
Design Principles and Realization Techniques for

User Friendly, Interactive, and Scalable

Ontology Browsing and Inspection Tools

Michael Wessel and Ralf Möller
{wessel | moeller}@racer-systems.com

Racer Systems GmbH & Co. KG
Blumenau 50, 22089 Hamburg, Germany

Abstract. RacerPorter is the default GUI client of the RacerPro

OWL DL / description logic system. This paper presents the design
principles of RacerPorter as well as the features of the newest version
of RacerPorter. RacerPorter has been revised extensively in order
to enable it to work with large ontologies (e.g., OpenCyc).

1 Introduction

RacerPorter is the default GUI client of the RacerPro description logic sys-
tem (DLS). The metaphorical name RacerPorter was chosen to stress that
a “user friendly entrance” shall be provided to an otherwise “faceless” Racer-

Pro server, like a hotel porter. Although quite a number of ontology browsing
and inspection tools (OBITs) as well as authoring tools exist and numerous pa-
pers have been written about them [1–3], RacerPorter represents a different
approach. We presents the design principles behind RacerPorter as well as
RacerPorter.

Can such a paper be “scientific”? We think the answer is “yes” if we focus
on the more general design principles rather than the description of the GUI
itself. We have also learned some interesting lessons regarding scalability. These
insights and experiences are of interest to designers of related tools and imply
directions for further research in the field.

RacerPorter was first released with RacerPro 1.8.1 in 2005. It is used
regularly by many RacerPro users. Based on usability feedback and on our
own experience with RacerPorter, we have redesigned RacerPorter exten-
sively.1 Revision was not only required in order to enhance usability, but also
in order to solve certain “scalability problems”. Users “unscrupulously” load
rather large OWL files into RacerPro and expect their taxonomies to be visu-
alized with RacerPorter. Various problems concerning the visualization and
navigation were reported. We reacted to these complaints by enhancing the per-
formance and usability of RacerPorter on large KBs. We focused on the OWL
version of OpenCyc, see http://www.opencyc.org/, which we call cyc.owl in
the following.

1 A current beta can be found under http://www.racer-systems.com/porter



The RacerPro DLS [4] (visit http://www.racer-systems.com) implements
the expressive description logic (DL) ALCQHIR+(D−). As a DLS, RacerPro’s
most prominent features are the support for so-called ABoxes as well as for ex-
pressive Concrete Domains. Furthermore, it contains a high-performance query
and rule language called nRQL. KBs are transmitted using file IO, or over net-
work sockets. RacerPro speaks its own native language, which is an extended
KRSS [5] dialect, as well as OWL DL.2 RacerPro has two network sockets:
one for native commands, and a DIG 1.1 [6] port which is used by tools such
as Protégé [3]. RacerPro can also read in OWL files directly using its own
OWL parser. This will bypass certain difficulties caused by the limitations of
the current DIG version 1.1 (especially regarding OWL datatype properties).
The specific features of RacerPro (e.g., nRQL) can only be accessed via its
native KRSS dialect.

RacerPorter exclusively uses the KRSS port and is thus primarily a KRSS
OBIT, although special support for OWL is included as well. Compared with
DIG, KRSS has the advantage that it can also be used as a shell language (DIG
was designed under a different perspective). The XML messages standardized
by DIG are not on the correct level of abstraction for a shell language (even if a
non-XML serialization of DIG messages were used).

In a nutshell, RacerPorter has been designed to meet the following 9
design characteristics:

1. It offers a KRSS shell for interactive communication with RacerPro.
Already RICE (visit http://www.ronaldcornet.nl/rice/) offered a shell.

2. Obviously, ontology visualization is important as well. Ontologies have
different aspects, i.e., intensional and extensional ones. One can expect that an
OBIT is able to visualize taxonomies, role hierarchies as well as ABoxes as graphs
and/or trees (of certain kind, using certain graph layout algorithms). An OBIT
should thus provides appropriate visualization facilities.

3. Given the fact that OWL KBs tend to become bigger and bigger, appro-
priate navigation, browsing and focusing mechanisms must be provided, since
otherwise the user gets “lost in ontology space”. An OBIT must thus provides
appropriate (syntactic and semantic) mechanisms.

