,?, and Sergey Tverdyshev1,?

1 Saarland University, Dept. of Computer Science, 66123 Saarbrücken, Germany
{eyad, sknapp, rusev, deru}@wjpserver.cs.uni-sb.de

2 German Research Center for Artificial Intelligence (DFKI GmbH), Stuhlsatzenhausweg 3, 66123 Saarbrücken,
Germany

mah@dfki.de

Abstract. The verification of device drivers is essential for the pervasive verification of an oper-
ating system. To show the correctness of device drivers, devices have to be formally modeled. In
this paper we present the formal model of the serial interface controller UART 16550A. By com-
bining the device model with a formal model of a processor instruction set architecture we obtain
an assembler-level programming model for a serial interface. As a programming and verification
example we present a simple UART driver implemented in assembler and prove its correctness.
All models presented in this paper have been formally specified in the Isabelle/HOL theorem
prover.

1 Introduction

The Verisoft project [1] aims at the pervasive modeling, implementation, and verifica-
tion of complete computer systems, from gate-level hardware to applications running
on top of an operating system. The considered systems employ various devices, e.g., a
hard disk controller for persistent storage, a time-triggered bus controller for commu-
nication in a distributed system, and a serial interface for user interaction via a termi-
nal. The drivers controlling these devices are part of the operating system and proving
their correctness is critical to proving the correctness of the system as a whole.

Here we consider a system which the user may control with a terminal connected
via a serial interface. To prove the functional correctness of the serial interface device
driver it is not sufficient to argue only about the driver code; the serial interface itself
and its interaction with the processor have to be formally modeled, too. In this paper
we present for the first time a formal model of a serial interface and its program-
ming model at the assembler language level. Furthermore, as an informal example,
we present a serial interface driver and sketch its correctness proof with respect to our
models.

The remainder of this paper is structured as follows. In Sect. 2 we discuss previous
and related work. In Sect. 3 we sketch the instruction set architecture of the VAMP

? Work of the first author was supported by the German Research Foundation (DFG) within the program ‘Perfor-
mance Guarantees for Computer Systems’. Work of the third author was supported by the International Max
Planck Research School for Computer Science (IMPRS). Work of all but the fourth author was supported by
the German Federal Ministry of Education and Research (BMBF) in the Verisoft project under grant 01 IS C38.



Formal Device and Programming Model for a Serial Interface 5

processor [2, 3] and show how memory-mapped devices can be integrated into this
architecture. In Sect. 4 we present the formal model of a UART 16550A controller
and formalized environmental and software conditions. To informally demonstrate the
utility of the framework, in Sect. 5 we present a simple driver written in assembler,
which writes several words to the serial interface. We sketch its correctness proof.

2 Previous and Related Work

For the pervasive verification of computer systems, as done in the Verisoft project,
devices must be modeled at different system layers. Some results of Verisoft’s com-
pleted or ongoing work in the context of devices and their drivers have already been
published. One subproject of Verisoft deals with the verification of a FlexRay-like
shared serial bus interface to be used in distributed automotive systems. To verify
such a system we need to argue formally about low-level clock synchronization [4],
gate-level implementation, and driver real-time properties of the FlexRay interface.
All these arguments will finally be combined into one formal pervasive correctness
proof. A paper-and-pencil style description of this ongoing effort can be found in
Knapp and Paul [5].

In another Verisoft subproject the formal pervasive verification of a general-purpose
computer system is attempted. In this context, Hillebrand et al. [6] presented paper-
and-pencil formalizations of a system with devices for the gate and the assembler
level. For a hard disk as a specific device, correctness arguments justifying these mod-
els and a correctness proof for a disk driver were given on paper. Here we formalize
large portions of [6] for a communication device.

So far almost all other device related verification approaches have either aimed
at the correctness of a gate-level implementation or at showing safety properties of
drivers.

In approaches of the former kind, simulation- and test based techniques are used
to check for errors in the hardware designs. In particular, [7–10] deal with UARTs in
that manner. Berry et al. [8] specified a UART model in a synchronous language and
proved a set of safety properties regarding FIFO queues. From that model a hardware
description can be generated (either in RTL or software simulation) and run on a
FPGA.

In approaches of the latter kind the driver code is usually shown to guarantee
certain API constraints of the operating system and hence cannot cause the system
to crash. For example, the SLAM project [11] provides tools for the validation of
safety properties of drivers written in C. Lately, the success of the SLAM project
led to the deployment of the Static Driver Verifier (SDV) as part of the Windows
Driver Foundation [12]. SDV automatically checks a set of 65 safety rules concern-
ing Windows Driver API for given C driver programs. Hallgren et al. [13] modeled
device interfaces for a simple operating system implemented in Haskell. Three basic
memory-mapped I/O primitives were specified: read, write, and a test for valid region.



6 Eyad Alkassar, Mark Hillebrand, Steffen Knapp, Rostislav Rusev, Sergey Tverdyshev

Proc
mifi

mifo D1

...

Dn

eifo

eifi

Processor Devices
External
Environment

eev

Fig. 1. Overview: A System with Processor and Devices

However, the only correctness property being stated is the disjointness of the device
address spaces.

In contrary to all mentioned approaches, we aim at the formalization and func-
tional verification a (UART) driver interacting with a device. Thus, it is not sufficient
to argue about the device or the programming model alone. Similar in scope is the
‘mini challenge’ proposed by Holzmann [14], which deals with the formal verifica-
tion of a file system for a Flash device. Apparently, formalizing the device and its
interaction with the driver is also part of the challenge. However, no details have yet
been published.

