
Sydney OWL Syntax - towards a Controlled
Natural Language Syntax for OWL 1.1

Anne Cregan1,2, Rolf Schwitter3, and Thomas Meyer1,2

1 NICTA, [Anne.Cregan,Thomas.Meyer]@nicta.com.au
2 University of New South Wales, Australia
3 Macquarie University, rolfs@ics.mq.edu.au

Abstract. This paper describes a proposed new syntax that can be
used to write and read OWL ontologies in Controlled Natural Lan-
guage (CNL): a well-defined subset of the English language. Following
the lead of Manchester OWL Syntax in making OWL more accessible
for non-logicians, and building on the previous success of Schwitter’s
PENG (Processable English), the proposed Sydney OWL Syntax enables
two-way translation and generation of grammatically correct full English
sentences to and from OWL 1.1 functional syntax. Used in conjunction
with OWL tools, it is designed to facilitate ontology construction and
editing by enabling authors to write an OWL ontology in a defined sub-
set of English. It also improves readability and understanding of OWL
statements or whole ontologies, by enabling them to be read as En-
glish sentences. It is hoped that by providing the option of an intuitive,
easy to use English syntax which requires no specialized knowledge, the
broader community will be far more likely to develop and benefit from
Semantic Web applications. This paper is a discussion paper covering
the scope, design, and examples of Sydney OWL Syntax in use, and
the authors invite feedback on all aspects of the proposal via email to
krr.sydneysyntax@cse.unsw.edu.au. Working drafts of the full specifi-
cation are available at http://www.ics.mq.edu.au/~rolfs/sos.

1 Introduction

Following OWL reaching offical W3C recommendation status, a variety of nota-
tions for OWL class, property and individual descriptions and axioms became
available through various tools, most notably Protégé [8] and SWOOP [6]. As
noted in [3], these ranged from the officially recommended RDF/XML exchange
syntax [2], through to a Description Logic style syntax, with Turtle/N-Triples [1]
and the OWL Abstract Syntax [9] somewhere between the two extremes of ver-
bosity and the specialized logical notation known as “squiggles” to non-logicians.

The experience of experts such as the Manchester Group in delivering OWL
tutorials and workshops for domain experts identified that for the vast majority
of non-logicians, none of the existing OWL syntaxes were suitable for writing
class expressions and other types of axioms: they were either too verbose, or else
the logical notation was intimidating and inconvenient to use. Manchester OWL
Syntax [3] addressed these problems by providing an alternative syntax designed
to be concise, without DL symbols, and quick and easy to read and write.



Manchester OWL Syntax has had substantial success and is reported to be
the preferred syntax for non-logicians [3]. Discussion following its presentation
at OWLED 2006 identified the potential, as a future goal for OWL, to extend
the approach even further, to provide a syntax representing OWL in full English
sentences. With a view to building on the previous success of Schwitter’s Pro-
cessable English (PENG) [11], which translates Controlled English to first-order
logic, Cregan formed a small working group comprising the three Sydney-based
authors (Cregan, Schwitter and Meyer) to design such a syntax.

The resulting proposed Sydney OWL Syntax is presented herein, and feed-
back is invited from all interested parties. As there are many design decisions to
be made in such an undertaking, a large part of the paper is devoted to covering
the design choices identified, and giving the rationale for the choices made. The
syntax itself is presented via examples throughout the paper, but as space does
not permit the inclusion of the emerging specification, readers should also consult
the documentation available at http://www.ics.mq.edu.au/~rolfs/sos.

2 Background
2.1 Manchester OWL Syntax

Manchester OWL Syntax [3] is largely based on the German DL syntax and
shares its compactness. Its key differentiating features are the replacement of spe-
cial logical symbols such as ∃, ∀ and ¬ with the more intuitive keywords some,
only, and not ; the use of infix rather than prefix notation for keywords used in
restrictions, preventing a misreading of class expressions found to be common
amongst non-logicians; and the introduction of keywords such as ValuePar-
tition facilitating common ontology design patterns. Manchester OWL Syntax
has been reported to be well-received by non-logicians [3] and is the default
syntax for Protégé-OWL and the commercially released OWL ontology editor
TopBraid Composer1. In general, non-logicians have found it easier to grasp,
remember and use than DL syntax. Although needing some training to re-align
their natural interpretation of keywords to the correct OWL/DL interpretation,
it successfully lowered the barrier for reading and interpreting ontologies.

