
Can OWL model football leagues?

Diego Calvanese1, Giuseppe De Giacomo2, Domenico Lembo2,
Maurizio Lenzerini2, Riccardo Rosati2

1 Faculty of Computer Science
Free University of Bozen-Bolzano

Piazza Domenicani 3
I-39100 Bolzano, Italy

calvanese@inf.unibz.it

2 Dip. di Informatica e Sistemistica
Università di Roma “La Sapienza”

Via Salaria 113
I-00198 Roma, Italy

lastname@dis.uniroma1.it

Abstract. Identity is one of the main principles in ontology engineering. Mecha-
nisms to identify objects by using attribute values or by their participation to rela-
tionships with other objects are present in most conceptual modeling formalisms
used in software engineering and database or information system design. Identifi-
cation mechanisms have also been investigated in expressive Description Logics.
However they are currently missing in OWL. In this paper we argue for their
usefulness, and we show how to extend DL-LiteA, a tractable fragment of OWL,
with identification assertions without losing tractability of reasoning.

1 Introduction

Identity is one of the main principles in ontology engineering, and methods for ex-
plicitly talking about identity are provided in some modeling languages. For example,
mechanisms for identifying objects using attribute values or their participation to rela-
tionships with other objects are present in most conceptual modeling formalisms used
in software engineering and database or information system design [7, 6, 8].

On the other hand, in OWL [2]1, the only way to specify identification is through
the use of one-to-one relationships, and this corresponds to a very limited form of iden-
tification. More powerful identification mechanisms have been already studied in the
context of very expressive Description Logics (DLs), see, e.g., [5, 10, 11], but they have
not been incorporated in OWL yet.

We argue for the usefulness of identification assertions in modeling a domain of
interest through an ontology. For example, in the context of geografic information sys-
tems, the fact that a location is identified by its cooordinates should be considered as part
of the very definition of location. However, this cannot be expressed in OWL. The lack
of identification mechanisms is even more serious if one considers that in OWL both
n-ary relations and attributes of roles are missing. Indeed, the only way to represent
an arbitrary n-ary relation in OWL is through the well-known reification technique [1].
Notice that, by reification we mean the use of an object to denote a tuple, and it should
not be confused with reification where an object is used to denote a predicate, as hap-
pens, e.g., in RDF. Reification, as intended in this paper, actually needs identification
assertions, as we briefly illustrate in the following simple example. Consider the notion

1 Although we generically use the term “OWL”, in this paper we focus on OWL-DL.

1

of exam, where each instance relates a student, a course, and a grade. Intuitively, this
notion can be modeled in First Order Logic (FOL) with a ternary relation. In OWL, such
a relation can be represented by the reified concept Cexam , two binary roles Rstudent

and Rcourse , and an attribute Agrade on concept Cexam . However, in order for this rei-
fied representation to be correct, we must also impose that no two distinct instances of
Cexam exist that are connected to the same pair of fillers for Rstudent and Rcourse . This
is exactly what an identification assertion can be used for.

In this paper we discuss and illustrate the need of identification mechanisms in
detail. We use as running example a simple OWL ontology about European Football
Leagues, asking ourself whether we can formally represent in OWL the knowledge that
is commonly shared on how the various leagues and their matches are organized. We
argue that identification assertions are needed for accurately modeling such a domain.
Then, we propose a mechanism for specifying and reasoning on identification assertions
in a tractable DL, namely DL-LiteA [3], corresponding to a particularly well behaved
fragment of OWL. It turns out that identification assertions can indeed be added to this
fragment without falling into intractability of both TBox reasoning and query answer-
ing.

2 Motivating example

Our goal in this section is to illustrate the need of identification assertions by means of
an example. We aim at defining suitable concepts and relationships for modeling the
annual national football2 championships in Europe. The championship for a specific
year and for a specific nation is called league (e.g., the 2006 Spanish Liga). A league
is structured in terms of a set of rounds. In every round, a set of matches take place.
Each match is played by one home team and one host team, and is umpired by one
referee. A match is played in a specific date, and every match that has been played is
characterized by its result, where the result is given in terms of the number of goals
scored by the home team and the host team. Note that different matches scheduled for
the same round may be played in different dates.

In Figure 1, we show a diagrammatic representation of the ontology for the above
described domain. Concepts are represented as ovals, attributes are represented as
squares connected to the concepts they refer to, ISA between concepts is represented by
an arrow, and roles are drawn as lines connecting the appropriate concepts. The same
ontology expressed in OWL is given in the Appendix.