4. Given that large ontologies such as cyc.owl exist, OBITs (as well as the
corresponding DLSs, of course) should be able to process and display these large
ontologies (scalability aspect).

5. Given that both shell-, gadget- as well as graph-based interactions are
offered, the question arises: How to link these interactions, and the results pro-
duced by them? An OBIT must provide appropriate solutions.

6. An OBIT should be designed to work non-blocking (asynchronously). This
is especially valuable if large ontologies are processed, and processing takes some
time.

7. It is desirable if an OBIT can maintain different connections simultaneously
to different DLS servers. While on server is busy, the user can change the active
connection and continue work with another server.

2 With the exception of nominals, which are currently only approximated.



8. An OBIT should avoid opaqueness. Especially if modes are used (and the
interface is stateful), then it is necessary to appropriately visualize these modi.

9. Functionality for starting, stopping and controlling DLS servers is desir-
able. Since each DLS has its proprietary functions and peculiarities it becomes
clear that at least part of the OBIT functionality must be tailored for the target
DLS.

This paper is structured as follows. We first describe design principles for
OBITs and discuss how and why the 9 issues are addressed. Next we describe
RacerPorter in more detail and show how the 9 issues are realized. Finally, we
discuss some important “scalability” issues and lessons we have learned before
we conclude.

2 Design Principles for User-Friendly OBITs

A KRSS or OWL ontology represented in a DLS has many different aspects: the
taxonomy represents the subsumption relationships between concept names or
OWL classes, the role hierarchy represents the subsumption relationships be-
tween roles or OWL properties, and the ABox represents information about the
individuals and their interrelationships (the extensional knowledge). Additional
aspects may be present, e.g. queries and rules. Thus, we can make a “shop-
ping list” of “things” which must be accessed, managed and visualized with a
DLS OBIT: different DLS servers3, TBoxes, ABoxes, concepts, roles, individuals,
queries and rules, ABox assertions, etc.

In order to avoid an overloaded GUI – which would try to represent these
different aspects and aspect-specific functionality in a single window pane – we
favor tabbed interfaces in order to achieve a clean separation of different aspects.
Different tabs thus present different aspects of the ontology together with aspect-
specific commands. The term different perspectives also describes the approach
quite well.

Whereas many operations are directly performed on the displayed represen-
tations of the objects on the RacerPro servers by means of mouse gestures,
sometimes called direct manipulation, we also favor push buttons to invoke com-
mands. In many cases, push buttons will directly invoke KRSS commands, e.g.,
send an abox-consistent? to the connected DLS server. Push buttons also have
the neat effect to inform the user directly about commands which are reasonable
to apply or which can be applied at all in a given situation, simply by being
visible, so there is no need to search for a command in a pull-down menu, which
distracts focus.

In many cases some input arguments must be provided to KRSS commands.
Input arguments are provided directly by the user if direct manipulation is em-
ployed for the interaction, but with simple push buttons this is not directly
possible. Either the user must be prompted for arguments, or a notion of cur-
rent objects must be employed. These current objects have been selected by the
user before and are from then on automatically supplied as input arguments to

3 The connection and server settings can be managed using the so-called connection

profiles which are familiar from networking tools such as SFTP browsers.



KRSS functions. This results in a stateful GUI. Sometimes, stateful GUIs are
considered harmful. However, we will see that states are unavoidable if non-
trivial ontology-inspection tasks shall be performed. Additionally, since also a
DLS has a state, this state should be adequately reflected by the GUI as well
(which automatically makes it stateful). In order to avoid opaqueness it is very
important that the current state is appropriately visualized, e.g., in a status
display which is visible at any time. According to the shopping list, we must
thus have a notion of a current DLS server, a current TBox and ABox, current
concept, individual and role, current query, etc. These current objects partially
constitute the current state of the OBIT.