3 Processor and Devices

In this section we define the instruction set architecture (ISA) of a processor with
memory-mapped devices as depicted in Fig. 1.

Compared to regular ISA definitions we have the following differences: in addi-
tion to the processor state, the state space of the combined architecture also includes
devices states. Processor and devices may interact (i) by the processor issuing mem-
ory operations to special memory regions (device addresses) and (ii) by the device
causing interrupts. Additionally, devices can make computational steps on their own
when interacting with an external environment (e.g., a network). Therefore we model
the computation of ISA with devices as an interleaved computation.

Note that at the hardware level processor and devices run in parallel and not inter-
leaved. This requires some non-trivial extensions of the formal hardware correctness
proof, which we will report on elsewhere.

3.1 Processor

A processor configuration cP is a tuple consisting of (i) two program counters cP.pc
and cP.dpc implementing delayed branching, (ii) general purpose, floating point, and
special purpose register files cP.gpr , cP.fpr , cP.spr , and (iii) a byte addressable mem-
ory cP.m.



Formal Device and Programming Model for a Serial Interface 7

Devices are mapped into the processor memory. Thus by simple read and write
operations the processor can access them. In addition devices can signal an interrupt
to the processor via an external event signal (cf. Fig. 1).

Let DA denote the set of memory addresses mapping to devices, which are disjoint
from regular physical memory addresses. The processor indicates an access to an
address in DA via the memory interface input mifi and receives the device’s response
on the memory interface output mifo; this naming convention is from the point of
view of the devices.

Formally, let the predicates lw(cP) and sw(cP) indicate load and store word in-
structions and let ea(cP) and RD(cP) denote the address and affected processor reg-
ister for such operations (see Müller and Paul [15] for full definitions).

The memory interface input has the following four components: (i) the read flag
mifi .rd = lw(cP)∧ ea(cP) ∈ DA is set for a load from a device address, (ii) the write
flag mifi .wr = sw(cP) ∧ ea(cP) ∈ DA is set for a store to a device address, (iii) the
address mifi .a = ea(cP) is set to the effective address, with ea[14 : 12] specifying
the accessed device and ea[11 : 2] specifying the accessed device port (we support up
to eight devices with up to 1024 ports of width 32 bits), and finally (iv) the data input
mifi .din = cP.gpr [RD(cP)] is set to the store operand.

The memory interface output mifo ∈ {0, 1}32 contains the device’s response for
a load operation on a device.

The processor model is defined by the output function ωP and the next state func-
tion δP. The former takes a processor state cP and computes a memory interface input
mifi to the device as defined above. The latter takes a processor state cP, a device out-
put mifo, and an external event (interrupt) vector eev (where eev [i] is set iff device
Di indicates an interrupt). It returns the next state of the processor c′

P.

3.2 Devices

The configurations of all devices are combined in a mapping cD from an index Di to
the corresponding device configuration.

Our device model is sequential in the sense that a device may progress either due
to a processor access or an input from the external environment. To distinguish both
cases we extend the set of device indices by the processor index P and denote this set
by PD .

The device transition function δD specifies the interaction of the devices with the
processor and the external environment. It takes a processor-device index idx ∈ PD ,
an input from the external environment eifi , an input from the processor mifi , and a
combined device configuration cD. It returns a new device configuration c′

D, an output
to the processor mifo, and an external output eifo.

Depending on the input index idx and the memory input mifi , the transition func-
tion δD is defined according to the following three cases:



8 Eyad Alkassar, Mark Hillebrand, Steffen Knapp, Rostislav Rusev, Sergey Tverdyshev

– If idx 6= P , a step of the device idx is triggered by the external input eifi . In this
case δD ignores the given mifi .

– If idx = P ∧ (mifi .wr ∨mifi .rd), a device step is triggered by a processor device
access. In this case δD ignores the given eifi and produces an arbitrary eifo. The
device being accessed as well as the access-type is specified by the given mifi .

– Otherwise the processor does not access any device. In this case, δD does nothing.

The device output function ωD computes the external event vector eev for the proces-
sor based on the current device configurations.

3.3 Combined System

By combining the processor and device models we obtain a model for the overall
system with devices as depicted in Fig. 1. This model allows interaction with an
external environment via eifi and eifo whereas the communication between processor
and devices is not visible from the outside anymore.

A configuration cPD of the combined model consists of a processor configuration
cPD.cP and device configurations cPD.cD.

Similarly to the previous models, we define a transition function δPD and an output
function ωPD. Both functions take the same three inputs: a processor-device index idx ,
a configuration cPD, and an external input eifi .

We introduce some more notation for the transition and the output function. Let
mifi = ωP(cPD.cP) be the memory interface input from the processor to the de-
vices. Let (c′

PD.cD,mifo, eifo) = δD(idx , cPD.cD, eifi ,mifi) denote the updated de-
vice configuration, the memory output to the processor, and the external output. Let
eev = ωD(c′

PD.cD) denote the external event vector, which is computed based on the
updated device configuration. Finally, if idx = P then c′

PD.cP denotes the updated
processor configuration, i.e., c′

PD.cP = δP(cPD.cP, eev ,mifo). Otherwise c′
PD.cP de-

notes the unchanged processor configuration, i.e., c′
PD.cP = cPD.cP.

The transition function δPD returns the new configuration, δPD(idx , eifi , cPD) =
c′
PD. The output function ωPD simply returns the output to the external environment,

ωPD(idx , cPD, eifi) = eifo.