One might wonder whether this ontology faithfully describes the domain of interest.
Indeed, an ontology should select as accurately as possible the class of intended models
that describe the application domain. So a natural question to ask is how accurate the
above ontology is in representing the semantics of our football domain. It is not hard to
see that the OWL ontology described above fails to model the following aspects:

1. no two leagues with the same year and the same nation exist;
2. within a certain league, the code associated to a round is unique;
3. every match is identified by its code within its round;
2 Football is called “soccer” in the United States.

2

LeaguePlayedMatch NationReferee

Match

UmpiredBy

Team
HostTeam

HomeTeam

Of

Round

BelongsTo

PlayedIn

HomeGoals PlayedOn

HostGoals

Year

Code

Fig. 1. Diagramatic representation of the football ontology

4. every referee can umpire at most one match in the same round;
5. no team can be the home team of more than one match per round;
6. no team can be the host team of more than one match per round.

Unfortunately, with the modeling constructs available in OWL, the above charac-
teristics simply cannot be expressed. Indeed, all such characteristics requires the notion
of identifier, which is missing in OWL.

3 Adding identification assertions to the description logic DL-LiteA

In this section, we consider the logic DL-LiteA [3], and we extend its language with in-
dentification assertions. As usual in DLs, DL-LiteA allows one to represent the universe
of discourse in terms of concepts, denoting sets of objects, and roles, denoting binary
relations between objects. In addition, DL-LiteA allows one to use value-domains, a.k.a.
concrete domains [9], denoting unbounded sets of (data) values, and concept attributes,
denoting binary relations between objects and values3. In particular, the value-domains
that we consider here are those corresponding to unbounded (i.e., value-domains with
an unbounded size) RDF data types, such as integers, real, strings, etc.

To extend DL-LiteA with identification assertions, we start by adding such asser-
tions to the DL DL-LiteFR, which combines the main features of two DLs presented
in [4], called DL-LiteF and DL-LiteR, respectively. We use the following notation:

– A denotes an atomic concept, B a basic concept, C a general concept, and >C the
universal concept;

– E denotes a basic value-domain, i.e., the range of an attribute, T1, . . . , Tn denote
the n pairwise disjoint unbounded RDF data types used in our logic, and F denotes
a general value-domain, which can be either an unbounded RDF data type Ti or
the universal value-domain >D;

– P denotes an atomic role, Q a basic role, and R a general role;
– UC denotes an atomic attribute, and VC a general attribute.

3 The logic discussed in [3] is actually more expressive than DL-LiteA, since it includes role
attributes, user-defined domains, as well as inclusion assertions over such domains.

3

Given an attribute UC , we call the domain of UC , denoted by δ(UC), the set of
objects that UC relates to values, and we call range of UC , denoted by ρ(UC), the set
of values related to objects by UC .

We are now ready to define DL-LiteFR expressions as follows.

– Basic and general concept expressions:

B ::= A | ∃Q | δ(UC)
C ::= >C | B | ¬B | ∃Q.C

– Basic and general value-domain expressions:

E ::= ρ(UC)
F ::= >D | T1 | · · · | Tn

– Attribute expressions:
VC ::= UC | ¬UC

– Basic and general role expressions:

Q ::= P | P−
R ::= Q | ¬Q

A DL-LiteFR knowledge base (KB) with identification assertions K = 〈T ,A〉 is
constituted by two components: a TBox T , used to represent intensional knowledge,
and an ABox A, used to represent extensional knowledge. A DL-LiteFR TBox with
identification assertions is constituted by a finite set of assertions of the following forms:

– Inclusion assertions:

B v C concept inclusion assertion
Q v R role inclusion assertion
E v F value-domain inclusion assertion
UC v VC attribute inclusion assertion

A concept inclusion assertion expresses that a (basic) concept B is subsumed by a
(general) concept C. Analogously for the other types of inclusion assertions.

– Functionality assertions on atomic attributes or basic roles:

(funct I) functionality assertion

where I denotes either an atomic attribute or a basic role. A functionality assertion
expresses the (global) functionality of an atomic attribute or a basic role.

– Identification assertions:

(id B I1, . . . , In) identification assertion

whereB denotes a basic concept and each Ij denotes either an atomic attribute or a
basic role. Such an assertion specifies that the combination of properties I1, . . . , In
identifies the instances of the basic concept B. More precisely, it imposes that two
instances of B cannot agree on all the fillers for I1, . . . , In. We call I1, . . . , In the
identification list of the identification assertion.