In many cases, the different tabs of the OBIT visualize different objects. For
example, one tab shows the individuals in the current ABox (the individuals
tab), and another tab shows the concepts in the current TBox (the concepts
tab). The information displayed in a certain tab thus depends on the current
state. Additionally, the current concept (resp. the current individual) will be
highlighted in the concepts tab (resp. the individuals tab), so it can be recognized
easily. Two different tabs can also present the same objects, but use different
visualizations. For example, the taxonomy tab also presents the concepts in the
current TBox, but displays them as nodes in a graph whose edges represent
subsumption relationships. Since all tabs display information according to the
current state, the shown information is interrelated.

However, the interrelatedness of the displayed information achieved so far
is not sufficient. For certain ontology inspection tasks, it is also necessary to
establish a kind of information flow between different tabs. Let us illustrate this
need for an input/output flow of information with an example. As described, the
individuals tab presents the list of individuals in the current ABox. If an individ-
ual is selected from that list, it automatically becomes the current individual.
In order to explore of which concepts this individual is a direct instance of, we
can push the Direct Types button shown on the individuals tab which sends the
direct-types KRSS command to the DLS, using the current ABox and current
individual as input arguments. The DLS returns a set of concepts – the result
of direct-types. In many cases, further operations have to be performed on
the result just returned, e.g., we might want to learn which other instances of
these concepts are present in the KB. Thus, the concepts tab should provide a
functionality which allows to refer to and highlight the just returned concepts,
so that subsequent operations can be applied easily on them. An input/output
flow of information between different tabs is therefore needed.

In order to establish that kind of information flow, we augment the notion of
the current state by also including sets of selected objects in the state. Thus, the
concepts returned by the direct-types command can become selected concepts
(either automatically or with the push of a button). Selected concepts are shown
as highlighted, selected items in the tabs which present concepts. Moreover, there
are also selected individuals and selected roles. Objects can either be selected
manually by means of mouse gestures, or by means of KRSS commands, no
matter how they are invoked. All that matters is the notion of selected objects.



Fig. 1. The Clipboard Metaphor

The set of selected objects is also called the clipboard ; the clipboard metaphor
is illustrated in Fig. 1. The selected objects always include the current objects
(which are thus “special” selected objects). We also must take into account that
the clipboard is session specific if the OBIT shall be able to maintain several
DLS connections (and thus associated DLS sessions) simultaneously.

As said earlier, a shell tab shall be provided for interactive textual commu-
nication with the DLS. We claim that only shell-based interactions can offer
the required flexibility and expressivity needed for advanced ontology inspection
tasks; especially, ad-hoc queries are very important. The shell must be incor-
porated into this information flow as well. If the direct-types command is
entered into the shell, then it must be possible to refer to the current ABox as
well as to the current individual as input arguments (without having to type or
use “copy & paste”). Perhaps the current individual was selected with the mouse
in the individuals tab in advance. Again, it must then be possible to select the
objects returned by the KRSS shell command. Thus, it must be possible to fill
the clipboard with results produced by shell commands. This can either happen
automatically or by hand, with the push of a button.

Focus control and navigation are two other important issues. It is well-known
that the notion of current and selected objects can be used to control the focus.
For example, the current concept can provide the root node in the taxonomy
graph display. Only the descendants of the current concept will be shown. To
browse larger taxonomies, a “depth limit” cutoff on the paths to display can
be specified, and an interactive “drill down”-like browsing can be realized if the
select node gesture (e.g., a left mouse click) automatically changes the current
concept and thus the graph root. If the graph is redrawn immediately, this
allows to drill down a large taxonomy interactively and dynamically. However,
this automatic graph recomputation changes the focus.

In principle, changing the focus automatically can be very distracting. In web
browsers, the navigation buttons (back and forth) are thus of utmost importance;
they allow to reestablish the previous focus effortless. Thus, a focus or history
navigator should be present in an OBIT, as also found in Swoop or GrOWL



[1, 7]. However, many users are unhappy with hyperlink-like focus-destroying
operations; in web browser, tabbed browsing has been invented to address this
problem. Thus, we think that the user should be able to determine when and
how the focus is changed once a gadget is selected.