3.4 Model Run

A model run is computed by the function runPD, which executes a number of steps
in the combined model. It takes as inputs an initial configuration c0

PD, a number of
steps i, an external input sequence eifiseq ∈ N → eifi , and a computational se-
quence seqPD ∈ N → PD, which designates the interleaving of the processor and
device steps. It returns an updated configuration c′

PD and an external output sequence
eifoseq ∈ N → eifo.

The run function runPD is defined by recursive application of δPD. For the base
case, i.e., i = 0, we set runPD(0, seqPD, eifiseq , c0

PD) = (c0
PD, 〈〉).



Formal Device and Programming Model for a Serial Interface 9

For i + 1, let (cPD, eifoseq) = runPD(i, seqPD, eifiseq , c0
PD) denote configura-

tions and outputs after executing i steps. To execute the (i + 1)-th step, we ap-
ply the transition and output function of the combined model one more time. Let
c′
PD = δPD(seqPD(i), eifiseq(i), cPD) and eifo = ωPD(seqPD(i), eifiseq(i), cPD). We

define runPD(i + 1, seqPD, eifiseq , c0
PD) = (c′

PD, eifoseq ◦ (eifo, seqPD(i))).

4 Serial Interface (UART 16550A)

The universal asynchronous receiver / transmitter (UART) is a chip for communica-
tion over a serial interface. In the following we will simply speak of a serial interface.

A serial interface provides a computing device with the capability to send data via
a few copper wires to another serial interface. This facility is used for non-network
communication, e.g., with terminals, modems, and other computers.

In this section we describe the driver programmer’s model of the serial interface
chip UART 16550A [16]. Briefly summarized, the processor can send or receive data
byte-wise. In case of a send this byte is stored in a FIFO queue, called the transmitter
buffer, and later on sent to the external environment. A receiver buffer stores all in-
coming bytes from the environment. Reads from the programmer are served in FIFO
manner, too. The UART provides the programmer with two methods to access status
information for both buffers: either by interrupts or by polling special ports.

The transmitter and receiver queue are bounded in size (16 bytes); thus they may
overrun. The receiver queue may overrun if the speed of incoming data from the
environment exceeds the speed at which the processor can handle it. The transmitter
queue may overrun if the processor writes data into the transmitter buffer faster than
the serial interface can send out the data to the environment. Another error related to
the queue size occurs when an empty receiver queue is read.

Our model handles the three error cases as follows: (i) overruns in the receiver
queue are treated according to the UART specification, i.e., new incoming bytes are
dropped, (ii) writing to a full transmitter queue and reading the empty receiver buffer
are not allowed in our model, they are excluded through explicit software conditions.

Discharging these software conditions for a particular driver is tricky, and obvi-
ously it would be desirable to find easier accessible programming rules, e.g., write
only if the transmitter buffer signals that it is empty. Proving that a concrete system
will never let the receiver queue overrun, is even harder. A programmer would typi-
cally rely on run-time estimations, which ensure that the environment does not send
data faster than the driver code can handle (when running on a certain machine). How-
ever, our model does not provide any real-time bounds on computations, and hence
proving correctness of a concrete system would either require further assumptions
over the environment (e.g., as part of a communication protocol between two serial
interfaces) or correctness criteria which tolerate overruns.

For brevity, in this paper we do not go into detail regarding the memory control
register and the memory status register. These registers are used to address additional



10 Eyad Alkassar, Mark Hillebrand, Steffen Knapp, Rostislav Rusev, Sergey Tverdyshev

wires connected to some external modem and to configure hardware flow control.
The remainder of this section is structured as follows. In Sect. 4.1 the configuration
and the ports of the serial interface is detailed. The transition function δu of the serial
interface is split into two logical parts: a processor- and an environment sided transi-
tion function. The first part is specified in Sect. 4.2, the second in Sect. 4.3. Finally
in Sect. 4.4 all required software and environment restrictions are stated and different
ways of discharging them are discussed.

4.1 Configuration

In the definition of the UART we use FIFO queues CT of maximum size 16 for
types T . For example, we use queues of type CB8 to send and receive data.

We model these queues by cyclic buffers with head and tail pointers hd and tl . The
buffer content ct maps indices to elements of type T . The number of queue entries is
denoted as len.

Queues with len = 0 and len = 16 are called empty and full. The head element
of a queue is accessed by head(b) = b.ct(b.hd). Queues are manipulated by the
operations push and pop. The function push adds a new byte to the queue at the
tail pointer. It is only defined for non-full queues. We set push(bdin, b) = b′ where
b′.ct [b.tl ] = bdin, b′.tl = (b.tl + 1) mod 16 and b′.len = b.len + 1. The function pop
deletes the element pointed to by the head pointer. It is only defined for non-empty
queues. We set pop(b) = b′ where b′.hd = (b.hd +1) mod 16 and b′.len = b.len− 1.
A configuration of a serial interface cu is a record with the following components:

1. The transmitter holding buffer thb ∈ CB8 is a FIFO byte queue of size 16. Input
bytes from the external environment are stored in chronological order. The transmitter
holding buffer can be read byte-wise by the programmer.