4

As for the ABox, we introduce two disjoint alphabets, called ΓO and ΓV , respec-
tively. Symbols in ΓO, called object constants, are used to denote objects, while sym-
bols in ΓV , called value constants, are used to denote data values. A DL-LiteFR ABox
is a finite set of assertions of the form:

A(a), P (a, b), UC(a, c) membership assertions

where a and b are constants in ΓO, and c is a constant in ΓV .
The semantics of DL-LiteFR with identification assertions is given in terms of FOL

interpretations. An interpretation I = (∆I , ·I) consists of a first order structure over
the interpretation domain ∆I that is the disjoint union of ∆IO and ∆IV , with an inter-
pretation function ·I such that

– for all a ∈ ΓO, we have that aI ∈ ∆IO;
– for all c ∈ ΓV , we have that cI ∈ ∆IV ;
– for all c, d ∈ Γ , we have that c 6= d implies cI 6= dI ;
– and the following conditions are satisfied:

>IC = ∆IO
>ID = T I1 ⊕ . . .⊕ T In = ∆IV
AI ⊆ ∆IO
P I ⊆ ∆IO ×∆IO
UIC ⊆ ∆IO ×∆IV
(¬UC)I = (∆IO ×∆IV) \ UIC
(¬Q)I = (∆IO ×∆IO) \QI

(P−)I = { (o, o′) | (o′, o) ∈ P I }
(ρ(UC))I = { v | ∃o. (o, v) ∈ UIC }
(δ(UC))I = { o | ∃o. (o, v) ∈ UIC }
(∃Q)I = { o | ∃o′. (o, o′) ∈ QI }
(∃Q.C)I = { o | ∃o′. (o, o′) ∈ QI ∧ o′ ∈ CI }
(¬B)I = ∆IO \BI

We define when an interpretation I satisfies an assertion (i.e., is a model of the
assertion) as follows (below, each e and f , possibly with subscript, is an element of
either∆IO or∆IV , depending on the context, each t, possibly with subscript, is a constant
of either ΓO or ΓV , depending on the context, a and b are constants in ΓO, and c is a
constant in ΓV). Specifically, an interpretation I satisfies:

– an inclusion assertion α v β, if αI ⊆ βI ;
– a functionality assertion (funct γ), where γ is either P , P−, or UC , if, for each
e1, e2, e3, we have that (e1, e2) ∈ γI and (e1, e3) ∈ γI implies e2 = e3;

– an identication assertion (id B I1, . . . , In), if for all e1, e2 ∈ BI and for all
f1
1 , . . . , f

n
1 , f

1
2 , . . . , f

n
2 , we have that (e1, f

j
1) ∈ IIj and (e2, f

j
2) ∈ IIj , for

j ∈ {1, . . . , n}, implies e1 = e2;
– a membership assertion A(t), if tI ∈ AI ;
– a membership assertion β(t1, t2), where β is either P or UC , if (tI1 , t

I
2) ∈ βI .

A model of a KB K is an interpretation I that is a model of all assertions in K. A KB
is satisfiable if it has at least one model. A KB K logically implies an assertion α if all
models of K are also models of α.

An atomic attribute UC (resp. a basic role Q) is called an identifying property in T ,
if T contains a functionality assertion (funct UC) (resp. (funct Q) or (funct Q−)), or
T contains an indentification assertion whose identification list includes UC (resp. Q
or Q−). Also, an atomic attribute or a basic role is called primitive in T , if it does not

5

appear positively in the right-hand side of an inclusion assertion of T , and it does not
appear in an expression of the form ∃Q.C in T .

We are now ready to define the logic that extends DL-LiteA with identification as-
sertions.

A DL-LiteA knowledge base with identification assertions is a pair 〈T ,A〉,
whereA is a DL-LiteFR ABox, and T is a DL-LiteFR TBox with identification
assertions such that T satisfies the condition that every identifying property is
primitive in T .

Roughly speaking, in our logic, identifying properties cannot be specialized, i.e.,
they cannot be used positively in the right-hand side of inclusion assertions.

One of the crucial properties of DL-LiteA without identification assertions is
tractability: TBox reasoning is PTIME and query answering is LOGSPACE in the size of
the ABox (indeed SQL reducible) [3]. So one might wonder whether adding identifica-
tion assertions breaks such a nice behavior. It turns out that identification assertions are
indeed harmless w.r.t. tractability of reasoning, in the sense that the complexity bounds
above are preserved.