Limitations: Although able to represent complete ontologies, Manchester
OWL Syntax has been primarily designed for presenting and editing class ex-
pressions via tools, and representation / tool support for property and individual
expressions seems to have had less focus. In addition, whilst certainly lowering
the barrier, a syntax closer to English, with semantics matching a natural English
interpretation could potentially remove it altogether.

2.2 PENG (Processable ENGlish)

PENG (Processable ENGlish) [11] is a machine-oriented controlled natural lan-
guage (CNL) designed for writing unambiguous and precise specification texts for
knowledge representation. Whilst easily understood by speakers of the base lan-
guage, it has the same formal properties as an underlying formal logic language
1 http://www.topbraidcomposer.com/



and thus is machine-processable. It can be used, for example, for annotating web
pages with machine-processable information [12]. PENG covers a strict subset of
standard English, and is precisely defined by a controlled grammar and lexicon.

Specification texts written in PENG are incrementally parsed using a
unification-based phrase structure grammar, and translated into first-order logic
via discourse representation structures [7]. Standard first-order logic reasoning
services are applied for reasoning tasks including consistency and informativity
checking, and question answering.

As a brief example, the following sentences are written in PENG:
1. If X is a research programmer then X is a programmer.
2. Bill Smith is a research programmer who works at the CLT.
3. Who is a programmer and works at the CLT?

Sentence (1) describes a subclass relationship, sentence (2) asserts factual knowl-
edge about a domain, and sentence (3) is used to query the terminological and
factual knowledge expressed in (1) and (2). Standard first-order logic (FOL)
query processing returns the answer Bill Smith.

The writing process of PENG is facilitated by predictive interface techniques:
after the author enters a word form, the authoring tool displays look-ahead
information indicating the available choices for the next word form, ensuring
adherence to the lexicon and grammar. The author does not need to learn or
remember the rules of the controlled natural language as these are taken care of
by the authoring tool.

Limitations: The grammar of PENG is first-order equivalent and there-
fore more expressive than OWL 1.1. It is informed by FOL rather than DL
considerations. In addition, the grammar has not been designed with bidirec-
tionality in mind: PENG sentences are translated into FOL but not from FOL
backwards into PENG. For these reasons, Sydney OWL Syntax, whilst informed
by the learnings and experience of PENG, has essentially been designed from
scratch. With regard to bidirectionality, Kaljurand and Fuchs [4] have presented
a bidirectional mapping between a subset of OWL DL and Attempto Controlled
English using a discourse representation structure as interlingua, but in recent
work [5] they focus on one direction only: the verbalisation of OWL DL. Schwit-
ter and Tilbrook [13] previously showed that there is no need for an interlingua
and that bidirectionality can be achieved in a direct way using axiom schemas.

3 Scope

Sydney OWL Syntax has been scoped as follows:

1. OWL 1.1 compatible
Unlike the 2004 OWL recommendation which uses a frame-like syntax con-
venient for manipulating ontologies by hand:

ObjectProperty(hasAncestor domain(person) range(person))

the emerging OWL 1.1 [10] has a functional-style syntax which breaks such
axioms apart and makes them easier to manipulate programmatically:



ObjectPropertyDomain(hasAncestor person)
ObjectPropertyRange(hasAncestor person)

Sydney OWL Syntax takes OWL 1.1 functional syntax as the normative form
for expressing OWL ontologies and the base form for translations. Combining
readability and processability, it expresses the same information as:

If X has Y as an ancestor then X is a person.
If X has Y as an ancestor then Y is a person.

See Section 6 for considerations of conciseness in the design.