2. The receiver buffer rb ∈ CB8 is a FIFO byte queue of size 16. It can be written
byte-wise by the programmer.

3. Interrupt driven mode configuration. The serial interface generates four types
of interrupts (mapped to a single interrupt line). For each type two kinds of flags are
maintained in the configuration: one indicating whether the interrupt type is enabled
or disabled and the other indicating whether a corresponding interrupt is still pending.
– The received data available interrupt is generated, when the number of bytes

in the receive buffer exceeds its interrupt trigger level. This level is computed
as itl(x) = 7x[1] + 3x[0] · (x[1] + 1) + 1 ∈ {1, 4, 8, 14} for x = cu.rbitl ∈
B2. The component cu.erdai ∈ B indicates if the interrupt is enabled or not,
while cu.rdai ∈ B indicates if the interrupt is currently pending.

– The transmitter holding buffer empty interrupt is generated if the transmitter buffer
is empty. The component cu.ethrei ∈ B indicates if the interrupt is enabled or not,
while cu.threi ∈ B indicates if it is currently pending.

– The receiver line status interrupt is generated if certain transmission errors occur.
These are overrun, parity, framing, and breaking errors. The components cu.oe



Formal Device and Programming Model for a Serial Interface 11

specifies if an overrun in one of the two queues occurred. The parity, framing,
and breaking errors are linked to particular bytes in the receiver queue. Their
occurrence is saved in the 3-bit FIFO queue cu.trerr ∈ CB3 . For example, 110
encodes a parity and a framing error in the corresponding byte of the receiver
queue.

– The timeout interrupt is generated if for a certain period of time no data was
received or read from the receiver queue. The UART sets this timeout to the time
needed to receive four bytes. This interrupt type can be used by the programmer to
ensure that no data is forgotten in the receive queue after the input stream ended.
The component cu.toi ∈ B indicates if the interrupt is currently pending. This
interrupt is enabled iff the received data available interrupt is.
4. Polling mode configuration. The serial interface can also be operated in polling

mode, in which the driver can check the status of the buffers by reading special
ports. These ports map to three boolean configuration components: the data ready
flag cu.dr ∈ B, the empty transmitter holding buffer flag cu.ethb, and the empty data
holding registers flag cu.edhr .
It is possible to mix interrupt and polling modes, e.g., the programmer could be in-
formed about incoming data by an interrupt and then read the receiver buffer as long
as it is non-empty.

5. Word length configuration. The following components can be set by the pro-
grammer, but do not affect the modeled behavior of our device. Nevertheless we need
to model them: when connecting two serial interfaces the word length must be con-
figured equally on both sides.
The serial interface uses a timer with a 115.2 kHz frequency; the baud rate is com-
puted as 115200/cu.div. Due to port overloading the programmer has to set a so-
called Divisor Latch Access Bit cu.dlab ∈ B before accessing the cu.div field.
The low-level encoding of the transmitted data (including error protection) is config-
ured via the word length cu.wl ∈ B2, the stop bit length cu.sbl ∈ B, and the parity
select cu.ps ∈ B3. We omit details here.
The UART has eleven different registers, which are mapped to eight different ad-
dresses. Hence, some addresses are used in different contexts. They map to different
registers either depending on the access type (read / write operation) or depending on
the value of the divisor latch access bit cu.dlab (see Table 1).

4.2 Processor-Side Transitions

As already mentioned, the transition function δu of the serial interface is split into two
logical parts: a processor-side and an environment-side transition function.

The processor-side transition function δmem
u defines the behavior of the serial in-

terface when communicating with the processor. Given a current configuration of the
serial interface and an input from the processor, it computes an updated serial inter-
face configuration and an output to the processor, i.e., δmem

u (cu,mifi) = (mifo, c′
u).



12 Eyad Alkassar, Mark Hillebrand, Steffen Knapp, Rostislav Rusev, Sergey Tverdyshev

Table 1. Ports of the serial interface

UART Register / Buffer Port Abbreviation Access Type

Transmitter Holding Buffer 0 THBp Write, dlab = 0
Receiver Buffer 0 RBp Read, dlab = 0
Divisor Latch Low Byte 0 DLLBp Read / Write, dlab = 1
Interrupt Enable Register 1 IERp Read / Write
Divisor Latch High Byte 1 DLHBp Read / Write, dlab = 1
Interrupt Identification Register 2 IIRp Read
FIFO Control Register 2 FCRp Write
Line Control Register 3 LCRp Read / Write
Line Status Register 5 LSRp Read

Note that the transition function δmem
u is only partially defined because some pro-

cessor accesses to the device are considered illegal and lead to an undefined device
configuration. Later on we will formulate software conditions excluding all these
cases.

In the following we abbreviate a read access to port x by rd(mifi , x) = mifi .rd ∧
mifi .a = x and a write access to port x by wr(mifi , x) = mifi .wr ∧ mifi .a = x.
Although in general we allow devices to have ports of width 32 bit, the serial interface
only has ports of width 8 bit. Hence, only the lower 8 bits of mifi .din and mifo are
significant. In the following we assume that mifo will be zero-padded by the device
and omit these extra bits here.