Sometimes, it is also desirable to focus on more than one object, e.g., for
ABox graphs. We can simply use the selected objects for that purpose as well.
Considering the ABox graph, each selected individual can specify a graph root,
and unraveling (as understood in Modal Logics) can be used to establish a
local perspective from that individual’s point of view (so there is one graph for
each selected individual). This resolves many visual cluttering problems. The
clipboard is thus not only a structure that enables flow of information, but can
also be used to control the focus. This also implies that the focus control is now
highly flexible: Since the clipboard can be filled from results of KRSS commands,
even a semantic focus control is possible. For example, an ad-hoc nRQL query
can be typed into the shell, and, with the push of a button, one can focus on
the returned ABox individuals in the ABox graph tab. However, one also often
wants to focus on individuals simply by their names. Thus, a kind of Search Field
is needed. Objects that contain the search string get selected automatically. So,
this enables syntactic focusing. We have observed that many available tools don’t
offer adequate mechanisms to achieve that kind of information flow and focus
control.

Summing up, we conclude that the current state must be a vector <current

objects,selected objects,active tab,display options>. Each time a state chang-
ing operation is performed by the user (e.g., the current objects or the clipboard
is changed), a so-called history entry is automatically created, which is just
a copy of the current state vector. History entries are inserted at the end of a
queue, the so-called navigation history. The history navigator offers the standard
(VCR-like) navigation buttons. The OBIT always reflects the current state, no
matter whether this is the latest one or a historic state from the history. A his-
tory entry only preserves the state information of the GUI, but not the content
of the DLS at that time. Thus, a well-known problem arises here: If a historic
state is reactivated, then it may no longer be possible to actually refer to the ob-
jects referenced by that state, since they may have already been deleted from the
DLS. This problem is well-known to WWW users which keep a browsing history.
There is no practical solution to this problem (one cannot preserve “copies” of
DLS server states in history entries).

We believe that OBITs should allow for asynchronous usage. While a time-
consuming command is processed by the DLS, the GUI shouldn’t block; instead,
the result should be delivered and displayed asynchronously once available. Al-
though the busy DLS will not accept further commands until the current request
had been fulfilled (nowadays, there are no true multi-processing DLS), in the
meantime the OBIT should a) display status information in order to inform the
user what the DLS is currently doing, and b), if possible, allow the user to do
other things, e.g., continue editing a KRSS KB, or connect to and work with a
different DLS.



5

6

3

2

1

4

Fig. 2. Linux Version of RacerPorter – The Taxonomy Tab

3 RacerPorter – An OBIT for RacerPro

RacerPorter was designed according to the just explained design principles.
Each tab has a very uniform organization, which makes the GUI consistent and
comprehensible. With the exceptions of the log tab and the about tab, each tab
has six areas. Figure 2 shows the taxonomy tab. Let us describe the six areas.

The first area shows the available tabs: Profiles, Shell, TBoxes, ABoxes,
Concepts, Roles, Individuals, Assertions, Taxonomy, Role Hierarchy, ABox Graph,
Queries, Rules, Log, and About tab. The second area is the status display. It
displays the current objects, the current namespace, the current profile (rep-
resenting the current server connection), as well as the current communication
status. The clipboard content is not shown, only the cardinality of the sets of se-
lected objects (in the small number fields). The selected objects are highlighted
once an appropriate tab is selected. The third area shows the history naviga-
tor. The fourth area is the tab-specific main area. Tab-specific display options
and commands are then presented in the fifth area. Finally there is the info
display which is the sixth area. The info area is similar to the shell; however,
it only “echos” the shell interaction (accepts no input). All user-invoked KRSS
commands are put into the shell (no matter how they are invoked) and are thus
also echoed in the info display. This helps to avoid opaqueness, and as a side



effect, the user learns the correct KRSS syntax (since also commands invoked
by push buttons are echoed).

The taxonomy and the ABox graph tabs use graph panes for the fourth area.
With the exception of the shell, log and logo tab, the other tabs use list panes.
List panes allow single or multiple selections of items; selected items represent the
selected objects (clipboard). The last selected item specifies the current object. A
search field is always present and allows to select objects by name. Selected items
will appear on the top of the list if the Selected First checkbox is enabled. Some
list panes display additional information on their items in multiple columns; e.g.,
in case of the TBox pane, not only the TBox name is shown, but also the number
of concepts in that TBox; DLS server and profile information is shown in the
profiles list in appropriate columns, etc.