4 DL-LiteA with identification assertions: an example

In this section, we consider again the example of Section 2 and encode it in DL-LiteA

extended with identification assertions. By virtue of the possibility of specifying iden-
tification constraints, we can now provide a more accurate representation of the seman-
tics of our football domain. Indeed, besides translating in DL-LiteA the OWL ontology
given in Section 2, which can be done using only DL-LiteA inclusion and functional-
ity assertions, we are also able, through the use of identification assertions, to express
all domain aspects listed in Section 2 and missed in the OWL ontology. The resulting
DL-LiteA TBox with identification assertions is given in Figure 2.

It is easy to check that every identifying property in the TBox Tex given in Figure 2
is primitive in Tex, and therefore the TBox is indeed a DL-LiteA TBox with identifica-
tion assertions. It is also easy to see that:

1. (id league OF ,year) models the property that no two leagues with the same year
and the same nation exist;

2. (id round BELONGS-TO, code) models the property that the code associated to a
round is unique within the league to which the round belongs;

3. (id match PLAYED-IN, code) models the property that every match is identified
by its code within its round;

4. (id match UMPIRED-BY,PLAYED-IN) models the property that every referee can
umpire at most one match in the same round;

5. (id match HOME-TEAM,PLAYED-IN) models the property that no team can be
the home team of more than one match per round;

6. (id match HOST-TEAM,PLAYED-IN) models the property that no team can be the
host team of more than one match per round.

6

Alphabet
Atomic Concepts league Atomic Roles BELONGS-TO

nation OF
round PLAYED-IN
match HOME-TEAM
playedMatch HOST-TEAM
team UMPIRED-BY
referee

Atomic Attributes year rdfUnboundedDataType xsd:positiveInteger
code xsd:date
playedOn xsd:nonNegativeInteger
homeGoals
hostGoals

Inclusion Assertions
league v ∃OF match v ∃UMPIRED-BY
∃OF v league ∃UMPIRED-BY v match
∃OF− v nation ∃UMPIRED-BY− v referee
round v ∃BELONGS-TO playedMatch v match
∃BELONGS-TO v round match v δ(code)
∃BELONGS-TO− v league round v δ(code)
match v ∃PLAYED-IN playedMatch v δ(playedOn)
∃PLAYED-IN v match playedMatch v δ(homeGoals)
∃PLAYED-IN− v round playedMatch v δ(hostGoals)
match v ∃HOME-TEAM league v δ(year)
∃HOME-TEAM v match ρ(playedOn) v xsd:date
∃HOME-TEAM− v team ρ(homeGoals) v xsd:nonNegativeInteger
match v ∃HOST-TEAM ρ(hostGoals) v xsd:nonNegativeInteger
∃HOST-TEAM v match ρ(code) v xsd:positiveInteger
∃HOST-TEAM− v team ρ(year) v xsd:positiveInteger

Functionality Assertions
(funct OF) (funct playedOn)
(funct BELONGS-TO) (funct homeGoals)
(funct PLAYED-IN) (funct hostGoals)
(funct HOST-TEAM) (funct code)
(funct HOME-TEAM) (funct year)
(funct UMPIRED-BY)

Identification Assertions
(id league OF ,year) (id match UMPIRED-BY,PLAYED-IN)
(id round BELONGS-TO, code) (id match HOME-TEAM,PLAYED-IN)
(id match PLAYED-IN, code) (id match HOST-TEAM,PLAYED-IN)

Fig. 2. The TBox Tex for the football domain expressed in DL-LiteA with identification assertions

We finally notice that, by reasoning on the TBox Tex, which is in PTIME
(see Section 3), we can infer other identification assertions that are logi-
cally implied by those asserted in Tex. For example, from the assertions
(id match HOST-TEAM,PLAYED-IN) and playedMatch v match we easily get the

7

assertion (id playedMatch HOST-TEAM,PLAYED-IN), stating that no team can be the
host team of more than one played match per round.

5 Conclusions

In this paper we have argued for the need of identification mechanisms in ontology
languages. We have presented one such mechanism for a tractable fragment of OWL,
which turns out to preserve the nice computational properties of the logic.

We are currently investigating more powerful identification assertions with the goal
of checking whether they endanger tractability of reasoning. First investigations show
that extending our identification assertions with paths rather than simple properties is
harmless.

Acknowledgments

We thank Bernardo Cuenca Grau for helping in the hard task of writing an OWL on-
tology. This research has been partially supported by the FET project TONES (Think-
ing ONtologiES), funded by the EU in the 6th Framework Programme under contract
number FP6-7603, and by the MIUR FIRB 2005 project “Tecnologie Orientate alla
Conoscenza per Aggregazioni di Imprese in Internet” (TOCAI.IT).