Configuration Updates. If the bit dlab is cleared and the processor reads the port
receiver buffer having the address RBp and the receiver queue of the serial interface
is not empty then its first byte is popped. Furthermore the queue maintaining trans-
mission errors for received bytes is updated, too:

rd(mifi ,RBp) ∧ cu.dlab = 0 ∧ cu.rb.len > 0 =⇒
(c′

u.rb = pop(cu.rb)) ∧ (c′
u.trerr = pop(cu.trerr))

The processor writes the byte to be transmitted into the port transmitter holding
buffer. If the corresponding queue is not full, the written byte is pushed into it:

wr(mifi ,THBp) ∧ cu.thb.len < 16 =⇒ c′
u.thb = push(cu.thb,mifi .din[7 : 0])

Pending interrupt flags, raised by the device, are cleared if the processor reads the
corresponding ports. Reading the receiver buffer clears the received data available-
and the time-out interrupt. Similarly reading the interrupt identification register or
reading the transmitter holding buffer clears the transmitter holding buffer empty in-
terrupt. Finally the receiver line status interrupt is cleared by reading the line status
register:

rd(mifi ,RBp) =⇒ c′
u.rdai = 0 ∧ c′

u.toi = 0
rd(mifi ,THBp) ∨ rd(mifi , IIRp) =⇒ c′

u.threi = 0
rd(mifi ,LSRp) =⇒ c′

u.rlsi = 0



Formal Device and Programming Model for a Serial Interface 13

By writing the port interrupt enable register, the programmer can specify which
interrupt types are enabled, i.e., which can be raised by the device. Since the timeout
interrupt is enabled when the received data available interrupt is, only three bits are
relevant. The other five bits are ignored:

wr(mifi , IERp) =⇒
(c′

u.erdai = mifi .din[0]) ∧ (c′
u.ethrei = mifi .din[1]) ∧ (c′

u.erlsi = mifi .din[2])

The transmit or receive FIFO can be cleared manually by the programmer through
writing the FIFO control register FCRp. The bit zero of the FCRp indicates if FIFOs
should be used at all. If it is cleared no buffers will be used.

Setting bits one and two will clear the receiver and transmitter buffers, resp.:

wr(mifi ,FCRp) ∧mifi .din[1] = 1 =⇒ c′
u.rb.len = 0 ∧ c′

u.rb.hd = cu.rb.tl
wr(mifi ,FCRp) ∧mifi .din[2] = 1 =⇒ c′

u.thb.len = 0 ∧ c′
u.thb.hd = cu.thb.tl

Bit three indicates if DMA is supported. In this paper we do not deal with DMA. Bit
four and five of the FCRp are reserved.

If the received data available interrupt is enabled, the last two bits of the FCRp

encode at what length of the receive queue an interrupt is generated. Hence, the two
bits map to the rbitl component of the serial interface:

wr(mifi ,FCRp) =⇒ c′
u.rbitl = mifi .din[7 : 6]

The first two bits of the line control register are mapped to the transmission word
length wl, bit two relates to the stop bit length sbl, bits three to five map to the parity
select ps, bit seven is set to access the two divisor bytes, and bit six is reserved:

wr(mifi ,LCRp) =⇒ (c′
u.wl = mifi .din[1 : 0]) ∧

(c′
u.sbl = mifi .din[2]) ∧ (c′

u.ps = mifi .din[5 : 3]) ∧ (c′
u.dlab = mifi .din[7])

By writing the divisor latch high byte register DLHBp and the divisor latch low
byte register DLLBp the divisor div is set:

wr(mifi ,DLLBp) ∧cu.dlab = 1 =⇒ c′
u.div[7 : 0] = mifi .din[7 : 0]

wr(mifi ,DLHBp) ∧cu.dlab = 1 =⇒ c′
u.div[15 : 8] = mifi .din[7 : 0]

Generated Output. The predicate is int indicates if for a given configuration of the
serial interface cu at least one of the four interrupts types is pending:

is int(cu) = cu.threi ∨ cu.rdai ∨ cu.rlsi ∨ cu.toi

In case of a write operation the 32-bit wide data output mifo is irrelevant and
therefore set to zero. In case of a read operation the first 24 bits of the output are filled
with zeros since the serial interface operates byte-wise.



14 Eyad Alkassar, Mark Hillebrand, Steffen Knapp, Rostislav Rusev, Sergey Tverdyshev

If the processor reads from the receiver buffer and the receive queue is not empty,
the first byte is taken from the queue and returned to the processor:

rd(mifi ,RBp) ∧ cu.dlab = 0 ∧ cu.rb.len > 0 =⇒
mifo = head(cu.rb) ∧ c′

u.rb = pop(cu.rb)

If the processor reads port DLLBp, the lower eight bits of the divisor compo-
nent div are returned. If it reads port DLHBp, the upper eight bits of the divisor
component div are returned:

rd(mifi ,DLLBp) ∧(cu.dlab = 1) =⇒ mifo = cu.div[7 : 0]
rd(mifi ,DLHBp) ∧(cu.dlab = 1) =⇒ mifo = cu.div[15 : 8]

When reading the interrupt enable register the output encodes the four flags indi-
cating which interrupt types are enabled:

rd(mifi , IERp) ∧ (cu.dlab = 0) =⇒ mifo = 05 ◦ cu.erlsi ◦ cu.ethrei ◦ cu.erdai

The type of the interrupt that caused the eev flag to be set can be checked by
reading the interrupt identification register. For rd(mifi , IIRp) we define mifo =
1100 ◦ is ◦ ¬is int(cu) where the three interrupt status bits is ∈ B3 are defined
as follows:

is =


011 if cu.rlsi

010 if ¬cu.rlsi ∧ (cu.rdai ∨ cu.toi)

110 if ¬cu.rlsi ∧ ¬(cu.rdai ∨ uart .toi)