The graph panes are more complicated to handle since they allow to specify
focus, layout as well as update options. In case of the ABox graph pane, once
can determine which individuals and which edges shall be displayed. Thus, for
both individuals and roles, the focus can be set to the current objects, to the
selected objects, or to all objects. Appropriate radio buttons are provided. Ad-
ditional radio buttons control whether only told role assertions, or also inferred
role assertions shall be shown; more buttons allow to specify whether the graph
display shall be updated automatically if the focus or layout options changes, or
whether the user determines when an update is performed. In the latter case, the
user first uses the button request graph to acquire the information from Racer-

Pro (phase 1). Once the graph is available, the display graph button becomes
enabled; if pushed, the graph layout is computed and displayed. Both phases
can be canceled (and different focus and layout options selected subsequently)
if they should take too long.

The shell tab provides automatic command completion (simply press the tab
key) as well as argument completion. The potential commands and arguments
are presented in a pop-up list. Argument completion is supported by accumu-
lating all results ever returned by KRSS commands. In order to make it easy
to reexecute commands, the shell maintains its own shell history (not to be
mistaken with the navigation history). Since the shell is tailored for KRSS com-
mands in Lisp-syntax, we provide parenthesis matching, convenient multi-line
input (simply press enter to start a fresh line), pretty printing and automatic
indentation. Moreover, users no longer have to use full qualified names for OWL
resources. In order to fill the clipboard with result objects returned by shell com-
mands, appropriate buttons are provided (e.g., the Selected Individuals := Last
Result button).

Finally, let us discuss some miscellaneous features. The log tab keeps a com-
munication log which can be inspected at any time in order to learn what the
DLS is currently doing. The current communication with RacerPro is also
visualized in the request and response status fields; appropriate colors are used
to visualize the different stages of such a communication (request is send, Rac-

erPro performs request, the result is received over the socket, result is parsed,
etc.). RacerPorter includes an Emacs-compatible editor with buffer evalu-



ation mechanism. Basic functionality to start and stop RacerPro servers is
present; startup- and connection-options can be specified with a profile editor.
We want to stress that RacerPorter is a multi-session tool; thus, not only the
current state and history, but also the current shell content, is session-specific.

4 Towards Scalable OBITs – Experiments & Experiences

As mentioned, user complained about the performance of RacerPorter on the
OWL version of OpenCyc (v0.7.8b, see http://www.opencyc.org/). This mo-
tivated us to redesign large parts of the original version of RacerPorter. This
KB contains 25568 concepts, 9728 roles and 62469 individuals. Given the fact
that RacerPorter had problems, we were curious whether the (impressive)
tools Swoop, OntoTrack, and GrOWL, could process this KB without problems.
Thus, we performed some experiments. All tests were performed on an Intel
Core2Duo T5600 @ 1.83GHz with 2 GB main memory running SuSE OSS 10.2.

SWOOP v2.3 beta 3 [1] (release date: 2006-11-10) was able to load cyc.owl

in less than a minute, very fast. However, we then tried to display the class
tree. Unfortunately, after 23 minutes, an “out of heap space memory error” is
signaled, even though 1.5 GB of heap space were assigned to the Java VM. We
believe that this behavior could be improved easily if appropriate focus resp.
concept pre-selection mechanisms were provided.

Next we tried OntoTrack (V 1.00003, downloaded 2007-02-28). Unfortu-
nately, we had no success loading cyc.owl, because “An error occurred during
loading”. According to the authors, this is caused by some incorrect OWL in
cyc.owl (e.g., properties and individuals with equal names → OWL Full).

It seems that GrOWL [7] currently achieves the best performance on cyc.owl.
We first put GrOWL into a state in which it only displays the child concepts of
owl:Thing.4 After 18 minutes, the graph appeared, and 750 MB were allocated.
But when we tried to expand the children of some graph nodes, we encountered
problems with the layout algorithm, since too many children were generated.
The used (spring) layout algorithms simply needed too much time to compute a
layout; however, we could see that the algorithm was working since it updated
the graph display every few seconds. It seems that a different algorithm and
probably a “non-dynamic display” is needed for cyc.owl.