References

1. F. Baader, D. Calvanese, D. McGuinness, D. Nardi, and P. F. Patel-Schneider, editors. The
Description Logic Handbook: Theory, Implementation and Applications. Cambridge Uni-
versity Press, 2003.

2. S. Bechhofer, F. van Harmelen, J. Hendler, I. Horrocks, D. L. McGuinness, P. F. Patel-
Schneider, and L. A. Stein. OWL Web Ontology Language reference. W3C Recommen-
dation, Feb. 2004. Available at http://www.w3.org/TR/owl-ref/.

3. D. Calvanese, G. De Giacomo, D. Lembo, M. Lenzerini, A. Poggi, and R. Rosati. Linking
data to ontologies: The description logic DL-LiteA. In Proc. of OWLED 2006, 2006.

4. D. Calvanese, G. De Giacomo, D. Lembo, M. Lenzerini, and R. Rosati. Data complexity of
query answering in description logics. In Proc. of KR 2006, pages 260–270, 2006.

5. D. Calvanese, G. De Giacomo, and M. Lenzerini. Identification constraints and functional
dependencies in description logics. In Proc. of IJCAI 2001, pages 155–160, 2001.

6. P. P. Chen. The Entity-Relationship model: Toward a unified view of data. ACM Trans. on
Database Systems, 1(1):9–36, Mar. 1976.

7. M. Fowler and K. Scott. UML Distilled – Applying the Standard Object Modeling Laguage.
Addison Wesley Publ. Co., 1997.

8. R. B. Hull and R. King. Semantic database modelling: Survey, applications and research
issues. ACM Computing Surveys, 19(3):201–260, Sept. 1987.

9. C. Lutz. Description logics with concrete domains: A survey. In P. Balbiani, N.-Y. Suzuki,
F. Wolter, and M. Zakharyaschev, editors, Advances in Modal Logics, volume 4. King’s Col-
lege Publications, 2003.

10. C. Lutz, C. Areces, I. Horrocks, and U. Sattler. Keys, nominals, and concrete domains. J. of
Artificial Intelligence Research, 23:667–726, 2005.

11. D. Toman and G. E. Weddell. On keys and functional dependencies as first-class citizens in
description logics. In Proc. of IJCAR 2006, pages 647–661, 2006.

8

Appendix

We report below the OWL code of the ontology described in Section 2.

<!-- Classes -->
<owl:Class rdf:about="#League">

<rdfs:subClassOf>
<owl:Restriction>

<owl:onProperty rdf:resource="#Of"/>
<owl:someValuesFrom rdf:resource="&owl;Thing"/>

</owl:Restriction>
</rdfs:subClassOf>

</owl:Class>

<owl:Class rdf:about="#Round">
<rdfs:subClassOf>
<owl:Restriction>

<owl:onProperty rdf:resource="#BelongsTo"/>
<owl:someValuesFrom rdf:resource="&owl;Thing"/>

</owl:Restriction>
</rdfs:subClassOf>

</owl:Class>

<owl:Class rdf:about="#Match">
<rdfs:subClassOf>
<owl:Restriction>

<owl:onProperty rdf:resource="#UmpiredBy"/>
<owl:someValuesFrom rdf:resource="&owl;Thing"/>

</owl:Restriction>
</rdfs:subClassOf>
<rdfs:subClassOf>
<owl:Restriction>

<owl:onProperty rdf:resource="#PlayedIn"/>
<owl:someValuesFrom rdf:resource="&owl;Thing"/>

</owl:Restriction>
</rdfs:subClassOf>
<rdfs:subClassOf>
<owl:Restriction>

<owl:onProperty rdf:resource="#HomeTeam"/>
<owl:someValuesFrom rdf:resource="&owl;Thing"/>

</owl:Restriction>
</rdfs:subClassOf>
<rdfs:subClassOf>
<owl:Restriction>

<owl:onProperty rdf:resource="#HostTeam"/>
<owl:someValuesFrom rdf:resource="&owl;Thing"/>

</owl:Restriction>
</rdfs:subClassOf>

</owl:Class>

<owl:Class rdf:about="#Nation"/>

<owl:Class rdf:about="#PlayedMatch">
<rdfs:subClassOf rdf:resource="#Match"/>
<rdfs:subClassOf>
<owl:Restriction>