2. Coverage of the entire OWL language
Anything that can be expressed in OWL 1.1 may be expressed in Sydney
OWL Syntax. It provides complete coverage of all axioms and assertions that
may be made in OWL 1.1, for example subproperty relations:

If X has Y as a parent then X has Y as an ancestor.

and property chains (= role composition):
If X owns Y and Y has Z as a part then X owns Z.

3. Two-way translation
Any OWL 1.1 ontology may be represented in Sydney OWL Syntax and
conversely, ontologies constructed in Sydney OWL Syntax can be fully rep-
resented in any other OWL 1.1 syntax, without loss of information. The
writing of ontologies in Sydney OWL Syntax is to be supported with inter-
active functionality such as look-ahead information, to assist the user and
enforce syntactic validity.

4 Design goals
The key design goals of Sydney OWL Syntax are:
1. Support non-logicians to build quality OWL ontologies

Support domain experts and analysts, particularly those without a logical
background, to write good quality OWL ontologies. We assume that users
are literate in English, and have at least an average ability to use a computer
and think and express themselves logically in the normal sense of the word,
but no specific knowledge of any formal notation is assumed.

2. Provide English translations of OWL ontologies
Provide English translations of OWL ontologies which can be read and un-
derstood by English-speaking persons, without the need to refer to any other
ontology syntax or representation. As with any ontology syntax, it is the re-
sponsibility of the author(s) to choose sensible and appropriate names for
user-defined classes and properties.

3. Modularity for future flavours of OWL
As OWL is an evolving language, and it is likely that new flavours of OWL
corresponding to various formal logics will emerge, one of the design goals is a
modular approach which facilitates contracting and expanding the syntax in
correspondence with the logical operators to be included. For instance, words
such as must, may and cannot are not currently used, as they correspond to



notions of permissibility and obligatoriness used by deontic logics. At some
stage OWL may have a flavour based on a deontic logic, so these words are
kept in reserve for that scenario.

4. Implementable by OWL tools
Provide a specification which is sufficiently detailed and precise for imple-
mentation in ontology tools, as an alternative syntax to Manchester Syntax,
OWL Abstract Syntax, and/or the other existing syntaxes. We note however
that as OWL 1.1 functional syntax is not fully backwards-compatible with
previous OWL syntaxes, the same applies for Sydney OWL Syntax.

5 Design choices

Whilst developing the syntax, several design decisions were encountered and
choices made. We believe these decisions are ones which would be encountered
by any effort to translate between a formal and a controlled natural language,
and give the rationale for the choices made for Sydney OWL Syntax.

5.1 Naturalness versus closeness to OWL

A key decision was how natural we wanted the language to be. We observed
a fundamental tradeoff between naturalness and closeness to OWL: on the one
hand, the language could be more natural, but would lose its binding to OWL
and thus become ambiguous and open to interpretation. This would seem to
defeat the purpose of building an ontology as it is expressly for explicit logical
representation of a domain. On the other hand, one can bind very tightly to
OWL but this can result in some unnatural sounding English expressions, as
there is often no exact or at least succinct equivalent in English for an OWL
construction. For example,

hasFather is a FunctionalObjectProperty.

does not sound like a natural English expression, as firstly, it is an artefact of the
ontology itself, and secondly, it uses abstract terms that are unknown to non-
specialists. In contrast, Sydney OWL Syntax uses the terms of the application
domain to convey the meaning without the need for any opaque encoding:

If X has Y as a father then Y is the only father of X.

In general we have opted towards tight binding with OWL 1.1 functional syntax
whilst endeavouring to make the expressions as natural as possible.

1. One or many CNL translations?
In natural language there are many ways to say the same thing - did we want
to try to support all or a collection of them in translating a given OWL state-
ment? For example, for the expression SubClassOf(male, person) should
we support both If X is a male then X is a person and Every male is a
person or allow one and only one CNL representation? We decided that for
the first cut of Sydney OWL Syntax, there would be only one.
Design choice: OWL syntax corresponds uniquely to Sydney OWL Syntax.
That is, there is only one Sydney OWL Syntax form for each OWL form,



chosen to maximise succinctness and precision.