Next we tried the current development version of RacerPro + Racer-

Porter. Using owl-read-file, cyc.owl is loaded in 30 seconds, the taxonomy
is computed in less than a minute, and transmission to RacerPorter over the
KRSS native socket takes approx. 2 minutes. The visualization of the complete
class taxonomy having 25.568 nodes needs approx. 8 minutes. However, it is vi-
able that the taxonomy is displayed as a graph, and not as a tree, since a tree
display results in a combinatorial explosion in the number of nodes (nodes with
multiple parents and thus whole subtrees get duplicated). A cancel button can
be used to abort the layout process; one can then try again with different op-
tions. Considering memory requirements, RacerPorter needed not more than

4 It should be noted that GrOWL didn’t really display the taxonomy, since only the
told subsumption relationships were visualized (no reasoning was used).



270 MB. We admit that the layout of the complete taxonomy is not very useful
(too much cluttering), but RacerPorter is capable to display the complete
taxonomy. It is definitely necessary to focus on certain parts of the taxonomy.
As explained, either the search field or nRQL TBox queries can be used.

We learned that a lot of effort must be put into an OBIT until it can be used
successfully on KBs of the size of cyc.owl. Many aspects of the original code
had to be reworked thoroughly. This not only concerns the choice of appropriate
container data structures “that scale”, but also issues like communication over
socket streams. For example, in our case it was no longer possible to simply
coerce sequences of characters read from the socket connected to RacerPro to
strings (although this is a very fast operation), since these strings simply get too
big to be represented in the Lisp environment we use. On order to reduce socket
communication latency, caches must be used, etc.

Summing up, we have presented design principles for OBITs and showed
how they are realized in RacerPorter. We want to encourage developers of
related tools to make their tools work better on larger KBs. Although the tools
are already very impressive, there is certainly room for enhancements, especially
regarding visualization and navigation in large KBs. The most serious deficien-
cies we found in other tools are: 1. the lack of appropriate focus and update
control mechanisms, 2. the lack of facilities that support “cancel and retry (with
different options)”, 3. the lack of information flow between different “plugins”
or “views” (no supporting common clipboard or blackboard).

We admit that also RacerPorter still has problems, e.g., the current ver-
sion is unable to visualize large ABoxes, since the exploited graph displayer can
only visualize directed acyclic graphs (DAGs); thus, unraveling is used. Interest-
ing alternatives for a future version are proposed in [8]. Finally, we would like to
thank Kay Hidde, Volker Haarslev and our users for valuable ideas and feedback.

References

1. Kalyanpur, A., Parsia, B., Sirin, E., Grau, B.C., Hendler, J.: Swoop: A Web Ontol-
ogy Editing Browser. Web Semantics: Science, Services and Agents on the World
Wide Web 4 (2005) 144–153

2. Liebig, T., Noppens, O.: OntoTrack: A Semantic Approach for Ontology Author-
ing. Journal of Web Semantics 3 (2005) 116–131

3. Knublauch, H., Musen, M.A., Rector, A.L.: Editing Description Logic Ontologies
with the Protégé OWL Plugin. In: Proc. Int. Workshop on Description Logics.
(2004)

4. Haarslev, V., Möller, R.: RACER System Description. In: Int. Joint Conference on
Automated Reasoning. (2001)

5. Patel-Schneider, P.F., Swartout, B.: Description-Logic Knowledge Representation
System Specification from the KRSS Group of the ARPA Knowledge Sharing Effort.
Technical report (1993)

6. Bechhofer, S., Möller, R., Crowther, P.: The DIG Description Logic Interface. In:
Proc. Int. Workshop on Description Logics. (2003)

7. Sergey Krivov, Rich Williams, F.V.: GrOWL, Visual Browser and Editor for OWL
Ontologies. Journal of Web Semantics (2006)

8. Lu, Q., Haarslev, V.: OntoKBEval: A Support Tool for DL-based Evaluation of
OWL Ontologies. In: OWL: Experiences and Directions (OWLED). (2006)