<owl:onProperty rdf:resource="#HostGoals"/>
<owl:someValuesFrom rdf:resource="&xsd;anyType"/>

</owl:Restriction>
</rdfs:subClassOf>
<rdfs:subClassOf>
<owl:Restriction>

<owl:onProperty rdf:resource="#PlayedOn"/>
<owl:someValuesFrom rdf:resource="&xsd;anyType"/>

</owl:Restriction>
</rdfs:subClassOf>
<rdfs:subClassOf>
<owl:Restriction>

<owl:onProperty rdf:resource="#HomeGoals"/>
<owl:someValuesFrom rdf:resource="&xsd;anyType"/>

</owl:Restriction>
</rdfs:subClassOf>

</owl:Class>

<owl:Class rdf:about="#Referee"/>

<owl:Class rdf:about="#Team"/>

9

<!-- Datatypes -->
<rdfs:Datatype rdf:about="&xsd;anyType">

<rdf:type rdf:resource="&owl;Thing"/>
</rdfs:Datatype>

<rdfs:Datatype rdf:about="&xsd;date">
<rdf:type rdf:resource="&owl;Thing"/>

</rdfs:Datatype>

<rdfs:Datatype rdf:about="&xsd;nonNegativeInteger">
<rdf:type rdf:resource="&owl;Thing"/>

</rdfs:Datatype>

<rdfs:Datatype rdf:about="&xsd;positiveInteger">
<rdf:type rdf:resource="&owl;Thing"/>

</rdfs:Datatype>

<!-- Datatype Properties -->
<owl:DatatypeProperty rdf:about="#Code">

<rdf:type rdf:resource="&owl;FunctionalProperty"/>
<rdfs:range rdf:resource="&xsd;positiveInteger"/>

</owl:DatatypeProperty>

<owl:DatatypeProperty rdf:about="#HomeGoals">
<rdf:type rdf:resource="&owl;FunctionalProperty"/>
<rdfs:range rdf:resource="&xsd;nonNegativeInteger"/>

</owl:DatatypeProperty>

<owl:DatatypeProperty rdf:about="#HostGoals">
<rdf:type rdf:resource="&owl;FunctionalProperty"/>
<rdfs:range rdf:resource="&xsd;nonNegativeInteger"/>

</owl:DatatypeProperty>

<owl:DatatypeProperty rdf:about="#PlayedOn">
<rdf:type rdf:resource="&owl;FunctionalProperty"/>
<rdfs:range rdf:resource="&xsd;date"/>

</owl:DatatypeProperty>

<owl:DatatypeProperty rdf:about="#Year">
<rdf:type rdf:resource="&owl;FunctionalProperty"/>
<rdfs:range rdf:resource="&xsd;positiveInteger"/>

</owl:DatatypeProperty>

<!-- Object Properties -->
<owl:FunctionalProperty rdf:about="#BelongsTo">

<rdf:type rdf:resource="&owl;ObjectProperty"/>
<rdfs:domain rdf:resource="#Round"/>
<rdfs:range rdf:resource="#League"/>

</owl:FunctionalProperty>

<owl:FunctionalProperty rdf:about="#HomeTeam">
<rdf:type rdf:resource="&owl;ObjectProperty"/>
<rdfs:domain rdf:resource="#Match"/>
<rdfs:range rdf:resource="#Team"/>

</owl:FunctionalProperty>

<owl:FunctionalProperty rdf:about="#HostTeam">
<rdf:type rdf:resource="&owl;ObjectProperty"/>
<rdfs:domain rdf:resource="#Match"/>
<rdfs:range rdf:resource="#Team"/>

</owl:FunctionalProperty>

<owl:FunctionalProperty rdf:about="#Of">
<rdf:type rdf:resource="&owl;ObjectProperty"/>
<rdfs:domain rdf:resource="#League"/>
<rdfs:range rdf:resource="#Nation"/>

</owl:FunctionalProperty>

<owl:FunctionalProperty rdf:about="#PlayedIn">
<rdf:type rdf:resource="&owl;ObjectProperty"/>
<rdfs:domain rdf:resource="#Match"/>
<rdfs:range rdf:resource="#Round"/>

</owl:FunctionalProperty>

<owl:FunctionalProperty rdf:about="#UmpiredBy">
<rdf:type rdf:resource="&owl;ObjectProperty"/>
<rdfs:domain rdf:resource="#Match"/>
<rdfs:range rdf:resource="#Referee"/>

</owl:FunctionalProperty>

10