However, we appreciate the potential usefulness of supporting differ-
ent modes of natural language expression for ontology construction
purposes. For example, we have chosen to represent disjointness with the
succinct mutually exclusive, but for clarification purposes it may be
helpful to offer an expanded CNL translation such as female or male is
the case but not female and male. One option is that such modes could be
handled through the interface without formally being part of the syntax.
We also note that uniqueness of form refers to the syntactical form of the
OWL statement, not its logical status - in some cases two OWL expressions
may be logically equivalent but use different syntax, for example:
DisjointUnion(person male female) and
DisjointClasses(male female)
EquivalentClasses(person ObjectUnion(male female))

In this case, each syntactically distinct OWL expression corresponds to its
own Sydney OWL Syntax equivalent:
The class person is equivalent to male or female, and male and
female are mutually exclusive. and

The classes male and female are mutually exclusive. The
class person is fully defined as anything that is a male or
a female.

2. How explicit should the OWL constructs be?
One of the fundamental design decisions we faced was whether or not to talk
about the ontology constructs themselves in the syntax. For instance, would
a class axiom like subClassOf(male, person) translate to something like
There is a class called male which is a subset of a class called person or to a
statement about the domain itself, like Every male is a person? In the latter
case, some OWL statements, such as class male, would have no translation
at all in CNL as they as artefacts of the modelling process and don’t assert
anything about the domain itself.
Design choice: We opted to have limited explicit references to OWL
constructs like classes and properties. As a consequence, some OWL axioms
are not translated at all, but the knowledge is captured in Sydney OWL
Syntax implicitly. Using a parsing process, any implicit concept in Sydney
OWL Syntax can be unpacked into a corresponding OWL axiom. E.g.,
the translation of Every male is a person back to OWL produces a
class male declaration and a subset axiom. Overall, all information from
OWL is captured in Sydney OWL Syntax and given a Sydney OWL Syntax
translation, the original OWL statements can be regenerated.

3. Correspondence between OWL constructs and CNL constructs
To facilitate modularity in respect of the addition or removal of logical op-



erators and constructions, we have carefully chosen grammar and lexicon to
correspond tightly with the underlying logic, the aim being to implement as
much modularity as possible within the boundaries of using natural gram-
mar. For instance, the word only in

If X has Y as a son then Y is the son of only X.

is reserved for use in expressing functional or inverse functional properties,
and not in any other context. By virtue of this tight binding, a person with
familiarity with both OWL and Sydney OWL Syntax can read an ontology
represented in Sydney OWL Syntax and recognise the OWL constructs via
the words and phrases used.
Design choice: Where possible, each OWL construct has its own distinct
natural language keyword or phrase.

4. Use of linguistic and other background knowledge
Anaphoric reference: In natural language, it is common to refer to con-
cepts introduced in previous statements via pronouns and definite noun
phrases to refer to previously introduced entities. Note that to use the pro-
noun “he” requires previous knowledge of the referent being male. In an
OWL context, such references require logical processing of other statements.
In OWL ontologies statements are not necessarily in any order, so the entire
ontology would need to be parsed.
Number agreement: Linguistic background knowledge is also commonly
used in natural language. For instance, the knowledge that the correct plural
of mouse is mice is necessary to refer to Three blind mice instead of Three
blind mouses. Adding an “s” to create plurals is a useful default rule but
not always correct. However, we can use morphological rules and a list of
exceptions as best approximation.
Design choice: Each OWL statement is translated as a unit, without ref-
erence to any other statement in the ontology, or any other background
or linguistic knowledge. Processing and using knowledge from outside the
OWL statement vastly compounds the complexity of processing, thus has
been avoided at the expense of providing anaphoric reference and safe num-
ber agreement.