001 if ¬uart .rlsi ∧ ¬(uart .rdai ∨ uart .toi) ∧ uart .threi

The line status register is a read-only register which encodes the polling mode in-
formation of the transmitter and the receiver queues. Furthermore, in case of a trans-
mission error (i.e., in case of line status interrupt), this register provides the error
type. Remember that the component cu.trerr stores parity, framing and break errors
of all bytes in the receiver queue. When reading LSRp, the errors occurred in the head
of the queue are reported in bits two, three and four. Let errQ denote whether at least
one error occurred in any of the bytes in the queue. Reading the port LSRp results in:

rd(mifi ,LSRp) =⇒
mifo = errQ ◦ cu.edhr ◦ cu.ethb ◦ head(cu.trerr)[2 : 0] ◦ cu.oe ◦ cu.dr

The line control register can also be read out. As mentioned before it contains
the parity select, word length, stop bit length, set break interrupt enable flag and the
divisor latch bit components of the serial interface:

rd(mifi ,LCRp) =⇒ mifo = cu.dlab ◦ cu.ebi ◦ cu.ps ◦ cu.sbl ◦ cu.wl



Formal Device and Programming Model for a Serial Interface 15

4.3 Environment-Side Transitions

We describe the interaction of the serial interface with the environment, which is
given by the environment-sided transition function δenv

u . This function takes an input
from the environment and a serial interface configuration and it returns an updated
serial interface configuration and an output to the environment, i.e., δenv

u (cu, eifi) =
(eifo, c′

u).
The input from that environment is given by (i) a bit eifi .tshrready indicating if

the transmitter shift register is empty and hence the next byte of the transmitter queue
can be sent, (ii) a bit eifi .serdinvalid indicating if new and valid data was received,
(iii) the serial input data eifi .serdin, (iv) three bits indicating parity, framing, and
break error, eifi .pe, eifi .fe and eifi .be, (v) and a bit eifi .to indicating a time-out in-
terrupt. Since no time is modeled, a non-deterministic input from the environment
signals time-out. The only output of the serial interface to the environment is the byte
being sent.

If the transmission shift register is empty eifi .tshrready and the transmitter queue
has data in it, cu.thb.len > 0, the first byte of the queue is sent, head(cu.thb) to the
external environment. Otherwise, a special empty output is transmitted, i.e., 08.

The byte written to the external environment is taken from the transmitter queue:

eifi .tshrready ∧ cu.thb.len > 0 =⇒ c′
u.thb = pop(cu.thb)

If the receive queue is not full, received bytes are added to it. Furthermore the
queue maintaining the parity, framing and break errors is updated for the received
byte:

eifi .serdinvalid ∧ cu.rb.len < 16 =⇒ c′
u.rb = push(cu.rb, eifi .serdin) ∧

c′
u.trerr = push(cu.trerr , eifi .pe ◦ eifi .fe ◦ eifi .be)

If a new byte is received although the receive queue is full, then the new byte is
dropped and an error is indicated by raising the overrun flag:

eifi .serdinvalid ∧ cu.rb.len = 16 =⇒ c′
u.oe = 1

The interrupt pending signals are raised if (i) the transmitter queue is empty
and the environment signals through eifi .tshrready that the next byte can be sent,
c′
u.threi = c′

u.thbp.len > 0, (ii) the length of the receiver queue reaches the specified
trigger level (receive data available interrupt), c′

u.rdai = cu.rb.len ≥ itl(cu.rbitl),
(iii) or a framing, parity, break or an overrun error occurs (line status interrupt),
c′
u.rlsi = eifi .fe∨eifi .pe∨c′

u.oe, (iv) or the receiver queue is non-empty and the exter-
nal environment signals the occurrence of a time-out, c′

u.toi = eifi .to∧c′
u.rb.len > 0.

In the polling driven mode the configuration is updated similarly: (i) c′
u.ethb is set

if the transmitter queue is not empty, (c′
u.thbp.len = 0), (ii) c′

u.dr is set if the receiver
queue is non-empty, (c′

u.rb.len > 0), (iii) c′
u.edhr is set if both the transmitter queue

and the shift register are empty, (c′
u.thbp.len = 0) ∧ eifi .tshrready .



16 Eyad Alkassar, Mark Hillebrand, Steffen Knapp, Rostislav Rusev, Sergey Tverdyshev

4.4 Software Conditions and Environment Restrictions

The transition function δu is not total. Undefined cases are related to over- and under-
runs of the queues and illegal accesses to unmodeled or write-only ports. Formally, we
characterize these cases by predicates over memory input and UART configurations:

– The line-status register must not be written, ¬wr(mifi ,LSRp), and the unmodeled
ports MCRp and MSRp must not be accessed, mifi .a /∈ {MSRp,MCRp}.

– The receiver buffer must not be read when empty and the transmitter buffer must
not be written to when full. Formally, if cu.dlab = 0 then rd(mifi ,RBp) =⇒
cu.rb.len > 0 and wr(mifi ,THBp) =⇒ cu.thb.len < 16.

Only if these software conditions are met, we can assume the model to be accurate.
The driver programmer is responsible for discharging them. For example, a driver
which writes no more than 16 byte chunks between each two transmitter holding
buffer empty interrupts, obviously fulfills the second condition.

For proving correctness of a driver implementation we need to impose further
restrictions on the behavior of the environment.

Liveness. We need to assume liveness of the sending part: data in the transmitter
buffer must eventually be sent, ∀i∃j > i . seqPD(j) = Duart∧ eifiseq(j).tshrready =
1.

Also the processor is assumed to be live, ∀i∃j > i . seqPD(j) = P . While liveness
can be assumed by the programmer, it has to be shown in the hardware correctness
proof.

Overrunning Receiver Queue. The speed of the environment sending packets to the
serial interface is not related in any sense to the speed of the processor; packets ar-
rive completely non-deterministically. The question is: how can a driver programmer
under these circumstances assure that no packets are lost due to overrunning queues?

This is a tricky task. In a first approach we might impose timing restriction on
the environment. Hardware implementation details like caches, pipelining, etc. are
invisible in the ISA. Thus, the numbers of instructions executed cannot be related
to real time and a relation between transmission speed and ISA execution cannot be
established.

Note that the problem of overrunning queues is not inherent to our way of mod-
eling. It is a problem that a device programmer must expect and deal with in non-
real-time operating systems, too. This situation leads to serious difficulties in the for-
malization of the correctness statements for serial interface drivers. For example, it is
impossible to prove that all key presses sent from a keyboard to a serial interface are
finally processed by the driver because the model contains runs in which the environ-
ment is too fast leading to a queue overrun. There are three approaches to deal with
the problem:



Formal Device and Programming Model for a Serial Interface 17

0: addi r3,r0,#Da(Duart) (1.1)
4: addi r4,r0,#3 (1.2)
8: sw LCRp · 4(r3),r4 (1.3)
12: sw IERp · 4(r3),r0 (1.4)
16: addi r0,#14, r4 (1.5)
20: sw FCRp · 4(r3),r4 (1.6)
24: lw r6, 0(r1) (2.1)
28: sw THBp · 4(r3), r6 (2.2)
32: slri r6, r6, #8 (2.3)
36: sw THBp · 4(r3), r6 (2.4)
40: slri r6, r6, #8 (2.5)

44: sw THBp · 4(r3), r6 (2.6)
48: slri r6, r6, #8 (2.7)
52: sw THBp · 4(r3), r6 (2.8)
56: addi r1, r1, #4 (2.9)
60: lw r4, LSRp · 4(r3) (3.1)
64: andi r4, r4, #32 (3.2)
68: beqz r4, #-12 (3.3)
72: nop (3.4)
76: subi r5, r5, #1 (4.1)
80: bnez r5, #-60 (4.2)
84: nop (4.3)

Fig. 2. UART driver. We assume that registers r1 and r2 are preset to a and n.

1. Model overruns in specification and use software synchronization. A widely
used mechanism is called software flow control: the receiver signals the sender when
ready / unable to accept new data via the special characters Xon / Xoff.

2. Hardware synchronization. Synchronization can also be implemented directly
in hardware (called autoflow control), as was done for the UART 16750. Using such
hardware an assumption can be introduced stating that the environment is not sending
new data while the receiver buffer is still full.

3. Worst case execution time (WCET) analysis. Good run-time estimates require a
cycle-accurate model for the target processor. Indeed, there are tools for several archi-
tectures to precisely estimate the WCET of given programs, e.g., [17]. By analyzing
the serial interface driver and parts of the kernel, such as the interrupt handlers, we
can compute the latency of processing data received at the serial interface. This yields
a maximum baud rate under which the driver may be run safely without overruns.

5 Example: A Simple UART Driver

We construct a simple device driver and sketch its correctness proof with respect to
the ISA of Sect. 3. The driver writes n words from the processor’s memory, starting
at address a, to the serial interface with index Duart and base address Da(Duart).
Its code is shown in Fig. 2; its size is approximately an order of magnitude smaller
than the code of a realistic driver for the UART 16550A. We use a MIPS-like syntax.
GPRs, immediates, and register-indexed memory operands are denoted as rk, #l, and
m(rn). Lines are prefixed with an offset to a certain code base address cba. Arrows
indicate jump targets; all jumps are executed with one delay slot.

To state the driver correctness, we use the auxiliary function purge. For a device
index idx and an external output sequence eifoseq it returns the sub sequence of
external outputs for device idx .

Let seqPD and eifiseq denote a computational sequence and an external input
sequence fulfilling the liveness assumption. Let c0

PD denote an initial configuration
which starts with the execution of the driver, c0

P.dpc = cba, and where the word



18 Eyad Alkassar, Mark Hillebrand, Steffen Knapp, Rostislav Rusev, Sergey Tverdyshev

count and start address are stored in the first two registers, i.e., c0
P.gpr [1] = a and

c0
P.gpr [2] = n.

Furthermore let ci
PD and eifoseq i denote the reached state and generated output

after the execution runPD(i, seqPD, eifiseq , c0
PD) of some i steps of the combined sys-

tem.

Theorem 1 (Functional correctness). There exists some step number e, after which
the driver finished execution and the n words from the processor’s memory are output
to the external environment: purge(eifoseqe, Duart) = c0

P.m4·n(a)

Proof. The main part of the code is the outer loop in parts (2) to (4). It is traversed
n times, sending a word over the serial interface in each iteration. Before itera-
tion j < n and after iteration j = n of the loop after a certain number s(j) of steps the
following invariants have to hold: (i) j words have been written to the environment,
purge(eifoseqs(j), Duart) = c0

P.m4·j(a), (ii) the first address not yet copied and the
number of remaining words are stored in gpr [1] and gpr [4], and (iii) the device has
an empty transmitter holding buffer, interrupts disabled, and a cleared dlab flag. The
existence of s(j) and the invariants are shown by induction over j.

Initially, the device invariant is established by code part (1) writing the ports
LCRp, IERp, and FCRp. For j > 0, correctness of the code that copies a word
from memory to the transmitter holding buffer, part (2), and the polling loop, part (3)
have to be shown. After part (2), 4− cu.thb.len bytes have been transmitted; the other
bytes will have been transmitted after the polling loop exits. To show termination of
these parts, the liveness condition over the computational and external sequence has
to be applied.