5. Use of variables
Whilst not a design preference, we found that some OWL statements could
not be expressed clearly in CNL without using variables. If you need con-
vincing, try as a test to express succinctly and unambiguously in English
without using variables, the example involving role composition in section 3:

If X owns Y and Y has Z as a part then X owns Z.
One option we considered is to use phrases such as “something” and “some-
thing else” as pseudo-variables. But then one ends up with howlers such
as the following: If something owns something else and that something has
another thing as a part then the original something owns that something.
Design choice: We decided to minimise the use of variables but found it
impossible to do without them completely.



5.2 Complex constructs

Design choice: Complex class definitions are supported through an approach
which supports nesting of expressions to any level. We plan to support expres-
sions which use nesting up to three levels, for example:

The class old lady is partly defined as anything
that has only cats as a pet
and has some animal as a pet
or has only gardeners as a lover.

5.3 Extra language support for user-defined terms
In building ontologies it is very common to use has and is combined with some
other word or phrase when naming properties, e.g. hasAge; isMotherOf etc.
Design choice: Sydney OWL Syntax supports special processing of property
names for has and is and their grammatical variants, providing camel case is
used e.g. isMotherOf not ismotherof. This provides a more natural translation.

5.4 Definitions

Constructing correct definitions is challenging in OWL, since authors often fail
to make a definition complete rather than partial. To address this problem we
use the two markers fully defined as and partly defined as to indicate the
logical status. For example, the following statement:

The class adult is fully defined as any person
that has at least 20 as an age.

claims that the concept adult is fully defined by a set of necessary and sufficient
conditions. The translation of this statement results in the subsequent functional-
style syntax representation:

EquivalentClasses(adult
ObjectIntersectionOf(Person DataAllValuesFrom(hasAge
DatatypeRestriction(Datatype(xsd:nonNegativeInteger)
owl:minInclusive "20"^^xsd:int))))

6 Design consequences

6.1 Tight binding to functional-style syntax

In general, the OWL 1.1 functional syntax requires more statements to express
the same thing than the previous frame-like notation. The consequence of tight
binding to the former is that Sydney OWL Syntax also has more statements.
For instance, using the original OWL frame-like notation as a starting point,
it would have been easier to translate the example given in Section 3 into one
sentence rather than two:

If X has Y as an ancestor then X is a person and Y is a person.



6.2 Bidirectionality and context sensitive grammar

Sydney OWL Syntax is bidirectional, thus each statement translates into OWL
functional-style syntax and vice versa, with the exception of statements of ex-
plicit OWL constructs, which have no Sydney OWL Syntax translation. An
elegant way to achieve bidirectionality is to use a definite clause grammar and
generate the output format during the parsing process [13]. In general, bidirec-
tional translation requires a context-sensitive grammar. This may be illustrated
as follows:

If X has Y as a parent then Y has X as a child. expresses an in-
verse relationship between two properties. Note that in the antecedent, the gram-
mar needs to store the variable X in the subject position and the variable Y in
the object position, whereas in the consequent their positions must be switched,
otherwise we have a subproperty relationship. Additionally, the grammar has
to provide a mechanism to absorb the auxiliary verb has and the prepositional
objects parent and child into an OWL property name. To achieve bidirection-
ality, Sydney OWL Syntax will use a context-sensitive grammar which can store
the required elements and employ an axiom schema which is instantiated during
parsing: InverseObjectProperties(Prefix1:Property1 Prefix2:Property2)
For this example the schema looks as follows after parsing:

InverseObjectProperties(a:[has,parent],a:[has,child])
and this output can easily be transformed into the final format:

InverseObjectProperties(a:hasParent a:hasChild). In the ideal case the same
grammar should accept this output and generate the original input sentence.

7 Conclusion and future work
Above we have set out the scope, design goals, decisions and choices informing
the emerging Sydney OWL Syntax specification. The authors invite feedback on
every aspect of the proposal, via email to krr.sydneysyntax@cse.unsw.edu.au.
In parallel with collecting feedback from interested parties and moving towards
a stable specification, we plan to start work on a demonstrator. In conclusion
we note some features we envisage for tool interfaces.