6 Conclusion and Future Work

We have presented the detailed formal model of a serial interface controller, the UART
16550A [16]. By combining this model with the formal model of a processor ISA,
we obtained a formal model of a processor in which the UART may be accessed as
a memory-mapped device. All presented models have been specified in the theorem
prover Isabelle/HOL [18]. The formalized ISA resembles the DLX instruction set
architecture that was taken as a specification for the VAMP processor [2, 3].

Our Isabelle/HOL formalization defines a precise programming model for device
drivers and may be used as the basis of an integrated, self-contained formal driver
verification environment. Thus, it is relevant for both device programmers and verifi-
cation engineers.

For the programmer, the model is a succinct description of the visible state of the
device and its interaction with the external environment and the processor. Moreover,
environmental conditions, which the programmer may assume, and software condi-
tions, which the programmer must satisfy, precisely define the rules for implementing



Formal Device and Programming Model for a Serial Interface 19

a functionally correct device driver. An example of such a driver, transmitting data
via a serial interface, was given in Sect. 5.

In addition, the model may be used by the verification engineer to develop mathe-
matical software correctness proofs and to check them with a computer-aided verifica-
tion system. A sketch of such a proof was given in Sect. 5. In contrast to related work,
the high level of detail in our device models even allows the verification of complex
properties like functional correctness rather than just control or protocol properties.

Our further work in this area can be split into two parts. First, we plan to formalize
and extend the implementation and correctness proofs from Sect. 5 to cover data
reception and successful communication between two serial interfaces. Second, in
the broader context of the attempted system verifications in Verisoft, the scope of our
modelling and verification effort needs to be extended to cover all system layers from
the gate-level hardware of the VAMP processor [2, 3] with devices up to user-level
device drivers for a variety of standard devices (e.g., serial interface, hard disk [6],
FlexRay-like bus controller). The final result of this effort is a stack of computational
models with device support; adjacent layers in this model stack will be related to each
other by simulation theorems.

References
1. The Verisoft Consortium: The Verisoft Project. http://www.verisoft.de/ (2003)
2. Beyer, S., Jacobi, C., Kröning, D., Leinenbach, D., Paul, W.: Instantiating uninterpreted functional units and

memory system: Functional verification of the VAMP. In Geist, D., Tronci, E., eds.: CHARME’03. Volume
2860 of LNCS. Springer (2003) 51–65

3. Dalinger, I., Hillebrand, M., Paul, W.: On the verification of memory management mechanisms. In Borrione,
D., Paul, W., eds.: CHARME’05. Volume 3725 of LNCS. Springer (2005) 301–316

4. Schmaltz, J.: A formal model of lower system layer. In: FMCAD’06, IEEE/ACM Press (2006) 191–192
5. Knapp, S., Paul, W.: Pervasive verification of distributed real-time systems. In Broy, M., Grünbauer, J.,

Hoare, T., eds.: Software System Reliability and Security. Volume 9 of IOS Press, NATO Security Through
Science Series. (2007) To appear.

6. Hillebrand, M., In der Rieden, T., Paul, W.: Dealing with I/O devices in the context of pervasive system
verification. In: ICCD ’05, IEEE Computer Society (2005) 309–316

7. Cohen, B.: Component design by example: A step-by-step process using VHDL with UART as vehicle.
VhdlCohen (2000)

8. Berry, G., Kishinevsky, M., Singh, S.: System level design and verification using a synchronous language.
In: ICCAD, IEEE Computer Society / ACM (2003) 433–440

9. ALDEC – The Design Verification Company: UART nVS. http://www.aldec.com/products/
ipcores/_datasheets/nSys/UART_nVS.pdf (2006)

10. Rashinkar, P., Paterson, P., Singh, L.: System-on-a-Chip Verification: Methodology and Techniques. Kluwer
Academic Publishers, Norwell, MA, USA (2001)

11. Ball, T., Rajamani, S.K.: Automatically validating temporal safety properties of interfaces. In Dwyer, M.B.,
ed.: SPIN. Volume 2057 of LNCS. Springer (2001) 103–122

12. Microsoft Corporation: SDV: Static driver verifier. http://www.microsoft.com/whdc/
devtools/tools/sdv.mspx (2004)

13. Hallgren, T., Jones, M.P., Leslie, R., Tolmach, A.P.: A principled approach to operating system construction
in Haskell. In Danvy, O., Pierce, B.C., eds.: ICFP, ACM (2005)

14. Holzmann, G.J.: New challenges in model checking. http://www.easychair.org/FLoC-06/
holzmann_25mc_floc06.pdf (2006) Symposium on 25 years of Model Checking, Seattle, USA. In-
vited talk.



20 Eyad Alkassar, Mark Hillebrand, Steffen Knapp, Rostislav Rusev, Sergey Tverdyshev

15. Müller, S., Paul, W.: Computer Architecture: Complexity and Correctness. Springer (2000)
16. National Semiconductor: PC16550D – universal asynchronous receiver / transmitter with FIFO’s. http:

//www.national.com/ds.cgi/PC/PC16550D.pdf (2005)
17. Ferdinand, C., Heckmann, R.: Verifying timing behavior by abstract interpretation of executable code. In

Borrione, D., Paul, W., eds.: CHARME’05. Volume 3725 of LNCS. Springer (2005) 336–339
18. Nipkow, T., Paulson, L.C., Wenzel, M.: Isabelle/HOL: A Proof Assistant for Higher-Order Logic. Volume

2283 of LNCS. Springer (2002)