The writing of an ontology in Sydney Syntax is to be supported by a pre-
dictive text editor which generates look-ahead information while a specification
text is written [12, 14]. Thus the user does not need to learn the rules of the
Sydney Syntax explicitly, since the writing process is guided by the text editor.

Such a text editor will be able to be used either in TBox mode, to express
terminological axioms, or in ABox mode, to assert factual information about
a specific domain. Once a set of terminological axioms has been specified, the
resulting user-defined terminology can be used in ABox mode to specify in-
stance data. From the terminological information available in the ontology, the
text editor becomes “ontology-aware”, harvesting TBox input to generate new
lookahead information guiding the writing process in ABox mode.

Acknowledgements
Research reported in this paper has been partially financed by the Macquarie Univer-
sity Centre for Language Technology (http://www.clt.mq.edu.au). We thank Phillip



Quinn and Matthew Horridge for their assistance in producing examples of OWL 1.1
functional syntax, and the members of the public-owl-dev@w3.org mailing list for their
contributions. NICTA is funded by the Australia Government’s Department of Com-
munications, Information and Technology and the Arts and the Australian Research
Council through Backing Australia’s Ability and the ICT Centre of Excellence pro-
gram. It is supported by its members the Australian National University, University of
NSW, ACT Government, NSW Government and affiliate partner University of Sydney.

References

1. D. Beckett. New syntaxes for rdf. Technical Report, 2004. Institute for Learning
and Research Technology, Bristol.

2. D. Beckett. Rdf/xml syntax specification (revised). W3C Recommendation
10 February, 2004. At http://www.w3.org/TR/2004/REC-rdf-syntax-grammar-
20040210/.

3. M. Horridge, N. Drummond, J. Goodwin, A. Rector, R. Stevens, and H. H.
Wang. The manchester owl syntax. In Proc. of the 2006 OWL Experi-
ences and Directions Workshop (OWL-ED2006), 2006. available at http://owl-
workshop.man.ac.uk/acceptedLong/.

4. K. Kaljurand and N. E. Fuchs. Bidirectional mapping between owl dl and attempto
controlled english. In LNCS 4187, pages 179–189, 2006.

5. K. Kaljurand and N. E. Fuchs. Verbalizing OWL in Attempto Controlled English.
In Proceedings of OWLED07, 2007.

6. A. Kalyanpur, B. Parsia, B. Cuenca-Grau, and J. Hendler. Swoop: A ’web’ ontology
editing browser. Journal of Web Semantics, (4(2)), 2005.

7. H. Kamp and U. Reyle. From Discourse to Logic. Dordrecht: Kluwer, 1993.
8. N. Noy, R. Fergerson, and M. Musen. The knowledge model of Protégé-2000:

Combining interoperability and flexibility. In R. Dieng and O. Corby, editors, Proc.
of the 12th EKAW, volume 1937 of LNAI, pages 17–32, Juan-les-Pins, France, 2000.
Springer.

9. P. F. Patel-Schneider, P. Hayes, and I. Horrocks. Owl web ontology language,
semantics and abstract syntax, 2004. W3C Recommendation 10 February 2004,
available at http://www.w3.org/TR/owl-semantics/.

10. P. F. Patel-Schneider and I. Horrocks. Owl 1.1 web ontology language overview,
2006.

11. R. Schwitter. English as a formal specification language. In Proceedings of the
Thirteenth International Workshop on Database and Expert Systems Applications
(DEXA 2002), pages 228–232, 2002.

12. R. Schwitter and M. Tilbrook. Annotating websites with machine-processable
information in controlled natural language. In Advances in Ontologies 2006, Pro-
ceedings of the Second Australasian Ontology Workshop (AOW 2006), pages 75–84,
2006.

13. R. Schwitter and M. Tilbrook. Let’s talk in description logic via controlled nat-
ural language. In Proceedings of the Third International Workshop on Logic and
Engineering of Natural Language Semantics (LENLS2006), pages 193–207, 2006.

14. C. W. Thompson, P. Pazandak, and H. R. Tennant. Talk to your semantic web.
volume 9, pages 75–79, 2005.


